JP4451945B2 - 複合発電プラント - Google Patents

複合発電プラント Download PDF

Info

Publication number
JP4451945B2
JP4451945B2 JP26954499A JP26954499A JP4451945B2 JP 4451945 B2 JP4451945 B2 JP 4451945B2 JP 26954499 A JP26954499 A JP 26954499A JP 26954499 A JP26954499 A JP 26954499A JP 4451945 B2 JP4451945 B2 JP 4451945B2
Authority
JP
Japan
Prior art keywords
power generation
gas
generation unit
air
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26954499A
Other languages
English (en)
Other versions
JP2001090508A (ja
Inventor
正 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP26954499A priority Critical patent/JP4451945B2/ja
Publication of JP2001090508A publication Critical patent/JP2001090508A/ja
Application granted granted Critical
Publication of JP4451945B2 publication Critical patent/JP4451945B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は燃料電池とガスタービンを組み合わせた複合発電プラントに関する。
【0002】
【従来の技術】
燃料電池(FC)は高い発電効率で電気エネルギーを発生すると共に電池本体及び排出ガスを介して熱エネルギーをも発生する。従って、その排熱をガスタービン(GT)のトッピングサイクル、蒸気タービン(ST)などのボトミングサイクルにより回収して発電に利用すれば、さらに高い発電効率が得られる。このため、燃料電池とガスタービンを組み合わせた複合発電プラントは省エネルギー効果の高いものとして期待されている。
【0003】
このような複合発電プラントに使用される燃料電池としては、固体酸化物型(SOFC)、溶融炭酸塩型(MCFC)、リン酸型(PAFC)等の中から所定の作動温度の排ガスをガスタービンの作動ガスとして供給できるものが用いられる。また、燃料電池は反応ガスの圧力が高いほど高い発電効率が得られることから、複合発電プラントには、反応ガスを加圧して運転するようにした加圧式燃料電池が多く採用されている。
【0004】
特に、空気極の反応に必要な酸素は、空気を取り込むことにより供給されるので酸素分圧を高める必要があり、一般に、大気中より取り込んだ空気を空気圧縮機により昇圧して燃料電池の空気極へ加圧供給する。そして、この空気圧縮機の駆動動力源として燃料電池からの排ガスを燃焼して作動流体とするガスタービンを装備し、このガスタービンに空気圧縮機を同軸接続して駆動する方式、あるいは、このガスタービンで発電機を駆動して電力を発生し、電動機により空気圧縮機を駆動する方式などが知られている。
【0005】
図10は、燃料ガスとしての天然ガスと空気とを使用する内部改質型SOFCと、このSOFCから排出される高温の排ガスの熱をGT発電部で回収する従来の複合発電プラントの一例を示す概略構成図である。
【0006】
同図に示す複合発電プラント1000は、主として、燃料ガス供給部600と、空気供給部700と、FC発電部100と、GT発電部400と、GT排熱回収系500とから構成されている。FC発電部100は、燃料ガスと空気とを電解質を介して反応させて発電を行い、GT発電部400は、空気を圧縮してFC発電部100に供給すると共に発電を行う。
【0007】
また、FC発電部100とGT発電部400との間には、燃焼部200と、反応ガス加熱部300とが備えられている。燃焼部200では、FC発電部100の排ガスG100が燃焼することにより、高温の燃焼ガスG200が生成され、反応ガス加熱部300において、FC発電部100に供給する燃料ガス及び空気が加熱される。すなわち、反応ガス加熱部300は、図10に示すように、燃料ガスを燃焼ガスG200の熱を利用して加熱する燃料ガス加熱器320と、空気を燃焼ガスG200の熱を利用して加熱する空気加熱器340とから構成されている。
【0008】
一方、GT発電部400は、燃焼器420と、ガスタービン(GT)440と、空気圧縮機460と、発電機480とから構成されている。燃焼器420は、燃料ガス供給部600と反応ガス加熱部300とに接続されており、反応ガス加熱部300を経由した燃焼ガスG300に燃料ガスの一部F400を混合させ、再燃焼させて高温の燃焼ガスG420としてガスタービン440に供給する。ガスタービン440は、この燃焼ガスG420を作動流体として動力を回収し、同軸に接続されている圧縮機460を駆動する。そして、圧縮機460は、空気供給部700から空気A700を吸込んで圧縮する。発電機480は、空気圧縮機460を介してガスタービン440と同軸に接続されており、ガスタービン440の動力により作動して電力を発生する。
【0009】
また、GT排熱回収系500は、空気予熱再生器520と、燃料ガス予熱再生器540と、蒸気発生器560と、煙突580とから構成されている。GT発電部400のガスタービン440から排出される排ガスG440は、空気予熱再生器520に送られ、空気予熱再生器520は、排ガスG440の熱を利用して空気圧縮機460から吐出された空気A460を予熱する。燃料ガス予熱再生器540は、空気予熱再生器520に併設されており、排ガスG440の熱を利用して燃料ガス供給部600より供給される燃料ガスF500を予熱する。燃料ガス予熱再生器540から排出される排ガスG540は、水蒸気発生器560に送られ、ここで発生した水蒸気は、内部改質用として燃料ガスに混合されると共に、外部の蒸気タービン(図示せず)に供給される。蒸気発生器560の排ガスG560は、煙突580から大気中に放出される。
【0010】
次に、SOFCの作動温度を反応に最適な値に制御した場合における複合発電プラントの動作について説明する。
【0011】
まず、燃料ガス供給部600から供給される燃料ガスとしての天然ガスF600(15℃)は、二手に分岐され、一方のF400は燃焼器420に導入され、他方のF500は燃料ガス予熱再生器540に導入されて中間温度(約550℃)まで予熱される。燃料ガス予熱再生器540を通過した天然ガスF540は、蒸気発生器560から供給される水蒸気(内部改質用蒸気)S560と所定の水蒸気/天然ガス比のもとで混合された後、燃料ガス加熱器320に導入されて最適供給温度(約950℃)に加熱される。そして、燃料ガス加熱器320を通過した最適供給温度の混合ガスF300はFC発電部100の燃料極側へ導入される。
【0012】
一方、空気供給部700から取り入れられた空気A700は、空気圧縮機460に導入されて圧縮され、例えば約374℃まで昇温する。空気圧縮機460を通過した圧縮空気A460は、空気予熱再生器520に導入されて中間温度まで予熱される。空気予熱再生器520を通過した圧縮空気A520は、空気加熱器340に導入されて最適作動温度に加熱される。そして、空気加熱器340を通過した圧縮空気A300は、FC発電部100の空気極側へ導入される。
【0013】
FC発電部100内において、燃料極側へ導入された天然ガスと水蒸気との混合ガスF300は、燃料極の触媒上で反応して、水を生成する。また、この水素と空気極側の圧縮空気A400中の酸素とは、固体酸化物電解質を介して化学反応を起こし、水と二酸化炭素とを生成する。ここで、FC発電部100では、反応熱(エンタルピー変化;ΔH)のうち、自由エネルギー変化(ΔG)に相当する分から電池の内部抵抗に基づく分を差し引いた分が電気エネルギー(直流電力)に変換され、この電池の内部抵抗に基づく分とエントロピー変化に基づく分(−T・ΔS)分が主に熱として発生することとなる。この際、水或いは二酸化炭素の生成は発熱反応であることから、電池反応が進行するに伴いFC発電部100の温度は上昇する。
【0014】
FC発電部100を通過した燃料極排ガス及び空気極排ガスは混合され、約1050℃の排ガスG100として燃焼部200に導入される。この燃焼部200において、排ガスG100中に残存する天然ガス成分と酸素とは燃焼反応を起こし、さらに高温(例えば、1126〜1268℃)の燃焼ガスG200となる。この燃焼部200を通過した高温の燃焼ガスG200は、反応ガス加熱部300で二手に分岐され、それぞれ予熱済みの天然ガスF540及び改質用蒸気の混合ガスと、圧縮空気A520とをSOFCの最適作動温度にまで熱交換により加熱する。
【0015】
反応ガス加熱部300を通過した排ガスG300は、GT発電部400内の燃焼器420へ導入される。この排ガスG300中には、未反応の酸素が存在しており、燃料ガス供給部600から燃焼器420に供給される天然ガスF500によって再び燃焼し、高温の排ガスG420としてGT発電部400に供給される。
【0016】
燃焼器420から排出された高温の排ガスG420は、GT発電部400のガスタービン440に導入され、ガスタービン440を駆動する。これにより、ガスタービン440が駆動動力源となり、これと同軸に接続された空気圧縮機460と発電機480とがそれぞれ作動する。
【0017】
ガスタービン440から排出された排ガスG440は、空気予熱再生器520及び燃料ガス予熱再生器540に導入され、先に述べたように圧縮空気A560と天然ガスF900を熱交換により予熱する。これらの予熱器520,540から排出された排ガスG540は、蒸気発生器560に導入され、蒸気発生器560内の水を水蒸気に変換する。蒸気発生器560で発生した蒸気の一部は、先に延べたように内部改質用蒸気S560として用いられ、残りの蒸気は図示しない蒸気タービン等に供給される。蒸気発生器560から排出される排ガスG560は、煙突580から大気中へ放出される。
【0018】
上述した複合発電プラント1000のように、燃料電池として比較的に高温で作動するSOFC、MCFC、PAFC等を用いる複合発電プラントにおいては、燃料電池の電池反応が発熱反応であることから、作動中に燃料電池(FC発電部)の温度が上昇することに起因して、電池構成材料の劣化或いは腐食が進行し、燃料電池の寿命が極端に短くなるという不具合が生じる。一方、燃料電池(FC発電部)を冷却し過ぎると電極反応の反応速度が低下すると共に電解質のイオン導電率も低下するため所望の出力が得られなくなるという不具合が生じる。従って、作動中の燃料電池(FC発電部)の温度上昇を抑制し、所望の作動温度に保持することが極めて重要となる。
【0019】
【発明が解決しようとする課題】
上記従来の複合発電プラント1000では、燃料電池(FC発電部100)を冷却して所望の作動温度に保持するために、最適作動温度(約950℃)まで昇温させた空気を電池反応に必要な分量よりも過剰に供給することにより燃料電池(FC発電部)の冷却を行っている。しかしながら、多量の空気を加圧して供給しようとすれば、空気の供給源であるGT発電部400の圧縮機460に極めて多大な駆動用動力が必要となってしまう。例えば、複合発電プラント1000の場合、FC発電部100に対して供給すべき冷却用の加圧空気の分量は、電池反応に必要な加圧空気の分量のおよそ5〜7倍にも達してしまう。このため、空気圧縮機460の規模が大きくなり、空気消費量に対するFC発電量が低下してしまうという問題があった。
【0020】
また、図10に示す複合発電プラント1000では、反応ガス加熱部300(空気加熱器340)にて、多量の空気をFC発電部100の作動温度まで昇温させるため、ここで消費されるFC発電部100の排熱量が大きくなってしまい、GT発電部400の入口温度が低下してGT発電部400の出力が低下してしまうという問題がある。さらに、GT発電部400の出力を上げるべく、燃焼器420に燃料ガスの一部を供給すれば、余分な燃料ガスがFC発電部100以外においても消費されることとなり、過剰の空気が燃料電池の反応以外にも消費されることとあわせて、プラント全体の発電効率が低下してしまうという問題もある。
【0021】
本発明は以上の問題を鑑みてなされたものであり、燃料電池を所望の作動温度に保持するとともに高い発電効率を達成することができ、さらにFCの発生熱を効率よく回収して利用することのできるプラント効率の高い複合発電プラントを提供することを目的とする。
【0022】
【課題を解決するための手段】
合発電プラントにおいては、空気と燃料ガスとを電解質を介して反応させて発電する燃料電池発電部と、燃料電池発電部から排出される空気極排ガス及び燃料極排ガスを燃焼させて燃焼ガスを生成する燃焼部と、燃焼ガスにより駆動されて空気を圧縮して燃料電池に供給すると共に発電するガスタービン発電部とを備えた複合発電プラントにおいて、上記の燃料電池発電部に付設されており、燃料電池発電部の発生熱を利用して空気を所望の温度に昇温させると共に燃料電池発電部を所望の作動温度に保持する空気熱交換部を備えることが好ましい
【0023】
この複合発電プラントによれば、燃料電池発電部に付設された空気熱交換部により、空気は燃料電池発電部の発生熱によって直接昇温され、その顕熱によって燃料電池発電部は所望の作動温度に保持されることになる。従って、従来のような過剰なガスの供給を大幅に低減でき、空気の利用率が向上するので、燃料電池発電部の発電効率(発電出力)を増大させることができる。また、燃料電池発電部から排出される高温の排ガスは、直接、ガスタービン発電部に供給できるので、これにより、ガスタービン発電部の出力を上げることが可能となり、ガスタービン発電部の排出ガスも高温で高品位なものとなることから、蒸気タービン等により有効に回収可能となる。
【0024】
また、燃料電池発電部の排ガスを直接ガスタービン発電部に供給可能となることから、燃料ガスの消費を低減できる。この場合において、上記の空気熱交換部と併せて燃料電池発電部を適度に冷却して所望の作動温度に保持できれば、燃料ガスは、必ずしもFCの排熱を利用してFCの作動温度まで昇温させる必要はなく、例えば、ガスタービン発電部の圧縮機又はガスタービンの排熱を利用して予熱したやや低温の状態で燃料電池発電部に供給することも可能である。
【0025】
なお、「燃料電池」とは、高温で作動してその排熱をボトミングサイクルにより回収利用できるものを示し、例えば、SOFC、MCFC、PAFC等が挙げられる。また、「燃料ガス」は、上記のような燃料電池の燃料極反応に利用されるガス(アノード反応ガス)を示す。例えば、水素、一酸化炭素、天然ガス、メタノール等が燃料ガスとして挙げられる。また、本発明の説明に用いられる「空気」は、大気中の空気を示すと共に、上記のような燃料電池の空気極反応に利用される酸素を含むガス(カソード反応ガス)を示すこととする。例えば、純酸素や、酸素に空気成分以外のガス成分が含まれていてもよいこととする。さらに、「燃料極排ガス」及び「空気極排ガス」には、それぞれの電極反応生成物の他に未反応の反応ガス成分が含まれていてもよいものとする。加えて、「発生熱」とは、電池反応の反応熱のうち、電気エネルギーとして出力される分以外の熱に変換される分を示すこととする。
【0026】
また、上記の複合発電プラントにおいて、燃料電池発電部に付設されており、燃料電池発電部の発生熱を利用して燃料ガスを所望の温度に昇温させると共に燃料電池発電部を所望の作動温度に保持する燃料ガス熱交換部を更に備えると好ましい。
【0027】
このように、燃料ガス熱交換部を上記の空気熱交換部と併せて設置することにより、空気に加えて燃料ガスも燃料電池発電部の発生熱により直接昇温させられることになり、その顕熱により燃料電池発電部は所望の作動温度に保持されることとなる。また、余分な燃料ガスの供給を低減できるので、燃料ガスの利用率を向上させることが可能となる。さらに、燃料電池発電部からの排熱を効率よくガスタービン発電部において利用することができる。従って、燃料電池発電部の発電効率を更に向上させると共に、ガスタービン発電部の発電効率も向上させることが可能となる。
【0028】
また、上記の複合発電プラントにおいて、燃料電池発電部の排気ライン上にそれぞれ設けられており、空気を空気極排ガス又は燃焼ガスにより加熱する空気加熱器と、燃料ガスを前記燃料極排ガス又は前記燃焼ガスにより加熱する燃料ガス加熱器とを更に備えていてよい。
【0029】
このように、空気加熱器と、燃料ガス加熱器とを備えることにより、プラント起動時において、燃料電池発電部を、自らの排熱を有効に利用して瞬時に所望の作動温度に昇温させることができる。従って、プラント起動時から定常作動状態に至るまでの時間を短縮できると共に、この間のエネルギ損失を最小限にすることが可能となる。また、プラントが定常作動状態である場合には、燃料電池発電部には空気熱交換部と燃料ガス熱交換部が備えられていることから、空気加熱器と燃料ガス加熱器とから、空気と燃料ガスとに対して与えるべき熱量は必要最小限で足りることになる。これにより、例えば、プラントが定常作動状態になった時点で、これらの加熱器の熱交換率を変化させることができる構成や、反応ガス或いは排ガスのパスを切り換え可能な構成等を採用することにより、燃料電池発電部の排ガスを極力高温に保ったままガスタービン発電部に供給することが可能となる。
【0030】
また、上記の複合発電プラントにおいて、ガスタービン発電部の排気ライン上にそれぞれ設けられており、空気をガスタービン発電部からの排気ガスにより加熱する空気予熱再生器と、燃料ガスをガスタービン発電部からの排気ガスにより加熱する燃料ガス予熱再生器とを更に備えてもよい。
【0031】
このように、燃料ガス予熱再生器と空気予熱再生器とを備えることにより、ガスタービン発電部の排気温度を下げることが可能となり、煙突排気が低温に維持されるので、プラントシステムロスを低減できる。ガスタービン発電部の発電効率を向上させることができる。また、燃料ガス加熱器と空気加熱器と同様に、プラント起動時においてガスタービン発電部の排熱ひいては燃料電池発電部の排熱を有効に利用して効率良くプラントを定常作動状態にすることが可能となる。
【0032】
そして、請求項1に記載の本発明による複合発電プラントは、空気と燃料ガスとを電解質を介して反応させて発電する燃料電池発電部と、燃料電池発電部から排出される空気極排ガス及び燃料極排ガスを燃焼させて燃焼ガスを生成する燃焼部と、燃焼ガスにより駆動されて空気を圧縮して燃料電池に供給すると共に発電するガスタービン発電部とを備えた複合発電プラントにおいて、燃料電池発電部に付設されており、燃料電池発電部の発生熱を熱交換媒体により回収して利用する共に燃料電池発電部を所望の作動温度に保持する電池発生熱回収系を備え、電池発生熱回収系は、熱交換媒体により回収された熱を利用して燃焼部から排出される燃焼ガスを加熱してガスタービン発電部に供給する燃焼ガス加熱器を有することを特徴とする。
【0033】
請求項に記載の複合発電プラントによれば、電池発生熱回収系を燃料電池発電部に付設することにより、燃料電池発電部の発生熱は熱交換媒体により直接回収されることとなり、その結果、燃料電池発電部は所望の作動温度に保持される。また、燃料電池発電部には、電極反応を所望の条件で進行させるために必要とされる量の空気及び燃料ガスのみを供給し、冷却に要する空気の過剰供給を抑える。従って、反応ガスの利用率が向上することになり、燃料電池発電部の発電効率を上げることができる。また、電池発生熱回収系で燃料電池発電部の発生熱を有効利用することにより、プラント効率も向上させることが可能となる。しかも、燃焼ガス加熱器を有する電池発生熱回収系により、燃料電池発電部を所望の作動温度に保持しつつその発生熱を利用してガスタービン発電部の入口における作動ガスの温度を高く設定することが可能となるので、ガスタービン発電部の発電効率を向上させることができる。
【0034】
また、電池発生熱回収系は、熱交換媒体により回収された熱を利用して水蒸気を発生させる蒸気発生器を有するものであると好ましい。
【0035】
これにより、燃料電池発電部の発生熱を蒸気タービン等によって有効利用することが可能となる。
【0036】
また、電池発生熱回収系は、熱交換媒体により回収された熱を利用して空気と燃料ガスとをそれぞれ加熱する反応ガス加熱器を有するものとしてもよい。
【0037】
これにより、燃料電池発電部を所望の作動温度に保持しつつ、その発生熱を利用して空気と燃料ガスとをそれぞれ加熱することができる。また、燃料電池発電部の排ガスを熱損失の無い高温の状態でガスタービン発電部に直接供給することも可能となる。
【0040】
また、複合発電プラントにおいては、空気と燃料ガスとを電解質を介して反応させて発電する燃料電池発電部と、燃料電池発電部から排出される空気極排ガス及び燃料極排ガスを燃焼させて燃焼ガスを生成する燃焼部と、燃焼ガスにより駆動されて空気を圧縮して燃料電池に供給すると共に発電するガスタービン発電部とを備えた複合発電プラントにおいて、燃料電池発電部の作動温度よりも低温に設定した空気及び燃料ガスをそれぞれ燃料電池発電部に供給し、燃料極内部及空気極内部において電極反応を進行させつつ電極反応による発生熱を前記空気と前記燃料ガスとに吸熱させることにより、燃料電池発電部を所望の作動温度に保持する反応ガス供給手段を備えることが好ましい
【0041】
の複合発電プラントでは、燃料電池発電部の燃料極及び空気極は多孔質のガス拡散電極であることから、反応ガス供給手段により燃料電池発電部の作動温度よりも低温に設定された空気と燃料ガスは、電極内の細孔内を進行する過程において微細な反応サイトで発生する発生熱を直接吸熱して電極内を冷却する一方、自らは加熱されることになる。そして、加熱されたこれらの反応ガスは電極内をさらに進行しながら微細な反応サイトで化学反応を起こし、後に続く低温の反応ガスを昇温させることとなる。この結果、FC発電部を所望の作動温度に保持することが可能となる。また、従来に比べ反応ガスの供給温度を低下させることができ、空気の供給量、すなわち、冷却用にのみ用いられていた過剰な空気の供給を削減可能となる。従って、燃料電池発電部の発電効率を向上させることができ、これに伴って、ガスタービン発電部の空気圧縮機で消費される動力が低減される。さらに、燃料電池発電部から排出される高温の排ガスは、ガスタービン発電部に直接供給できるので、ガスタービン発電部の出力を上げることができ、かつ、その排出ガスも高温で高品位なものとなることから、蒸気タービン等により有効に回収できることとなる。加えて、燃料電池発電部の排ガスを直接ガスタービン発電部に供給できるので、GT発電部における燃料ガスの消費を低減できる。
【0042】
ここで、「反応ガス供給手段」とは、燃料電池発電部の作動温度より低温に設定した燃料ガス及び燃料ガスを供給しても、所望の発電条件で燃料電池発電部が作動できるように燃料ガス及び燃料ガスの温度、供給圧、流量等を調節する手段を示すこととする。従って、このような条件の燃料ガス及び燃料ガスを供給するためにプラントに配置される構成要素の全て含むものとする。
【0043】
【発明の実施の形態】
以下、図面を参照しながら本発明による複合発電プラントの好適な実施形態について詳細に説明する。なお、以下の説明では、同一または相当部分には同一符号を付し、重複する説明は省略する。
【0044】
図1は本発明に係る複合発電プラントの好適な実施形態を示す概略構成図である。
【0045】
〔第1実施形態〕
図1は本発明による複合発電プラントの第1実施形態を示す概略構成図である。同図に示すように、複合発電プラント10は、主として、燃料ガス供給部80と、空気供給部90と、FC発電部20と、燃焼部22と、発電を行うとともに空気を圧縮してFC発電部20に供給するGT発電部30と、GT排熱回収系40とから構成されている。
【0046】
FC発電部20は、燃料ガスとしての天然ガスと、空気とを固体酸化物電解質を介して反応させて発電する内部改質型SOFCのスタックを備えている。燃焼部22はFC発電部20の排ガスG20中の未燃分を燃焼させて高温の燃焼ガスG22を生成するためのものである。これらFC発電部20と燃焼部22との周囲には、反応ガス熱交換部24が設けられている。
【0047】
反応ガス熱交換部24は、燃料ガス熱交換部24aと空気熱交換部24bとから構成されている。燃料ガス熱交換部24aは、その内部において、燃料極に供給される天然ガスF24をFC発電部20の発生熱を利用して所望の温度に昇温させると共にFC発電部20を所望の作動温度に保持するためのものであり、空気熱交換部24bは、その内部において、空気極に供給される天然ガスF24をFC発電部20の発生熱を利用して所望の温度に昇温させると共にFC発電部20を所望の作動温度に保持するためのものである。
【0048】
一方、GT発電部30は、ガスタービン(GT)32と、空気圧縮機34と、発電機36と、熱交換器38から構成されている。ガスタービン32は、燃焼部22から排出された燃焼ガスG22を作動流体として動力を回収する。空気圧縮機34は、ガスタービン32と同軸に接続されており、ガスタービン32の動力により作動して空気供給部90(例えば、大気を吸気室を介して吸入する。)から空気A90を吸込んで圧縮する。発電機36は、空気圧縮機34を介してガスタービン32と同軸に接続されており、ガスタービン32の動力により作動して電力を発生する。熱交換器38は、燃料ガス供給部80からの天然ガスF80を空気圧縮機34から排出されるガスタービン32の翼冷却用の圧縮空気A34aと熱交換させて加熱する。
【0049】
また、GT排熱回収系40は、蒸気発生器(HRSG)41と、蒸気タービン(ST)42と、発電機43と、復水器44と、熱交換器45と、煙突46とから構成されている。蒸気発生器41は、GT発電部30のガスタービン32から排出される排ガスG32の熱を利用して水蒸気を発生させ、水蒸気の一部S41aを天然ガスに混合させる内部改質用蒸気とし、残りの水蒸気S41bを外部の蒸気タービン42に供給する。蒸気タービン42は、蒸気発生器41から供給された水蒸気S41bを作動流体として動力を回収する。発電機43は、蒸気タービン42と同軸に接続されており、蒸気タービン42の動力により作動して電力を発生する。復水器44は、蒸気タービン42からの排出蒸気S42を復水させ、一部の復水W42aを熱交換器45に送水し、残りの復水W42bを蒸気発生器41に送水する。熱交換器45は、復水器44から送水される水W42aを空気圧縮機34からFC発電部20に向けて供給される圧縮空気A34bと熱交換させ、水蒸気S45として蒸気タービン42に供給する。圧縮空気A34bは、(1)圧縮機吐出をそのまま用いるてもよく、(2)熱交換機45で冷却して用いてもよく、また、(1)と(2)を併用して所定温度として用いてもよい。蒸気発生器41を通過した排ガスG41は煙突46から大気中に放出される。
【0050】
以下に、FC発電部(SOFC)20の作動温度を反応に最適な値に制御した場合における複合発電プラント10の動作について説明する。
【0051】
燃料ガス供給部80から供給される天然ガスF80(約15℃)は、GT発電部30内の熱交換器38に導入され、予熱される。熱交換器38を通過した天然ガスF38は、蒸気発生器41から供給される内部改質用蒸気S41aと混合される。あるいは、ミスをスプレー混合してもよい。内部改質用蒸気S41aと混ざり合った天然ガスF38は、反応ガス熱交換部24の燃料ガス熱交換部24aに導入される。燃料ガス熱交換部24a内に導入された天然ガスF24は、FC発電部20の発生熱により最適な作動温度(燃料改質温度)まで直接昇温させられることになり、その顕熱によりFC発電部20も所望の作動温度に保持されることとなる。そして、最適作動温度まで昇温された天然ガスF24が、FC発電部20の燃料極に導入される。
【0052】
一方、空気供給部90からGT発電部30内に取り入れられた空気A90(約15℃)は、空気圧縮機34により圧縮されると共に所定温度まで昇温させられる。空気圧縮機34を通過した圧縮空気は二手に分岐され、一方の圧縮空気A34aは熱交換器38に導入されて天然ガスF80を予熱する。熱交換器38を通過した圧縮空気A38は翼冷却空気としてガスタービン32に導入される。もう一方の圧縮空気A34bは、直接空気熱交換部24bに供給されるか、又は、熱交換器45に導入され、復水器44から送水される水W42aと熱交換し約15℃まで冷却される。熱交換器45を通過した圧縮空気A45は、そのまま、あるいは、圧縮空気A34bと混合して、反応ガス熱交換部24の空気熱交換部24bに導入される。空気熱交換部24b内に導入された圧縮空気A24は、FC発電部20の発生熱により燃料改質温度(約950℃)まで直接昇温されることとなり、その顕熱によりFC発電部20も所望の作動温度に保持されることとなる。そして、最適作動温度まで昇温された圧縮空気A24は、FC発電部20の空気極に導入される。
【0053】
FC発電部20内において、燃料極へ導入された天然ガス及び水蒸気の混合ガスF24は、燃料極の触媒上で反応して、水素を生成する。この反応は吸熱反応であるため、この内部改質反応によってもFC発電部20の発生熱を吸熱することができる。また、空気極の圧縮空気A24中の酸素は、O2-イオンとなり、固体酸化物電解質を伝導してこれらの水素及び一酸化炭素と化学反応を起こし、水と二酸化炭素とを生成する。ここで、その反応熱のうち、自由エネルギー変化に相当する分から電池の内部抵抗に基づく分を差し引いた分が電気エネルギー(直流電力)に変換され、残りの分が熱として発生することとなる。水或いは二酸化炭素の生成は発熱反応であるが、FC発電部20に備えられた反応ガス熱交換部24により適度に吸熱されるのでFC発電部20の温度は所望の作動温度に保持される。
【0054】
FC発電部20を通過した燃料極排ガス及び空気極排ガスは混合され、例えば、排ガスG20として燃焼部22に導入される。この燃焼部22において、排ガスG20中に残存する未反応の天然ガス成分と酸素とは、高温のもとで容易に燃焼反応を起こし、燃焼ガスG22となる。ここで、燃焼反応による発熱の一部も反応ガス熱交換部24内に適度に吸熱される。このようにして、燃焼ガスG22は、FC発電部の所望の作動温度よりも高温の状態で反応ガス熱交換部24から排出されることとなる。
【0055】
この複合発電プラント10では、FC発電部20に付設された空気熱交換部24bにより、空気はFC発電部20の発生熱によって直接昇温され、その顕熱によってFC発電部20は所望の作動温度に保持されることになる。従って、従来のような過剰なガスの供給を大幅に低減でき、空気の利用率が向上するので、FC発電部20の発電効率(発電出力)を上げることが可能となる。つまり、プラント総出力に対して、燃料ガス熱交換部24aが上記の空気熱交換部24bと併せて設置されているので、空気に加えて燃料ガスもFC発電部20の発生熱により直接昇温させられることになり、この顕熱によってもFC発電部20は所望の作動温度に保持されることとなる。また、燃料ガスの供給を低減できるので、燃料ガスの利用率を向上させることも可能となる。
【0056】
さらに、燃焼部22から排出される高温の排ガスG22は、熱損失すること無くGT発電部30に直接供給される。これにより、GT発電部の出力を上げることが可能となり、GT発電部30の排出ガスG32も高温で高品位なものとなることから、GT排熱回収系40により有効に回収可能となる。すなわち、プラント効率を先に延べた従来の複合発電プラントよりも大幅に向上させることができる。
【0057】
一方、燃焼部22から排出された高温の排ガスG22は、GT発電部30のガスタービン32に導入され、ガスタービン32を駆動する。これにより、ガスタービン32が駆動動力源となり、これと同軸に接続された空気圧縮機34と発電機36とがそれぞれ作動する。ガスタービン32から排出された排ガスG32は、蒸気発生器41に導入され、熱交換により蒸気発生器41内の水を水蒸気に変換する。蒸気発生器41で発生した蒸気の一部は、先に延べたように内部改質用蒸気S41aとして用いられ、残りの蒸気S41bは、蒸気タービン42に供給される。
【0058】
そして、蒸気S41bは、作動流体として蒸気タービン42を駆動する。これにより、蒸気タービン42が駆動動力源となり、これと同軸に接続された発電機43が作動して電力を発生する。蒸気S41bは、蒸気タービン42でエネルギ回収されて排出蒸気S42として排出され、復水器44に導入される。復水器44から、一部の復水W42aが熱交換器45に送水され、残りの復水W42bは蒸気発生器41に送水される。復水器44から送水される水W42aは、熱交換器45において空気圧縮機34からFC発電部20に向けて供給される圧縮空気A34bと熱交換させられて気化し、水蒸気S45として蒸気タービン42に供給される。一方、蒸気発生器41から排出される排ガスG41は、煙突46から大気中へ放出される。
【0059】
なお、上記説明において、燃焼部22は、FC発電部20からの排出ガスG20中に残存する天然ガス成分と酸素とが高温のもとで逐次酸化反応を起こす領域を示すものとする。従って、燃焼部22は、ガスライン上に特別な燃焼用の装置或いは容器等を設けたものには限られず、逐次酸化反応が起こるガスライン中の領域(仮想アフターバーナー)であってもよい。例えば、高温で作動するSOFCの場合は、逐次酸化反応が起こり易いので燃焼部22は、仮想アフターバーナーとなり、SOFCよりも低温で作動するMCFCや、PAFC等の場合、後段のGT発電部30の出力との兼ね合いから必要に応じて燃焼触媒等を備えた装置或いは容器等を必要に応じて設けることとなる。
【0060】
また、上述した複合発電プラント10においては、燃焼部22が反応ガス熱交換部24内に設けられているが、燃焼部22は、反応ガス熱交換部24の外部に設けられていてもよい。燃焼部22を反応ガス熱交換部24内に設ければ、FC発電部20の発生熱に加えて燃焼部22の発生熱を利用して燃料ガス及び空気を所望の温度まで十分に昇温させることが可能となる。一方、燃焼部22を反応ガス熱交換部24の外部に設ければ、FC発電部20の排ガスG20の温度をさらに高温の燃焼ガスG22にしてGT発電部30に供給することが可能となる。つまり、燃焼部22は、使用するFCの形式、FCの作動温度、反応ガスの供給温度、反応ガス熱交換部24の熱交換量、想定されるプラント効率等の条件によりその配置を上記のいずれにするか適宜選択可能である。
【0061】
さらに、上記の複合発電プラントにおいて、燃料ガス供給部80から供給される天然ガスF80は、GT発電部30の熱交換器38を経由せず、反応ガス熱交換部24に直接導入されるものであってもよい。また、GT発電部30の空気圧縮機34から供給される空気A34bは、GT排熱回収系40の熱交換器45を経由せず、反応ガス熱交換部24に直接導入されるものであってもよい。
【0062】
図2は、上述した第1実施形態に係る複合発電プラント10の変形例を示す概略構成図である。同図に示す複合発電プラント10Aは、反応ガス加熱器50を更に備える点で、図1に示した複合発電プラント10と異なる。
【0063】
反応ガス加熱器50は、燃料ガス加熱器52と空気加熱器54とから構成されている。燃料ガス加熱器52は燃焼部22からの高温の燃焼ガスG22を取り込み、その熱を利用してFC発電部20に供給する燃料ガスを加熱するものである。同様に空気加熱器54は、燃焼ガスG22の熱を利用してFC発電部20に供給する空気を加熱するものである。
【0064】
また、この複合発電プラント10Aでは、燃焼部22が反応ガス熱交換部24の外部に設けられている。これにより、燃焼ガスG22の熱により反応ガス加熱器50において燃料ガス及び空気を高温に加熱することが可能となる。また、GT発電部30には、ガスタービン32の上流側のガスライン上に燃焼器31が備えられている。燃焼器31は、反応ガス加熱器50から排出される排出ガスG50をガスタービン32に導入する前に高温ガスとするためのものである。反応ガス加熱器50の熱交換により、降温した排出ガスG50を再度昇温させることができる。例えば、特にSOFCに比較して低温の排出ガスを排出するMCFCやPAFC等のFCを使用する場合に、この燃焼器31を設ければ、GT発電効率、或いはプラント効率の面で有効である。
【0065】
以下に、FC発電部(SOFC)20の作動温度を反応に最適な値に制御した場合における複合発電プラント10Aの動作について説明する。
【0066】
燃料ガス供給部80から供給される天然ガスF80(約15℃)は、反応ガス熱交換部24の燃料ガス熱交換部24aに導入される。燃料ガス熱交換部24a内に導入された天然ガスF80は、FC発電部20の発生熱により直接昇温させられる。燃料ガス熱交換部24aから排出された天然ガスF24aは、反応ガス加熱器50の燃料ガス加熱器52に導入され、燃焼ガスG22と熱交換することにより更に昇温する。燃料ガス加熱器52を通過した天然ガスF52は、蒸気発生器41から供給される内部改質用蒸気S41aと混合される。内部改質用蒸気S41aと混ざり合った天然ガスF38は、再び反応ガス熱交換部24の燃料ガス熱交換部24aに導入される。燃料ガス熱交換部24a内に導入された天然ガスF24は、FC発電部20の発生熱により最適作動温度まで直接昇温させられることになり、その顕熱によりFC発電部20も所望の作動温度に保持されることとなる。そして、最適作動温度まで昇温された天然ガスF24が、FC発電部20の燃料極に導入される。
【0067】
これにより、燃料ガス熱交換部24aと燃料ガス加熱器52とを利用して、低温で導入された天然ガスF90を最適作動温度まで昇温させることができ、FC発電部20も所望の作動温度に保持されることとなる。
【0068】
一方、空気供給部90からGT発電部30内の空気圧縮機34を経由して供給される圧縮空気A34も上記の天然ガスと同様にして空気熱交換部24bに導入され、空気加熱器54を経由して再び空気熱交換部24bに導入される。そして、最終的に空気熱交換部24b内に導入された圧縮空気A24は、FC発電部20の発生熱により最適作動温度まで直接昇温されることとなり、FC発電部20も所望の作動温度に保持されることとなる。そして、最適作動温度まで昇温された天然ガスF24は、FC発電部20の空気極に導入される。
【0069】
このように、空気加熱器54と、燃料ガス加熱器52とを備えることにより、プラント起動時において、FC発電部20を、自らの排熱、すなわち、反応ガス熱交換部24の熱と排ガスG20に移行する熱を有効に利用して瞬時に所望の作動温度まで昇温させることができる。従って、プラント起動時から定常作動状態に至るまでの時間を短縮できると共に、この間のエネルギ損失を最小限にすることが可能となる。また、プラントが定常作動状態である場合には、FC発電部20には空気熱交換部24bと燃料ガス熱交換部24aが備えられているので、空気加熱器54と燃料ガス加熱器52とから、空気と燃料ガスとに対して与えるべき熱量は必要最小限で足りる。
【0070】
これにより、例えば、プラントが定常作動状態になった時点で、反応ガス加熱器50の熱交換率を変化させることができる構成や、ガスラインを燃料ガス及び空気のパスを切り替え可能にするか或いは燃焼部22の燃焼ガスG22のパスを切り換え可能な構成等を採用することにより、燃焼部22の燃焼ガスを極力高温に保ったままGT発電部30に供給することが可能となる。この場合においては、GT発電部30の燃焼器31は不要となるので、さらにプラント効率を向上させることができる。
【0071】
なお、上記の複合発電プラント10Aの構成においては、燃料ガス及び空気は、まず反応ガス熱交換部24に導入され、次に反応ガス加熱器50に導入されるが、逆の順路、すなわち、まず反応ガス加熱器50に導入し、次に反応ガス熱交換部に導入してFC発電部20に供給するようにしてもよい。この場合も、上記と同様の作用効果を得ることができる。
【0072】
図3は、上述した図1の複合発電プラントの他の変形例を示す概略構成図である。同図に示す複合発電プラント10Bは、反応ガス加熱器50に加えて、更に、反応ガス予熱再生器60を備える点で、図1の複合発電プラント10と異なる。
【0073】
反応ガス加熱器50は、図2で説明した複合発電プラント10における反応ガス加熱器と同様のものであり、同様の作用効果を奏するものである。反応ガス予熱再生器60は、GT発電部30とGT排熱回収系40との間の排気ライン上に設けられており、燃料ガス予熱再生器62と空気予熱再生器64とから構成されている。燃料ガス予熱再生器62は、燃料ガスをGT発電部30の排気ガスG32により加熱するものである。空気予熱再生器64は、空気をGT発電部30の排気ガスG32により加熱するものである。
【0074】
このように、燃料ガス予熱再生器62と空気予熱再生器64とを備えることにより、GT発電部30の排気温度を下げることが可能となり、煙突排気が低温に維持されるので、プラントシステムロスを低減できる。また、燃料ガス加熱器52と空気加熱器54と同様に、プラント起動時においてGT発電部30の排熱ひいてはFC発電部20の排熱を有効に利用して速やかにしかも効率良くプラントを定常作動状態にすることが可能となる。
【0075】
〔第2実施形態〕
図4は本発明による複合発電プラントの第2実施形態を示す概略構成図である。
同図に示すように、複合発電プラント11は、主として、燃料ガス供給部80と、空気供給部90と、FC発電部20と、燃焼部(仮想アフターバーナー)22と、発電を行うとともに空気を圧縮してFC発電部20に供給するGT発電部30と、GT排熱回収系40と、電池発生熱回収系70とから構成されている。
【0076】
FC発電部20は、燃料ガスとしての天然ガスと、空気とを固体酸化物電解質を介して反応させて発電する内部改質型SOFCのスタックを備えている。燃焼部22はFC発電部20の排ガスG20を燃焼させて高温の燃焼ガスG22を生成するためのものである。
【0077】
電池発生熱回収系70は、電池発生熱交換部72と、電池発生熱利用系74とから構成されており、電池発生熱交換部72と電池発生熱利用系74とは、両者の間を循環する熱交換媒体M70とにより熱的に接続されている。電池発生熱交換部72は、FC発電部20の周囲に設けられており、電池発生熱交換部72の内部を循環する熱交換媒体M70によりFC発電部20の発生熱を回収する。電池発生熱利用系74は、FC発電部20の外部に配置されており、電池発生熱利用系74の内部を循環する熱交換媒体M70により電池発生熱交換部72から供給されるFC発電部20の発生熱を利用する。このようにして、電池発生熱回収系70は、FC発電部20の発生熱を利用すると共にFC発電部20を所望の作動温度に保持する。
【0078】
また、燃焼部22とGT発電部30との間には、反応ガス加熱器50と、蒸気発生器95と、水供給部96が備えられている。反応ガス加熱器50は、燃料ガスを燃焼ガスG22の熱を利用して加熱する燃料ガス加熱器52と、空気を燃焼ガスG22の熱を利用して加熱する空気加熱器54とから構成されている。水供給部96は蒸気発生器95に接続されており蒸気発生器95に対して水W96を供給する。蒸気発生器95は、反応ガス加熱器50に接続されており、反応ガス加熱器50から排出される排ガスG50の熱を利用して水供給部96から供給された水W96を水蒸気S95に変換する。この水蒸気S95は内部改質用水蒸気として燃料ガス供給部80から供給される天然ガスF50と混合される。
【0079】
一方、GT発電部30は、燃焼器31と、ガスタービン(GT)32と、空気圧縮機34と、発電機36から構成されている。燃焼器31は、燃料ガス供給部80と蒸気発生器95とに接続されており、蒸気発生器95を経由した燃焼ガスG95に燃料ガスの一部F30を混合させ、再燃焼させて高温の燃焼ガスG31としてガスタービン32に供給する。ガスタービン32は、燃焼器31から排出された燃焼ガスG31を作動流体として動力を回収する。空気圧縮機34は、ガスタービン32と同軸に接続されており、ガスタービン32の動力により作動して空気供給部90から空気A90を吸込んで圧縮する。発電機36は、空気圧縮機34を介してガスタービン32と同軸に接続されており、ガスタービン32の動力により作動して電力を発生する。
【0080】
また、GT排熱回収系40は、蒸気発生器(HRSG)41と、蒸気タービン(ST)42と、煙突46とから構成されている。蒸気発生器41は、GT発電部30のガスタービン32から排出される排ガスG32の熱を利用して水蒸気S41を発生させて外部の蒸気タービン(図示せず)等に供給する。蒸気発生器41を通過した排ガスG41は煙突46から大気中に放出される。
【0081】
以下に、FC発電部(SOFC)20の作動温度を反応に最適な値に制御した場合における複合発電プラント11動作について説明する。
【0082】
まず、燃料ガス供給部80から供給される天然ガスF80(約15℃)は、二手に分岐され、一方のF30は燃焼器31に導入され、他方のF50は、蒸気発生器95から供給される水蒸気(内部改質用蒸気)S95と混合された後、燃料ガス加熱器52に導入されて最適作動温度に加熱される。そして、燃料ガス加熱器52を通過した最適作動温度の混合ガスF52はFC発電部20の燃料極側へ導入される。
【0083】
一方、空気供給部90からGT発電部30内に取り入れられた空気A90(約15℃)は、空気圧縮機34により圧縮されると共に所定温度まで昇温させられる。空気圧縮機34を通過した圧縮空気A34は、空気加熱器54に導入されて最適作動温度に加熱される。そして、空気加熱器54を通過した最適作動温度の圧縮空気A54は、FC発電部20の空気極側へ導入される。
【0084】
FC発電部20内において、燃料極へ導入された天然ガス及び水蒸気の混合ガスF24は、内部改質反応を起こして水素と一酸化炭素となる。この反応は吸熱反応であるため、この内部改質反応によってもFC発電部20の発生熱を吸熱することができる。また、空気極の圧縮空気A54中の酸素は、O2-イオンとなり、固体酸化物電解質を伝導してこれらの水素及び一酸化炭素と化学反応を起こし、水或いは二酸化炭素を生成する。この反応により、電気エネルギーと熱が発生する。発生した熱のうち、FC発電部20の電極内部を通過する燃料ガス及び空気に移行した分は、燃焼部22の燃焼熱とあわせて、反応ガス加熱器50以降の構成要素の熱回収に利用される。また、発生した熱のうち、FC発電部20の外表面に接する電池発生熱交換部72に移行した分は、電池発生熱交換部72を通過する熱交換媒体M70を介して電池発生熱利用系74により熱回収されることとなる。これにより、水或いは二酸化炭素の生成は発熱反応であるにもかかわらず、FC発電部20に備えらた電池発生熱回収系70により適度に吸熱されるのでFC発電部20の温度は所望の作動温度に保持される。
【0085】
このように、電池発生熱回収系70をFC発電部20に付設することにより、FC発電部20の発生熱は熱交換媒体M70により直接回収されることとなり、その結果、FC発電部20は所望の作動温度に保持されることとなる。また、FC発電部20には、電極反応を所望の条件で進行させるために必要とされるだけの量の空気及び燃料ガスのみを供給すればよい。従って、反応ガスの利用率が向上することになり、FC発電部20の発電効率を上げることができる。また、電池発生熱回収系70の電池発生熱利用系74においてFC発電部20の発生熱を有効利用することにより、プラント効率も向上させることが可能となる。
【0086】
図5は、図4に示した複合発電プラントにおける電池発生熱回収系70の第1態様を示す概略構成図である。
【0087】
同図に示す電池発生熱回収系70Aは、電池発生熱交換部72と電池発生熱利用系74とから構成されており、電池発生熱交換部72と電池発生熱利用系74とは、両者の間を循環する熱交換媒体M70とにより熱的に接続されている。
【0088】
電池発生熱利用系74は、蒸気発生器(HRSG)74aと、熱交換媒体循環供給手段74bと、蒸気タービン(ST)74cと、発電機74dと、復水器74eと、ポンプ74fとから構成されている。熱交換媒体循環供給手段74bは、例えば、ポンプ、ブロア等からなり、熱交換媒体M70を電池発生熱交換部72と電池発生熱利用系74との間で循環させる。蒸気発生器74aは、熱交換媒体M70から供給されるFC発電部20の発生熱を利用して水蒸気を発生させ、水蒸気S74aを蒸気タービン74cに供給する。蒸気タービン74cは、蒸気発生器74aから供給された水蒸気S74aを作動流体として動力を回収する。発電機74dは、蒸気タービン74cと同軸に接続されており、蒸気タービン74cの動力により作動して電力を発生する。復水器74eは、蒸気タービン74cからの排出蒸気S74cを復水させる。復水器74eによって再生された水W74eはポンプ74fによって蒸気発生器74aに送水される。
【0089】
以上のような構成の電池発生熱回収系70Aによれば、FC発電部20を所望の作動温度に保持しつつFC発電部20の発生熱を回収し、回収エネルギを蒸気タービン74cによって電気エネルギーに変換して有効利用することが可能となる。その結果、プラント効率も向上することとなる。
【0090】
図6は、図4に示した複合発電プラントにおける電池発生熱回収系70の第2態様を示す概略構成図である。
【0091】
同図に示す電池発生熱回収系70Bは、電池発生熱交換部72と電池発生熱利用系74とから構成されており、電池発生熱交換部72と電池発生熱利用系74とは、両者の間を循環する熱交換媒体M70とにより熱的に接続されている。
【0092】
電池発生熱利用系74は、蒸気発生器74aと、熱交換媒体循環供給手段74bと、ポンプ74fと、水タンク74gと、蒸気混合器74hから構成されている。熱交換媒体循環供給手段74bは、熱交換媒体M70を電池発生熱交換部72と電池発生熱利用系74との間で循環させる。蒸気発生器74aは、熱交換媒体M70から供給されるFC発電部20の発生熱を利用して水蒸気を発生させ、水蒸気S74aを蒸気混合器74hに供給する。蒸気混合器74hは、蒸気発生器74aから供給された水蒸気S74aを、FC発電部20の排出ガスG70と混合させ、GT発電部30内のガスタービン32に作動流体として供給する。
【0093】
以上のような構成の電池発生熱回収系70Bによれば、FC発電部20の発生熱は、排ガスに移行した分も、電極構成材料部に移行した分も最終的にガスタービン32において回収して有効利用できることとなる。これにより、ガスFC発電部20を所望の作動温度に保持しつつFC発電部20の発生熱を回収し、ガスタービン32によって電気エネルギーに変換して有効利用することが可能となる。その結果、プラント効率も向上することとなる。
【0094】
図7は、図4に示した複合発電プラントにおける電池発生熱回収系70の第3態様を示す概略構成図である。
【0095】
電池発生熱回収系70Cは、電池発生熱交換部72と電池発生熱利用系74とから構成されており、電池発生熱交換部72と電池発生熱利用系74とは、両者の間を循環する熱交換媒体M70とにより熱的に接続されている。
【0096】
電池発生熱利用系74は、燃料ガス加熱器74iと、空気加熱器74jとから構成されている。燃料ガス加熱器74iと空気加熱器74jとは、図2〜4に示した燃料ガス加熱器52及び空気加熱器54と同じ機能を有するものである。この場合には、加熱器74i,74jは、熱交換媒体M70を介してFC発電部20の発生熱を利用して燃料ガス及び空気を昇温させ、FC発電部20に供給するものである。
【0097】
以上のような構成の電池発生熱回収系70Cによれば、FC発電部20を所望の作動温度に保持しつつ、その発生熱を利用して空気と燃料ガスとをそれぞれ加熱することができる。また、FC発電部20の排ガスを熱損失の無い高温の状態でGT発電部30に直接供給することも可能となる。その結果、プラント効率も向上することとなる。
【0098】
図8は、図4に示した複合発電プラントにおける電池発生熱回収系70の第4態様を示す概略構成図である。
【0099】
電池発生熱回収系70Dは、電池発生熱交換部72と電池発生熱利用系74とから構成されており、電池発生熱交換部72と電池発生熱利用系74とは、両者の間を循環する熱交換媒体M70とにより熱的に接続されている。
【0100】
電池発生熱利用系74は、熱交換器74kから構成されている。熱交換器74kは、図2〜3に示した燃焼器31と同じ機能を有するものであり、この場合、熱交換器74kは、熱交換媒体M70を介してFC発電部20の発生熱をGT発電部30に含まれるガスタービン32の作動ガスを昇温させるために利用される。
【0101】
以上のような構成の電池発生熱回収系70Dによれば、FC発電部20を所望の作動温度に保持しつつ、その発生熱を利用してGT発電部30の入口における作動ガスの温度を高く設定することが可能となる。従って、GT発電部30の発電効率を向上させることができる。また一方で、FC発電部20の排出ガスを有効に利用して空気と燃料ガスとをそれぞれ加熱することができる。その結果、プラント効率も向上することとなる。
【0102】
〔第3実施形態〕
図9は本発明による複合発電プラントの第3実施形態を示す概略構成図である。
同図に示す複合発電プラント12は、主として、燃料ガス供給部80と、空気供給部90と、FC発電部20と、燃焼部(仮想アフターバーナー)22と、発電を行うとともに空気を圧縮してFC発電部20に供給するGT発電部30と、GT排排熱回収系40と、反応ガス予熱再生器60とから構成されている。
【0103】
この複合発電プラント12では、燃料ガス供給部80と、空気供給部90と、FC発電部20と、燃焼部22と、GT発電部30と、反応ガス予熱再生器60とは、それぞれの作動条件が最適化されており、各機器は、FC発電部20に対して、作動温度(例えば、約950℃)よりも低温に設定された燃料ガス及び燃料ガスを供給しても、所望の発電条件でFC発電部20が作動できるように燃料ガス及び燃料ガスの温度、供給圧、流量等を調節する反応ガス供給手段として機能する。
【0104】
FC発電部20は、燃料ガスとしての天然ガスと、空気とを固体酸化物電解質を介して反応させて発電する内部改質型SOFCのスタックを備えている。燃焼部22はFC発電部20の排ガスG20を燃焼させて高温の燃焼ガスG22を生成する。
【0105】
一方、GT発電部30は、ガスタービン(GT)32と、空気圧縮機34と、発電機36と、熱交換器38から構成されている。ガスタービン32は、燃焼部22から排出された燃焼ガスG22を作動流体として動力を回収する。空気圧縮機34は、ガスタービン32と同軸に接続されており、ガスタービン32の動力により作動して空気供給部90から空気A90を吸込んで圧縮する。発電機36は、空気圧縮機34を介してガスタービン32と同軸に接続されており、ガスタービン32の動力により作動して電力を発生する。熱交換器38は、燃料ガス供給部80からの天然ガスF80を空気圧縮機34から排出されるガスタービン32の翼冷却用の圧縮空気A34aと熱交換させて加熱する。
【0106】
反応ガス予熱再生器60は、GT発電部30とGT排排熱回収系40の間の排気ライン上に設けられており、燃料ガス予熱再生器62と空気予熱再生器64とから構成されている。燃料ガス予熱再生器62は、燃料ガスをGT発電部30の排気ガスG32により加熱するものである。空気予熱再生器64は、空気をGT発電部30の排気ガスG32により加熱するものである。
【0107】
また、GT排熱回収系40は、主として、蒸気発生器(HRSG)41と、煙突46とから構成されている。蒸気発生器41は、GT発電部30のガスタービン32から排出される排ガスG32の熱を利用して水蒸気S41を発生させて外部の蒸気タービン(図示せず)等に供給する。蒸気発生器41を通過した排ガスG41は煙突46から大気中に放出される。
【0108】
以下に、SOFCの作動温度を反応に最適な値に制御した場合における複合発電プラント12の動作について説明する。
【0109】
燃料ガス供給部80から供給される天然ガスF80(約15℃)は、GT発電部30内の熱交換器38に導入されて予熱される。熱交換器38を通過した天然ガスF38は、燃料ガス予熱再生器62に導入され中間温度に加熱される。燃料ガス予熱再生器62を通過した天然ガスF62は、蒸気発生器41から供給される内部改質用蒸気S41と混合される。内部改質用蒸気S41と混ざり合った天然ガスF38は、本来の作動温度よりも低温(例えば、約550℃)の状態で、FC発電部20の燃料極に導入される。
【0110】
一方、空気供給部90からGT発電部30内に取り入れられた空気A90(約15℃)は、空気圧縮機34により圧縮されると共に所定温度(例えば、約374℃)まで昇温させられる。空気圧縮機34を通過した圧縮空気A34の一方A34aは、熱交換器38を通過して天然ガスF90を予熱した後、翼冷却空気A38としてガスタービン32に導入される。もう一方の圧縮空気A34bは、空気予熱再生器64に導入されて作動温度よりも低温となるように加熱される。そして、空気予熱再生器64を通過した圧縮空気A64は、FC発電部20の空気極側へ導入される。
【0111】
ここで、FC発電部20の燃料極及び空気極は多孔質のガス拡散電極であることから、上記の反応ガス供給手段によりFC発電部20の作動温度よりも低温に設定された空気と燃料ガスは、電極内の細孔内を進行する過程において微細な反応サイトで発生する発生熱を直接吸熱して電極内を冷却する一方、自らは加熱されることになる。そして、加熱されたこれらの燃料ガス及び空気は、それぞれ電極内をさらに進行しながら微細な反応サイトで化学反応を起こし、後に続く低温の反応ガスを昇温させることとなる。この結果、FC発電部20を所望の作動温度に保持することが可能となる。
【0112】
このように、反応ガス供給手段を構成する燃料ガス供給部80と、空気供給部90と、FC発電部20と、燃焼部22と、GT発電部30と、反応ガス予熱再生器60との作動条件を、FC発電部20に対して、本来の作動温度より低温に設定した燃料ガス及び燃料ガスを供給しても、所望の発電条件でFC発電部20が作動できるように最適化することにより、FC発電部20の発生熱は電極内部で反応ガスにより直接回収されることとなり、その結果、FC発電部20は所望の作動温度に保持されることとなる。また、FC発電部20には、電極反応を所望の条件で進行させるために必要とされる量の空気及び燃料ガスだけを供給すればよい。従って、反応ガスの利用率が向上することになり、FC発電部20の発電効率を上げることができる。
【0113】
これに伴って、GT発電部30の空気圧縮機34で消費される動力が低減される。さらに、FC発電部20から排出される高温の排ガスは、GT発電部30に直接供給できるので、GT発電部30の出力を上げることができ、かつ、その排出ガスも高温で高品位なものとなることから、蒸気タービン等により有効に回収できることとなる。加えて、FC発電部20の排ガスを直接GT発電部30に供給できるので、GT発電部30における燃料ガス(燃料ガス)の消費を低減できる。
【0114】
以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではない。例えば、プラント効率を所望の最適値に保持するために、燃料電池発電部、ガスタービン発電部、燃料ガス供給部、空気供給部における作動条件を制御する制御手段を更に設けると好ましい。
【0115】
また、上述した各複合発電プラントにおいては、燃料電池としてSOFCを使用した例について説明したが、本発明に係る複合発電プラントでは、ボトミングサイクルを利用できる燃料電池であれば他の燃料電池も使用可能である。
【0116】
さらに、上述した各複合発電プラントにおいては、内部改質型燃料電池を使用した例について説明したが、本発明に係る複合発電プラントは、外部改質器を有する外部改質型燃料電池を用いて構成することも可能である。
【0117】
【発明の効果】
本発明によれば、燃料電池を所望の作動温度に保持するとともに高い発電効率を達成することができ、さらにFCの発生熱を効率よく回収して利用することが可能となるので、プラント効率の高い複合発電プラントを提供することができる。
【図面の簡単な説明】
【図1】本発明による複合発電プラントの第1実施形態を示す概略構成図である。
【図2】本発明による複合発電プラントの第1実施形態の変形例を示す概略構成図である。
【図3】本発明による複合発電プラントの第1実施形態の他の変形例を示す概略構成図である。
【図4】本発明による複合発電プラントの第2実施形態を示す概略構成図である。
【図5】本発明による複合発電プラントの第2実施形態に含まれる電池発生熱回収系の第1態様を示す概略構成図である。
【図6】本発明による複合発電プラントの第2実施形態に含まれる電池発生熱回収系の第2態様を示す概略構成図である。
【図7】本発明による複合発電プラントの第2実施形態に含まれる電池発生熱回収系の第3態様を示す概略構成図である。
【図8】本発明による複合発電プラントの第2実施形態に含まれる電池発生熱回収系の第4態様を示す概略構成図である。
【図9】本発明による複合発電プラントの第3実施形態を示す概略構成図である。
【図10】従来の複合発電プラントの一例を示す概略構成図である。
【符号の説明】
10,10A,10B,11,12…複合発電プラント、20…FC発電部、22…燃焼部、24…反応ガス熱交換部、24a…燃料ガス熱交換部、24b…空気熱交換部、30…GT発電部、31…燃焼器、32…ガスタービン、34…空気圧縮機、36…発電機、38…熱交換器、40…GT排熱回収系、41…蒸気発生器、42…蒸気タービン、43…発電機、44…復水器、45…熱交換器、46…煙突、50…反応ガス加熱器、52…燃料ガス加熱器、54…空気加熱器、60…反応ガス予熱再生器、62…燃料ガス予熱再生器、64…空気予熱再生器、70,70A,70B,70C,70D…電池発生熱回収系、72…電池発生熱交換部、74…電池発生熱利用系、74a…蒸気発生器、74b…熱交換媒体循環供給手段、74c…蒸気タービン、74d…発電機、74e…復水器、74f…ポンプ、74g…水タンク、74h…蒸気混合器、74i…燃料ガス加熱器、74j…空気加熱器、74k…熱交換器、76…熱交換媒体、80…燃料ガス供給部、90…空気供給部、95…蒸気発生器、96…水供給部。

Claims (1)

  1. 空気と燃料ガスとを電解質を介して反応させて発電する燃料電池発電部と、前記燃料電池発電部から排出される空気極排ガス及び燃料極排ガスを燃焼させて燃焼ガスを生成する燃焼部と、前記燃焼ガスにより駆動されて空気を圧縮して前記燃料電池に供給すると共に発電するガスタービン発電部とを備えた複合発電プラントにおいて、
    前記燃料電池発電部に付設されており、前記燃料電池発電部の発生熱を熱交換媒体により回収して利用する共に前記燃料電池発電部を所望の作動温度に保持する電池発生熱回収系を備え、
    前記電池発生熱回収系は、前記熱交換媒体により回収された熱を利用して前記燃焼部から排出される前記燃焼ガスを加熱して前記ガスタービン発電部に供給する燃焼ガス加熱器を有することを特徴とする複合発電プラント。
JP26954499A 1999-09-22 1999-09-22 複合発電プラント Expired - Fee Related JP4451945B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26954499A JP4451945B2 (ja) 1999-09-22 1999-09-22 複合発電プラント

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26954499A JP4451945B2 (ja) 1999-09-22 1999-09-22 複合発電プラント

Publications (2)

Publication Number Publication Date
JP2001090508A JP2001090508A (ja) 2001-04-03
JP4451945B2 true JP4451945B2 (ja) 2010-04-14

Family

ID=17473868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26954499A Expired - Fee Related JP4451945B2 (ja) 1999-09-22 1999-09-22 複合発電プラント

Country Status (1)

Country Link
JP (1) JP4451945B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5123453B2 (ja) * 2001-09-21 2013-01-23 三菱重工業株式会社 タービン発電設備
GB2388160A (en) * 2002-05-03 2003-11-05 Rolls Royce Plc A gas turbine engine and fuel cell stack combination
JP4209168B2 (ja) * 2002-10-10 2009-01-14 三菱重工業株式会社 燃料電池流体供給システム、タービン発電設備及び複合発電設備
JP4119723B2 (ja) * 2002-10-11 2008-07-16 三菱重工業株式会社 固体酸化物形燃料電池発電設備
JP2004227846A (ja) * 2003-01-21 2004-08-12 Mitsubishi Materials Corp 燃料電池モジュール
US7344787B2 (en) * 2003-10-29 2008-03-18 General Motors Corporation Two-stage compression for air supply of a fuel cell system
JP5004156B2 (ja) * 2006-04-19 2012-08-22 一般財団法人電力中央研究所 発電設備
JP2008277280A (ja) * 2007-03-30 2008-11-13 Yamatake Corp 燃料電池システムおよび燃料電池システムの運転方法
JP5294291B2 (ja) * 2007-05-15 2013-09-18 一般財団法人電力中央研究所 発電設備
JP5185658B2 (ja) * 2008-02-27 2013-04-17 三菱重工業株式会社 コンバインドシステム
JP6029436B2 (ja) * 2012-11-29 2016-11-24 三菱日立パワーシステムズ株式会社 発電システム及び発電システムの運転方法

Also Published As

Publication number Publication date
JP2001090508A (ja) 2001-04-03

Similar Documents

Publication Publication Date Title
JP2013191572A (ja) Mcfc発電システムとその運転方法
JP4451945B2 (ja) 複合発電プラント
JP2004204849A (ja) 冷却タービン一体型燃料電池ハイブリッド発電装置
JP2001155751A (ja) 燃料電池とガス供給装置を有する配列およびその配列の作動方法
JP2000164233A (ja) 固体高分子型燃料電池発電システム
JP2889807B2 (ja) 燃料電池システム
JP3548043B2 (ja) 燃料電池発電システム
JP2003017098A (ja) 燃料電池システム
JP2005044630A (ja) 燃料電池システム
JP2003017097A (ja) ガス加湿装置及び燃料電池システム
JP4192023B2 (ja) 熱電供給システム
JP3986430B2 (ja) 固体酸化物形燃料電池を用いた水素利用システム
JP2718239B2 (ja) 固体高分子電解質型燃料電池発電装置
JP3072630B2 (ja) 燃料電池複合発電装置
JP3562378B2 (ja) 高分子電解質型燃料電池システム
JP4052784B2 (ja) 熱電併給型燃料電池発電装置およびその運転方法
JP4745479B2 (ja) 複合発電プラント
JP2001185167A (ja) 燃料電池コジェネレーションシステム
US20040241514A1 (en) Fuel cell device and power generating facility
JP3992423B2 (ja) 燃料電池システムの運転起動方法およびその装置
JPH02197057A (ja) 燃料電池発電装置
JP3897149B2 (ja) 固体電解質型燃料電池・スターリングエンジンコンバインドシステム
EP1816695B1 (en) Combined heat and power plant
JP2003272677A (ja) 固体酸化物形燃料電池及びそれを用いたコージェネレーションシステム
JP3831836B2 (ja) 固体高分子形燃料電池発電装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100129

R151 Written notification of patent or utility model registration

Ref document number: 4451945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees