JP4461427B2 - Electrode catalyst body and method for producing the same - Google Patents

Electrode catalyst body and method for producing the same Download PDF

Info

Publication number
JP4461427B2
JP4461427B2 JP2004223113A JP2004223113A JP4461427B2 JP 4461427 B2 JP4461427 B2 JP 4461427B2 JP 2004223113 A JP2004223113 A JP 2004223113A JP 2004223113 A JP2004223113 A JP 2004223113A JP 4461427 B2 JP4461427 B2 JP 4461427B2
Authority
JP
Japan
Prior art keywords
solvent
metal complex
electrode catalyst
macrocyclic
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004223113A
Other languages
Japanese (ja)
Other versions
JP2006035186A (en
Inventor
一崇 ▲廣▼嶋
賢彦 朝岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2004223113A priority Critical patent/JP4461427B2/en
Publication of JP2006035186A publication Critical patent/JP2006035186A/en
Application granted granted Critical
Publication of JP4461427B2 publication Critical patent/JP4461427B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、電極触媒体及びその製造方法に関し、さらに詳しくは、燃料電池、水電解装置、ハロゲン化水素酸電解装置、食塩電解装置、酸素及び/又は水素濃縮器、湿度センサ、ガスセンサ等の各種電気化学デバイスの電極に用いられる電極触媒体及びその製造方法に関する。   The present invention relates to an electrode catalyst body and a method for producing the same, and more specifically, various types such as a fuel cell, a water electrolysis device, a hydrohalic acid electrolysis device, a salt electrolysis device, an oxygen and / or hydrogen concentrator, a humidity sensor, and a gas sensor. The present invention relates to an electrode catalyst body used for an electrode of an electrochemical device and a method for producing the same.

固体高分子型燃料電池や水電解装置などの各種電気化学デバイスにおいて、固体高分子電解質は、膜状に成形され、その両面に電極を接合した膜電極接合体(MEA)の状態で使用される。また、固体高分子型燃料電池において、電極は、一般に、拡散層と触媒層の二層構造をとる。拡散層は、触媒層に反応ガス及び電子を供給するためのものであり、カーボン繊維、カーボンペーパー等が用いられる。また、触媒層は、電極反応の反応場となる部分であり、一般に、電極触媒と固体高分子電解質との複合体からなる。   In various electrochemical devices such as a polymer electrolyte fuel cell and a water electrolysis apparatus, the polymer electrolyte is used in the form of a membrane electrode assembly (MEA) in which a membrane is formed and electrodes are bonded to both sides thereof. . In the polymer electrolyte fuel cell, the electrode generally has a two-layer structure of a diffusion layer and a catalyst layer. The diffusion layer is for supplying reaction gas and electrons to the catalyst layer, and carbon fiber, carbon paper, or the like is used. The catalyst layer is a part that becomes a reaction field for electrode reaction, and is generally composed of a composite of an electrode catalyst and a solid polymer electrolyte.

このような各種電気化学デバイスに用いられる電極触媒には、従来、Ptなどの貴金属の微粒子(Ptブラックなど)、カーボンブラックなどの炭素質担体上にPtなどの貴金属の微粒子を担持したもの、電解質膜の表面にメッキやスパッタなどの方法で形成された貴金属の薄膜等が用いられている。   Electrocatalysts used in such various electrochemical devices conventionally include fine particles of noble metals such as Pt (Pt black and the like), those in which noble metal fine particles such as Pt are supported on a carbonaceous carrier such as carbon black, electrolytes A noble metal thin film formed on the surface of the film by a method such as plating or sputtering is used.

しかしながら、Pt等の貴金属は、高い触媒活性と高い触媒活性の安定性を示すが、高価であり、資源的にも限られている。そのため、電極触媒が各種電気化学デバイスのコストを高くする一因となっている。特に、燃料電池は、所定の出力を得るために多数のMEAが積層された状態で使用されるので、燃料電池1個当たりの電極触媒の使用量も多く、これが燃料電池の普及を妨げている。   However, noble metals such as Pt exhibit high catalytic activity and high catalytic activity stability, but are expensive and limited in terms of resources. For this reason, the electrode catalyst contributes to increase the cost of various electrochemical devices. In particular, since a fuel cell is used in a state where a large number of MEAs are stacked in order to obtain a predetermined output, the amount of electrode catalyst used per fuel cell is also large, which hinders the spread of fuel cells. .

例えば、燃料電池の電極における一般的なPt使用量は、1平方センチメートル当たり0.1mg〜1mg程度といわれているが、普及に妥当な燃料電池価格を達成するためには、少なくともこの貴金属使用量を1/50〜1/100程度まで低減させなくてはならないと言う試算もある。これは、触媒活性の改善や触媒利用率の向上など、単なる使用量低減の努力では達成困難である。   For example, the general amount of Pt used in fuel cell electrodes is said to be about 0.1 mg to 1 mg per square centimeter. In order to achieve a reasonable fuel cell price for dissemination, at least the amount of noble metal used is reduced. There is a trial calculation that it must be reduced to about 1/50 to 1/100. This is difficult to achieve by simply reducing the amount used, such as improving the catalyst activity and improving the catalyst utilization rate.

そこでこの問題を解決するために、貴金属に代わる代替材料に関し、従来から種々の提案がなされている。例えば、特許文献1には、白金テトラアンミン錯体、コバルトモノキノリルフェニレンジアミン錯体及びグラファイト粒子との混合物をエタノールに溶解させて十分に混合し、混合物を空気中80℃で乾燥させ、これをアルゴンガス雰囲気中において600℃で2時間熱処理することにより得られる燃料電池用電極触媒が開示されている。同文献には、担体上に白金系の触媒と有機金属錯体とを混在させると、触媒の耐CO被毒性が向上する点が記載されている。   Therefore, in order to solve this problem, various proposals have conventionally been made regarding alternative materials to replace noble metals. For example, Patent Document 1 discloses that a mixture of a platinum tetraammine complex, a cobalt monoquinolylphenylenediamine complex, and graphite particles is dissolved in ethanol and mixed thoroughly, and the mixture is dried in air at 80 ° C. A fuel cell electrode catalyst obtained by heat treatment at 600 ° C. for 2 hours in an atmosphere is disclosed. This document describes that when a platinum-based catalyst and an organometallic complex are mixed on a support, the CO poisoning resistance of the catalyst is improved.

また、特許文献2には、N,N’−ジメチルフォルムアミドに遷移金属の大環状金属錯体を溶解させた溶液に、比表面積500m/g以上であるカーボンブラックに白金を担持させたもの(Pt−C)を加えて分散させ、これに蒸留水を加えてPt−C上に大環状金属錯体を定着させ、分離採取した触媒を100℃で真空乾燥させ、さらにこれを非酸化雰囲気中で700℃から1100℃で熱処理することにより得られる酸素極用電極が開示されている。同文献には、遷移金属の大環状金属錯体と貴金属とを共存させると、単独で用いた場合に比べて触媒活性が向上する点が記載されている。 Further, Patent Document 2 discloses a solution in which platinum is supported on carbon black having a specific surface area of 500 m 2 / g or more in a solution in which a macrocyclic metal complex of a transition metal is dissolved in N, N′-dimethylformamide ( Pt-C) is added and dispersed, distilled water is added thereto to fix the macrocyclic metal complex on Pt-C, and the separated and collected catalyst is vacuum-dried at 100 ° C. An oxygen electrode electrode obtained by heat treatment at 700 ° C. to 1100 ° C. is disclosed. This document describes that when a transition metal macrocyclic metal complex and a noble metal coexist, the catalytic activity is improved as compared with the case where the transition metal is used alone.

さらに、特許文献3には、硫酸に白金フタロシアニンを溶解させた溶液に黒鉛化シャウイングカーボン及びアセチレンブラックカーボンを加えて攪拌し、これに水を滴下し、濾過した触媒前駆体を105℃で乾燥させることにより得られる触媒材料が開示されている。同文献には、触媒材料に含まれる貴金属の酸化状態をゼロにすると、質量活性が向上する点が記載されている。   Furthermore, in Patent Document 3, graphitized showering carbon and acetylene black carbon are added to a solution of platinum phthalocyanine dissolved in sulfuric acid and stirred, and water is added dropwise thereto, and the filtered catalyst precursor is dried at 105 ° C. The catalyst material obtained by making it do is disclosed. This document describes that the mass activity is improved when the oxidation state of the noble metal contained in the catalyst material is made zero.

特開2002−329500号公報JP 2002-329500 A 特開2003−109614号公報JP 2003-109614 A 特開平5−129023号公報JP-A-5-129023

大環状金属錯体は、貴金属触媒に比べて安価である。しかしながら、大環状金属錯体は、一分子そのものがPt等の微粒子に比べて非常に大きく、しかも、反応サイトは、中心となる金属イオンのみである。従って、大環状金属錯体を用いた電極触媒体において、高い触媒活性を得るためには、担体表面に大環状金属錯体を高度に分散させる必要がある。   Macrocyclic metal complexes are less expensive than noble metal catalysts. However, in the macrocyclic metal complex, one molecule itself is much larger than fine particles such as Pt, and the reaction site is only the central metal ion. Therefore, in order to obtain high catalytic activity in an electrode catalyst body using a macrocyclic metal complex, it is necessary to highly disperse the macrocyclic metal complex on the surface of the support.

しかしながら、大環状金属錯体と担体とを単一の溶媒中に分散させ、溶媒を除去する従来の方法では、大環状金属錯体を担体表面に高度に分散させるには限界がある。そのため、従来の方法では、相対的に少量の担持量で高い触媒活性を示す電極触媒体は得られない。   However, in the conventional method of dispersing the macrocyclic metal complex and the carrier in a single solvent and removing the solvent, there is a limit in highly dispersing the macrocyclic metal complex on the surface of the carrier. Therefore, in the conventional method, an electrode catalyst body that exhibits high catalytic activity with a relatively small amount of support cannot be obtained.

本発明が解決しようとする課題は、担体表面に大環状金属錯体が高度に分散された電極触媒体及びその製造方法を提供することにある。また、本発明が解決しようとする他の課題は、大環状金属錯体の担持量が相対的に少量であっても高い触媒活性を示す電極触媒体及びその製造方法を提供することにある。   The problem to be solved by the present invention is to provide an electrode catalyst body in which a macrocyclic metal complex is highly dispersed on the surface of a support and a method for producing the same. Another problem to be solved by the present invention is to provide an electrode catalyst body that exhibits high catalytic activity even when the amount of macrocyclic metal complex supported is relatively small, and a method for producing the same.

上記課題を解決するために本発明に係る電極触媒体は、以下の構成を備えていることを要旨とする。
(1)前記電極触媒体は、炭素材料からなる担体と、該担体表面に担持された、窒素を含む大環状分子に金属イオンが配位した大環状金属錯体又は該大環状金属錯体の熱変性物とを備えている。
(2)前記電極触媒体は、前記金属イオンの広域X線吸収微細構造(EXAFS)スペクトルに、金属イオン−N結合に起因するピークが認められる。
(3)前記電極触媒体は、前記金属イオンのK吸収端のX線吸収端近傍構造(XANES)スペクトルに、1s→4pz遷移に帰属される吸収ピークの高エネルギー側シフトが認められる。
(4)前記電極触媒体は、
前記大環状金属錯体を溶解可能な第1の溶媒と、前記第1の溶媒と相溶性を有し、前記大環状金属錯体の溶解度が前記第1の溶媒より小さく、かつ、その沸点が前記第1の溶媒より高い第2の溶媒とを含む混合溶媒に、前記大環状金属錯体を溶解させ、かつ前記担体を分散させ、
前記第1の溶媒及び前記第2の溶媒を揮発させることにより、前記担体表面に前記大環状金属錯体を吸着させ、
前記担体を、不活性雰囲気下において、500℃以上700℃以下の温度で熱処理することにより得られる。
In order to solve the above problems, the electrode catalyst body according to the present invention is summarized as having the following configuration.
(1) the electrode catalyst comprises a carrier comprising a carbon material cost, supported on the carrier surface, macrocyclic metal complex or the macrocyclic metal complex metal ions are coordinated to macrocycles containing nitrogen heat modified product and the Bei Eteiru.
(2) the electrode catalyst before Symbol extended X-ray absorption fine structure of the metal ion (EXAFS) spectrum, Ru observed peaks due to metal ions -N bond.
(3) the electrode catalyst, the X-ray absorption near edge structure (XANES) spectrum of the K-absorption edge of the metal ions, 1s → 4pz higher energy side shift of the absorption peak attributed to transitions Ru observed.
(4) The electrode catalyst body is:
A first solvent capable of dissolving the macrocyclic metal complex; compatible with the first solvent; the solubility of the macrocyclic metal complex is smaller than that of the first solvent; Dissolving the macrocyclic metal complex in a mixed solvent containing a second solvent higher than one solvent and dispersing the carrier;
By volatilizing the first solvent and the second solvent, the macrocyclic metal complex is adsorbed on the surface of the carrier,
It can be obtained by heat-treating the carrier at a temperature of 500 ° C. or higher and 700 ° C. or lower in an inert atmosphere.

