JP4452958B2 - Fine red iron oxide pigment, process for producing the same, paint and resin composition using the pigment - Google Patents

Fine red iron oxide pigment, process for producing the same, paint and resin composition using the pigment Download PDF

Info

Publication number
JP4452958B2
JP4452958B2 JP26920899A JP26920899A JP4452958B2 JP 4452958 B2 JP4452958 B2 JP 4452958B2 JP 26920899 A JP26920899 A JP 26920899A JP 26920899 A JP26920899 A JP 26920899A JP 4452958 B2 JP4452958 B2 JP 4452958B2
Authority
JP
Japan
Prior art keywords
iron oxide
fine
red iron
oxide pigment
goethite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26920899A
Other languages
Japanese (ja)
Other versions
JP2000233932A (en
Inventor
一之 林
峰子 大杉
弘子 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP26920899A priority Critical patent/JP4452958B2/en
Publication of JP2000233932A publication Critical patent/JP2000233932A/en
Application granted granted Critical
Publication of JP4452958B2 publication Critical patent/JP4452958B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は、長軸径の粒度が均斉であるとともに短軸径の粒度が均斉であることによって、透明性が優れている微細な赤色酸化鉄顔料を提供するものである。
【0002】
【従来の技術】
ヘマタイト粒子粉末は、赤色を呈していることから赤色酸化鉄顔料として広く知られており、塗料、印刷インキ、プラスチック、フィルム及び化粧品の着色等、多くの用途を持つものである。
【0003】
ヘマタイト粒子粉末の中でも、粒子径が0.1μm以下の微粒子からなるものは、塗膜にした時に可視光領域の光に対して透明な塗膜を得ることができるため、透明性を呈する赤色酸化鉄顔料として知られている。
【0004】
この粒子径が0.1μm以下のヘマタイト微粒子からなる赤色酸化鉄顔料(以下、「微細な赤色酸化鉄顔料」という。)は、微粒子であるため、ビヒクル中や樹脂組成物中の分散性が劣っており、塗膜や樹脂組成物にした時に十分な透明性を呈するものではなかった。
【0005】
即ち、微細な赤色酸化鉄顔料は、微粒子であるため、粉体の表面エネルギーが高く凝集を起こしやすいために、ビヒクル中や樹脂組成物中への分散が困難であり、これを塗布して得られた塗膜及び樹脂組成物は、粒子が凝集して粗大な粒子となるために十分な透明性を有さないものである。
【0006】
そこで、微細な赤色酸化鉄顔料のビヒクル中や樹脂組成物中での分散性を改良することが強く要求されている。
【0007】
従来、微細な赤色酸化鉄顔料の分散性を向上させる方法として、粒子粉末の粒度を改善することが知られており、これまでに粒度の均斉なゲータイト微粒子粉末を水溶液中で生成させ、その後の加熱脱水処理において、該粒度が均斉なゲータイト微粒子粉末の粒度を保持させることにより、粒度の均斉なヘマタイト微粒子粉末を得ることが既に知られている。(特開昭49−34498号公報、特公昭59−48768号公報等)。
【0008】
【発明が解決しようとする課題】
ビヒクル中や樹脂組成物中への分散性を改善するために、粒度ができるだけ均斉である微細な赤色酸化鉄顔料は、現在、最も要求されているところであるが、長軸径の粒度が均斉であるとともに短軸径の粒度が均斉である微細な赤色酸化鉄顔料は、未だ得られていない。
【0009】
即ち、前記公知の方法による場合は、後出比較例に示す通り、出発原料であるゲータイト微粒子の粒度、殊に短軸径の粒度は未だ十分均斉とは言い難く、また、その後の加熱脱水処理工程において、ゲータイト微粒子中に含まれるゲータイト超微粒子に起因して粒子相互間における焼結が生じ易いので、得られる微細な赤色酸化鉄顔料の粒度、殊に短軸径の粒度もまた十分均斉なものとは言い難いものであった。
【0010】
そこで、本発明は、長軸径の粒度が均斉であるとともに短軸径の粒度が均斉であることによって、透明性が優れている微細な赤色酸化鉄顔料を得ることを技術的課題とする。
【0011】
【課題を解決する為の手段】
前記技術的課題は、次の通りの本発明によって達成できる。
【0012】
即ち、本発明は、長軸径の幾何標準偏差値が1.5以下であって、短軸径の幾何標準偏差値が1.3以下である平均長軸径が0.005〜0.1μmのヘマタイト微粒子からなることを特徴とする微細な赤色酸化鉄顔料である。
【0013】
また、本発明は、ヘマタイト微粒子粉末が粒子内部にAl換算で0.05〜50重量%のアルミニウムを含有している上記記載の微細な赤色酸化鉄顔料である。
【0014】
また、本発明は、ヘマタイト微粒子粉末の粒子表面がアルミニウムの水酸化物、アルミニウムの酸化物、ケイ素の水酸化物及びケイ素の酸化物の少なくとも1種で被覆されている上記記載の微細な赤色酸化鉄顔料である。
【0015】
また、本発明は、ゲータイト微粒子粉末を250〜500℃の温度範囲で加熱脱水処理してヘマタイト微粒子粉末とするに当って、前記加熱脱水処理に先立ってあらかじめ、前記ゲータイト微粒子粉末を100〜200℃の温度範囲で加熱処理して、該ゲータイト微粒子粉末に含まれているゲータイト超微粒子をゲータイト微粒子に吸収させておくことを特徴とする上記記載の微細な赤色酸化鉄顔料の製造法である。
【0016】
また、本発明は、粒子内部にAl換算で0.05〜50重量%のアルミニウムを含有しているゲータイト微粒子粉末を250〜500℃の温度範囲で加熱脱水処理してヘマタイト微粒子粉末とするに当って、上記加熱脱水処理に先立ってあらかじめ、前記ゲータイト微粒子粉末を100〜200℃の温度範囲で加熱処理して該ゲータイト微粒子粉末に含まれているゲータイト超微粒子をゲータイト微粒子に吸収させておくことを特徴とする上記記載の微細な赤色酸化鉄顔料の製造法である。
【0017】
また、本発明は、上記記載のいずれかの微細な赤色酸化鉄顔料を用いることを特徴とする塗料である。
【0018】
また、本発明は、上記記載のいずれかの微細な赤色酸化鉄顔料を用いることを特徴とする樹脂組成物である。
【0019】
本発明の構成を詳述すれば、次の通りである。
【0020】
先ず、本発明に係る微細な赤色酸化鉄顔料について述べる。
【0021】
本発明に係る微細な赤色酸化鉄顔料は、長軸径の幾何標準偏差値が1.5以下であって、短軸径の幾何標準偏差値が1.3以下である平均長軸径が0.005〜0.1μmのヘマタイト微粒子粉末からなる。
【0022】
長軸径及び短軸径の幾何標準偏差値が上限値を超える場合には、存在する粗大粒子によりビヒクル中や樹脂組成物中における均一な分散が困難となり、該赤色酸化鉄顔料を用いて得られた塗膜や樹脂組成物は、十分な透明性を有さない。ビヒクル中や樹脂組成物中への分散性及び得られる塗膜や樹脂組成物の透明性を考慮すれば、長軸径の幾何標準偏差値は好ましくは1.48以下であり、より好ましくは1.43以下であって、短軸径の幾何標準偏差値は好ましくは1.28以下であり、より好ましくは1.25以下である。工業的な生産性を考慮すれば、長軸径及び短軸径(以下、粒子径とする)の幾何標準偏差値の下限値は1.01である。
【0023】
平均長軸径が0.005μm未満の場合には、粒子の微細化による分子間力の増大により、ビヒクル中や樹脂組成物中における分散が困難となり、該赤色酸化鉄顔料を用いて得られた塗膜や樹脂組成物は、十分な透明性を有しているとは言い難い。0.1μmを超える場合には、ビヒクル中や樹脂組成物中への分散性は良いが、粒子が粗大となって着色力が上がり、該赤色酸化鉄顔料を用いて得られた塗膜や樹脂組成物は、十分な透明性を有さない。ビヒクル中や樹脂組成物中への分散性及び得られる塗膜や樹脂組成物の透明性を考慮すれば、平均長軸径は0.01〜0.09μmが好ましく、より好ましくは0.01〜0.08μmである。
【0024】
本発明に係る微細な赤色酸化鉄顔料の平均短軸径は0.0025〜0.05μmが好ましく、より好ましくは0.005〜0.045であって、更に好ましくは、0.005〜0.04μmである。
【0025】
平均短軸径が0.0025μm未満の場合には、粒子の微細化による分子間力の増大により、ビヒクル中や樹脂組成物中における分散が困難となる。平均短軸径が0.05μmを超えるものは、工業的に得ることが困難である。
【0026】
本発明に係る微細な赤色酸化鉄顔料の粒子形状は、針状である。ここで「針状」とは、文字通りの針状はもちろん、紡錘状や米粒状などを含む意味である。
【0027】
本発明に係る微細な赤色酸化鉄顔料は、軸比(平均長軸径/平均短軸径)(以下、「軸比」という。)は、20以下が好ましく、より好ましくは15以下、更に好ましくは10以下であり、その下限値は好ましくは2以上である。また、BET比表面積値は、40〜250m/gが好ましく、より好ましくは50〜220m/g、更に好ましくは、70〜200m/gである。
【0028】
軸比が20を超える場合には、ビヒクル中や樹脂組成物中での粒子の絡み合いが多くなり、分散性が悪くなったり粘度が増加するため、得られた塗膜及び樹脂組成物は十分な透明性を有さない。軸比が2未満のものは工業的に得ることが困難である。
【0029】
BET比表面積値が40m/g未満の場合には、粒子が粗大となって着色力が上がり、該赤色酸化鉄顔料を用いて得られる塗膜や樹脂組成物は、十分な透明性を有さない。BET比表面積値が250m/gを超える場合には、粒子の微細化による分子間力の増大により、ビヒクル中や樹脂組成物中における分散が困難となる。
【0030】
本発明に係る微細な赤色酸化鉄顔料は、必要により、粒子内部に微細な赤色酸化鉄顔料に対してAl換算で0.05〜50重量%のアルミニウムを含有していてもよく、粒子内部にアルミニウムを含有していないものに比べて粒子自体の透明性が優れるとともに、該微細な赤色酸化鉄顔料を用いて得られた樹脂組成物の耐老化性が改善される。
【0031】
微細な赤色酸化鉄顔料の粒子内部に含有されているアルミニウム量が微細な赤色酸化鉄顔料に対して0.05重量%未満の場合には、透明性及び耐老化性を改善する効果が得られない。50重量%を超える場合には、得られた赤色酸化鉄顔料は、十分な透明性と耐老化性を有しているが、効果が飽和するため必要以上に含有させる意味がない。得られる微細な赤色酸化鉄顔料の透明性や耐老化性の向上効果及び生産性を考慮すれば、粒子内部に含有されているアルミニウム量は、微細な赤色酸化鉄顔料に対してAl換算で0.1〜40重量%が好ましい。
【0032】
粒子内部に含有されているアルミニウムは、粒子の中心部から粒子表面に至るまでアルミニウムが実質的に均一に含有されていることが好ましい。
【0033】
本発明に係る粒子内部にアルミニウムを含有している微細な赤色酸化鉄顔料は、粒子内部にアルミニウムを含有していない本発明に係る微細な赤色酸化鉄顔料の場合とほぼ同程度の粒子サイズ、粒子径の幾何標準偏差値、軸比及びBET比表面積値を有している。
【0034】
本発明に係る微細な赤色酸化鉄顔料は、必要により、粒子表面がアルミニウムの水酸化物、アルミニウムの酸化物、ケイ素の水酸化物及びケイ素の酸化物から選ばれた少なくとも1種からなる表面被覆物によって被覆されていてもよく、粒子表面を表面被覆物で被覆しない場合に比べ、分散性及び得られた樹脂組成物の耐老化性が向上する。
【0035】
前記表面被覆物の被覆量は、微細な赤色酸化鉄顔料に対してAl換算、SiO換算、又はAl換算量とSiO換算量との総和で0.01〜20重量%が好ましい。表面被覆物の被覆量が0.01重量%未満である場合には、分散性及び耐老化性向上効果が得られない。20重量%を超える場合には、十分な分散性及び耐老化性向上効果が得られるが、必要以上に添加する意味がない。得られる微細な赤色酸化鉄顔料の分散性、耐老化性向上効果及び生産性を考慮すれば、表面被覆物の被覆量は、微細な赤色酸化鉄顔料に対してAl換算、SiO換算又はAl換算とSiO換算との総和で0.05〜15重量%が好ましい。
【0036】
本発明に係る表面被覆物で被覆されている微細な赤色酸化鉄顔料は、表面被覆物で被覆されていない本発明に係る微細な赤色酸化鉄顔料とほぼ同程度の粒子サイズ、粒子径の幾何標準偏差値、軸比及びBET比表面積値を有している。
【0037】
次に、本発明に係る微細な赤色酸化鉄顔料の製造法について述べる。
【0038】
本発明に係る微細な赤色酸化鉄顔料は、第一鉄塩と水酸化アルカリ水溶液、炭酸アルカリ水溶液又は水酸化アルカリ・炭酸アルカリ水溶液のいずれかの水溶液を用いて反応して得られる鉄含有沈殿物を含む懸濁液に空気等の酸素含有ガスを通気して得られるゲータイト微粒子粉末を、250〜500℃の温度範囲で加熱脱水処理するに先立ってあらかじめ、100〜200℃の温度範囲で加熱処理することにより得られる。
【0039】
本発明における出発原料粒子粉末として用いるゲータイト微粒子粉末としては、通常、長軸径の幾何標準偏差値は1.8以下であって、短軸径の幾何標準偏差値は1.7以下であって、平均長軸径が0.005〜0.1μm、平均短軸径が0.0025〜0.05μmであるものを用いることが好ましい。
【0040】
加熱処理温度が100℃未満の場合、ゲータイト超微粒子を十分にゲータイト微粒子に吸収させることが困難であり、殊に短軸径の粒度が均斉な粒子を得ることができない。200℃を超える場合、ゲータイト超微粒子成分(平均長軸径0.001μm以下)が存在したままゲータイト微粒子の脱水が始まるため、粒子間で焼結が起こり、殊に短軸径の粒度が均斉な粒子を得ることができない。好ましくは、120〜200℃である。
【0041】
加熱処理の時間は、5〜60分が好ましい。
【0042】
100〜200℃の温度範囲で加熱処理して得られるゲータイト微粒子粉末は、長軸径の幾何標準偏差値は1.5以下であって、短軸径の幾何標準偏差値は1.3以下であり、平均長軸径が0.005〜0.1μm、平均短軸径が0.0025〜0.05μmである。
【0043】
加熱脱水処理の温度が250℃未満の場合には、脱水反応に長時間を要する。加熱脱水温度が500℃を超える場合には、脱水反応が急激に生起し、粒子の形状が崩れやすくなったり、粒子間の焼結を引き起こしやすくなる。
【0044】
尚、粒子内部にアルミニウムを含有する本発明に係る微細な赤色酸化鉄顔料は、前記ゲータイト微粒子の生成反応において、空気等の酸素含有ガスを通気する前にアルミニウム化合物を存在させておくことにより得られ、粒子内部にアルミニウムを実質的に均一に含有しているゲータイト微粒子を100〜200℃の温度範囲で加熱処理した後、250〜500℃の温度範囲で加熱脱水することにより得ることができる。
【0045】
アルミニウム化合物の添加は、具体的には、第一鉄塩水溶液、アルカリ水溶液及び空気等の酸素含有ガスを通気する前の鉄含有沈殿物を含む懸濁液のいずれかの溶液中に添加すればよく、第一鉄塩水溶液に添加することが好ましい。
【0046】
添加するアルミニウム化合物としては、アルミン酸ナトリウムなどのアルミン酸アルカリや、硫酸アルミニウム、塩化アルミニウム、酢酸アルミニウム、硝酸アルミニウムなどのアルミニウム塩を使用することができる。
【0047】
アルミニウム化合物の添加量は、第一鉄塩水溶液中のFeに対し、Al換算で0.5〜350mol%が好ましい。0.5mol%未満である場合には、本発明の目的とする透明性や耐老化性向上の効果が得られない。350mol%を超える場合には、効果がほぼ飽和に達するため、必要以上に添加する意味がない。
【0048】
本発明において、必要により更に、アルミニウムの水酸化物、アルミニウムの酸化物、ケイ素の水酸化物及びケイ素の酸化物から選ばれる少なくとも1種以上の表面被覆物で被覆してもよい。
【0049】
アルミニウム化合物の添加量は、微細な赤色酸化鉄顔料に対してAl換算で0.01〜20重量%である。0.01重量%未満である場合には、分散性及び耐老化性の向上効果が得られるだけの十分な量のアルミニウムの水酸化物等を粒子表面に被覆することが困難である。20重量%を超える場合には、被覆効果が飽和するため、必要以上に添加する意味が無い。
【0050】
ケイ素化合物の添加量は、微細な赤色酸化鉄顔料に対してSiO換算で0.01〜20重量%である。0.01重量%未満である場合には、分散性及び耐老化性の向上効果が得られるだけの十分な量のケイ素の酸化物等を粒子表面に被覆することが困難である。20重量%を超える場合には、被覆効果が飽和するため、必要以上に添加する意味が無い。
【0051】
アルミニウム化合物とケイ素化合物とを併せて使用する場合の添加量は、微細な赤色酸化鉄顔料に対し、Al換算量とSiO換算量との総和で0.01〜20重量%が好ましい。
【0052】
次に、本発明に係る微細な赤色酸化鉄顔料を用いた塗料について述べる。
【0053】
本発明に係る微細な赤色酸化鉄顔料を用いた塗料は、塗膜にした場合、光沢度は80%以上であって、塗膜の透明性は線吸収係数が0.1μm−1以下である。
【0054】
本発明における微細な赤色酸化鉄顔料と塗料構成基材との配合割合は、微細な赤色酸化鉄顔料を塗料構成基材100重量部に対し0.5〜100重量部の範囲で使用することができ、塗料のハンドリングを考慮すれば、好ましくは1.0〜80重量部、更に好ましくは1.0〜50重量部である。
【0055】
塗料構成基材は、樹脂及び溶剤と、必要により添加される消泡剤、体質顔料、乾燥促進剤、界面活性剤、硬化促進剤、助剤等からなる。
【0056】
樹脂としては、溶剤系塗料用として通常使用されるアクリル樹脂、アルキッド樹脂、ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、フェノール樹脂、メラミン樹脂、アミノ樹脂等、並びに、水系塗料用として、通常使用される水溶性アルキッド樹脂、水溶性メラミン樹脂、水溶性アクリル樹脂、水溶性ウレタンエマルジョン樹脂等を用いることができる。
【0057】
溶剤としては、溶剤系塗料用として通常使用されるトルエン、キシレン、ブチルアセテート、メチルアセテート、メチルイソブチルケトン、ブチルセロソルブ、エチルセロソルブ、ブチルアルコール、脂肪族炭化水素等、並びに、水系塗料用溶剤としては水と水系塗料で通常使用されるブチルセロソルブ、ブチルアルコール等を用いることができる。
【0058】
尚、消泡剤としては、ノプコ8034(商品名)、SNデフォーマー477(商品名)、SNデフォーマー5013(商品名)、SNデフォーマー382(商品名)、SNデフォーマー247(商品名)、SNデフォーマー382(商品名)(以上、いずれもサンノプコ株式会社製)アンチホーム08(商品名)、エマルゲン903(商品名)(以上、いずれも花王株式会社製)等の市販品を用いることができる。
【0059】
次に、本発明に係る微細な赤色酸化鉄顔料を用いた樹脂組成物について述べる。
【0060】
本発明に係る微細な赤色酸化鉄顔料を用いた樹脂組成物は、透明性は線吸収係数で0.15μm−1以下であって、分散状態は後出評価法による3以上、好ましくは4、更に好ましくは5を有している。
【0061】
本発明に係る粒子内部にアルミニウムを含有している微細な赤色酸化鉄顔料又は粒子表面を表面被覆物で被覆されている微細な赤色酸化鉄顔料を用いた樹脂組成物は、透明性は線吸収係数で0.1μm−1以下であって、分散状態は後出評価法による4以上、好ましくは5を有している。また、耐老化性はアルミニウムを含有していないとともに粒子表面が表面被覆物で被覆されていない微細な赤色酸化鉄顔料を用いた樹脂組成物(耐老化性は10分間加熱した場合、S/Sが10%以上である)に比べて、90分間加熱した場合でもS/S10%以下と改善されたものである。
【0062】
本発明における微細な赤色酸化鉄顔料の配合割合は、樹脂100重量部に対し0.01〜50重量部の範囲で使用することができ、樹脂組成物のハンドリングを考慮すれば、好ましくは0.05〜45重量部、更に好ましくは、0.1〜40重量部である。
【0063】
樹脂としては、天然ゴム、合成ゴム、熱可塑性樹脂(例えば、ポリエチレン、ポリプロピレン、ポリブテン、ポリイソブチレン等のポリオレフィン、ポリ塩化ビニル、スチレン重合体、ポリアミド等)等を用いることができ、必要により、滑剤、可塑剤、酸化防止剤、紫外線吸収剤、各種安定剤等の添加剤が配合できる。
【0064】
添加剤の量は、微細な赤色酸化鉄顔料と樹脂との総和に対して50重量%以下であればよい。添加剤の含有量が50重量%を超える場合には、成形性が低下する。
【0065】
本発明に係る樹脂組成物は、樹脂と微細な赤色酸化鉄顔料をあらかじめよく混合し、次に、混練機もしくは押出機を用いて加熱下で強いせん断作用を加えて、微細な赤色酸化鉄顔料の凝集体を破壊し、樹脂組成物中に微細な赤色酸化鉄顔料を均一に分散させた後、目的に応じた形状に成形加工して使用する。
【0066】
【発明の実施の形態】
本発明の代表的な実施の形態は、次の通りである。
【0067】
粒子の平均長軸径及び平均短軸径は、電子顕微鏡写真(×30,000)を縦方向及び横方向にそれぞれ4倍に拡大した写真に示される粒子約350個について、長軸径及び短軸径をそれぞれ測定し、その平均値で示した。
【0068】
粒子の軸比は平均長軸径と平均短軸径との比を計算することによって求めた。
【0069】
粒子の長軸径及び短軸径(以下、粒子径という)の幾何標準偏差値は下記の方法により求めた値で示した。即ち、上記拡大写真に示される粒子の粒子径を測定した値を、その測定値から計算して求めた粒子の実際の粒子径と個数から、統計学的手法に従って、対数正規確率紙上の横軸に粒子径を、縦軸に所定の粒子径区間のそれぞれに属する粒子の累積個数(積算フルイ下)を百分率でプロットした。そしてこのグラフから粒子の累積個数が50%及び84.13%のそれぞれに相当する粒子径の値を読み取り、幾何標準偏差値=(積算フルイ下84.13%における粒子径)/(積算フルイ下50%における粒子径(幾何平均径)に従って算出した値で示した。幾何標準偏差値が1に近いほど、粒子の粒子径の粒度が優れていることを意味する。
【0070】
比表面積値はBET法により測定した値で示した。
【0071】
粒子に含有されているAl量及びSi量は、「蛍光X線分析装置3063M型」(理学電機工業(株)製)を使用し、JIS K0119の「けい光X線分析通則」に従って測定した。
【0072】
赤色酸化鉄顔料を用いた塗膜の透明性は、後述する処法によって調製した塗料を厚さ100μmのクリアベースフィルムに塗布して得られた塗布膜について、樹脂組成物の透明性は後述する組成から成る樹脂プレートについて、「自記光電分光光度計UV−2100」((株)島津製作所製)を用いて測定した光透過率から、次式によって定義される線吸収係数で示した。線吸収係数は値が小さいほど光を透しやすく透明性が高いことを示す。
線吸収係数(μm−1)=ln(1/t)/FT
t:λ=900nmにおける光透過率(−)
【0073】
耐老化性は、後述する組成からなる赤色酸化鉄顔料を練り込んだ着色プレート(縦1.5cm×横1.5cm×厚み1mm)を190℃で加熱した時に、変色して樹脂が劣化した部分の面積Sと加熱前の着色プレートの面積S(1.5cm×1.5cm=2.25cm)との比S/Sを5%刻みで定量することにより求めた。
【0074】
即ち、(S/S)×100が0%の時は劣化が無い状態を示し、(S/S)×100が100%のときは樹脂が完全に劣化した状態を示す。
【0075】
ビヒクル中への分散性は、後述する処法によって調整した塗料を用いて得られた塗布膜について、塗布面の光沢度の大小によって調べた。
【0076】
光沢度は、「グロスメーター UGV−5D」(スガ試験機(株)製)を用いて入射角20°のときの光沢度を測定して求めた。光沢度が高いほど、ビヒクル中における微細な赤色酸化鉄顔料の粒子の分散性が良いことを示す。
【0077】
塗料粘度については、後述する処方によって調製した塗料の25℃における塗料粘度をE型粘度計(コーンプレート型粘度計)EMD−R((株)東京計器製)を用いて、ずり速度D=1.92 sec−1における値を求めた。
【0078】
樹脂組成物中への分散性は、得られた樹脂組成物表面における未分散の凝集粒子の個数を目視により判定し、5段階で評価した。5が最も分散状態が良いことを示す。
5: 未分散物認められず、
4: 1cm当たりに1個以上5個未満、
3: 1cm当たりに5個以上10個未満、
2: 1cm当たりに10個以上50個未満、
1: 1cm当たりに50個以上。
【0079】
<微細な赤色酸化鉄顔料の製造>
硫酸第一鉄水溶液と炭酸ナトリウム水溶液とを用いて得られた針状ゲータイト微粒子粉末のスラリーを、プレスフィルターを用いて濾別し、通水しながら十分水洗した。
【0080】
湿ケーキを120℃で24時間乾燥させた後、自由粉砕機M−2型((株)奈良機械製作所製)で粉砕した。得られたゲータイト微粒子粉末は、平均長軸径0.0688μm、長軸径の幾何標準偏差値1.53、平均短軸径0.0101μm、短軸径の幾何標準偏差値1.33、軸比6.8、BET比表面積値165.3m/gであった。
【0081】
得られたゲータイト微粒子粉末を金属製の熱処理炉に入れ、150℃で30分間加熱処理を行い、ゲータイト微粒子粉末中に含まれるゲータイト超微粒子をゲータイト微粒子に吸収させた。
【0082】
次いで、得られたゲータイト微粒子粉末を再度、金属製の熱処理炉に入れ、340℃で30分間加熱脱水処理を行い、ゲータイト微粒子を脱水して、微細な赤色酸化鉄顔料を得た。得られた微細な赤色酸化鉄顔料は、平均長軸径0.0620μm、長軸径の幾何標準偏差値1.33、平均短軸径0.0108μm、短軸径の幾何標準偏差値1.15、軸比5.7、BET比表面積値143.8m/gであった。
【0083】
<微細な赤色酸化鉄顔料を用いた塗料の製造>
250mlのガラスビンに前記微細な赤色酸化鉄顔料5gを用い、塗料組成を下記割合で配合して3mmφガラスビーズ160gとともにペイントシェーカーで120分間混合分散し、ミルベースを作製した。
微細な赤色酸化鉄顔料 9.9 重量部、
メラミン樹脂 19.8 重量部、
(スーパーペッカミン J−820−60:商品名:大日本インキ化学工業(株)製)
アルキッド樹脂 39.6 重量部、
(ベッコゾール 1307−60EL:商品名:大日本インキ化学工業(株)製)
キシレン 29.7 重量部、
ブタノール 1.0 重量部。
【0084】
この塗料を透明ガラス板(0.8mm(厚)×70mm(幅)×150mm(長さ))に塗布して得られた塗膜の光沢度は93%、線吸収係数は0.0528μm−1であった。
【0085】
<微細な赤色酸化鉄顔料を用いた樹脂組成物の製造>
前記微細な赤色酸化鉄顔料0.5gとポリ塩化ビニル樹脂粉末(103EP8D:商品記号:日本ゼオン(株)製)49.5gとを秤量し、これらを100mlポリビーカーに入れ、スパチュラでよく混合して混合粉末を得た。
【0086】
得られた混合粉末にステアリン酸カルシウムを1.0g加えて混合し、160℃に加熱した熱間ロールのクリアランスを0.2mmに設定した後、上記混合粉末を少しずつロールにて練り込んで樹脂組成物が一体となるまで混練を続けた後、樹脂組成物をロールから剥離して着色樹脂プレート原料として用いた。
【0087】
次に、表面研磨されたステンレス板の間に上記樹脂組成物を挟んで180℃に加熱したホットプレス内に入れ、1トン/cmの圧力で加圧成形して厚さ1mmの着色樹脂プレートを得た。得られた着色樹脂プレートの線吸収係数は0.0853μm−1、分散状態は4であった。
【0088】
【作用】
本発明において最も重量な点は、ゲータイト微粒子粉末を、100〜200℃の温度範囲で加熱処理した場合には、長軸径の粒度が均斉であるとともに短軸径の粒度が均斉なゲータイト微粒子粉末を得ることができるという事実である。
【0089】
本発明に係る粒度が均斉な微細な赤色酸化鉄顔料が得られる理由については、本発明者は、ゲータイト超微粒子がゲータイト微粒子に吸収されているため、超微粒子成分が少なく、長軸径の粒度が均斉であるとともに短軸径の粒度も均斉であるゲータイト微粒子粉末が得られるとともに、ゲータイト超微粒子が減少することによって、その後の加熱脱水処理においてゲータイト超微粒子に起因する粒子間の焼結が起こりにくいことにより、ゲータイト微粒子の均斉な粒度を十分に保持した、ヘマタイト微粒子粉末を得ることができるためと考えている。
【0090】
長軸径の幾何標準偏差値が1.5以下であって短軸径の幾何標準偏差値が1.3以下であるヘマタイト微粒子粉末からなる微細な赤色酸化鉄顔料は、長軸径の粒度が均斉であるとともに、短軸径の粒度が均斉であることによってビヒクル中や樹脂組成物中での分散性が向上するために、該微細な赤色酸化鉄顔料を用いて得られた塗膜及び樹脂組成物は優れた分散性及び透明性を有している。
【0091】
本発明に係る微細な赤色酸化鉄顔料の分散性が向上する理由について、本発明者は、該微細な赤色酸化鉄顔料の長軸径の幾何標準偏差値が1.5以下、短軸径の幾何標準偏差値が1.3以下であることにより、粗大な粒子や微細な粒子の存在が少ないため、ビヒクル中や樹脂組成物中において、粗大な粒子や微細な粒子による均一な分散が阻害されることがないためと考えている。
【0092】
また、本発明に係る微細な赤色酸化鉄顔料を用いた塗料及び樹脂組成物の透明性が向上する理由について、本発明者は、該微細な赤色酸化鉄顔料がビヒクル中や樹脂組成物中への分散に優れた粒子粉末であるため、これを塗布して得られた塗膜及び樹脂組成物は、粒子の凝集が少なく粗大な粒子が存在しないためと考えている。
【0093】
粒子内部にアルミニウムを含有している本発明に係る微細な赤色酸化鉄顔料を用いた樹脂組成物の耐老化性が優れている理由について、本発明者は、粒子内部に含有されるアルミニウムにより、ヘマタイト粒子が持つ樹脂組成物の老化に及ぼす触媒作用が抑制されたことに加えて、粒子内部にアルミニウムを含有している微細な赤色酸化鉄顔料は分散性に優れていることから、樹脂組成物中に高度に分散・配合されるために光や熱に対して優れた遮断効果が発揮されるので、光や熱の樹脂組成物に対する影響を効果的に抑制する事ができたことによるものと考えている。
【0094】
【実施例】
次に、実施例並びに比較例を挙げる。
【0095】
ゲータイト微粒子1〜5:
出発原料粒子であるゲータイト微粒子として表1に示されるゲータイト微粒子1乃至5を準備した。
【0096】
【表1】

Figure 0004452958
【0097】
尚、粒子内部にアルミニウムを含有しているゲータイト微粒子は、表1に示すアルミニウム化合物を用いて製造した。
【0098】
ゲータイト微粒子の種類、温度及び時間を種々変化させた以外は、前記発明の実施の形態と同様にして加熱処理を行った。この時の主要製造条件及び加熱処理後の被処理粒子であるゲータイト微粒子の諸特性を表2に示す。
【0099】
【表2】
Figure 0004452958
【0100】
実施例1〜6及び比較例1〜6:
被処理粒子であるゲータイト微粒子の種類、加熱脱水処理の温度及び時間を種々変化させた以外は、前記発明の実施の形態と同様にして、微細な赤色酸化鉄顔料を得た。この時の主要製造条件及び微細な赤色酸化鉄顔料の諸特性を表3に示す。
【0101】
【表3】
Figure 0004452958
【0102】
比較例1
ゲータイト微粒子に対して加熱処理を行わずに、加熱脱水処理を行った。得られた赤色酸化鉄顔料の諸特性を表3に示す。
【0103】
比較例2
ゲータイト微粒子を80℃で加熱処理を行い、次いで、340℃で加熱脱水処理を行った。得られた赤色酸化鉄顔料の諸特性を表3に示す。
【0104】
比較例3
ゲータイト微粒子に対して加熱処理を行わずに、310℃で加熱脱水処理を行い、次いで、更に340℃で加熱脱水処理を行った。得られた赤色酸化鉄顔料の諸特性を表3に示す。
【0105】
比較例4
ゲータイト微粒子に対して180℃で加熱処理を行い、次いで、680℃で加熱脱水処理を行った。得られた赤色酸化鉄顔料の諸特性を表3に示す。
【0106】
比較例5
(特開昭49−34498号公報 実施例1の方法で得た赤色酸化鉄顔料)
硫酸第一鉄1.3mol溶液10lに苛性ソーダ6.49N溶液4.1lを加え、更に水を加えて全液量を27.5lとした。該混合溶液は可及的に酸素の混入を防止し、攪拌を行いながら、溶液温度33℃において10分間水酸化第一鉄の生成反応を行った。その後引き続き該水酸化第一鉄コロイド溶液に、可及的に酸素の混入を防止し、攪拌を行いながら、重炭酸アンモニウム0.63mol溶液22.5lを加え全液量を50lとし、溶液温度33℃において30分間炭酸第一鉄の生成反応を行った。得られた炭酸第一鉄コロイド溶液に、溶液温度33℃において空気を140l/分の割合で通気した。空気通気後50分で該炭酸第一鉄コロイド溶液から黄色含水酸化鉄粒子の沈殿を得た。該黄色含水酸化鉄粒子を水洗・濾別し、100℃で乾燥して、黄色含水酸化鉄粒子粉末を得た。
【0107】
得られた黄色含水酸化鉄粒子の形状は紡錘状であり、平均長軸径は0.01μm、長軸径の幾何標準偏差値は1.81、平均短軸径は0.0033μm、短軸径の幾何標準偏差値は1.55、軸比は3.0、BET比表面積値は256.1m/gであった。
【0108】
次いで、該黄色含水酸化鉄粒子粉末を空気中300℃で60分間保持して赤色酸化鉄顔料を得た。
【0109】
得られた赤色酸化鉄顔料の諸特性を表3に示す。
【0110】
比較例6
(特公昭59−48768号公報 実施例1の方法で得た赤色酸化鉄顔料)
ガス吹き込み装置と攪拌機を装着した円筒型反応容器に炭酸ソーダ0.56mol溶液6.8lを入れ、窒素ガスを吹き込みながら硫酸第一鉄0.69mol溶液5.2lを徐々に加えた。生成した炭酸第一鉄懸濁液のpH値は8.3であった。該懸濁液に窒素ガスを吹き込みながら室温下で2時間攪拌を行った後、窒素ガスを空気に切り換えて5.0l/分の割合で通気した。通気25分後に酸化が終了し、黄色含水酸化鉄粒子の沈殿物が生成した。該沈殿物を水洗・濾別し、100℃で乾燥して、黄色含水酸化鉄粒子粉末を得た。
【0111】
得られた黄色含水酸化鉄粒子の平均長軸径は0.038μm、長軸径の幾何標準偏差値は1.70、平均短軸径は0.0095μm、短軸径の幾何標準偏差値は1.48、軸比は4.0、BET比表面積値は216.5m/gであった。
【0112】
次いで、該黄色含水酸化鉄顔料を280℃で180分間保持して赤色酸化鉄顔料を得た。
【0113】
得られた赤色酸化鉄顔料の諸特性を表3に示す。
【0114】
実施例7
実施例1の微細な赤色酸化鉄顔料のうち450gを、純水10lに攪拌機を用いて邂逅し、さらにホモミックラインミル(特殊機化工業(株)製)を3回通して微細な赤色酸化鉄粒子顔料のスラリーを得た。
【0115】
得られた微細な赤色酸化鉄顔料のスラリーの濃度を45g/lに調整し、スラリーを10l採取した。このスラリーを攪拌しながら60℃まで加熱し、スラリーのpH値を4.0に調整した。
【0116】
次に、このスラリー中に1mol/lの酢酸アルミニウム溶液167ml(微細な赤色酸化鉄顔料に対してAl換算で1.0重量%に相当する)を加え、30分間保持した後、水酸化ナトリウム水溶液を用いてpH値を7.0に調整し、この状態で30分間保持した。次いで濾過、水洗、乾燥、粉砕して粒子表面がアルミニウムの水酸化物により被覆されている微細な赤色酸化鉄顔料を得た。
【0117】
実施例8〜12:
微細な赤色酸化鉄顔料の種類、表面被覆物の種類、添加前pH値、添加量、最終pH値を種々変化させた以外は、前記実施例7と同様にして粒子表面が被覆された微細な赤色酸化鉄顔料を得た。
【0118】
この時の主要製造条件を表4に、得られた微細な赤色酸化鉄顔料の諸特性を表5に示す。
【0119】
【表4】
Figure 0004452958
【0120】
【表5】
Figure 0004452958
【0121】
<微細な赤色酸化鉄顔料を用いた塗料>
実施例13〜24:
微細な赤色酸化鉄顔料の種類を種々変化させた以外は前記発明の実施の形態と同様にして塗料を製造した。
【0122】
この時の主要製造条件及び諸特性を表6に示す。
【0123】
【表6】
Figure 0004452958
【0124】
比較例7〜12:
赤色酸化鉄顔料の種類を種々変化させた以外は、前記発明の実施の形態と同様にして塗料を製造した。
【0125】
この時の主要製造条件及び諸特性を表7に示す。
【表7】
Figure 0004452958
【0126】
<微細な赤色酸化鉄顔料を用いた樹脂組成物>
実施例25〜36:
微細な赤色酸化鉄顔料の種類を種々変化させた以外は前記発明の実施の形態と同様にして樹脂組成物を製造した。
【0127】
この時の主要製造条件及び得られた樹脂組成物の諸特性を表8に示す。
【0128】
【表8】
Figure 0004452958
【0129】
比較例13〜18:
赤色酸化鉄顔料の種類を種々変化させた以外は、前記発明の実施の形態と同様にして樹脂組成物を製造した。
【0130】
この時の主要製造条件及び得られた樹脂組成物の諸特性を表9に示す。
【表9】
Figure 0004452958
【0131】
【発明の効果】
本発明に係る微細な赤色酸化鉄顔料は、長軸径の粒度が均斉であるとともに短軸径の粒度が均斉であることによって透明性が優れているので、透明性を有する赤色着色顔料として好ましいものである。
【0132】
また、本発明に係る微細な赤色酸化鉄顔料を用いた塗料及び樹脂組成物は、微細な赤色酸化鉄顔料の粒子径の粒度が均斉であって透明性が優れていることから、透明性に優れた塗料及び樹脂組成物である。[0001]
[Industrial application fields]
The present invention provides a fine red iron oxide pigment having excellent transparency by having a uniform major axis particle size and uniform minor axis particle size.
[0002]
[Prior art]
Hematite particle powder is widely known as a red iron oxide pigment because of its red color, and has many uses such as coloring of paints, printing inks, plastics, films and cosmetics.
[0003]
Among the hematite particle powders, those composed of fine particles having a particle size of 0.1 μm or less can obtain a transparent coating film with respect to light in the visible light region when formed into a coating film. Known as iron pigment.
[0004]
This red iron oxide pigment composed of hematite fine particles having a particle size of 0.1 μm or less (hereinafter referred to as “fine red iron oxide pigment”) is a fine particle and therefore has a poor dispersibility in the vehicle or the resin composition. However, when it was used as a coating film or a resin composition, it did not exhibit sufficient transparency.
[0005]
In other words, fine red iron oxide pigments are fine particles, so that the surface energy of the powder is high and the particles tend to agglomerate, so that they are difficult to disperse in the vehicle or resin composition. The obtained coating film and resin composition do not have sufficient transparency because the particles aggregate to form coarse particles.
[0006]
Therefore, there is a strong demand to improve the dispersibility of fine red iron oxide pigments in vehicles and resin compositions.
[0007]
Conventionally, as a method for improving the dispersibility of fine red iron oxide pigments, it is known to improve the particle size of the particle powder. So far, a goethite fine particle powder having a uniform particle size has been generated in an aqueous solution, and then It has already been known to obtain a hematite fine particle powder with uniform particle size by maintaining the particle size of the goethite fine particle powder with uniform particle size in the heat dehydration treatment. (JP-A-49-34498, JP-B-59-48768, etc.).
[0008]
[Problems to be solved by the invention]
In order to improve the dispersibility in the vehicle and the resin composition, a fine red iron oxide pigment whose particle size is as uniform as possible is currently the most demanded, but the major axis particle size is uniform. In addition, a fine red iron oxide pigment having a uniform minor axis diameter has not yet been obtained.
[0009]
That is, in the case of the above-mentioned known method, as shown in the comparative example described later, the particle size of the goethite fine particles as the starting material, in particular, the short axis particle size is still not sufficiently uniform, and the subsequent heat dehydration treatment is performed. In the process, sintering between the particles tends to occur due to the ultra fine particles of goethite contained in the fine particles of goethite, and the particle size of the fine red iron oxide pigment obtained, especially the short axis particle size, is also sufficiently uniform. It was hard to say.
[0010]
Therefore, the present invention has a technical problem to obtain a fine red iron oxide pigment having excellent transparency by having a uniform particle size of the major axis diameter and a uniform particle size of the minor axis diameter.
[0011]
[Means for solving the problems]
The technical problem can be achieved by the present invention as follows.
[0012]
That is, according to the present invention, the major axis diameter has a geometric standard deviation value of 1.5 or less, the minor axis diameter has a geometric standard deviation value of 1.3 or less, and the average major axis diameter is 0.005 to 0.1 μm. It is a fine red iron oxide pigment characterized by comprising hematite fine particles.
[0013]
The present invention also provides the fine red iron oxide pigment as described above, wherein the hematite fine particle powder contains 0.05 to 50% by weight of aluminum in terms of Al.
[0014]
Further, the present invention provides the fine red oxidation as described above, wherein the particle surface of the hematite fine particle powder is coated with at least one of aluminum hydroxide, aluminum oxide, silicon hydroxide and silicon oxide. It is an iron pigment.
[0015]
Further, in the present invention, the goethite fine particle powder is heated and dehydrated in a temperature range of 250 to 500 ° C. to obtain a hematite fine particle powder. The method for producing a fine red iron oxide pigment as described above, wherein the goethite ultrafine particles contained in the goethite fine particle powder are absorbed in the goethite fine particles by heat treatment in a temperature range of
[0016]
In addition, the present invention provides a hematite fine particle powder obtained by heat-dehydrating a goethite fine particle powder containing 0.05 to 50% by weight of aluminum in terms of Al in a temperature range of 250 to 500 ° C. Prior to the heat dehydration treatment, the goethite fine particle powder is preliminarily heat-treated in a temperature range of 100 to 200 ° C. to allow the goethite fine particles contained in the goethite fine particle powder to be absorbed by the goethite fine particles. This is a method for producing the fine red iron oxide pigment described above.
[0017]
Moreover, this invention is a coating material characterized by using any of the fine red iron oxide pigments described above.
[0018]
Moreover, this invention is a resin composition characterized by using any of the fine red iron oxide pigments described above.
[0019]
The configuration of the present invention will be described in detail as follows.
[0020]
First, the fine red iron oxide pigment according to the present invention will be described.
[0021]
The fine red iron oxide pigment according to the present invention has a long axis diameter geometric standard deviation value of 1.5 or less, a short axis diameter geometric standard deviation value of 1.3 or less, and an average long axis diameter of 0. 0.005 to 0.1 μm hematite fine particle powder.
[0022]
When the geometric standard deviation value of the major axis diameter and minor axis diameter exceeds the upper limit value, it is difficult to uniformly disperse in the vehicle or the resin composition due to the existing coarse particles, and the red iron oxide pigment can be obtained. The obtained coating film and resin composition do not have sufficient transparency. Considering the dispersibility in the vehicle or the resin composition and the transparency of the resulting coating film or resin composition, the geometric standard deviation value of the major axis diameter is preferably 1.48 or less, more preferably 1 The geometric standard deviation value of the minor axis diameter is preferably 1.28 or less, and more preferably 1.25 or less. Considering industrial productivity, the lower limit of the geometric standard deviation value of the major axis diameter and the minor axis diameter (hereinafter referred to as particle diameter) is 1.01.
[0023]
When the average major axis diameter was less than 0.005 μm, it was difficult to disperse in the vehicle or the resin composition due to an increase in intermolecular force due to the refinement of the particles, and the red iron oxide pigment was obtained. It is difficult to say that the coating film or the resin composition has sufficient transparency. If it exceeds 0.1 μm, the dispersibility in the vehicle or the resin composition is good, but the particles become coarse and the coloring power increases, and the coating film or resin obtained using the red iron oxide pigment The composition does not have sufficient transparency. Considering the dispersibility in the vehicle and the resin composition and the transparency of the resulting coating film and resin composition, the average major axis diameter is preferably 0.01 to 0.09 μm, more preferably 0.01 to 0.08 μm.
[0024]
The average minor axis diameter of the fine red iron oxide pigment according to the present invention is preferably 0.0025 to 0.05 μm, more preferably 0.005 to 0.045, and still more preferably 0.005 to 0.00. 04 μm.
[0025]
When the average minor axis diameter is less than 0.0025 μm, the dispersion in the vehicle or the resin composition becomes difficult due to the increase in intermolecular force due to the finer particles. Those having an average minor axis diameter exceeding 0.05 μm are difficult to obtain industrially.
[0026]
The particle shape of the fine red iron oxide pigment according to the present invention is acicular. Here, the “needle shape” means not only a literal needle shape but also a spindle shape or a rice grain shape.
[0027]
The fine red iron oxide pigment according to the present invention has an axial ratio (average major axis diameter / average minor axis diameter) (hereinafter referred to as “axial ratio”) of preferably 20 or less, more preferably 15 or less, and still more preferably. Is 10 or less, and the lower limit thereof is preferably 2 or more. The BET specific surface area value is 40 to 250 m. 2 / G is preferred, more preferably 50-220 m 2 / G, more preferably 70 to 200 m 2 / G.
[0028]
When the axial ratio exceeds 20, entanglement of particles in the vehicle and the resin composition increases, dispersibility is deteriorated and viscosity is increased, and thus the obtained coating film and resin composition are sufficient. Does not have transparency. Those having an axial ratio of less than 2 are difficult to obtain industrially.
[0029]
BET specific surface area value is 40m 2 If it is less than / g, the particles become coarse and the coloring power increases, and the coating film and resin composition obtained using the red iron oxide pigment do not have sufficient transparency. BET specific surface area value is 250m 2 When the amount exceeds / g, dispersion in the vehicle or the resin composition becomes difficult due to an increase in intermolecular force due to finer particles.
[0030]
If necessary, the fine red iron oxide pigment according to the present invention may contain 0.05 to 50% by weight of aluminum in terms of Al with respect to the fine red iron oxide pigment. The transparency of the particles themselves is superior to those not containing aluminum, and the aging resistance of the resin composition obtained using the fine red iron oxide pigment is improved.
[0031]
When the amount of aluminum contained in the particles of the fine red iron oxide pigment is less than 0.05% by weight based on the fine red iron oxide pigment, the effect of improving transparency and aging resistance can be obtained. Absent. When the amount exceeds 50% by weight, the obtained red iron oxide pigment has sufficient transparency and aging resistance, but the effect is saturated, so it is meaningless to contain more than necessary. Considering the effect of improving the transparency and aging resistance of the fine red iron oxide pigment obtained and the productivity, the amount of aluminum contained in the particles is 0 in terms of Al with respect to the fine red iron oxide pigment. .1 to 40% by weight is preferred.
[0032]
The aluminum contained in the particles preferably contains aluminum substantially uniformly from the center of the particles to the particle surface.
[0033]
The fine red iron oxide pigment containing aluminum inside the particle according to the present invention has a particle size almost the same as that of the fine red iron oxide pigment according to the present invention not containing aluminum inside the particle, It has a geometric standard deviation value, an axial ratio and a BET specific surface area value of the particle diameter.
[0034]
The fine red iron oxide pigment according to the present invention has, as necessary, a surface coating in which the particle surface is made of at least one selected from aluminum hydroxide, aluminum oxide, silicon hydroxide and silicon oxide. Compared with the case where the particle surface is not coated with a surface coating, the dispersibility and the aging resistance of the obtained resin composition are improved.
[0035]
The coating amount of the surface coating is Al equivalent to fine red iron oxide pigment, SiO 2 Conversion or Al conversion amount and SiO 2 The total amount with the converted amount is preferably 0.01 to 20% by weight. When the coating amount of the surface coating is less than 0.01% by weight, the effect of improving dispersibility and aging resistance cannot be obtained. If it exceeds 20% by weight, sufficient dispersibility and antiaging effect can be obtained, but there is no point in adding more than necessary. Considering the dispersibility of the resulting fine red iron oxide pigment, the effect of improving aging resistance, and the productivity, the coating amount of the surface coating is Al equivalent to the fine red iron oxide pigment, SiO 2 Conversion or Al conversion and SiO 2 The total amount with conversion is preferably 0.05 to 15% by weight.
[0036]
The fine red iron oxide pigment coated with the surface coating according to the present invention has a particle size and particle diameter almost the same as the fine red iron oxide pigment according to the present invention which is not coated with the surface coating. It has a standard deviation value, an axial ratio, and a BET specific surface area value.
[0037]
Next, a method for producing a fine red iron oxide pigment according to the present invention will be described.
[0038]
The fine red iron oxide pigment according to the present invention is an iron-containing precipitate obtained by reacting ferrous salt with an aqueous alkali hydroxide solution, an aqueous alkali carbonate solution or an aqueous alkali hydroxide / alkali carbonate solution. The goethite fine particle powder obtained by aerating an oxygen-containing gas such as air to the suspension containing the heat treatment in the temperature range of 100 to 200 ° C. prior to the heat dehydration treatment in the temperature range of 250 to 500 ° C. Can be obtained.
[0039]
As the goethite fine particle powder used as the starting raw material particle powder in the present invention, the geometric standard deviation value of the major axis diameter is usually 1.8 or less, and the geometric standard deviation value of the minor axis diameter is 1.7 or less. It is preferable to use one having an average major axis diameter of 0.005 to 0.1 μm and an average minor axis diameter of 0.0025 to 0.05 μm.
[0040]
When the heat treatment temperature is less than 100 ° C., it is difficult to sufficiently absorb the goethite ultrafine particles into the goethite fine particles, and in particular, particles having a uniform minor axis diameter cannot be obtained. When the temperature exceeds 200 ° C., dehydration of the goethite fine particles starts while the ultrafine goethite component (average major axis diameter of 0.001 μm or less) is present, so that sintering occurs between the particles, and the minor axis diameter is particularly uniform. Unable to get particles. Preferably, it is 120-200 degreeC.
[0041]
The heat treatment time is preferably 5 to 60 minutes.
[0042]
The goethite fine particle powder obtained by heat treatment in a temperature range of 100 to 200 ° C. has a geometric standard deviation value of the major axis diameter of 1.5 or less and a geometric standard deviation value of the minor axis diameter of 1.3 or less. Yes, the average major axis diameter is 0.005 to 0.1 μm, and the average minor axis diameter is 0.0025 to 0.05 μm.
[0043]
When the temperature of the heat dehydration treatment is less than 250 ° C., the dehydration reaction takes a long time. When the heating dehydration temperature exceeds 500 ° C., the dehydration reaction occurs rapidly, and the shape of the particles is liable to collapse, or sintering between the particles is likely to occur.
[0044]
The fine red iron oxide pigment according to the present invention containing aluminum inside the particles is obtained by allowing an aluminum compound to exist before aeration of oxygen-containing gas such as air in the formation reaction of the goethite fine particles. In addition, the goethite fine particles containing aluminum substantially uniformly inside the particles can be obtained by heat treatment in a temperature range of 100 to 200 ° C. and then heat dehydration in a temperature range of 250 to 500 ° C.
[0045]
Specifically, the aluminum compound may be added to any one of suspensions containing a ferrous salt aqueous solution, an alkaline aqueous solution, and a suspension containing an iron-containing precipitate before aeration with an oxygen-containing gas such as air. It is often preferable to add it to the ferrous salt aqueous solution.
[0046]
As an aluminum compound to be added, an aluminum aluminate such as sodium aluminate or an aluminum salt such as aluminum sulfate, aluminum chloride, aluminum acetate, or aluminum nitrate can be used.
[0047]
The addition amount of the aluminum compound is preferably 0.5 to 350 mol% in terms of Al with respect to Fe in the ferrous salt aqueous solution. When the amount is less than 0.5 mol%, the effects of the transparency and aging resistance improvement of the present invention cannot be obtained. When it exceeds 350 mol%, the effect reaches almost saturation, so it is meaningless to add more than necessary.
[0048]
In the present invention, if necessary, it may be further coated with at least one surface coating selected from aluminum hydroxide, aluminum oxide, silicon hydroxide and silicon oxide.
[0049]
The addition amount of the aluminum compound is 0.01 to 20% by weight in terms of Al with respect to the fine red iron oxide pigment. When it is less than 0.01% by weight, it is difficult to coat the particle surface with a sufficient amount of aluminum hydroxide or the like sufficient to obtain an effect of improving dispersibility and aging resistance. If it exceeds 20% by weight, the coating effect is saturated, so there is no point in adding more than necessary.
[0050]
The amount of silicon compound added is SiO to the fine red iron oxide pigment. 2 It is 0.01 to 20% by weight in terms of conversion. When the amount is less than 0.01% by weight, it is difficult to coat the particle surface with a sufficient amount of silicon oxide or the like sufficient to obtain an effect of improving dispersibility and aging resistance. If it exceeds 20% by weight, the coating effect is saturated, so there is no point in adding more than necessary.
[0051]
When the aluminum compound and the silicon compound are used in combination, the addition amount is an Al equivalent amount and SiO 2 with respect to the fine red iron oxide pigment. 2 The total amount with the converted amount is preferably 0.01 to 20% by weight.
[0052]
Next, a paint using the fine red iron oxide pigment according to the present invention will be described.
[0053]
When the coating using the fine red iron oxide pigment according to the present invention is formed into a coating film, the glossiness is 80% or more, and the transparency of the coating film has a linear absorption coefficient of 0.1 μm. -1 It is as follows.
[0054]
The blending ratio of the fine red iron oxide pigment and the paint constituent base material in the present invention is such that the fine red iron oxide pigment is used in the range of 0.5 to 100 parts by weight with respect to 100 parts by weight of the paint constituent base material. In consideration of handling of the paint, it is preferably 1.0 to 80 parts by weight, more preferably 1.0 to 50 parts by weight.
[0055]
The paint-constituting substrate comprises a resin and a solvent, an antifoaming agent, an extender pigment, a drying accelerator, a surfactant, a curing accelerator, an auxiliary agent, and the like that are added as necessary.
[0056]
As resins, acrylic resins, alkyd resins, polyester resins, polyurethane resins, epoxy resins, phenol resins, melamine resins, amino resins, etc., which are usually used for solvent-based paints, and water-soluble materials which are usually used for water-based paints A water-soluble alkyd resin, a water-soluble melamine resin, a water-soluble acrylic resin, a water-soluble urethane emulsion resin, or the like can be used.
[0057]
Solvents include toluene, xylene, butyl acetate, methyl acetate, methyl isobutyl ketone, butyl cellosolve, ethyl cellosolve, butyl alcohol, aliphatic hydrocarbons, etc., which are commonly used for solvent-based paints, and water-based paint solvents. Butyl cellosolve, butyl alcohol, etc. that are usually used in water-based paints can be used.
[0058]
As the antifoaming agent, Nopco 8034 (product name), SN deformer 477 (product name), SN deformer 5013 (product name), SN deformer 382 (product name), SN deformer 247 (product name), SN deformer 382 Commercially available products such as (trade name) (all are manufactured by San Nopco Co., Ltd.) Antihome 08 (trade name), Emulgen 903 (trade name) (all are manufactured by Kao Corporation), and the like can be used.
[0059]
Next, the resin composition using the fine red iron oxide pigment according to the present invention will be described.
[0060]
The resin composition using the fine red iron oxide pigment according to the present invention has a linear absorption coefficient of 0.15 μm in transparency. -1 The dispersion state is 3 or more, preferably 4 and more preferably 5 according to the later evaluation method.
[0061]
The resin composition using the fine red iron oxide pigment containing aluminum inside the particle according to the present invention or the fine red iron oxide pigment whose particle surface is coated with a surface coating is transparent for linear absorption. The coefficient is 0.1μm -1 The dispersion state is 4 or more, preferably 5 according to the later evaluation method. In addition, the aging resistance is a resin composition using a fine red iron oxide pigment that does not contain aluminum and the particle surface is not coated with a surface coating (the aging resistance is S / S when heated for 10 minutes). 0 S / S even when heated for 90 minutes. 0 This is an improvement of 10% or less.
[0062]
The mixing ratio of the fine red iron oxide pigment in the present invention can be used in the range of 0.01 to 50 parts by weight with respect to 100 parts by weight of the resin. 05 to 45 parts by weight, more preferably 0.1 to 40 parts by weight.
[0063]
As the resin, natural rubber, synthetic rubber, thermoplastic resin (for example, polyolefin such as polyethylene, polypropylene, polybutene, polyisobutylene, polyvinyl chloride, styrene polymer, polyamide, etc.) can be used, and if necessary, lubricant Additives such as plasticizers, antioxidants, ultraviolet absorbers and various stabilizers can be blended.
[0064]
The amount of the additive may be 50% by weight or less based on the sum of the fine red iron oxide pigment and the resin. When the content of the additive exceeds 50% by weight, the moldability is lowered.
[0065]
The resin composition according to the present invention is obtained by mixing a resin and a fine red iron oxide pigment in advance, and then applying a strong shearing action under heating using a kneader or an extruder to produce a fine red iron oxide pigment. After the agglomerates are broken and a fine red iron oxide pigment is uniformly dispersed in the resin composition, it is molded into a shape suitable for the purpose and used.
[0066]
DETAILED DESCRIPTION OF THE INVENTION
A typical embodiment of the present invention is as follows.
[0067]
The average major axis diameter and the average minor axis diameter of the particles are the major axis diameter and the minor axis diameter of about 350 particles shown in the photograph obtained by enlarging the electron micrograph (× 30,000) four times in the longitudinal direction and the transverse direction, respectively. The shaft diameter was measured, and the average value was shown.
[0068]
The particle axial ratio was determined by calculating the ratio of the average major axis diameter to the average minor axis diameter.
[0069]
The geometric standard deviation values of the major axis diameter and minor axis diameter (hereinafter referred to as particle diameter) of the particles are shown by values obtained by the following method. That is, from the actual particle size and number of particles obtained by calculating the particle size of the particles shown in the enlarged photograph, calculated from the measured value, according to a statistical method, the horizontal axis on lognormal probability paper The particle diameter is plotted on the vertical axis, and the cumulative number of particles belonging to each of the predetermined particle diameter sections (under the integrated sieve) is plotted in percentage on the vertical axis. Then, from this graph, the particle diameter values corresponding to the cumulative number of particles of 50% and 84.13% are read, and the geometric standard deviation value = (particle diameter at 84.13% under accumulated fluid) / (under accumulated fluid). The value calculated according to the particle diameter (geometric mean diameter) at 50% is shown as the geometric standard deviation value is closer to 1, meaning that the particle diameter of the particle is excellent.
[0070]
The specific surface area value was indicated by a value measured by the BET method.
[0071]
The amounts of Al and Si contained in the particles were measured using a “fluorescence X-ray analyzer 3063M type” (manufactured by Rigaku Denki Kogyo Co., Ltd.) in accordance with “General X-ray fluorescence analysis rules” of JIS K0119.
[0072]
As for the transparency of the coating film using the red iron oxide pigment, the transparency of the resin composition will be described later with respect to a coating film obtained by applying a paint prepared by a processing method described later to a clear base film having a thickness of 100 μm. About the resin plate which consists of a composition, it showed by the linear absorption coefficient defined by following Formula from the light transmittance measured using "Self-recorded photoelectric spectrophotometer UV-2100" (made by Shimadzu Corporation). The smaller the value of the linear absorption coefficient, the easier it is to transmit light and the higher the transparency.
Linear absorption coefficient (μm -1 ) = Ln (1 / t) / FT
t: Light transmittance at λ = 900 nm (−)
[0073]
Aging resistance is a portion in which a colored plate (1.5 cm long × 1.5 cm wide × 1 mm thick) kneaded with a red iron oxide pigment having the composition described later is discolored and the resin deteriorates when heated at 190 ° C. Area S and colored plate area S before heating 0 (1.5cm × 1.5cm = 2.25cm 2 Ratio S / S 0 Was determined by quantifying in increments of 5%.
[0074]
That is, (S / S 0 ) × 100 is 0%, indicating no deterioration, (S / S 0 ) When x100 is 100%, the resin is completely deteriorated.
[0075]
The dispersibility in the vehicle was examined by the magnitude of the glossiness of the coated surface of a coating film obtained using a paint prepared by a method described later.
[0076]
The glossiness was determined by measuring the glossiness at an incident angle of 20 ° using “Gloss meter UGV-5D” (manufactured by Suga Test Instruments Co., Ltd.). The higher the glossiness, the better the dispersibility of the fine red iron oxide pigment particles in the vehicle.
[0077]
Regarding the paint viscosity, the paint viscosity at 25 ° C. of the paint prepared according to the formulation described below is measured using an E-type viscometer (cone plate type viscometer) EMD-R (manufactured by Tokyo Keiki Co., Ltd.) and a shear rate D = 1. .92 sec -1 The value at was determined.
[0078]
The dispersibility in the resin composition was evaluated in five stages by visually determining the number of undispersed aggregated particles on the surface of the obtained resin composition. 5 indicates the best dispersion state.
5: Undispersed material is not recognized,
4: 1cm 2 1 to less than 5,
3: 1 cm 2 5 to less than 10 per
2: 1 cm 2 10 to less than 50 per,
1: 1cm 2 More than 50 per hit.
[0079]
<Manufacture of fine red iron oxide pigment>
A slurry of acicular goethite fine particle powder obtained using a ferrous sulfate aqueous solution and a sodium carbonate aqueous solution was filtered using a press filter, and washed thoroughly with water while passing water.
[0080]
The wet cake was dried at 120 ° C. for 24 hours and then pulverized with a free pulverizer M-2 type (manufactured by Nara Machinery Co., Ltd.). The obtained goethite fine particle powder has an average major axis diameter of 0.0688 μm, a major axis diameter geometric standard deviation value of 1.53, an average minor axis diameter of 0.0101 μm, a minor axis diameter geometric standard deviation value of 1.33, and an axial ratio. 6.8, BET specific surface area value 165.3m 2 / G.
[0081]
The obtained goethite fine particle powder was placed in a metal heat treatment furnace, and heat treatment was performed at 150 ° C. for 30 minutes, so that goethite ultrafine particles contained in the goethite fine particle powder were absorbed into the goethite fine particles.
[0082]
Next, the obtained goethite fine particle powder was again put into a metal heat treatment furnace, and heat dehydration treatment was performed at 340 ° C. for 30 minutes to dehydrate the goethite fine particles to obtain a fine red iron oxide pigment. The obtained fine red iron oxide pigment has an average major axis diameter of 0.0620 μm, a major axis diameter geometric standard deviation value of 1.33, an average minor axis diameter of 0.0108 μm, and a minor axis diameter geometric standard deviation value of 1.15. , Axial ratio 5.7, BET specific surface area 143.8m 2 / G.
[0083]
<Manufacture of paint using fine red iron oxide pigment>
Using 5 g of the fine red iron oxide pigment in a 250 ml glass bottle, the paint composition was blended at the following ratio, and mixed and dispersed with a 3 mmφ glass bead 160 g with a paint shaker for 120 minutes to prepare a mill base.
9.9 parts by weight of fine red iron oxide pigment,
19.8 parts by weight of melamine resin,
(Super Pekkamin J-820-60: Product name: Dainippon Ink & Chemicals, Inc.)
39.6 parts by weight of alkyd resin
(Beccosol 1307-60EL: Trade name: manufactured by Dainippon Ink & Chemicals, Inc.)
29.7 parts by weight of xylene,
Butanol 1.0 part by weight.
[0084]
The coating film obtained by applying this paint to a transparent glass plate (0.8 mm (thickness) x 70 mm (width) x 150 mm (length)) has a glossiness of 93% and a linear absorption coefficient of 0.0528 μm. -1 Met.
[0085]
<Manufacture of resin composition using fine red iron oxide pigment>
Weigh 0.5 g of the fine red iron oxide pigment and 49.5 g of polyvinyl chloride resin powder (103EP8D: product symbol: manufactured by Nippon Zeon Co., Ltd.), put them in a 100 ml poly beaker and mix well with a spatula. To obtain a mixed powder.
[0086]
After adding 1.0 g of calcium stearate to the obtained mixed powder and mixing, and setting the clearance of the hot roll heated to 160 ° C. to 0.2 mm, the above mixed powder is kneaded with a roll little by little to obtain a resin composition The kneading was continued until the products were integrated, and then the resin composition was peeled from the roll and used as a colored resin plate raw material.
[0087]
Next, the resin composition is sandwiched between surface-polished stainless steel plates, placed in a hot press heated to 180 ° C., and 1 ton / cm. 2 And a colored resin plate having a thickness of 1 mm was obtained. The linear absorption coefficient of the obtained colored resin plate is 0.0853 μm. -1 The dispersion state was 4.
[0088]
[Action]
In the present invention, the most important point is that when the goethite fine particle powder is heat-treated in a temperature range of 100 to 200 ° C., the goethite fine particle powder having a uniform long axis diameter and a uniform short axis diameter is obtained. Is the fact that you can get
[0089]
Regarding the reason why a fine red iron oxide pigment having a uniform particle size according to the present invention is obtained, the present inventor found that the goethite ultrafine particles are absorbed in the goethite fine particles, so that the ultrafine particle component is small and the major axis particle size is small. As a result, a goethite fine particle powder having a uniform minor axis diameter and a uniform minor axis diameter can be obtained, and sintering of the particles caused by the goethite ultrafine particles can occur in the subsequent heat dehydration process by reducing the ultrafine goethite particles. This is considered to be because it is possible to obtain a hematite fine particle powder that sufficiently maintains the uniform particle size of the goethite fine particles.
[0090]
The fine red iron oxide pigment made of hematite fine particle powder having a major axis diameter geometric standard deviation value of 1.5 or less and a minor axis diameter geometric standard deviation value of 1.3 or less has a major axis particle size of Coating film and resin obtained using the fine red iron oxide pigment because the dispersibility in the vehicle and the resin composition is improved due to the uniform particle size of the minor axis diameter. The composition has excellent dispersibility and transparency.
[0091]
Regarding the reason why the dispersibility of the fine red iron oxide pigment according to the present invention is improved, the present inventor is that the geometric standard deviation value of the major axis diameter of the fine red iron oxide pigment is 1.5 or less, When the geometric standard deviation value is 1.3 or less, the presence of coarse particles and fine particles is small, so that uniform dispersion of coarse particles and fine particles in the vehicle and the resin composition is inhibited. This is because there is nothing to do.
[0092]
In addition, regarding the reason why the transparency of the paint and the resin composition using the fine red iron oxide pigment according to the present invention is improved, the present inventor has said that the fine red iron oxide pigment is contained in the vehicle or the resin composition. It is considered that the coating film and the resin composition obtained by applying this powder are excellent in the dispersion of the particles, and thus there is little aggregation of particles and there are no coarse particles.
[0093]
About the reason why the aging resistance of the resin composition using the fine red iron oxide pigment according to the present invention containing aluminum inside the particles is excellent, the present inventor In addition to the fact that the catalytic action on the aging of the resin composition possessed by the hematite particles is suppressed, the fine red iron oxide pigment containing aluminum inside the particles is excellent in dispersibility. Because it is highly dispersed and blended in, it has an excellent blocking effect against light and heat, so it was possible to effectively suppress the influence of light and heat on the resin composition thinking.
[0094]
【Example】
Next, examples and comparative examples are given.
[0095]
Goethite fine particles 1-5:
The goethite fine particles 1 to 5 shown in Table 1 were prepared as goethite fine particles which are starting material particles.
[0096]
[Table 1]
Figure 0004452958
[0097]
The goethite fine particles containing aluminum inside the particles were produced using the aluminum compounds shown in Table 1.
[0098]
The heat treatment was performed in the same manner as in the embodiment of the present invention except that the type, temperature and time of the goethite fine particles were variously changed. Table 2 shows the main production conditions and the characteristics of the goethite fine particles, which are the particles to be treated after the heat treatment.
[0099]
[Table 2]
Figure 0004452958
[0100]
Examples 1-6 and Comparative Examples 1-6:
A fine red iron oxide pigment was obtained in the same manner as in the above-described embodiment except that the kind of goethite fine particles as the particles to be treated and the temperature and time of the heat dehydration treatment were variously changed. Table 3 shows the main production conditions and various characteristics of the fine red iron oxide pigment.
[0101]
[Table 3]
Figure 0004452958
[0102]
Comparative Example 1
A heat dehydration treatment was performed on the goethite fine particles without performing the heat treatment. Various characteristics of the obtained red iron oxide pigment are shown in Table 3.
[0103]
Comparative Example 2
The goethite fine particles were heat-treated at 80 ° C., and then heat-dehydrated at 340 ° C. Various characteristics of the obtained red iron oxide pigment are shown in Table 3.
[0104]
Comparative Example 3
Without performing heat treatment on the goethite fine particles, heat dehydration treatment was performed at 310 ° C., and then heat dehydration treatment was further performed at 340 ° C. Various characteristics of the obtained red iron oxide pigment are shown in Table 3.
[0105]
Comparative Example 4
The goethite fine particles were heat-treated at 180 ° C., and then heat-dehydrated at 680 ° C. Various characteristics of the obtained red iron oxide pigment are shown in Table 3.
[0106]
Comparative Example 5
(Japanese Patent Laid-Open No. 49-34498) Red iron oxide pigment obtained by the method of Example 1
4.1 l of caustic soda 6.49N solution was added to 10 l of ferrous sulfate 1.3 mol solution, and water was added to make the total liquid volume 27.5 l. The mixed solution was subjected to ferrous hydroxide formation reaction for 10 minutes at a solution temperature of 33 ° C. while preventing oxygen contamination as much as possible and stirring. Thereafter, 20.5 l of an ammonium bicarbonate 0.63 mol solution was added to the ferrous hydroxide colloid solution as much as possible while preventing stirring and stirring, and the total liquid volume was adjusted to 50 l. A reaction for producing ferrous carbonate was performed at 30 ° C. for 30 minutes. Air was passed through the obtained ferrous carbonate colloid solution at a solution temperature of 33 ° C. at a rate of 140 l / min. 50 minutes after the air was aerated, precipitates of yellow hydrous iron oxide particles were obtained from the ferrous carbonate colloidal solution. The yellow hydrous iron oxide particles were washed with water, filtered and dried at 100 ° C. to obtain yellow hydrous iron oxide particles.
[0107]
The resulting yellow hydrous iron oxide particles have a spindle shape, the average major axis diameter is 0.01 μm, the geometric standard deviation of the major axis diameter is 1.81, the average minor axis diameter is 0.0033 μm, the minor axis diameter. The geometric standard deviation value is 1.55, the axial ratio is 3.0, and the BET specific surface area value is 256.1 m. 2 / G.
[0108]
Next, the yellow iron oxide hydroxide powder was kept in air at 300 ° C. for 60 minutes to obtain a red iron oxide pigment.
[0109]
Various characteristics of the obtained red iron oxide pigment are shown in Table 3.
[0110]
Comparative Example 6
(Japanese Patent Publication No. 59-48768) Red iron oxide pigment obtained by the method of Example 1
A cylindrical reaction vessel equipped with a gas blowing apparatus and a stirrer was charged with 6.8 l of a sodium carbonate 0.56 mol solution, and 5.2 l of a ferrous sulfate 0.69 mol solution was gradually added while blowing nitrogen gas. The pH value of the produced ferrous carbonate suspension was 8.3. The suspension was stirred at room temperature for 2 hours while blowing nitrogen gas, and then the nitrogen gas was switched to air and aerated at a rate of 5.0 l / min. Oxidation was completed after 25 minutes of aeration, and a precipitate of yellow iron oxide hydroxide particles was formed. The precipitate was washed with water, filtered, and dried at 100 ° C. to obtain yellow iron oxide hydroxide particles.
[0111]
The obtained yellow hydrous iron oxide particles had an average major axis diameter of 0.038 μm, a major axis diameter geometric standard deviation value of 1.70, an average minor axis diameter of 0.0095 μm, and a minor axis diameter geometric standard deviation value of 1. .48, Axial ratio is 4.0, BET specific surface area is 216.5m 2 / G.
[0112]
Next, the yellow hydrous iron oxide pigment was kept at 280 ° C. for 180 minutes to obtain a red iron oxide pigment.
[0113]
Various characteristics of the obtained red iron oxide pigment are shown in Table 3.
[0114]
Example 7
450 g of the fine red iron oxide pigment of Example 1 was poured into 10 l of pure water using a stirrer, and further passed through a homomic line mill (manufactured by Tokushu Kika Kogyo Co., Ltd.) three times for fine red oxidation. A slurry of iron particle pigment was obtained.
[0115]
The concentration of the resulting fine red iron oxide pigment slurry was adjusted to 45 g / l, and 10 l of the slurry was sampled. The slurry was heated to 60 ° C. with stirring, and the pH value of the slurry was adjusted to 4.0.
[0116]
Next, 167 ml of a 1 mol / l aluminum acetate solution (corresponding to 1.0% by weight in terms of Al with respect to the fine red iron oxide pigment) was added to this slurry and held for 30 minutes. Was used to adjust the pH value to 7.0, and this state was maintained for 30 minutes. Subsequently, filtration, washing with water, drying and pulverization were performed to obtain a fine red iron oxide pigment whose particle surface was coated with an aluminum hydroxide.
[0117]
Examples 8-12:
The fine particle coated on the particle surface in the same manner as in Example 7 except that the type of fine red iron oxide pigment, the type of surface coating, the pH value before addition, the addition amount, and the final pH value were variously changed. A red iron oxide pigment was obtained.
[0118]
Table 4 shows the main production conditions at this time, and Table 5 shows the characteristics of the fine red iron oxide pigment obtained.
[0119]
[Table 4]
Figure 0004452958
[0120]
[Table 5]
Figure 0004452958
[0121]
<Paint using fine red iron oxide pigment>
Examples 13-24:
A paint was produced in the same manner as in the above embodiment except that the kind of fine red iron oxide pigment was variously changed.
[0122]
Table 6 shows the main manufacturing conditions and various characteristics at this time.
[0123]
[Table 6]
Figure 0004452958
[0124]
Comparative Examples 7-12:
A paint was produced in the same manner as in the above embodiment except that the type of the red iron oxide pigment was variously changed.
[0125]
Table 7 shows the main production conditions and various characteristics at this time.
[Table 7]
Figure 0004452958
[0126]
<Resin composition using fine red iron oxide pigment>
Examples 25-36:
A resin composition was produced in the same manner as in the above embodiment except that the kind of the fine red iron oxide pigment was variously changed.
[0127]
Table 8 shows the main production conditions and various properties of the obtained resin composition.
[0128]
[Table 8]
Figure 0004452958
[0129]
Comparative Examples 13-18:
A resin composition was produced in the same manner as in the above embodiment except that the type of the red iron oxide pigment was variously changed.
[0130]
Table 9 shows the main production conditions and various properties of the obtained resin composition.
[Table 9]
Figure 0004452958
[0131]
【The invention's effect】
The fine red iron oxide pigment according to the present invention is preferable as a red coloring pigment having transparency because the major axis diameter is uniform and the minor axis diameter is uniform so that the transparency is excellent. Is.
[0132]
In addition, the paint and resin composition using the fine red iron oxide pigment according to the present invention have excellent transparency because the particle size of the fine red iron oxide pigment is uniform and excellent in transparency. It is an excellent paint and resin composition.

Claims (7)

軸比(平均長軸径/平均短軸径)が2〜20の針状粒子であって、長軸径の幾何標準偏差値が1.5以下であって、短軸径の幾何標準偏差値が1.3以下である平均長軸径が0.005〜0.1μmのヘマタイト微粒子からなることを特徴とする微細な赤色酸化鉄顔料。 Axis ratio (average major axis diameter / average minor axis diameter) of needle-like particles having a major axis diameter geometric standard deviation value of 1.5 or less, and a minor axis diameter geometric standard deviation value A fine red iron oxide pigment characterized by comprising hematite fine particles having an average major axis diameter of 0.005 to 0.1 μm and a mean major axis diameter of 1.3 or less. ヘマタイト微粒子粉末が粒子内部にAl換算で0.05〜50重量%のアルミニウムを含有している請求項1記載の微細な赤色酸化鉄顔料。  The fine red iron oxide pigment according to claim 1, wherein the hematite fine particle powder contains 0.05 to 50% by weight of aluminum in terms of Al. ヘマタイト微粒子粉末の粒子表面がアルミニウムの水酸化物、アルミニウムの酸化物、ケイ素の水酸化物及びケイ素の酸化物の少なくとも1種で被覆されている請求項1又は請求項2記載の微細な赤色酸化鉄顔料。  The fine red oxidation according to claim 1 or 2, wherein the particle surface of the hematite fine particle powder is coated with at least one of aluminum hydroxide, aluminum oxide, silicon hydroxide and silicon oxide. Iron pigment. ゲータイト微粒子粉末を250〜500℃の温度範囲で加熱脱水処理してヘマタイト微粒子粉末とするに当って、前記加熱脱水処理に先立ってあらかじめ、前記ゲータイト微粒子粉末を100〜200℃の温度範囲で加熱処理して、該ゲータイト微粒子粉末に含まれているゲータイト超微粒子をゲータイト微粒子に吸収させておくことを特徴とする請求項1記載の微細な赤色酸化鉄顔料の製造法。  Prior to the heat dehydration treatment, the goethite fine particle powder is heat-treated in a temperature range of 100 to 200 ° C. prior to the heat dehydration treatment. The method for producing a fine red iron oxide pigment according to claim 1, wherein the goethite ultrafine particles contained in the goethite fine particle powder are absorbed by the goethite fine particles. 粒子内部にAl換算で0.05〜50重量%のアルミニウムを含有しているゲータイト微粒子粉末を250〜500℃の温度範囲で加熱脱水処理してヘマタイト微粒子粉末とするに当って、上記加熱脱水処理に先立ってあらかじめ、前記ゲータイト微粒子粉末を100〜200℃の温度範囲で加熱処理して、該ゲータイト微粒子粉末に含まれているゲータイト超微粒子をゲータイト微粒子に吸収させておくことを特徴とする請求項2記載の微細な赤色酸化鉄顔料の製造法。  When the goethite fine particle powder containing 0.05 to 50% by weight of aluminum in terms of Al is heated and dehydrated in a temperature range of 250 to 500 ° C. to obtain a hematite fine particle powder, the above heat dehydration treatment Prior to the step, the goethite fine particle powder is heat-treated in a temperature range of 100 to 200 ° C., and the goethite ultrafine particles contained in the goethite fine particle powder are absorbed in the goethite fine particles. 2. A method for producing a fine red iron oxide pigment according to 2. 請求項1乃至請求項3記載のいずれかの微細な赤色酸化鉄顔料を用いることを特徴とする塗料。  A paint comprising the fine red iron oxide pigment according to any one of claims 1 to 3. 請求項1乃至請求項3記載のいずれかの微細な赤色酸化鉄顔料を用いることを特徴とする樹脂組成物。  A resin composition comprising the fine red iron oxide pigment according to any one of claims 1 to 3.
JP26920899A 1998-09-25 1999-09-22 Fine red iron oxide pigment, process for producing the same, paint and resin composition using the pigment Expired - Lifetime JP4452958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26920899A JP4452958B2 (en) 1998-09-25 1999-09-22 Fine red iron oxide pigment, process for producing the same, paint and resin composition using the pigment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27147898 1998-09-25
JP10-271478 1998-09-25
JP26920899A JP4452958B2 (en) 1998-09-25 1999-09-22 Fine red iron oxide pigment, process for producing the same, paint and resin composition using the pigment

Publications (2)

Publication Number Publication Date
JP2000233932A JP2000233932A (en) 2000-08-29
JP4452958B2 true JP4452958B2 (en) 2010-04-21

Family

ID=26548661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26920899A Expired - Lifetime JP4452958B2 (en) 1998-09-25 1999-09-22 Fine red iron oxide pigment, process for producing the same, paint and resin composition using the pigment

Country Status (1)

Country Link
JP (1) JP4452958B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10049803A1 (en) * 2000-10-09 2002-04-18 Bayer Ag Composite particles used e.g. for pigmenting paint or plastics comprise unagglomerated primary pigment particles adhering to colorless carrier particles and separated from one another by a minimum distance
JP3728505B2 (en) * 2002-07-09 2005-12-21 国立大学法人 岡山大学 Method for producing Al-substituted hematite
US7641990B2 (en) * 2005-06-27 2010-01-05 Dowa Electronics Materials Co., Ltd. Iron compound particles and magnetic recording medium using same
CN103449531B (en) * 2013-08-19 2016-03-09 铜陵瑞莱科技有限公司 A kind of preparation method of artificial marble red iron oxide
CN103665953A (en) * 2013-11-08 2014-03-26 铜陵市镜铁粉厂 Preparation method of iron oxide red for printing ink
US11202738B2 (en) * 2015-10-05 2021-12-21 M. Technique Co., Ltd. Metal oxide particles and method of producing the same
JP7038995B2 (en) * 2016-10-21 2022-03-22 国立大学法人 岡山大学 Iron oxide for red pigments and catalysts and its manufacturing method
JP7074366B2 (en) * 2017-12-20 2022-05-24 国立大学法人 岡山大学 Iron oxide for orange pigments and its manufacturing method
EP3597602A1 (en) * 2018-07-18 2020-01-22 LANXESS Deutschland GmbH Hematite pigments

Also Published As

Publication number Publication date
JP2000233932A (en) 2000-08-29

Similar Documents

Publication Publication Date Title
JP2002188021A (en) Black composite iron oxide pigment, coating material and resin composition given by using the black composite iron oxide pigment
JP2010006629A (en) Titanium dioxide fine particle and method for producing the same
JP3654413B2 (en) Iron-based black composite particle powder and method for producing the same, paint using the iron-based black composite particle powder, and rubber / resin composition colored with the iron-based black composite particle powder
EP1106657B1 (en) Iron oxide hydroxide composite particles, pigment, paint and resin composition.
JP4452958B2 (en) Fine red iron oxide pigment, process for producing the same, paint and resin composition using the pigment
US6231661B1 (en) Fine red iron oxide pigment, and paint or resin composition using the same
JP4900545B2 (en) Iron-based black composite pigment and method for producing the same, paint using the iron-based black composite pigment, and rubber / resin composition colored with the iron-based black composite pigment
US5922464A (en) Iron oxide particles
US6139618A (en) Fine yellow composite iron oxide hydroxide pigment, and paint or resin composition using the same
KR20060129174A (en) Composite black oxide particle, method for producing same, black coating material and black matrix
JP4446133B2 (en) Fine yellow composite hydrous iron oxide pigment, process for producing the same, paint and resin composition using the pigment
JP4495995B2 (en) Method for producing composite black oxide particles, black paint and black matrix
JP4407789B2 (en) Modified carbon black particle powder and method for producing the same, paint and resin composition containing the modified carbon black particle powder
JP4862977B2 (en) Fine green pigment, paint and resin composition using the fine green pigment
JP4438925B2 (en) Modified carbon black particle powder and method for producing the same, paint and resin composition containing the modified carbon black particle powder
US6027559A (en) Yellow iron oxide hydroxide particles and process for producing the same
JP2003147228A (en) Black composite particle powder, coating material containing the black composite particle powder and resin composition
JP5177333B2 (en) Fine orange pigment, paint and resin composition using the fine orange pigment
JP4336224B2 (en) Composite black oxide particles, method for producing the same, black paint and black matrix
JP4444061B2 (en) Composite black oxide particles, method for producing the same, black paint and black matrix
JP2003160744A (en) Composite particle powder, paint and resin composition containing the same
JP3397228B2 (en) Pigment particle powder, method for producing the same, and water-based paint using the pigment particle powder
JP4862976B2 (en) Green pigment, paint and resin composition using the green pigment
JP2001181533A (en) Green pigment, and coating material and resin composition prepared by using same
JP4003026B2 (en) Heat resistant yellow pigment and paint and resin composition using the heat resistant yellow pigment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4452958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term