また、本発明に係る電極触媒体の製造方法は、窒素を含む大環状分子に金属イオンが配位した大環状金属錯体を溶解可能な第1の溶媒と、前記第1の溶媒と相溶性を有し、前記大環状金属錯体の溶解度が前記第1の溶媒より小さく、かつ、その沸点が前記第1の溶媒より高い第2の溶媒とを含む混合溶媒に、前記大環状金属錯体を溶解させ、かつ、炭素材料からなる担体を分散させる溶解工程と、前記第1の溶媒及び前記第2の溶媒を揮発させることにより、前記担体表面に前記大環状金属錯体を吸着させる吸着工程と、前記担体を、不活性雰囲気下において、500℃以上700℃以下の温度で熱処理する熱処理工程とを備えていることを要旨とする。   Moreover, the method for producing an electrode catalyst body according to the present invention comprises a first solvent capable of dissolving a macrocyclic metal complex in which a metal ion is coordinated to a macrocycle molecule containing nitrogen, and compatibility with the first solvent. And having the solubility of the macrocyclic metal complex smaller than that of the first solvent and the second solvent having a boiling point higher than that of the first solvent, dissolving the macrocyclic metal complex. And a dissolution step of dispersing a support made of a carbon material, an adsorption step of adsorbing the macrocyclic metal complex on the support surface by volatilizing the first solvent and the second solvent, and the support And a heat treatment step of heat treating at a temperature of 500 ° C. or higher and 700 ° C. or lower in an inert atmosphere.

大環状金属錯体及び担体を溶解・分散させる溶媒として、所定の条件を満たす第1の溶媒及び第2の溶媒からなる混合溶媒を用いると、高い触媒活性を示す電極触媒が得られる。これは、触媒調製時にこのような混合溶媒を用いると、平面状の大環状金属錯体が担体表面に対して平行に吸着する割合が高くなり、担体表面に存在する反応サイトの数が実質的に増加するためと考えられる。   When a mixed solvent composed of a first solvent and a second solvent satisfying a predetermined condition is used as a solvent for dissolving and dispersing the macrocyclic metal complex and the carrier, an electrode catalyst exhibiting high catalytic activity can be obtained. This is because, when such a mixed solvent is used at the time of catalyst preparation, the ratio of the planar macrocyclic metal complex adsorbed in parallel to the support surface increases, and the number of reaction sites existing on the support surface is substantially reduced. This is thought to increase.

以下、本発明の一実施の形態について詳細に説明する。本発明に係る電極触媒体は、炭素材料からなる担体と、担体表面に担持された、窒素を含む大環状分子に金属イオンが配位した大環状金属錯体又は大環状金属錯体の熱変性物とを備えている。   Hereinafter, an embodiment of the present invention will be described in detail. An electrode catalyst body according to the present invention includes a carrier made of a carbon material, a macrocyclic metal complex in which a metal ion is coordinated to a macrocycle molecule containing nitrogen supported on the carrier surface, or a thermally modified product of the macrocyclic metal complex. It has.

「大環状分子」とは、9又はそれ以上の原子(すべてが異原子である場合を含む)、及び、3又はそれ以上の結合原子を有する化合物と定義されている(Coordination Chemistry of Macrocyclic Compounds, G.A.Melson, Plenum Press, New York & London, 1979)。本発明において、「窒素を含む大環状分子」とは、基本骨格の中に4個の窒素原子が平面上に並んだ「N4構造」を有するものをいい、フタロシアニン類、ポルフィリン類、テトラアザアヌレン類などを指す。   A “macrocycle” is defined as a compound having 9 or more atoms (including the case where all are heteroatoms) and 3 or more bonded atoms (Coordination Chemistry of Macrocyclic Compounds, GAMelson, Plenum Press, New York & London, 1979). In the present invention, the “macrocyclic molecule containing nitrogen” means one having an “N4 structure” in which four nitrogen atoms are arranged in a plane in a basic skeleton, and are phthalocyanines, porphyrins, tetraazaannulenes. It refers to the kind.

大環状分子としては、具体的には、ポルフィリン、フタロシアニン、ナフタロシアニン、テトラアザアンヌレン、又は、これらの構造を分子内に含む有機分子が挙げられる。これらの大環状分子は、それぞれ、単独で用いてもよく、あるいは、2種以上を組み合わせて用いても良い。   Specific examples of the macrocycle include porphyrin, phthalocyanine, naphthalocyanine, tetraazaannulene, and organic molecules containing these structures in the molecule. These macrocycles may be used alone or in combination of two or more.

「大環状金属錯体」とは、このような大環状分子に含まれるN4構造の中心に金属イオンが配位した「M−N4構造」を備えた錯体をいう。図1に、本発明において使用可能な大環状金属錯体の一例を示す。図1(a)は、ポルフィリンの中心に金属イオンMが配位した大環状金属錯体(M−ポルフィリン)の分子構造である。図1(b)は、フタロシアニンの中心に金属イオンMが配位した大環状金属錯体(M−フタロシアニン)の分子構造である。図1(c)は、ナフタロシアニンの中心に金属イオンが配位した大環状金属錯体(M−ナフタロシアニン)の分子構造である。さらに、図1(d)は、テトラアザアヌレンの中心に金属イオンMが配位した大環状金属錯体(M−テトラアザアヌレン)の分子構造である。また、「大環状金属錯体の熱変性物」とは、M−N4構造が分解する温度未満の温度で熱処理することにより得られるものをいう。   The “macrocyclic metal complex” refers to a complex having an “MN 4 structure” in which a metal ion is coordinated to the center of the N4 structure contained in such a macrocyclic molecule. FIG. 1 shows an example of a macrocyclic metal complex that can be used in the present invention. FIG. 1A shows the molecular structure of a macrocyclic metal complex (M-porphyrin) in which a metal ion M is coordinated to the center of porphyrin. FIG. 1B shows the molecular structure of a macrocyclic metal complex (M-phthalocyanine) in which a metal ion M is coordinated to the center of phthalocyanine. FIG. 1C shows the molecular structure of a macrocyclic metal complex (M-naphthalocyanine) in which a metal ion is coordinated to the center of naphthalocyanine. Furthermore, FIG.1 (d) is the molecular structure of the macrocyclic metal complex (M-tetraazaannulene) which the metal ion M coordinated to the center of tetraazaannulene. The “macrocyclic metal complex thermally denatured product” refers to a product obtained by heat treatment at a temperature lower than the temperature at which the M-N4 structure is decomposed.

大環状分子の中心に配位する金属イオンMとしては、具体的には、Fe、Ni、Co、Mn、Cu、Zn、Ti、V、Cr等が挙げられる。これらの中でも、Co及びFeは、高い触媒活性が得られるので、金属イオンMとして特に好適である。
本発明に係る電極触媒体は、いずれか1種の大環状分子にいずれか1種の金属イオンMが配位した単一の大環状金属錯体を含むものであってもよく、あるいは、同種又は異種の大環状分子に同種又は異種の金属イオンMが配位した2種以上の大環状金属錯体を含むものであっても良い。
Specific examples of the metal ion M coordinated at the center of the macrocyclic molecule include Fe, Ni, Co, Mn, Cu, Zn, Ti, V, and Cr. Among these, Co and Fe are particularly suitable as the metal ion M because high catalytic activity can be obtained.
The electrode catalyst body according to the present invention may include a single macrocyclic metal complex in which any one type of metal ion M is coordinated to any one type of macrocyclic molecule, or the same type or It may contain two or more macrocyclic metal complexes in which the same or different metal ions M are coordinated to different macrocyclic molecules.

大環状金属錯体を担持する担体には、導電性を有する炭素材料が用いられる。担体としては、具体的には、カーボンブラック、活性炭、黒鉛、カーボンナノチューブ、カーボンナノファイバー等が挙げられる。担体の粒径、比表面積等は、特に限定されるものではなく、電極触媒体の用途、要求される特性等に応じて、最適なものを選択する。一般に、粒径が小さくなるほど、及び/又は、比表面積が大きくなるほど、触媒活性に優れた電極触媒体が得られる。   A carbon material having conductivity is used for the carrier supporting the macrocyclic metal complex. Specific examples of the carrier include carbon black, activated carbon, graphite, carbon nanotube, and carbon nanofiber. The particle size, specific surface area and the like of the support are not particularly limited, and an optimal one is selected according to the use of the electrode catalyst body, required characteristics and the like. In general, as the particle size decreases and / or the specific surface area increases, an electrode catalyst body excellent in catalytic activity can be obtained.

また、本発明に係る電極触媒体は、以下のような特徴を持っている。
第1に、本発明に係る電極触媒体は、担体表面に大環状金属錯体のM−N4構造が乱れたり分解したりせずに保持されていることを特徴とする。担体表面にM−N4構造が保持されているか否かは、以下の方法により確認することができる。
The electrode catalyst body according to the present invention has the following characteristics.
First, the electrode catalyst body according to the present invention is characterized in that the MN4 structure of the macrocyclic metal complex is held on the support surface without being disturbed or decomposed. Whether or not the M-N4 structure is retained on the surface of the carrier can be confirmed by the following method.

M−N4構造を確認する第1の方法は、広域X線吸収微細構造(EXAFS)スペクトルに、金属イオン−N結合に起因するピークが認められるか否かを評価する方法である。
周知のように、EXAFS信号をフーリエ変換(FT)すると、動径構造関数(RSF)が得られる。この動径構造関数の最大ピークの位置から、中心原子と最近接原子との距離がわかる。また、最大ピークの面積は、その距離で結合する原子の数(配位数)を表す。
例えば、中心にCoイオンが配位した大環状金属錯体の場合、試料内にCo−N結合が存在していると、約1.60Å(0.16nm)の位置にピークが現れる。また、非加熱の試料に現れるこのピークの面積と、加熱後の試料に現れるこのピークの面積とを比較することにより、配位数の変化を知ることができる。
The first method for confirming the M-N4 structure is a method for evaluating whether or not a peak due to a metal ion-N bond is observed in a wide-area X-ray absorption fine structure (EXAFS) spectrum.
As is well known, when an EXAFS signal is Fourier transformed (FT), a radial structure function (RSF) is obtained. From the position of the maximum peak of this radial structure function, the distance between the central atom and the nearest atom is known. Further, the area of the maximum peak represents the number of atoms (coordination number) bonded at the distance.
For example, in the case of a macrocyclic metal complex in which a Co ion is coordinated at the center, if a Co—N bond is present in the sample, a peak appears at a position of about 1.60Å (0.16 nm). Further, by comparing the area of this peak appearing in the non-heated sample with the area of this peak appearing in the heated sample, the change in coordination number can be known.

M−N4構造を確認する第2の方法は、
(1)金属イオンのK吸収端のX線吸収端近傍構造(XANES)のスペクトルに、1s−4pz遷移に帰属される吸収ピークが観測されるか否か、及び、
(2)1s−3d遷移に帰属される吸収ピークの出現にともなって生じる、吸収の立ち上がりエネルギーの低エネルギー側シフトが認められないか否か、
を評価する方法である。
A second method for confirming the M-N4 structure is:
(1) Whether or not an absorption peak attributed to the 1s-4pz transition is observed in the spectrum of the X-ray absorption near edge structure (XANES) of the K absorption edge of the metal ion, and
(2) Whether or not a low energy side shift of the rising energy of absorption caused by the appearance of an absorption peak attributed to the 1s-3d transition is observed,
It is a method to evaluate.

図2(a)に、大環状金属錯体の中心に配位したCoイオン周辺の電子構造の模式図を示す。Coイオンの3個の4p軌道は、互いに等価であるため、本来、1s軌道から各4p軌道への遷移エネルギーに差はない。しかしながら、Coイオンが大環状分子に配位すると、4px軌道及び4py軌道の方向にはN原子の電子雲が存在し、他方4pz軌道の方向には配位子が全く存在しない状態である。その結果、N原子(マイナスの電荷を持つ)による干渉を受ける4px軌道及び4py軌道に比べて、4pz軌道のエネルギー準位が下がり、4pz軌道には、より低いエネルギーで遷移が起こると考えられる。すなわち、1s−4pz遷移に帰属される吸収ピークが観測されることは、図2(a)に示すような平面構造(M−N4構造)が維持されていることを示している。   FIG. 2A shows a schematic diagram of the electronic structure around a Co ion coordinated at the center of the macrocyclic metal complex. Since the three 4p orbitals of Co ions are equivalent to each other, there is essentially no difference in the transition energy from the 1s orbital to each 4p orbital. However, when the Co ion is coordinated to the macrocyclic molecule, there is an electron cloud of N atoms in the directions of the 4px and 4py orbitals, and no ligand is present in the direction of the 4pz orbital. As a result, it is considered that the energy level of the 4pz orbital is lower than that of the 4px orbital and 4py orbitals that are interfered by N atoms (having a negative charge), and a transition occurs at a lower energy in the 4pz orbital. That is, the observation of the absorption peak attributed to the 1s-4pz transition indicates that the planar structure (M-N4 structure) as shown in FIG. 2A is maintained.

また、必要以上に高い温度で熱処理すると、M−N4構造が乱れたり、分解し、周囲の還元雰囲気によって、大環状分子の中心に配位していた金属イオンが凝集し、価数がゼロの金属微粒子となる。金属微粒子が生成すると、1s軌道から、p軌道が混成した3d軌道への励起に帰属されるピークが現れる。このピークは、金属粒子に特徴的なものであり、X線の吸収が起こり始めるエネルギーが低エネルギー側にシフトする。これは、大環状分子の中心に配位している金属イオン(プラスの電荷を持つ)に比べて、価数がゼロの金属微粒子の方が電子の束縛力が弱いので、より低いエネルギーで電子を励起させることができるためと考えられる。すなわち、1s−3d遷移に帰属される吸収ピークの出現に伴って生じる、吸収の立ち上がりエネルギーの低エネルギー側シフトが認められないことは、M−N4構造が維持されていることを示している。   Also, if heat treatment is performed at a temperature higher than necessary, the M-N4 structure is disturbed or decomposed, and the metal ions coordinated at the center of the macrocycle are aggregated by the surrounding reducing atmosphere, and the valence is zero. Metal fine particles. When metal fine particles are generated, a peak attributed to excitation from the 1s orbital to the 3d orbital in which the p orbitals are mixed appears. This peak is characteristic of metal particles, and the energy at which X-ray absorption starts occurs shifts to the lower energy side. This is because, compared to metal ions coordinated at the center of a macrocycle (having a positive charge), metal fine particles with zero valence have weaker electron binding force, so electrons with lower energy This is thought to be due to the fact that it can be excited. That is, the fact that the low energy side shift of the rising energy of absorption caused by the appearance of the absorption peak attributed to the 1s-3d transition is not observed indicates that the MN4 structure is maintained.

第2に、本発明に係る電極触媒体は、触媒成分と担体表面との間に相互作用があることを特徴とする。「相互作用」とは、担体表面元素(C)と金属イオンMとの相互作用である。この相互作用の有無及びその程度は、以下のような方法により評価することができる。   Second, the electrode catalyst body according to the present invention is characterized in that there is an interaction between the catalyst component and the support surface. The “interaction” is an interaction between the carrier surface element (C) and the metal ion M. The presence or absence and the degree of this interaction can be evaluated by the following method.

相互作用を評価する第1の方法は、金属イオンのK吸収端のX線吸収端近傍構造(XANES)スペクトルに、1s−4pz遷移に帰属される吸収ピークの高エネルギー側シフトが認められるか否かを評価する方法である。
図2(b)に、担体表面に担持された大環状金属錯体の中心に配位したCoイオン周辺の電子構造の模式図を示す。大環状金属錯体は、平面状の分子である。そのため、担体表面に対して平行に大環状金属錯体を吸着させ、所定の温度に加熱すると、担体表面のC原子の電子軌道と、大環状金属錯体の中心に配位しているCoイオンの4pz軌道との間に相互作用が生じる。C原子とCoイオンの4pz軌道との間に相互作用が生じると、C原子(マイナスの電荷を持つ)による干渉によって4pz軌道のエネルギー準位が上がる。そのため、電子の励起に、より大きなエネルギーが必要となり、1s−4pz遷移に帰属される吸収ピークが高エネルギー側にシフトする。
The first method for evaluating the interaction is whether or not a high-energy shift of the absorption peak attributed to the 1s-4pz transition is observed in the X-ray absorption near edge structure (XANES) spectrum of the K absorption edge of the metal ion. It is a method to evaluate.
FIG. 2B shows a schematic diagram of the electronic structure around the Co ion coordinated at the center of the macrocyclic metal complex supported on the support surface. Macrocyclic metal complexes are planar molecules. Therefore, when the macrocyclic metal complex is adsorbed in parallel to the support surface and heated to a predetermined temperature, the electron orbit of the C atom on the support surface and 4 pz of Co ions coordinated to the center of the macrocyclic metal complex. Interaction occurs with the orbit. When an interaction occurs between the C atom and the 4pz orbital of the Co ion, the energy level of the 4pz orbital increases due to interference by the C atom (having a negative charge). Therefore, more energy is required for excitation of electrons, and the absorption peak attributed to the 1s-4pz transition shifts to the higher energy side.

電極反応では、物質/触媒成分間、及び、触媒成分/導電性担体間の電荷の伝達が反応速度のかぎを握る。そのため、触媒成分/導電性担体間の相互作用が大きくなるほど、触媒成分/導電性担体間の電荷の伝達が容易になり、高い反応速度が得られる。本発明に係る電極触媒体は、その詳細は不明であるが、担体表面に大環状金属錯体を吸着させる際に混合溶媒を用いているので、従来の方法に比べて、触媒成分/導電性担体間の相互作用が大きくなる。その結果、触媒活性に優れた電極触媒体が得られる。   In the electrode reaction, charge transfer between the substance / catalyst component and between the catalyst component / conductive support is the key to the reaction rate. Therefore, the greater the interaction between the catalyst component / conductive support, the easier the charge transfer between the catalyst component / conductive support and the higher the reaction rate. Although the details of the electrode catalyst body according to the present invention are unknown, since a mixed solvent is used when the macrocyclic metal complex is adsorbed on the surface of the support, the catalyst component / conductive support is compared with the conventional method. The interaction between them becomes larger. As a result, an electrode catalyst body excellent in catalytic activity is obtained.

担体表面元素と中心金属イオンとの相互作用の大きさは、電極触媒体の触媒活性、あるいは、これを用いた燃料電池の出力電位との間に相関があり、一般に、相互作用が大きくなるほど高い触媒活性が得られる。従って、予め、XANESスペクトルの1s−4pz遷移に帰属される吸収ピークのシフト量(非加熱試料と加熱試料とのピーク位置の差)と、触媒活性又は出力電位との相関を求めておくと、未知の電極触媒体の吸収ピークのシフト量を測定することによって、未知の電極触媒体の触媒活性又はこれを用いた燃料電池の出力電位を評価することができる。   The magnitude of the interaction between the carrier surface element and the central metal ion has a correlation with the catalytic activity of the electrode catalyst body or the output potential of the fuel cell using the electrode catalyst body. Generally, the larger the interaction, the higher the interaction. Catalytic activity is obtained. Therefore, if the correlation between the shift amount of the absorption peak attributed to the 1s-4pz transition of the XANES spectrum (the difference in peak position between the non-heated sample and the heated sample) and the catalyst activity or the output potential is obtained in advance, By measuring the shift amount of the absorption peak of the unknown electrode catalyst body, the catalytic activity of the unknown electrode catalyst body or the output potential of the fuel cell using the same can be evaluated.

相互作用を評価する第2の方法は、EXAFSスペクトルにおいて、金属イオン−N原子間結合に帰属されるピークが短い方向にシフトしているか否かを評価する方法である。
上述したように、加熱後の電極触媒体にM−N4構造が維持されている場合には、EXAFSスペクトルに、金属イオン−N原子間結合に帰属されるピークが観測される。このピークの位置は、金属イオンと担体表面原子との間に相互作用が生じると、短い方向にシフトする。すなわち、金属イオン−N原子間結合に帰属されるピークは、その詳細は不明であるが、金属イオンMと担体表面原子(C)との間に生じる相互作用の大きさを間接的に表す指標となる。
The second method for evaluating the interaction is a method for evaluating whether or not the peak attributed to the bond between metal ions and N atoms is shifted in the short direction in the EXAFS spectrum.
As described above, when the M-N4 structure is maintained in the electrode catalyst body after heating, a peak attributed to the bond between metal ions and N atoms is observed in the EXAFS spectrum. The position of this peak shifts in a shorter direction when an interaction occurs between the metal ion and the carrier surface atom. That is, the peak attributed to the bond between the metal ion and the N atom is not clear in detail, but is an index that indirectly represents the magnitude of the interaction that occurs between the metal ion M and the carrier surface atom (C). It becomes.

金属イオン−N原子間結合に帰属されるピークのシフト量(非加熱試料と加熱試料とのピーク位置の差)と、触媒活性又はこれを用いた燃料電池の出力電位との間には相関があり、一般に、ピークのシフト量が大きくなるほど高い触媒活性が得られる。従って、予め両者の相関を求めておくと、未知の電極触媒体の金属イオン−N原子間結合に帰属されるピークのシフト量を測定することによって、未知の電極触媒体の触媒活性又はこれを用いた燃料電池の出力電位を評価することができる。   There is a correlation between the peak shift attributed to the bond between metal ions and N atoms (difference in peak position between the non-heated sample and the heated sample) and the catalytic activity or the output potential of the fuel cell using this. In general, the higher the peak shift amount, the higher the catalytic activity. Therefore, if the correlation between the two is obtained in advance, the catalyst activity of the unknown electrode catalyst body or the activity of the unknown electrode catalyst body can be determined by measuring the shift amount of the peak attributed to the metal ion-N atom bond of the unknown electrode catalyst body. The output potential of the used fuel cell can be evaluated.

次に、本発明に係る電極触媒体の製造方法について説明する。本発明に係る電極触媒体は、種々の方法により製造することができるが、以下のような方法が特に好適である。すなわち、本発明に係る電極触媒体の製造方法は、溶解工程と、吸着工程と、熱処理工程とを備えている。   Next, the manufacturing method of the electrode catalyst body according to the present invention will be described. The electrode catalyst body according to the present invention can be produced by various methods, and the following methods are particularly suitable. That is, the method for producing an electrode catalyst body according to the present invention includes a dissolution step, an adsorption step, and a heat treatment step.

溶解工程は、窒素を含む大環状分子に金属イオンが配位した大環状金属錯体を溶解可能な第1の溶液と、第1の溶液と相溶性を有し、大環状金属錯体の溶解度が第1の溶媒より小さく、かつ、その沸点が第1の溶媒より高い第2の溶媒とを含む混合溶媒に、大環状金属錯体を溶解させ、かつ、炭素材料からなる担体を分散させる工程である。   The dissolution step includes a first solution capable of dissolving a macrocyclic metal complex in which a metal ion is coordinated to a macrocycle molecule containing nitrogen, and is compatible with the first solution, and the solubility of the macrocyclic metal complex is first. In this step, the macrocyclic metal complex is dissolved in a mixed solvent containing a second solvent having a boiling point smaller than that of the first solvent and higher than that of the first solvent, and the carrier made of the carbon material is dispersed.

溶解工程においては、上述した大環状金属錯体及び担体を第1の溶媒及び第2の溶媒を含む混合溶媒に溶解・分散させる。触媒活性に優れた電極触媒体を得るためには、第1の溶媒及び第2の溶媒は、以下のような条件を備えている必要がある。   In the dissolving step, the macrocyclic metal complex and the carrier described above are dissolved and dispersed in a mixed solvent containing the first solvent and the second solvent. In order to obtain an electrode catalyst body excellent in catalytic activity, the first solvent and the second solvent need to have the following conditions.

第1に、第1の溶媒及び第2の溶媒は、いずれも、炭素材料からなる担体を分散させることが可能なものである必要がある。そのためには、第1の溶媒及び第2の溶媒は、疎水性の有機溶媒が好ましい。炭素材料は疎水性であるので、第1の溶媒及び第2の溶媒として疎水性の有機溶媒を用いると、炭素材料からなる担体を均一に分散させることができる。   First, both the first solvent and the second solvent must be capable of dispersing a carrier made of a carbon material. For this purpose, the first solvent and the second solvent are preferably hydrophobic organic solvents. Since the carbon material is hydrophobic, when a hydrophobic organic solvent is used as the first solvent and the second solvent, the carrier made of the carbon material can be uniformly dispersed.

第2に、第1の溶媒及び第2の溶媒は、相溶性を有しているものである必要がある。触媒活性に優れた電極触媒体を得るためには、第1の溶媒及び第2の溶媒は、任意の比率で完全に溶解するものが好ましい。   Secondly, the first solvent and the second solvent need to be compatible. In order to obtain an electrode catalyst body excellent in catalytic activity, it is preferable that the first solvent and the second solvent are completely dissolved at an arbitrary ratio.

第3に、第1の溶媒は、大環状金属錯体の溶解度が相対的に高く、かつ、第2の溶媒は、大環状金属錯体の溶解度が第1の溶媒より小さいものである必要がある。
触媒活性に優れた電極触媒体を得るためには、第1の溶媒は、室温において1mgの大環状金属錯体を完全に溶解させるのに必要な量が1ml以下であるものが好ましい。また、第2の溶媒は、室温において1mgの大環状金属錯体を完全に溶解させるのに必要な量が10ml以上であるものが好ましい。
Third, the first solvent needs to have a relatively high solubility of the macrocyclic metal complex, and the second solvent needs to have a solubility of the macrocyclic metal complex smaller than that of the first solvent.
In order to obtain an electrode catalyst body excellent in catalytic activity, the first solvent preferably has an amount of 1 ml or less required to completely dissolve 1 mg of the macrocyclic metal complex at room temperature. In addition, the second solvent preferably has an amount of 10 ml or more required to completely dissolve 1 mg of the macrocyclic metal complex at room temperature.

第4に、第2の溶媒の沸点は、第1の溶媒の沸点より高いことが好ましい。触媒活性に優れた電極触媒体を得るためには、第2の溶媒の沸点(B(℃))と第1の溶媒の沸点(B(℃))の差ΔB(=B−B)は、5℃以上が好ましい。
但し、沸点の差ΔBが大きくなりすぎると、作業性が低下したり、あるいは、第1の溶媒が揮発した後に大環状金属錯体の凝縮が起こる場合があるので好ましくない。従って、沸点の差ΔBは、最大でも100℃以下が好ましく、さらに好ましくは、50℃以下である。
Fourth, the boiling point of the second solvent is preferably higher than the boiling point of the first solvent. In order to obtain an electrode catalyst body excellent in catalytic activity, the difference ΔB (= B 2 −B) between the boiling point (B 2 (° C.)) of the second solvent and the boiling point (B 1 (° C.)) of the first solvent. 1 ) is preferably 5 ° C. or higher.
However, it is not preferable that the difference ΔB in boiling point becomes too large because workability is lowered or condensation of the macrocyclic metal complex may occur after the first solvent volatilizes. Accordingly, the difference in boiling point ΔB is preferably 100 ° C. or less, and more preferably 50 ° C. or less at the maximum.

上述のような条件を満たす第1の溶媒としては、具体的には、ジメチルスルホキシド(DMSO、沸点=189℃)、ピリジン(沸点=115℃)、トルエン(沸点=110℃)等がある。
また、上述のような条件を満たす第2の溶媒としては、具体的には、エチレングリコール(EG、沸点=197℃)等がある。
Specific examples of the first solvent that satisfies the above conditions include dimethyl sulfoxide (DMSO, boiling point = 189 ° C.), pyridine (boiling point = 115 ° C.), toluene (boiling point = 110 ° C.), and the like.
Further, as the second solvent satisfying the above conditions, specifically, there is ethylene glycol (EG, boiling point = 197 ° C.) or the like.

混合溶媒は、上述したいずれか1種の第1の溶媒と、いずれか1種の第2の溶媒との混合物であってもよく、あるいは、1種又は2種以上の第1の溶媒と、1種又は2種以上の第2の溶媒との混合物であっても良い。第1の溶媒と第2の溶媒の組み合わせは、大環状金属錯体及び炭素材料の種類、電極触媒体の用途、要求される特性等に応じて、最適なものを選択する。
これらの中でも、ジメチルスルホキシド(DMSO)とエチレングリコール(EG)からなる混合溶媒は、大環状金属錯体及び担体を溶解させる溶媒として特に好適である。
The mixed solvent may be a mixture of any one of the first solvents described above and any one of the second solvents, or one or two or more first solvents, The mixture with 1 type, or 2 or more types of 2nd solvent may be sufficient. The optimal combination of the first solvent and the second solvent is selected according to the type of the macrocyclic metal complex and the carbon material, the use of the electrode catalyst body, the required characteristics, and the like.
Among these, a mixed solvent composed of dimethyl sulfoxide (DMSO) and ethylene glycol (EG) is particularly suitable as a solvent for dissolving the macrocyclic metal complex and the carrier.

混合溶媒中の第1の溶媒及び第2の溶媒の量は、それぞれ、大環状金属錯体、第1の溶媒及び第2の溶媒の種類に応じて最適な量を選択する。一般に、いずれか一方の量が少なくなりすぎると、優れた触媒活性を有する電極触媒体は得られない。
混合溶媒中に含まれる第1の溶媒の量は、具体的には、少なくとも第1の溶媒単独で、大環状金属錯体を十分に溶解させることができ、かつ、担体を十分に分散させることができる量以上が好ましい。第1の溶媒の量が少なすぎると、大環状金属錯体が均一に分散した溶液が得られない。一般に、混合溶媒中の第1の溶媒の量が多くなるほど均一な溶液を得るのが容易化するが、必要以上の添加は実益がなく、むしろ作業性を低下させる。従って、混合溶媒中の第1の溶媒の量は、作業性を低下させない量以下とするのが好ましい。
また、混合溶媒中に含まれる第2の溶媒の量は、具体的には、少なくとも第2の溶媒単独で、担体を十分に分散させることができる量以上が好ましい。第2の溶媒の量が少なすぎると、担体が溶媒中に分散せずに溶液外に取り残され、担持に使われなくなるものが増加する。その結果、担体表面に大環状金属錯体を均一に吸着させるのが困難となる。一般に、混合溶媒中の第2の溶媒の量が多くなるほど、大環状金属錯体の吸着過程において担体が高度に分散した状態を維持するのが容易化するが、必要以上の添加は実益がなく、むしろ作業性を低下させる。従って、混合溶媒中の第2の溶媒の量は、作業性を低下させない量以下とするのが好ましい。
Optimum amounts of the first solvent and the second solvent in the mixed solvent are selected according to the types of the macrocyclic metal complex, the first solvent, and the second solvent, respectively. In general, if either amount is too small, an electrode catalyst body having excellent catalytic activity cannot be obtained.
Specifically, the amount of the first solvent contained in the mixed solvent is that at least the first solvent alone can sufficiently dissolve the macrocyclic metal complex and can sufficiently disperse the carrier. More than the amount possible is preferred. If the amount of the first solvent is too small, a solution in which the macrocyclic metal complex is uniformly dispersed cannot be obtained. In general, as the amount of the first solvent in the mixed solvent increases, it becomes easier to obtain a uniform solution, but adding more than necessary does not have a profit, but rather reduces workability. Therefore, the amount of the first solvent in the mixed solvent is preferably not more than an amount that does not reduce workability.
In addition, the amount of the second solvent contained in the mixed solvent is specifically preferably an amount that can sufficiently disperse the carrier with at least the second solvent alone. If the amount of the second solvent is too small, the carrier is not dispersed in the solvent but is left outside the solution, and the amount that cannot be used for loading increases. As a result, it becomes difficult to uniformly adsorb the macrocyclic metal complex on the support surface. In general, as the amount of the second solvent in the mixed solvent increases, it becomes easier to maintain the carrier in a highly dispersed state in the adsorption process of the macrocyclic metal complex, but adding more than necessary is not beneficial, Rather, workability is reduced. Therefore, the amount of the second solvent in the mixed solvent is preferably not more than an amount that does not deteriorate workability.

混合溶媒中に分散させる担体の量は、混合溶媒中の所定量の第1又は第2の溶媒に十分に分散させることができる量以下である限り、任意に選択することができる。具体的な溶解量は、担体の種類、大環状金属錯体の種類、大環状金属錯体の溶解量、混合溶媒の組成等に応じて最適な量を選択する。一般に、混合溶媒に溶解させる担体の量が相対的に少なくなるほど、担体1粒子当たりの大環状金属錯体の担持量を多くすることができる。   The amount of the carrier to be dispersed in the mixed solvent can be arbitrarily selected as long as it is not more than an amount that can be sufficiently dispersed in a predetermined amount of the first or second solvent in the mixed solvent. The specific amount of dissolution is selected in accordance with the type of carrier, the type of macrocyclic metal complex, the amount of macrocyclic metal complex dissolved, the composition of the mixed solvent, and the like. In general, the smaller the amount of carrier dissolved in the mixed solvent, the larger the amount of macrocyclic metal complex supported per carrier particle.

混合溶媒中に溶解させる大環状金属錯体の量は、混合溶媒に含まれる所定量の第1の溶媒に十分に溶解させることができる量以下である限り、任意に選択することができる。一般に、混合溶媒中に溶解させる大環状金属錯体の量が相対的に多くなるほど、担体1粒子当たりの大環状金属錯体の担持量を多くすることができる。但し、必要以上に大環状金属錯体を溶解させても、実質的に触媒として機能しない大環状金属錯体の割合が増加するので実益がない。また、必要以上の担持は、電極触媒体の高コスト化を招く。   The amount of the macrocyclic metal complex dissolved in the mixed solvent can be arbitrarily selected as long as it is not more than the amount that can be sufficiently dissolved in the predetermined amount of the first solvent contained in the mixed solvent. Generally, the larger the amount of the macrocyclic metal complex dissolved in the mixed solvent, the larger the amount of macrocyclic metal complex supported per carrier particle. However, even if the macrocyclic metal complex is dissolved more than necessary, the proportion of the macrocyclic metal complex that does not substantially function as a catalyst increases, so there is no practical benefit. In addition, excessive loading causes an increase in cost of the electrode catalyst body.

理想的な担持状態は、平面状の大環状金属錯体が互いに重なり合うことなく、担体表面に対して平行に吸着している状態と考えられる。従って、混合溶媒に溶解させる大環状金属錯体の最大量は、担体の有効表面積(吸着させる大環状金属錯体より大きなサイズを有する細孔より求められる表面積)、担体の量、及び、大環状金属錯体1分子が占める面積によって決まる。
例えば、担体として有効表面積が500m/gであるカーボン1gを用いた場合、1gの担体の総表面積は、500mである。従って、大環状金属錯体1分子の面積が、例えば、1nmである場合、互いに重なり合うことなく吸着させることが可能な大環状金属錯体の最大量は、約0.08モルとなる。
The ideal supporting state is considered to be a state in which the planar macrocyclic metal complexes are adsorbed in parallel to the support surface without overlapping each other. Therefore, the maximum amount of the macrocyclic metal complex dissolved in the mixed solvent is the effective surface area of the support (surface area determined from pores having a larger size than the macrocyclic metal complex to be adsorbed), the amount of support, and the macrocyclic metal complex. It depends on the area occupied by one molecule.
For example, when 1 g of carbon having an effective surface area of 500 m 2 / g is used as the carrier, the total surface area of 1 g of the carrier is 500 m 2 . Accordingly, when the area of one molecule of the macrocyclic metal complex is, for example, 1 nm 2 , the maximum amount of the macrocyclic metal complex that can be adsorbed without overlapping each other is about 0.08 mol.

所定の組成を有する混合溶媒に所定量の大環状金属錯体及び担体を加え、これらを完全に溶解・分散させる。この場合、溶解・分散は、室温において行ってもよく、あるいは、適宜加温して行っても良い。   A predetermined amount of a macrocyclic metal complex and a carrier are added to a mixed solvent having a predetermined composition, and these are completely dissolved and dispersed. In this case, the dissolution / dispersion may be performed at room temperature, or may be performed by appropriately heating.

吸着工程は、溶解工程で得られた溶液から第1の溶媒及び第2の溶媒を揮発させ、担体表面に大環状金属錯体を吸着させる工程である。
第1の溶媒及び第2の溶媒の揮発は、溶液を適当な温度に加熱することにより行う。溶媒を揮発させる際の温度は、特に限定されるものではないが、まず第1の溶媒の沸点まで加熱し、次いで第2の溶媒の沸点まで加熱するのが好ましい。この場合、第1の溶媒の沸点での保持時間は、短い方が好ましい。第1の溶媒の沸点における不必要な保持は、大環状金属錯体自身の凝縮を招くおそれがある。なお、溶媒の揮発は、大気圧下で行っても良く、あるいは、減圧下で行っても良い。
The adsorption step is a step of volatilizing the first solvent and the second solvent from the solution obtained in the dissolution step and adsorbing the macrocyclic metal complex on the surface of the support.
Volatilization of the first solvent and the second solvent is performed by heating the solution to an appropriate temperature. The temperature at which the solvent is volatilized is not particularly limited, but it is preferable to first heat to the boiling point of the first solvent and then to the boiling point of the second solvent. In this case, the retention time at the boiling point of the first solvent is preferably shorter. Unnecessary retention at the boiling point of the first solvent may lead to condensation of the macrocyclic metal complex itself. Note that the volatilization of the solvent may be performed under atmospheric pressure or may be performed under reduced pressure.

溶液から第1の溶媒及び第2の溶媒が揮発除去されると、その表面に大環状金属錯体が吸着した担体(以下、これを「電極触媒体前駆体」という)が得られる。得られた電極触媒体前駆体は、溶媒を完全に除去するために、目視での液体の蒸発を確認した後、さらに第2の溶媒を揮発させるために設定した温度より50〜100℃高い温度で3〜5時間乾燥させる。乾燥後、必要に応じて、電極触媒体前駆体を粉砕し、所定の粒度に整える。   When the first solvent and the second solvent are volatilized and removed from the solution, a carrier having the macrocyclic metal complex adsorbed on the surface thereof (hereinafter referred to as “electrode catalyst precursor”) is obtained. In order to completely remove the solvent, the obtained electrocatalyst precursor is 50 to 100 ° C. higher than the temperature set for volatilizing the second solvent after confirming the evaporation of the liquid visually. For 3 to 5 hours. After drying, if necessary, the electrode catalyst precursor is pulverized and adjusted to a predetermined particle size.

熱処理工程は、電極触媒体前駆体を不活性雰囲気下において、500℃以上700℃以下の温度で熱処理する工程である。
熱処理は、担体及び大環状金属錯体の酸化を防ぐために、Ar、Nなどの不活性雰囲気下で行う。
熱処理温度は、500℃以上700℃以下が好ましい。熱処理温度が500℃未満であると、大環状金属錯体の中心にある金属イオンMと担体表面元素(C)との間に相互作用が生ぜず、優れた触媒活性を有する電極触媒体は得られない。一方、熱処理温度が700℃を超えると、M−N4構造が乱れ、あるいは、分解するので好ましくない。熱処理温度は、さらに好ましくは、600℃以上650℃以下である。
熱処理時間は、金属イオンMと担体表面元素(C)との間に相互作用が生じるのに十分な時間であれば良い。但し、熱処理時間が長くなりすぎると、M−N4構造が乱れ、あるいは、分解するので好ましくない。熱処理時間は、具体的には、1時間以上4時間以下が好ましく、さらに好ましくは、2時間以上3時間以下である。
The heat treatment step is a step of heat-treating the electrode catalyst precursor at a temperature of 500 ° C. or higher and 700 ° C. or lower in an inert atmosphere.
The heat treatment is performed under an inert atmosphere such as Ar or N 2 in order to prevent oxidation of the support and the macrocyclic metal complex.
The heat treatment temperature is preferably 500 ° C. or higher and 700 ° C. or lower. When the heat treatment temperature is less than 500 ° C., no interaction occurs between the metal ion M at the center of the macrocyclic metal complex and the support surface element (C), and an electrode catalyst body having excellent catalytic activity is obtained. Absent. On the other hand, when the heat treatment temperature exceeds 700 ° C., the M-N4 structure is disturbed or decomposed, which is not preferable. The heat treatment temperature is more preferably 600 ° C. or higher and 650 ° C. or lower.
The heat treatment time may be sufficient as long as an interaction occurs between the metal ion M and the carrier surface element (C). However, if the heat treatment time is too long, the M-N4 structure is disturbed or decomposed, which is not preferable. Specifically, the heat treatment time is preferably 1 hour or more and 4 hours or less, and more preferably 2 hours or more and 3 hours or less.

次に、本発明に係る電極触媒体及びその製造方法の作用について説明する。電極触媒体を製造する場合において、大環状金属錯体及び担体を溶解(分散)させる溶媒として、所定の条件を満たす第1の溶媒及び第2の溶媒を含む混合溶媒を用いると、優れた触媒活性を有する電極触媒体が得られる。その理由の詳細は、不明であるが、以下のような理由によると考えられる。   Next, the operation of the electrode catalyst body and the method for producing the same according to the present invention will be described. In the case of producing an electrode catalyst body, when a mixed solvent containing a first solvent and a second solvent satisfying predetermined conditions is used as a solvent for dissolving (dispersing) the macrocyclic metal complex and the carrier, excellent catalytic activity An electrode catalyst body having the following is obtained. Although the details of the reason are unknown, it is thought to be due to the following reasons.

すなわち、含窒素大環状分子と金属イオンとの錯体を電極触媒とする場合、触媒活性点(実際に反応が進行する場所)は、金属イオンと窒素で構成されるM−N4構造である。電極反応は、電極と物質との間の電荷(電子)のやりとりが特徴であり、この過程の速度が、反応速度全体を決めている。電子は、触媒成分及び電子導電性担体を介して、物質と電極との間でやりとりされる。従って、物質/触媒成分間、及び、触媒成分/導電性担体間の電子の伝達が、反応速度のかぎを握る。   That is, when a complex of a nitrogen-containing macrocycle and a metal ion is used as an electrode catalyst, the catalytic activity point (the place where the reaction actually proceeds) has an MN4 structure composed of the metal ion and nitrogen. The electrode reaction is characterized by the exchange of charges (electrons) between the electrode and the substance, and the speed of this process determines the overall reaction speed. Electrons are exchanged between the substance and the electrode via the catalyst component and the electronically conductive carrier. Therefore, the transfer of electrons between the substance / catalyst component and between the catalyst component / conductive support is the key to the reaction rate.

ここで、平面状の大環状金属錯体が担体表面に対して垂直に固定された場合、活性点であるM−N4構造と担体表面との間の距離が長くなり、触媒成分/導電性担体間の電子の伝達速度が遅くなる。また、大環状金属錯体が担体表面に対して平行に固定された場合であっても、大環状金属錯体の分散が不十分であると、複数層の大環状金属錯体が担体表面に平行に積層された状態となる。この場合、活性点となるのは、最上層にあるM−N4構造と考えられるので、活性点−担体表面間の距離が長くなり、電子の伝達速度が遅くなる。また、中間に位置する大環状金属錯体は、触媒として機能しないと考えられるので、高い触媒活性を得るには、大環状金属錯体の担持量を多くする必要がある。   Here, when the planar macrocyclic metal complex is fixed perpendicularly to the support surface, the distance between the M-N4 structure, which is the active point, and the support surface becomes long, and the catalyst component / conductive support is between The transmission speed of electrons becomes slower. Even when the macrocyclic metal complex is fixed in parallel to the support surface, if the macrocyclic metal complex is not sufficiently dispersed, a plurality of layers of the macrocyclic metal complex are laminated in parallel to the support surface. It will be in the state. In this case, since the active point is considered to be the MN4 structure in the uppermost layer, the distance between the active point and the surface of the carrier becomes longer, and the electron transmission speed becomes slower. Moreover, since it is thought that the macrocyclic metal complex located in the middle does not function as a catalyst, it is necessary to increase the loading amount of the macrocyclic metal complex in order to obtain high catalytic activity.

図3(a)に、単一の溶媒を用いた大環状金属錯体の吸着工程の概念図を示す。また、図3(b)に、混合溶媒を用いた大環状金属錯体の吸着工程の概念図を示す。
図3(a)に示すように、単一溶媒に大環状金属錯体の一種であるコバルトテトラフェニルポルフィリン(CoTPP)及び担体(たとえば、カーボン)を溶解・分散させ、単一溶媒を徐々に揮発させていくと、担体の一部は溶液外に取り残される。揮発の初期段階においては、溶液中のCoTPP濃度が相対的に低いので、溶液外に取り残された担体表面に担持されるCoTPP量も相対的に少ない。
FIG. 3A shows a conceptual diagram of a macrocyclic metal complex adsorption process using a single solvent. FIG. 3B shows a conceptual diagram of a macrocyclic metal complex adsorption step using a mixed solvent.
As shown in FIG. 3 (a), cobalt tetraphenylporphyrin (CoTPP), which is a kind of macrocyclic metal complex, and a carrier (for example, carbon) are dissolved and dispersed in a single solvent, and the single solvent is gradually volatilized. As it goes on, some of the carrier is left out of the solution. In the initial stage of volatilization, since the CoTPP concentration in the solution is relatively low, the amount of CoTPP supported on the surface of the carrier left outside the solution is also relatively small.

一方、溶媒の揮発が進行するに伴い、溶液中のCoTPP濃度が徐々に高くなる。そのため、揮発の中期段階で溶液外に取り残された担体表面には、初期段階に比べて相対的に多量のCoTPP量が担持される。さらに、揮発の後期段階では、溶媒がさらに少なくなり、CoTPP量が残存する溶媒の溶解度を越えるので、CoTPP同士の凝縮・析出が起こる。その結果、平面状の大環状金属錯体が担体表面に対して非平行に担持され、あるいは、複数層の大環状金属錯体が積層した状態で担体表面に固定される割合が高くなると考えられる。   On the other hand, as the solvent evaporates, the CoTPP concentration in the solution gradually increases. Therefore, a relatively large amount of CoTPP is supported on the surface of the carrier left outside the solution in the middle stage of volatilization as compared with the initial stage. Further, in the latter stage of volatilization, the amount of the solvent further decreases, and the amount of CoTPP exceeds the solubility of the remaining solvent, so that condensation and precipitation of CoTPP occur. As a result, it is considered that the planar macrocyclic metal complex is supported non-parallel to the support surface, or the ratio of the plurality of macrocyclic metal complexes fixed to the support surface in a stacked state is increased.

これに対し、図3(b)に示すように、大環状金属錯体(例えば、CoTPP)の溶解度及び沸点の異なる第1の溶媒(例えば、ジメチルスルホキシド(DMSO))及び第2の溶媒(例えば、エチレングリコール(EG))を含む混合溶媒に大環状金属錯体及び担体(例えば、カーボン)を溶解させ、この溶液を所定の温度に加熱すると、まず、沸点の低い第1の溶媒(DMSO)が優先的に揮発し、次いで沸点の高い第2の溶媒(EG)が揮発する。   In contrast, as shown in FIG. 3B, the first solvent (for example, dimethyl sulfoxide (DMSO)) and the second solvent (for example, dimethyl sulfoxide (DMSO)) having different solubility and boiling point of the macrocyclic metal complex (for example, CoTPP) When a macrocyclic metal complex and a carrier (for example, carbon) are dissolved in a mixed solvent containing ethylene glycol (EG) and this solution is heated to a predetermined temperature, first, the first solvent (DMSO) having a low boiling point has priority. Volatilizes, and then the second solvent (EG) with a high boiling point volatilizes.

混合溶媒に含まれる第1の溶媒の割合が徐々に低下すると、混合溶媒に安定に溶解していた大環状金属錯体は、次第に不安定となり、担体表面に徐々に吸着する。しかも、溶媒が多量に残っている状態、すなわち、大環状金属錯体及び担体が混合溶媒中において高度に分散した状態を維持しながら吸着が進行するので、大環状金属錯体同士の凝縮・析出が抑制され、これによって、平面状の大環状金属錯体が担体表面に対して平行に、かつ、単層の状態で吸着する割合が多くなると考えられる。
大環状金属錯体の分散の程度は目視によっても確認することができ、大環状金属錯体の分散が良好であるほど、光沢の少ない電極触媒体前駆体となる。
When the proportion of the first solvent contained in the mixed solvent is gradually decreased, the macrocyclic metal complex that has been stably dissolved in the mixed solvent becomes gradually unstable and is gradually adsorbed on the surface of the carrier. In addition, the adsorption proceeds while maintaining a large amount of solvent, that is, the macrocyclic metal complex and the carrier are highly dispersed in the mixed solvent, thereby suppressing condensation and precipitation between the macrocyclic metal complexes. Thus, it is considered that the proportion of the planar macrocyclic metal complex adsorbed in a single layer state parallel to the support surface is increased.
The degree of dispersion of the macrocyclic metal complex can be confirmed visually, and the better the dispersion of the macrocyclic metal complex, the less the glossy electrode catalyst precursor.

次に、得られた電極触媒体前駆体を所定の温度で加熱すると、M−N4構造を維持したまま、大環状金属錯体が担体表面に固定される。また、これと同時に、担体表面に対して平行に吸着している大環状金属錯体の金属イオンMと担体表面原子(C)との間に相互作用が生じる。その結果、活性点−担体表面間の距離が最短となり、電子の伝達速度が速くなる。また、本発明に係る方法によれば、単層の状態で吸着している大環状金属錯体の割合が高くなるので、大環状金属錯体の担持量が相対的に少ない場合であっても、担体表面に存在する高活性の反応サイトの数が実質的に増加し、高い触媒活性が得られる。   Next, when the obtained electrode catalyst precursor is heated at a predetermined temperature, the macrocyclic metal complex is fixed on the support surface while maintaining the M-N4 structure. At the same time, an interaction occurs between the metal ion M of the macrocyclic metal complex adsorbed parallel to the support surface and the support surface atoms (C). As a result, the distance between the active site and the carrier surface is the shortest, and the electron transmission speed is increased. Further, according to the method of the present invention, since the proportion of the macrocyclic metal complex adsorbed in a single layer state is increased, the carrier is supported even when the amount of the macrocyclic metal complex supported is relatively small. The number of highly active reaction sites present on the surface is substantially increased, and high catalytic activity is obtained.

さらに、触媒成分と担体表面との間に生ずる相互作用は、触媒活性との間に相関があり、相互作用が大きくなるほど、触媒成分/担体間の電子の授受が容易となり、高い反応速度が得られる。そのため、XANESスペクトルの1s−4pz遷移に帰属される吸収ピークのシフト量を測定すれば、電極触媒体の触媒活性あるいはこれを用いた燃料電池の出力電位を評価することができる。
また、EXAFSスペクトルから得られる金属イオン−N原子間結合に帰属されるピークは、触媒成分と担体表面との間に生ずる相互作用との間に相関があり、金属イオン−N原子間結合に帰属するピークが短い方にシフトするほど、高い反応速度が得られる。そのため、EXAFSスペクトルの金属イオン−N原子間結合に帰属するピークのシフト量を測定すれば、電極触媒体の触媒活性あるいはこれを用いた燃料電池の出力電位を評価することができる。
Furthermore, the interaction that occurs between the catalyst component and the support surface has a correlation with the catalyst activity. The greater the interaction, the easier the transfer of electrons between the catalyst component / support and the higher the reaction rate. It is done. Therefore, if the shift amount of the absorption peak attributed to the 1s-4pz transition of the XANES spectrum is measured, the catalytic activity of the electrode catalyst body or the output potential of the fuel cell using this can be evaluated.
Moreover, the peak attributed to the bond between metal ions and N atoms obtained from the EXAFS spectrum has a correlation with the interaction between the catalyst component and the support surface, and is attributed to the bond between metal ions and N atoms. The shorter the peak to be shifted, the higher the reaction rate. Therefore, if the shift amount of the peak attributed to the metal ion-N atom bond in the EXAFS spectrum is measured, the catalytic activity of the electrode catalyst body or the output potential of the fuel cell using this can be evaluated.

(実施例1)
以下の手順に従い、電極触媒体を作製した。
まず、カーボンブラック(Vulcan XC−72R)を秤量し、なすフラスコに移した。次いで、ジメチルスルホキシド(DMSO)とエチレングリコール(EG)との混合溶媒にコバルトテトラフェニルポルフィリン(CoTPP)を溶解させ、濃度2.9mg/Lの溶液とした。この溶液を、カーボンブラック1g当たり400mLとなるようになすフラスコに投入した。
カーボンブラックが完全に溶解したところで、なすフラスコを減圧操作下、湯浴でまず120℃に加熱し、その後195℃に上昇させた。溶媒の蒸発を目視で確認してから、230℃に再び昇温して3時間保持した。得られた内容物を、100℃で一晩乾燥させ、粉砕した。さらに、粉砕物を、Ar気流中において、500℃〜1000℃で2時間熱処理し、電極触媒体を得た。
Example 1
An electrode catalyst body was produced according to the following procedure.
First, carbon black (Vulcan XC-72R) was weighed and transferred to an eggplant flask. Subsequently, cobalt tetraphenylporphyrin (CoTPP) was dissolved in a mixed solvent of dimethyl sulfoxide (DMSO) and ethylene glycol (EG) to obtain a solution having a concentration of 2.9 mg / L. This solution was put into a flask made to be 400 mL per 1 g of carbon black.
When the carbon black was completely dissolved, the eggplant flask was first heated to 120 ° C. in a hot water bath under reduced pressure, and then raised to 195 ° C. After visually confirming the evaporation of the solvent, the temperature was raised again to 230 ° C. and held for 3 hours. The resulting contents were dried at 100 ° C. overnight and crushed. Furthermore, the pulverized product was heat-treated at 500 ° C. to 1000 ° C. for 2 hours in an Ar stream to obtain an electrode catalyst body.

熱処理前の電極触媒体(試料A)、500℃(試料B)、600℃(試料C)、700℃(試料D)、800℃(試料E)又は1000℃(試料F)で熱処理した電極触媒体、並びに、カーボンブラックに担持していないCoTPP(試料G)及び金属コバルト(試料H)について、Co周囲の局所構造とCoの電子状態についての知見を得るために、コバルトK吸収端のX線吸収微細構造(XAFS)測定を行った。
測定は、二つのSi(111)結晶で単色化したX線をサンプルに導入して行った。サンプル直前の入射X線強度(I)をイオンチェンバで計測し、サンプル透過後のX線の強度(I)を別のイオンチェンバで計測する。そして、両者から吸光度ln(I/I)を求め、X線エネルギーに対してプロットしてスペクトルを得た。
Electrocatalyst before heat treatment (sample A), 500 ° C. (sample B), 600 ° C. (sample C), 700 ° C. (sample D), 800 ° C. (sample E) or 1000 ° C. (sample F) In order to obtain knowledge about the local structure around Co and the electronic state of Co for the medium and CoTPP (sample G) and metal cobalt (sample H) not supported on carbon black, X-rays at the cobalt K absorption edge Absorption microstructure (XAFS) measurements were performed.
The measurement was performed by introducing X-rays monochromated with two Si (111) crystals into the sample. The incident X-ray intensity (I 0 ) immediately before the sample is measured with an ion chamber, and the intensity (I) of the X-ray after passing through the sample is measured with another ion chamber. Then, absorbance ln (I 0 / I) was obtained from both, and plotted against X-ray energy to obtain a spectrum.

図4に、試料A、C、E〜HのコバルトK吸収端のX線吸収端近傍構造(XANES)を示す。図4に示すように、コバルトK吸収端のXANESには、7705eVより高エネルギー側に4つの特徴的な吸収ピークが観測されている。これらは、既往の研究(例えば、(1)M.C.M.Alves, J.P.Dodelet, D.Guay, M.Ladouceur, and G.Tourillon, J.Chem.Phys., 96, 10898(1992)、(2)宇田川康夫、「X線吸収微構造〜XAFSの測定と解析〜」、学会出版センタ、1999、(3)太田利明他、「X線吸収分光法〜XAFSとその応用〜」、アイピーシー、2002、等参照)より、以下の4種類の電子遷移に相当する吸収と考えられている。
(a)7709eV: これは、1s→3d遷移に帰属するとされている。電子が遷移するためには、方位量子数の変化分がΔl=±1でなければならない(s→dの遷移は禁制)が、対称中心がない分子では、d軌道にp軌道が若干混ざることによって、1s→3d遷移も許されると考えられている。
(b)7712eV: これは、1s→4pz遷移に帰属される。
(c)7725eVと(d)7731eV: これらは、1s→4px、4py遷移に帰属される。(b)と(c)(d)とで遷移エネルギーに差があるのは、4pz軌道には配位子が存在していないため、4px軌道や4py軌道と比べてエネルギー準位が下がり、より低いエネルギーで遷移が許されるためと考えられている。
FIG. 4 shows the structure near the X-ray absorption edge (XANES) of the cobalt K absorption edge of Samples A, C, and E to H. As shown in FIG. 4, in XANES at the cobalt K absorption edge, four characteristic absorption peaks are observed on the higher energy side than 7705 eV. These include previous studies (for example, (1) MCMAlves, JPDodelet, D. Guay, M. Ladouceur, and G. Tourillon, J. Chem. Phys., 96, 10898 (1992), (2) Yasuo Udagawa, “ From X-ray absorption fine structure-XAFS measurement and analysis ", Society Publishing Center, 1999, (3) Toshiaki Ota et al.," X-ray absorption spectroscopy-XAFS and its application-", IPC, 2002, etc.) The absorption is considered to correspond to the following four types of electronic transitions.
(A) 7709 eV: This is attributed to the 1s → 3d transition. In order for electrons to transition, the amount of change in the orientation quantum number must be Δl = ± 1 (s → d transition is forbidden), but for molecules that do not have a symmetry center, the p orbitals are slightly mixed with the d orbitals. Therefore, it is considered that 1s → 3d transition is also allowed.
(B) 7712 eV: This is attributed to the 1s → 4 pz transition.
(C) 7725 eV and (d) 7731 eV: These are attributed to the 1s → 4 px, 4 py transition. The difference in transition energy between (b) and (c) and (d) is that the ligand is not present in the 4pz orbital, so the energy level is lower compared to the 4px orbital or 4py orbital, and more It is thought that transition is allowed with low energy.

(b)のピークは、CoTPP分子のZ軸方向に配位子が存在しないために現れたピークであり、平面分子に特徴的なピークである。すなわち、(b)のピークの存在は、平面構造(Co−N4構造)の存在を意味している。図4では、非担持・非熱処理のCoTPP(試料G)、カーボン担持・非熱処理のCoTPP(試料A)、及び、カーボン担持・600℃熱処理のCoTPP(試料C)に(b)のピークが認められており、これらの試料では、Co−N4構造が保持されていることがわかる。
さらに、600℃熱処理試料(試料C)の(b)のピークは、試料G、試料Aに比べ、高エネルギー側にシフトしている。これは、Co−N4平面に垂直なz軸を向いた4pz軌道のエネルギー準位が高くなったこと、すなわち、Coがz軸方向にある担体表面の炭素と相互作用を持つようになったことを示している。図示はしないが、試料B(500℃処理)及び試料D(700℃処理)は、試料Cとほぼ同様のスペクトルを示した。
The peak (b) is a peak that appears because no ligand exists in the Z-axis direction of the CoTPP molecule, and is a peak characteristic of planar molecules. That is, the presence of the peak in (b) means the presence of a planar structure (Co—N4 structure). In FIG. 4, peaks of (b) are observed in non-supported / non-heat treated CoTPP (sample G), carbon-supported / non-heat-treated CoTPP (sample A), and carbon-supported / non-heat treated CoTPP (sample C). It can be seen that these samples retain the Co-N4 structure.
Further, the peak of (b) of the 600 ° C. heat-treated sample (sample C) is shifted to the higher energy side as compared with the samples G and A. This is because the energy level of the 4pz orbit oriented in the z-axis perpendicular to the Co-N4 plane is increased, that is, Co has interacted with carbon on the support surface in the z-axis direction. Is shown. Although not shown, Sample B (500 ° C. treatment) and Sample D (700 ° C. treatment) showed almost the same spectrum as Sample C.

一方、試料E(800℃処理)及び試料F(1000℃処理)では、(b)のピークは、消失しており、Co−N4の平面構造が壊れたことを示唆している。さらに、試料Fでは、試料Hに見られるような金属Coに特徴的な(a)のピークが現れており、また、これに伴い、X線の吸収が起こり始めるエネルギー(吸収の立ち上がりエネルギー)が低エネルギー側にシフトしていることがわかる。これは、熱処理によりCo−N4構造が崩壊し、Coがメタルとして凝集していることを示している。   On the other hand, in Sample E (800 ° C. treatment) and Sample F (1000 ° C. treatment), the peak of (b) disappears, suggesting that the planar structure of Co—N 4 was broken. Furthermore, in sample F, the peak (a) characteristic of metal Co as seen in sample H appears, and the energy at which X-ray absorption starts to occur (absorption rising energy) is associated with this. It turns out that it has shifted to the low energy side. This indicates that the Co—N 4 structure is collapsed by the heat treatment, and Co is aggregated as a metal.

また、図5に、試料A、C、E〜Hの広域X線吸収微細構造(EXAFS)を示す。EXAFSスペクトルにおいて、ピークの位置は、CoとCoの周りの近接原子との距離を示す。また、ピークの面積は、その距離で結合する原子の数(配位数)を示す。非担持・非熱処理のCoTPP(試料G)に見られる1.60Å(0.16nm)のピークは、Coに最近接の原子Nとの結合距離を示している。このピークの位置及び面積は、カーボンブラック担持(試料A)によっても変化しない。
このピークは、600℃で熱処理した試料Cにおいても確認され、かつ、ピーク面積に変化はなく、Co−N結合が維持されていることがわかる。しかしながら、ピーク位置が僅か(0.1Å(0.01nm)程度)であるが短い方向にシフトしており、Co−N間距離が僅かに短くなっていることがわかる。図示はしないが、試料B(500℃処理)及び試料D(700℃)は、試料Cとほぼ同様のスペクトルを示した。
FIG. 5 shows the wide-area X-ray absorption fine structure (EXAFS) of Samples A, C, and E to H. In the EXAFS spectrum, the peak position indicates the distance between Co and neighboring atoms around Co. The peak area indicates the number of atoms (coordination number) bonded at the distance. The peak of 1.600.1 (0.16 nm) seen in the unsupported / non-heat treated CoTPP (sample G) indicates the bond distance with the atom N closest to Co. The position and area of this peak do not change depending on the carbon black support (sample A).
This peak is also confirmed in Sample C heat-treated at 600 ° C., and the peak area is not changed, indicating that the Co—N bond is maintained. However, although the peak position is slightly (about 0.1 mm (0.01 nm)), it is shifted in a short direction, and it can be seen that the Co-N distance is slightly shortened. Although not shown, Sample B (500 ° C. treatment) and Sample D (700 ° C.) showed almost the same spectrum as Sample C.

800℃処理試料(試料E)及び1000℃処理試料(試料F)では、このCo−N結合に帰属されるピークが消失し、金属Co(試料H)に見られるのと同じ位置のピーク(2.18Å(0.218nm))が出現しいる。これは、これらの試料において、Co−N4平面構造が崩壊して、金属Coとして凝集していることを示している。   In the 800 ° C. treated sample (sample E) and the 1000 ° C. treated sample (sample F), the peak attributed to this Co—N bond disappears, and the peak at the same position as the metal Co (sample H) (2 .18 cm (0.218 nm)) has appeared. This indicates that in these samples, the Co—N 4 planar structure collapses and aggregates as metallic Co.

以上のように、試料Aでは、Co−N4平面構造は存在するが、Coと炭素担体と間に特段の相互作用はない。また、試料B、C、Dは、Co−N4平面構造が存在し、Coと炭素担体との間にEXAFSの1s→4pzピークのシフトで表される相互作用が認められた。さらに、試料Eは、Co−N4平面構造が一部崩壊し始め、試料Fでは、それがさらに進んで、Coが金属として凝集し出していることがわかった。   As described above, in Sample A, the Co—N 4 planar structure exists, but there is no particular interaction between Co and the carbon support. Samples B, C, and D have a Co—N4 planar structure, and an interaction represented by a shift of the EXAFS 1s → 4 pz peak was observed between Co and the carbon support. Furthermore, it was found that in the sample E, the Co—N4 planar structure partially began to collapse, and in the sample F, it further progressed, and Co began to aggregate as a metal.

(実施例2)
実施例1で得られた試料A〜Fをグラッシーカーボン上に分散させた電極を用いて、酸素還元反応のモデル実験を行った。実験方法は、以下の通りである。
(1) モデル実験のセルの構成
作用極は、以下の手順で作製した。
すなわち、まず、回転電極(GC電極の見かけの表面積は、0.20cm)のGC面を鏡面に研磨した。また、試料A〜F60mgと超純水10mLとを混合し、超音波で3分間分散処理を行った。得られた懸濁液15μLをGC電極に滴下し、空気中80℃にて10分間乾燥させた
次に、GC電極にナフィオン(登録商標、デュポン社製)/エタノール水溶液を滴下し、室温で15分間乾燥させた後、さらに80℃にて30分間真空乾燥させ、作用極を得た。この時、ナフィオン(登録商標)塗布量は、乾燥ポリマ重量で3.2μg程度とした。
得られた作用極を炉外で自然放冷後、装置に取り付けた。なお、対極には、Pt板を用い、参照極には、RHE(可逆水素電極)を用いた。
(Example 2)
A model experiment of an oxygen reduction reaction was performed using an electrode in which the samples A to F obtained in Example 1 were dispersed on glassy carbon. The experimental method is as follows.
(1) Configuration of model test cell The working electrode was prepared in the following procedure.
That is, first, the GC surface of the rotating electrode (the apparent surface area of the GC electrode was 0.20 cm 2 ) was polished into a mirror surface. Further, 60 mg of Samples A to F and 10 mL of ultrapure water were mixed and subjected to a dispersion treatment with ultrasonic waves for 3 minutes. 15 μL of the obtained suspension was dropped on a GC electrode and dried in air at 80 ° C. for 10 minutes. Next, Nafion (registered trademark, manufactured by DuPont) / ethanol aqueous solution was dropped on the GC electrode, and the mixture was stirred at room temperature for 15 minutes. After drying for 30 minutes, it was further vacuum dried at 80 ° C. for 30 minutes to obtain a working electrode. At this time, the coating amount of Nafion (registered trademark) was about 3.2 μg in terms of dry polymer weight.
The obtained working electrode was naturally cooled outside the furnace and then attached to the apparatus. Note that a Pt plate was used as the counter electrode, and RHE (reversible hydrogen electrode) was used as the reference electrode.

(2) モデル実験手順
作用極、対極及び参照極が取り付けられた電解槽に電解液(0.05M硫酸水溶液)を入れ、この電解槽を25℃で一定とした水槽に浸した。
次に、電解液中にArでバブリングを20分間行い、溶存酸素を除去した後、Arのバブリングを継続しながら、掃引速度:10mV/s、掃引範囲:50mV〜1000mV、電極回転数:1000rpmの条件で、ボルタモグラムがほぼ一定の形になるまで、電位サイクルを行った。安定後、Ar中でのボルタモグラムを記録した。
次に、バブリングガスを酸素に切り替え、Arバブリングと同一条件下で、電位掃引を行った。ボルタモグラムが安定後、波形を記録した。これを初期特性とした。さらに、初期特性記録後も電位サイクルを続け、30分後、60分後、3時間後、及び、6時間後のボルタモグラムも記録した。
(2) Model Experiment Procedure An electrolytic solution (0.05 M sulfuric acid aqueous solution) was placed in an electrolytic cell equipped with a working electrode, a counter electrode, and a reference electrode, and this electrolytic cell was immersed in a water bath made constant at 25 ° C.
Next, bubbling with Ar in the electrolyte solution was performed for 20 minutes to remove dissolved oxygen, and while continuing bubbling of Ar, sweep speed: 10 mV / s, sweep range: 50 mV to 1000 mV, electrode rotation speed: 1000 rpm Under conditions, the potential cycle was repeated until the voltammogram was in a nearly constant shape. After stabilization, a voltammogram in Ar was recorded.
Next, the bubbling gas was switched to oxygen, and a potential sweep was performed under the same conditions as Ar bubbling. After the voltammogram was stabilized, the waveform was recorded. This was the initial characteristic. Further, the potential cycle was continued after recording the initial characteristics, and voltammograms after 30 minutes, 60 minutes, 3 hours, and 6 hours were also recorded.

図6(a)及び図6(b)に、初期特性のボルタモグラムを示す。酸素導入により、還元方向の電流増加が観測され、酸素還元反応の進行が確認された。酸素還元電流が流れ始める電位は、各試料の電極反応触媒活性を示しており、より貴(+側の)電位で酸素還元電流が流れ始めるものほど、高活性であることを示している。図6中、試料Cが最も高い活性を示した。   FIG. 6A and FIG. 6B show voltammograms of initial characteristics. With the introduction of oxygen, an increase in current in the reduction direction was observed, confirming the progress of the oxygen reduction reaction. The potential at which the oxygen reduction current begins to flow indicates the electrode reaction catalytic activity of each sample, and the higher the potential at which the oxygen reduction current begins to flow at a more noble (+ side) potential, the higher the activity. In FIG. 6, sample C showed the highest activity.

図7に、熱処理温度と、Ar雰囲気中での電流値と酸素雰囲気中での電流値の差が0.2mA/cmとなる電位(以下、これを「立ち上がり電位」という)の初期値との関係を示す。図7より、500℃以上700℃以下で熱処理が施された試料B、C、Dは、立ち上がり電位の初期値が高く、高活性であることがわかる。 FIG. 7 shows the heat treatment temperature and the initial value of the potential at which the difference between the current value in the Ar atmosphere and the current value in the oxygen atmosphere is 0.2 mA / cm 2 (hereinafter referred to as “rising potential”). The relationship is shown. From FIG. 7, it can be seen that Samples B, C, and D subjected to heat treatment at 500 ° C. or more and 700 ° C. or less have a high initial value of the rising potential and are highly active.

また、図8に、電位掃引の経過時間と、立ち上がり電位との関係を示す。図8より、加熱試料B〜Fは、非加熱試料Aと比べて、立ち上がり電位の初期値が高く、かつ、時間の経過による立ち上がり電位の低下が格段に抑制されていることがわかる。さらに、試料B、C、Dは、試料E、Fに比べて、6時間経過後も高活性であることがわかる。
以上の結果から、Co−N4平面構造が存在し、かつ、Coと担体炭素との間にXANESの1s→4pzピークのシフトで表される相互作用が認められる電極触媒体は、電極触媒活性及び特性安定性に優れていることがわかった。
FIG. 8 shows the relationship between the elapsed time of the potential sweep and the rising potential. From FIG. 8, it can be seen that the heated samples B to F have a higher initial value of the rising potential than the non-heated sample A, and the rise of the rising potential over time is significantly suppressed. Furthermore, it can be seen that Samples B, C, and D are more active after 6 hours than Samples E and F.
From the above results, an electrocatalyst having a Co—N4 planar structure and having an interaction represented by a shift of the XANES 1s → 4 pz peak between Co and the carrier carbon is It was found that the characteristic stability was excellent.

以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改変が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the present invention.

本発明に係る電極触媒体及びその製造方法は、燃料電池、水電解装置等の各種電気化学デバイスに用いられる電極触媒体及びその製造方法として使用することができる。また、本発明に係る電極触媒体及びその製造方法は、空気極用の電極触媒体だけではなく、燃料極用の電極触媒体としても使用することができる。   The electrode catalyst body and the manufacturing method thereof according to the present invention can be used as an electrode catalyst body used in various electrochemical devices such as a fuel cell and a water electrolysis device and a manufacturing method thereof. Moreover, the electrode catalyst body and the manufacturing method thereof according to the present invention can be used not only as an electrode catalyst body for an air electrode but also as an electrode catalyst body for a fuel electrode.

大環状金属錯体の分子構造の一例を示す図である。It is a figure which shows an example of the molecular structure of a macrocyclic metal complex. 図2(a)は、大環状金属錯体の中心に配位したCoイオン周辺の電子構造の模式図であり、図2(b)は、担体表面に担持された大環状金属錯体の中心に配位したCoイオン周辺の電子構造の模式図である。FIG. 2 (a) is a schematic diagram of the electronic structure around the Co ion coordinated at the center of the macrocyclic metal complex, and FIG. 2 (b) is the center of the macrocyclic metal complex supported on the support surface. It is a schematic diagram of the electronic structure around the Co ions that are positioned. 図3(a)は、単一溶媒を用いた大環状金属錯体の吸着工程の模式図であり、図3(b)は、混合溶媒を用いた大環状金属錯体の吸着工程の模式図である。FIG. 3A is a schematic diagram of a macrocyclic metal complex adsorption step using a single solvent, and FIG. 3B is a schematic diagram of a macrocyclic metal complex adsorption step using a mixed solvent. . 実施例1で得られた試料A、C、E〜HのK吸収端のX線吸収端微構造(XANES)を示す図である。It is a figure which shows the X-ray absorption edge fine structure (XANES) of the K absorption edge of sample A, C, EH obtained in Example 1. FIG. 実施例1で得られた試料A、C、E〜Hの広域X線吸収微構造(EXAFS)を示す図である。It is a figure which shows the wide-area X-ray absorption fine structure (EXAFS) of samples A, C, and E to H obtained in Example 1. 図6(a)は、試料A、C、E、Fのボルタモグラムであり、図6(b)は、酸素還元電流の立ち上がり電位付近の拡大図である。6A is a voltammogram of samples A, C, E, and F, and FIG. 6B is an enlarged view near the rising potential of the oxygen reduction current. 試料A〜Fの熱処理温度と酸素還元電流が0.2mA/cmとなる電位との関係を示す図である。It is a figure which shows the relationship between the heat processing temperature of sample AF, and the electric potential from which an oxygen reduction current will be 0.2 mA / cm < 2 >. 試料A〜Fの掃引経過時間と酸素還元電流が0.2mA/cmとなる電位との関係を示す図である。It is a figure which shows the relationship between the sweep elapsed time of sample AF, and the electric potential from which an oxygen reduction current will be 0.2 mA / cm < 2 >.

Claims (4)

以下の構成を備えた電極触媒体。
(1)前記電極触媒体は、
炭素材料からなる担体と、
該担体表面に担持された、窒素を含む大環状分子に金属イオンが配位した大環状金属錯体又は該大環状金属錯体の熱変性物とを備えている。
(2)前記電極触媒体は、前記金属イオンの広域X線吸収微細構造(EXAFS)スペクトルに、金属イオン−N結合に起因するピークが認められる。
(3)前記電極触媒体は、前記金属イオンのK吸収端のX線吸収端近傍構造(XANES)スペクトルに、1s→4pz遷移に帰属される吸収ピークの高エネルギー側シフトが認められる。
(4)前記電極触媒体は、
前記大環状金属錯体を溶解可能な第1の溶媒と、前記第1の溶媒と相溶性を有し、前記大環状金属錯体の溶解度が前記第1の溶媒より小さく、かつ、その沸点が前記第1の溶媒より高い第2の溶媒とを含む混合溶媒に、前記大環状金属錯体を溶解させ、かつ前記担体を分散させ、
前記第1の溶媒及び前記第2の溶媒を揮発させることにより、前記担体表面に前記大環状金属錯体を吸着させ、
前記担体を、不活性雰囲気下において、500℃以上700℃以下の温度で熱処理することにより得られる。
An electrode catalyst body having the following configuration.
(1) The electrode catalyst body is:
A carrier made of a carbon material;
A macrocyclic metal complex in which a metal ion is coordinated to a macrocycle molecule containing nitrogen supported on the surface of the carrier, or a thermally modified product of the macrocyclic metal complex .
2 the electrocatalyst body, the extended X-ray absorption fine structure of the metal ion (EXAFS) spectrum, Ru observed peaks due to metal ions -N bond.
(3) As for the said electrode catalyst body, the high energy side shift of the absorption peak attributed to 1s-> 4pz transition is recognized by the X-ray-absorption edge vicinity structure (XANES) spectrum of the K absorption edge of the said metal ion.
(4) The electrode catalyst body is:
A first solvent capable of dissolving the macrocyclic metal complex; compatible with the first solvent; the solubility of the macrocyclic metal complex is smaller than that of the first solvent; Dissolving the macrocyclic metal complex in a mixed solvent containing a second solvent higher than one solvent and dispersing the carrier;
By volatilizing the first solvent and the second solvent, the macrocyclic metal complex is adsorbed on the surface of the carrier,
It can be obtained by heat-treating the carrier at a temperature of 500 ° C. or higher and 700 ° C. or lower in an inert atmosphere.
前記大環状分子は、ポルフィリン、フタロシアニン、ナフタロシアニン、テトラアザアヌレン、又は、これらの構造を分子内に含む有機分子である請求項1に記載の電極触媒体。 The macrocycles, porphyrins, phthalocyanines, naphthalocyanines, tetraazacyclododecane Anu Ren, or, the electrode catalyst according to claim 1 Ru Oh organic molecules containing these structures in the molecule. 前記金属イオンは、Fe、Ni、Co、Mn、Cu、Zn、Ti、V、及び、Crから選ばれる少なくとも1つである請求項1又は2に記載の電極触媒体。 The metal ions, Fe, Ni, Co, Mn , Cu, Zn, Ti, V, and, at least Tsudea Ru claim 1, electrode catalyst according to selected from Cr. 窒素を含む大環状分子に金属イオンが配位した大環状金属錯体を溶解可能な第1の溶媒と、前記第1の溶媒と相溶性を有し、前記大環状金属錯体の溶解度が前記第1の溶媒より小さく、かつ、その沸点が前記第1の溶媒より高い第2の溶媒とを含む混合溶媒に、前記大環状金属錯体を溶解させ、かつ、炭素材料からなる担体を分散させる溶解工程と、
前記第1の溶媒及び前記第2の溶媒を揮発させることにより、前記担体表面に前記大環状金属錯体を吸着させる吸着工程と、
前記担体を、不活性雰囲気下において、500℃以上700℃以下の温度で熱処理する熱処理工程とを備えた電極触媒体の製造方法。
A first solvent capable of dissolving a macrocyclic metal complex in which a metal ion is coordinated to a macrocycle molecule containing nitrogen; and the first solvent is compatible with the first solvent, and the solubility of the macrocyclic metal complex is the first solvent. A dissolving step of dissolving the macrocyclic metal complex and dispersing a carrier made of a carbon material in a mixed solvent containing a second solvent having a boiling point smaller than that of the first solvent and higher than the first solvent; ,
An adsorption step of adsorbing the macrocyclic metal complex on the surface of the carrier by volatilizing the first solvent and the second solvent;
The manufacturing method of the electrode catalyst body provided with the heat processing process which heat-processes the said support | carrier at the temperature of 500 to 700 degreeC in inert atmosphere.
JP2004223113A 2004-07-30 2004-07-30 Electrode catalyst body and method for producing the same Expired - Fee Related JP4461427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004223113A JP4461427B2 (en) 2004-07-30 2004-07-30 Electrode catalyst body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004223113A JP4461427B2 (en) 2004-07-30 2004-07-30 Electrode catalyst body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006035186A JP2006035186A (en) 2006-02-09
JP4461427B2 true JP4461427B2 (en) 2010-05-12

Family

ID=35900743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004223113A Expired - Fee Related JP4461427B2 (en) 2004-07-30 2004-07-30 Electrode catalyst body and method for producing the same

Country Status (1)

Country Link
JP (1) JP4461427B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014020915A1 (en) 2012-08-01 2014-02-06 東洋インキScホールディングス株式会社 Cell catalyst composition, production method therefor, electrode material, and fuel cell

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5068029B2 (en) * 2006-03-31 2012-11-07 株式会社日鉄技術情報センター Oxygen reduction composite catalyst, method for producing the same, and fuel cell using the same
JP2008161754A (en) * 2006-12-27 2008-07-17 Osaka Univ Catalyst containing macrocyclic cobalt complex, its manufacturing method and its use
JP2008258151A (en) * 2007-03-09 2008-10-23 Sumitomo Chemical Co Ltd Electrode catalyst for fuel cell
JP5352099B2 (en) * 2007-03-09 2013-11-27 住友化学株式会社 Redox catalyst using modified metal complex
JP2008258152A (en) * 2007-03-09 2008-10-23 Sumitomo Chemical Co Ltd Membrane-electrode assembly and fuel cell using this
CN101631776A (en) * 2007-03-09 2010-01-20 住友化学株式会社 Modified metal complexes and use thereof
CA2680251A1 (en) * 2007-03-09 2008-09-18 Sumitomo Chemical Company, Limited Membrane-electrode assembly and fuel battery using the same
WO2008111568A1 (en) * 2007-03-09 2008-09-18 Sumitomo Chemical Company, Limited Modified metal complexes and use thereof
JP2009234918A (en) * 2007-03-28 2009-10-15 Sumitomo Chemical Co Ltd Modified metal complex and its use
JP5386977B2 (en) * 2008-06-06 2014-01-15 東洋紡株式会社 Fuel cell catalyst using metal complex, membrane electrode assembly, fuel cell, and oxidation-reduction catalyst
JP2011200797A (en) * 2010-03-25 2011-10-13 Jx Nippon Oil & Energy Corp Method of selecting regeneration condition for hydrotreating catalyst and method of producing regenerated hydrotreating catalyst
JP5495925B2 (en) * 2010-04-27 2014-05-21 京セラ株式会社 Semiconductor manufacturing method and photoelectric conversion device manufacturing method
JP5800467B2 (en) * 2010-05-10 2015-10-28 ダイハツ工業株式会社 Oxygen reduction catalyst and fuel cell
JP2012084490A (en) * 2010-10-15 2012-04-26 Toyota Motor Corp Lithium gas battery
JP6244936B2 (en) * 2013-01-30 2017-12-13 東洋インキScホールディングス株式会社 Carbon catalyst and method for producing the same, and catalyst ink and fuel cell using the carbon catalyst
JP6178968B2 (en) * 2013-04-17 2017-08-16 大日本印刷株式会社 Metal-containing carbon material and oxygen reduction electrode using the same
JP6607487B2 (en) * 2015-06-24 2019-11-20 国立研究開発法人産業技術総合研究所 Catalyst for electrochemical oxygen reduction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014020915A1 (en) 2012-08-01 2014-02-06 東洋インキScホールディングス株式会社 Cell catalyst composition, production method therefor, electrode material, and fuel cell

Also Published As

Publication number Publication date
JP2006035186A (en) 2006-02-09

Similar Documents

Publication Publication Date Title
JP4461427B2 (en) Electrode catalyst body and method for producing the same
Yang et al. 2D Nanoporous Fe− N/C Nanosheets as Highly Efficient Non‐Platinum Electrocatalysts for Oxygen Reduction Reaction in Zn‐Air Battery
KR100897637B1 (en) Fuel cell and gas diffusion electrode for fuel cell
Zhao et al. Tunable bifunctional activity of MnxCo3− xO4 nanocrystals decorated on carbon nanotubes for oxygen electrocatalysis
JP4799897B2 (en) Fuel cell
Bukola et al. Cobalt and nitrogen co-doped tungsten carbide catalyst for oxygen reduction and hydrogen evolution reactions
Maruyama et al. Formation of platinum-free fuel cell cathode catalyst with highly developed nanospace by carbonizing catalase
WO2014181873A1 (en) Fuel cell electrode catalyst and method for activating catalyst
JP2004532734A (en) Platinum-free chelate catalyst material for selective oxygen reduction and method for producing the same
JP2007207662A (en) Electrode catalyst for fuel cell, its manufacturing method, and fuel cell using the catalyst
JP5893305B2 (en) Electrocatalyst for polymer electrolyte fuel cell and method for producing the same
WO2017199653A1 (en) Cell electrode, composition for cell electrode catalyst layer, and cell
JP4041429B2 (en) Fuel cell electrode and manufacturing method thereof
Ji et al. Thermal treatment of Co (II) tetracarboxyphenyl porphyrin supported on carbon as an electrocatalyst for oxygen reduction
JP2003109614A (en) Catalyst for high molecular solid electrolyte fuel cell oxygen pole and method of manufacturing the same
Lu et al. Highly Active and Durable PdAg@ Pd Core–Shell Nanoparticles as Fuel‐Cell Electrocatalysts for the Oxygen Reduction Reaction
KR20120010960A (en) Composite, electrode catalyst including the same, manufacturing method thereof, and fuel cell using the same
Moguchikh et al. Platinum nanoparticles supported on nitrogen-doped carbons as electrocatalysts for oxygen reduction reaction
JP6967761B2 (en) Electrochemical oxygen reduction catalyst
Ingavale et al. Microwave‐assisted synthesis of cobalt‐polyoxometalate@ carbon black nanocomposites and their electrocatalytic ability toward oxygen reduction reaction
Türk et al. Oxygen electroreduction on zinc and dilithium phthalocyanine modified multiwalled carbon nanotubes in alkaline media
JP2005235688A (en) Carrying catalyst for fuel cell, its manufacturing method and fuel cell
WO2011136186A1 (en) Electrode material
Liu et al. Impact of iron precursors on the properties and activities of carbon-supported Fe-N oxygen reduction catalysts
JP2011198636A (en) Method of producing oxygen-reducing catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees