JP4451438B2 - 窒素製造方法及び装置 - Google Patents

窒素製造方法及び装置 Download PDF

Info

Publication number
JP4451438B2
JP4451438B2 JP2006355080A JP2006355080A JP4451438B2 JP 4451438 B2 JP4451438 B2 JP 4451438B2 JP 2006355080 A JP2006355080 A JP 2006355080A JP 2006355080 A JP2006355080 A JP 2006355080A JP 4451438 B2 JP4451438 B2 JP 4451438B2
Authority
JP
Japan
Prior art keywords
oxygen
enriched
fluid
nitrogen gas
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006355080A
Other languages
English (en)
Other versions
JP2008164236A (ja
Inventor
真 入澤
博志 橘
俊幸 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2006355080A priority Critical patent/JP4451438B2/ja
Publication of JP2008164236A publication Critical patent/JP2008164236A/ja
Application granted granted Critical
Publication of JP4451438B2 publication Critical patent/JP4451438B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04424Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system without thermally coupled high and low pressure columns, i.e. a so-called split columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04624Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using integrated mass and heat exchange, so-called non-adiabatic rectification, e.g. dephlegmator, reflux exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/54Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

本発明は、窒素製造方法及び装置に関し、詳しくは、空気を深冷分離法により分離して製品窒素(窒素ガス、液体窒素)を採取する方法及び装置に関する。
空気を深冷分離して製品窒素を製造する方法としては、基本的に単精留塔装置を用いる方法が広く行われており、近年は、製品収率や動力原単位を改善するために様々なプロセスが提案されている。その中で、二塔の精留塔を採用し、従来のプロセスでは破棄されていた廃ガスを第二の精留塔の原料とするプロセスは、第二の精留塔に原料として導入する廃ガスを圧縮したり、昇温したりすることがないので、新たな圧縮動力や昇温に必要な熱交換器も基本的に不要となるという利点を有している。このプロセスでは、第二の精留塔から得られる一部の製品窒素ガスを所定圧力まで昇圧することが必要となる場合もあるが、必要エネルギーは最小限となり、従来のプロセスに比較して製品収率や動力原単位を大幅に改善することが可能である(例えば、特許文献1参照。)。
特許第3738213号公報
しかし、上述のプロセスは、プロセスの性格上、装置運転圧力の下限が存在するため、製品窒素圧力が約0.8MPa以上で効率的な装置であり、低い動力原単位が期待できる。しかし、製品圧力が0.8MPaあるいはそれより低い場合には、高製品収率の特徴を生かしつつ対応することは困難であった。なお、本明細書では、圧力{MPa}は絶対圧力を示している。
そこで本発明は、製品窒素圧力が比較的低い場合であっても、高い製品収率を維持できる窒素製造方法及び装置を提供することを目的としている。
上記目的を達成するため、本発明の原料空気を深冷液化分離して製品窒素を採取する第1の窒素製造方法は、圧縮、精製、冷却した第1原料空気を低温蒸留して第1窒素ガスと第1酸素富化液化流体とに分離する第1分離工程と、前記第1酸素富化液化流体を減圧後に、後述の第1酸素富化ガス流体の全量との低温蒸留によって第2原料空気と第2酸素富化液化流体とに分離する第2分離工程と、前記第2酸素富化液化流体の一部と前記第1窒素ガスの一部とを間接熱交換させて第1窒素ガスを凝縮液化して第1液化窒素を得ると同時に第2酸素富化液化流体の一部を蒸発ガス化して第1酸素富化ガス流体を得る第1間接熱交換工程と、前記第2原料空気を低温蒸留して第2窒素ガスと第3酸素富化液化流体とに分離する第3分離工程と、前記第2窒素ガスの一部と減圧後の前記第3酸素富化液化流体とを間接熱交換させて第2窒素ガスを凝縮液化して第2液化窒素を得ると同時に第3酸素富化液化流体を蒸発ガス化して第2酸素富化ガス流体を得る第2間接熱交換工程と、前記第2酸素富化液化流体の残部を減圧後に前記第1窒素ガスの残部の一部と間接熱交換させて第1窒素ガスを凝縮液化して第3液化窒素を得ると同時に第2酸素富化液化流体の全量を蒸発ガス化して第3酸素富化ガス流体を得る第3間接熱交換工程と、前記第1窒素ガスの残部を熱回収後に第1製品窒素ガスとして導出する第1製品回収工程と、前記第2窒素ガスの残部を熱回収後に第2製品窒素ガスとして導出する第2製品回収工程と、を含むことを特徴とし、さらに、前記第2分離工程と第1間接熱交換工程とを内部熱交換型精留塔で行うこと、前記第2分離工程の低温蒸留を1回の気液平衡のみで行うことを特徴としている。
また、本発明の第2の窒素製造方法は、圧縮、精製、冷却した第1原料空気を低温蒸留して第1窒素ガスと第1酸素富化液化流体とに分離する第1分離工程と、前記第1窒素ガスの一部と減圧後の前記第1酸素富化液化流体とを間接熱交換させて第1窒素ガスを凝縮液化して第1液化窒素を得ると同時に第1酸素富化液化流体の一部を蒸発ガス化して第1酸素富化気液混相流体を得る第1間接熱交換工程と、前記第1酸素富化気液混相流体を1回の気液平衡のみで第2原料空気と第2酸素富化液化流体とに分離する第2分離工程と、前記第2原料空気を低温蒸留して第2窒素ガスと第3酸素富化液化流体とに分離する第3分離工程と、前記第2窒素ガスの一部と減圧後の前記第3酸素富化液化流体とを間接熱交換させて第2窒素ガスを凝縮液化して第2液化窒素を得ると同時に第3酸素富化液化流体を蒸発ガス化して第2酸素富化ガス流体を得る第2間接熱交換工程と、減圧後の前記第2酸素富化液化流体と前記第1窒素ガスの残部の一部とを間接熱交換させて第1窒素ガスを凝縮液化して第3液化窒素を得ると同時に第2酸素富化液化流体の全量を蒸発ガス化して第3酸素富化ガス流体を得る第3間接熱交換工程と、前記第1窒素ガスの残部を熱回収後に第1製品窒素ガスとして導出する第1製品回収工程と、前記第2窒素ガスの残部を熱回収後に第2製品窒素ガスとして導出する第2製品回収工程と、を含むことを特徴としている。
また、第1の製造方法を実施する本発明の第1の窒素製造装置は、圧縮、精製、冷却した第1原料空気を低温蒸留して第1窒素ガスと第1酸素富化液化流体とに分離する第1分離工程を行う精留塔と、前記第1酸素富化液化流体を減圧手段で減圧後に、後述の第1酸素富化ガス流体の全量との低温蒸留によって第2原料空気と第2酸素富化液化流体とに分離する第2分離工程を行う精留塔と、前記第2酸素富化液化流体の一部と前記第1窒素ガスの一部とを間接熱交換させて第1窒素ガスを凝縮液化して第1液化窒素を得ると同時に第2酸素富化液化流体の一部を蒸発ガス化して第1酸素富化ガス流体を得る第1間接熱交換工程を行う凝縮器と、前記第2原料空気を低温蒸留して第2窒素ガスと第3酸素富化液化流体とに分離する第3分離工程行う精留塔と、前記第2窒素ガスの一部と減圧手段で減圧後の前記第3酸素富化液化流体とを間接熱交換させて第2窒素ガスを凝縮液化して第2液化窒素を得ると同時に第3酸素富化液化流体を蒸発ガス化して第2酸素富化ガス流体を得る第2間接熱交換工程を行う凝縮器と、前記第2酸素富化液化流体の残部を減圧手段で減圧後に前記第1窒素ガスの残部の一部と間接熱交換させて第1窒素ガスを凝縮液化して第3液化窒素を得ると同時に第2酸素富化液化流体の全量を蒸発ガス化して第3酸素富化ガス流体を得る第3間接熱交換工程を行う凝縮器と、前記第1窒素ガスの残部を熱回収手段で熱回収後に第1製品窒素ガスとして導出する第1製品回収経路と、前記第2窒素ガスの残部を熱回収手段で熱回収後に第2製品窒素ガスとして導出する第2製品回収経路と、を備えていることを特徴とし、さらに、前記第2分離工程行う精留塔と前記第1間接熱交換工程を行う凝縮器とが内部熱交換型精留塔であること、前記第2分離工程を行う精留塔は、前記第1間接熱交換工程を行う凝縮器を内蔵した気液分離器であることを特徴としている。
また、第2の製造方法を実施する本発明の第2の窒素製造装置は、圧縮、精製、冷却した第1原料空気を低温蒸留して第1窒素ガスと第1酸素富化液化流体とに分離する第1分離工程を行う精留塔と、前記第1窒素ガスの一部と減圧手段で減圧後の前記第1酸素富化液化流体とを間接熱交換させて第1窒素ガスを凝縮液化して第1液化窒素を得ると同時に第1酸素富化液化流体の一部を蒸発ガス化して第1酸素富化気液混相流体を得る第1間接熱交換工程を行う凝縮器と、前記第1酸素富化気液混相流体を気液分離して第2原料空気と第2酸素富化液化流体とに分離する第2分離工程を行う気液分離器と、前記第2原料空気を低温蒸留して第2窒素ガスと第3酸素富化液化流体とに分離する第3分離工程を行う精留塔と、前記第2窒素ガスの一部と減圧手段で減圧後の前記第3酸素富化液化流体とを間接熱交換させて第2窒素ガスを凝縮液化して第2液化窒素を得ると同時に第3酸素富化液化流体を蒸発ガス化して第2酸素富化ガス流体を得る第2間接熱交換工程を行う凝縮器と、減圧手段で減圧後の前記第2酸素富化液化流体と前記第1窒素ガスの残部の一部とを間接熱交換させて第1窒素ガスを凝縮液化して第3液化窒素を得ると同時に第2酸素富化液化流体の全量を蒸発ガス化して第3酸素富化ガス流体を得る第3間接熱交換工程を行う凝縮器と、前記第1窒素ガスの残部を熱回収手段で熱回収後に第1製品窒素ガスとして導出する第1製品回収経路と、前記第2窒素ガスの残部を熱回収手段で熱回収後に第2製品窒素ガスとして導出する第2製品回収経路と、を備えていることを特徴としている。
本発明によれば、比較的低い圧力、例えば0.6MPa程度の製品窒素を高収率、低動力原単位で得ることができる。
図1は本発明の第1形態例を示す窒素製造装置の系統図である。この窒素製造装置は、精留塔として、第1精留塔11,第2精留塔12及び第3精留塔13の3塔を備えるとともに、凝縮器も、第1凝縮器14,第2凝縮器15及び第3凝縮器16の3基を備えている。
以下、気液の流れに基づいてプロセスを詳細に説明する。フィルター20から吸い込まれ、原料空気圧縮機21で圧縮され、アフタークーラー22で圧縮熱を除去され、精製器23で含有する水蒸気、二酸化炭素を精製除去された第1原料空気は、保冷外槽内の主熱交換器24で所定温度に冷却された後、経路25を通って前記第1精留塔11の下部に導入される。この第1精留塔11では、第1原料空気が低温蒸留されて塔上部の第1窒素ガスと塔下部の第1酸素富化液化流体とに分離する(第1分離工程)。
第1精留塔11の上部から経路26に抜き出された第1窒素ガスの一部は、経路27に分岐して前記主熱交換器24で第1原料空気と間接熱交換を行うことにより昇温し、第1製品回収経路28から第1製品窒素ガスとして導出される(第1製品回収工程)。
また、第1精留塔11の下部から経路29に導出された前記第1酸素富化液化流体は、減圧弁30で所定の圧力に減圧された後、第2精留塔12の上部に導入される。この第2精留塔12は下部に前記第1凝縮器14を備えた精留塔である。第2精留塔12を下降する第1酸素富化液化流体は、第1凝縮器14で発生した上昇ガス(後述の第1酸素富化ガス流体)との間で低温蒸留が進み、第1酸素富化液化流体は酸素組成が高くなって第2酸素富化液化流体となり、第2精留塔12の下方に流下するとともに、上昇ガスは第1酸素富化液化流体よりも酸素組成が低い第2原料空気となって第2精留塔12の上部に上昇する(第2分離工程)。第2精留塔12の下方に流下した第2酸素富化液化流体は、第2精留塔12の底部に備えられた第1凝縮器14を浸漬し、第1凝縮器14の冷流体として供される。
前記第1凝縮器14では、前記第2酸素富化液化流体と、前記経路26から経路31に分岐した前記第1窒素ガスの一部とが間接熱交換を行い、第1窒素ガスが液化して第1液化窒素となると同時に、第2酸素富化液化流体は、その一部が気化して塔内を上昇する第1酸素富化ガス流体となる(第1間接熱交換工程)。第1液化窒素は経路32を通って第1精留塔11の上部に下降液として導入され、また、第1酸素富化ガス流体は第2精留塔12を上昇して前記第1酸素富化液化流体との間で低温蒸留を行う。第1凝縮器14で気化しなかった第2酸素富化液化流体の残部である滞留液(後述の第4酸素富化液化流体)は経路33に導出される。なお、本形態例では第1酸素富化ガス流体と第2酸素富化液化流体の残部である滞留液とは気液平衡状態であるので、第2分離工程で流下する第2酸素富化液化流体の組成と第2酸素富化液化流体の残部である滞留液の組成とは基本的に異なり、第2酸素富化液化流体の酸素組成よりも第2酸素富化液化流体の残部である滞留液の酸素組成が高くなっている。
前記第2精留塔12の上部に分離した第2原料空気は、塔上部から経路34に抜き出されて前記第3精留塔13の下部に導入される。この第3精留塔13では、第2原料空気が低温蒸留されて塔上部の第2窒素ガスと塔下部の第3酸素富化液化流体とに分離される(第3分離工程)。第3精留塔13の上部から経路35に抜き出された第2窒素ガスの一部は、経路36に分岐して前記主熱交換器24で第1原料空気と間接熱交換を行うことにより昇温し、第2製品回収経路37から第2製品窒素ガスとして導出される(第2製品回収工程)。この第2製品窒素ガスは、導出した圧力のままで供給先に供給することもできるが、前記第1製品窒素ガスに合流させて供給する際には、窒素圧縮機38で昇圧し、アフタークーラー39で冷却してから第1製品窒素ガスに合流させ、製品供給経路40から製品窒素ガス(GN2)として供給先に供給すればよい。
第3精留塔13の下部から経路41に導出された前記第3酸素富化液化流体は、減圧弁42で所定の圧力に減圧された後、前記第2凝縮器15に導入される。この第2凝縮器15には、前記経路35から経路43に分岐した第2窒素ガスの残部が導入され、第2窒素ガスと第3酸素富化液化流体とが間接熱交換することにより、第3酸素富化液化流体が気化して第2酸素富化ガス流体になるとともに、第2窒素ガスが液化して第2液化窒素となる(第2間接熱交換工程)。この第2液化窒素は、経路44を通って第精留塔13の上部に下降液として導入される。
前記第2酸素富化ガス流体は、第2凝縮器15から経路45に導出され、前記主熱交換器24で第1原料空気と間接熱交換を行うことにより昇温して経路46に導出され、必要に応じて前記精製器23の再生に用いられる。
一方、前記第2酸素富化液化流体の残部である滞留液は、経路33に第4酸素富化液化流体として導出され、減圧弁47で所定圧力に減圧された後、前記第3凝縮器16に導入される。この第3凝縮器16には、前記経路26から経路48に分岐した前記第1窒素ガスの残部が導入され、第1窒素ガスと第4酸素富化液化流体とが間接熱交換を行い、第4酸素富化液化流体が気化して第3酸素富化ガス流体になるとともに、第1窒素ガスが液化して第3液化窒素となる(第3間接熱交換工程)。この第3液化窒素は、経路49に導出されて前記経路32を流れる第1液化窒素に合流し、第1精留塔11の上部に下降液として導入される。
前記第3酸素富化ガス流体は、第3凝縮器16から経路50に導出されて前記主熱交換器24に導入される。第3酸素富化ガス流体の一部は、中間温度で経路51にタービン流体として分岐し、膨張タービン52に導入されて膨張し、装置の運転に必要な寒冷を発生し、経路53を経て前記経路45の第2酸素富化ガス流体と合流し、再び主熱交換器24に導入される。主熱交換器24から経路54に導出された第3酸素富化ガス流体の残部は、減圧弁55で減圧された後、前記経路46の第2酸素富化ガス流体に合流する。
また、第1精留塔11と第3精留塔13との間には、減圧弁56を備えた寒冷補給経路57が設けられており、第1精留塔11内の液流体を減圧弁56で減圧してから寒冷補給流体として第3精留塔13に導入することにより、第3精留塔13の運転に必要な寒冷を補給している。
さらに、図1に破線で示すように、装置外部からの液化窒素を、経路58から前記経路32を介して第1精留塔11に、経路59から前記経路44を介して第3精留塔13に寒冷源として導入することにより、あるいは、装置外部からの液化空気を、経路60から前記経路29に、経路61から前記経路41に寒冷源として導入することにより、前記膨張タービン52を省略することができる。なお、寒冷源として導入する流体の種類は特に限定されるものではなく、導入位置は流体の組成や圧力に応じて適宜設定することができる。また、寒冷源として外部からの流体の導入と膨張タービンとを併用することも可能である。
寒冷源として膨張タービン52を使用している場合で、第2製品回収経路37の第2製品窒素ガスを昇圧する必要があるときには、前記膨張タービン52を制動ブロワ式とし、制動ブロワを窒素圧縮機として利用することも可能である。
このように構成した窒素製造装置において、第2精留塔12の第2分離工程で低温蒸留を行うことと、第1凝縮器14の第1間接熱交換工程で全量を気化させずに一部を酸素組成が高い状態の液で抜き出すことにより、従来と比較して、第2原料空気の酸素組成を低くすることと第1精留塔の運転圧力を低くすることができるので、製品窒素収率の向上と、従来は効率的な運転が困難であった製品窒素圧力範囲でも効率的な運転が可能となった。
ここで、図1に示す本形態例のプロセス(以下、本形態例という)と、図6に示す前記特許文献1記載の従来のプロセス(以下、従来例という)とを比較して本形態例における作用効果を詳細に説明する。なお、図6に示す従来例の構成は、本形態例との比較を容易にするために特許文献1記載の構成と若干異なるが、基本的に特許文献1記載のものと同一である。また、従来例の説明中、本形態例の構成要素と実質的に同一と見なされる構成要素には百を加算した数字からなる符号を付してある。
まず、本形態例及び従来例において、装置運転圧力の下限は、第2凝縮器15,115における第2酸素富化ガス流体(経路45,145)の気化温度、気化圧力により支配される。すなわち、本形態例及び従来例では、第2凝縮器15,115で気化して経路45,145に導出された第2酸素富化ガス流体は、主熱交換器24,124等での圧力損失を含めて精製器23,123を再生した後に大気に放出できる圧力を有していなければならない。
本形態例における第2凝縮器15では、第3酸素富化液化流体と第2窒素ガスとを間接熱交換させることで第3酸素富化液化流体を気化させるので、第2窒素ガスの露点と第2酸素富化ガス流体の気化温度に所定の温度差が必要であり、その温度差を決めると、必要とされる第2酸素富化ガス流体の圧力から第2窒素ガス圧力、即ち第3精留塔13の最低運転圧力が決まる。さらに、第3精留塔13の運転圧力は、第2精留塔12の運転圧力となる。同様に第1凝縮器14における間接熱交換に必要な温度差から第1精留塔11の最低運転圧力が決まる。したがって、第2酸素富化ガス流体の酸素組成を低くできれば、第2窒素ガスの圧力、すなわち、第1精留塔11の圧力を低下することができる。
従来例では製品窒素の製造を第1分離工程(第1精留塔111)及び第2分離工程(第3精留塔113)の2段階で行っていたのに対し、本形態例では、従来例の第1分離工程と第2分離工程の間に新たに分離工程(本発明における第2精留塔12での第2分離工程)を設け、分離工程を3段階で行うので、第3分離工程からの第3酸素富化液化流体(経路41)の酸素組成を、従来例の酸素富化液化流体(経路141)よりも低くすることができる。
すなわち、従来例では、原料ガス(経路125)を第1分離工程(精留塔111)で第1の製品窒素ガス(経路126)と第1酸素富化液化流体(経路129)とに分離し、この第1酸素富化液化流体の全量を凝縮器114で気化させた後、その一部を第2分離工程の原料ガス(経路134)として第2分離工程(精留塔113)に導入していた。したがって、第1酸素富化液化流体(経路129)の酸素組成と第2分離工程(精留塔113)の原料ガスの酸素組成とは同じであった。
例えば、従来例では、第1分離工程からの第1酸素富化液化流体及び第2分離工程の原料ガスの酸素組成は、共に38%程度である。その結果、第2分離工程からの第2酸素富化液化流体(経路141)の酸素組成は55%程度となる。一方、本形態例では、第1分離工程からの第1酸素富化液化流体(経路29)は、第2分離工程に導入され、そこから酸素組成の少ない流体(第2原料空気:経路34)が取り出され、第2原料ガスとして第3分離工程に導入される。
したがって、本形態例では、第1分離工程からの第1酸素富化液化流体の酸素組成が38%程度であっても、第2分離工程から取り出される第2原料空気の酸素組成は、例えば20%程度にできる。その結果、第3分離工程からの第3酸素富化液化流体41の酸素組成は36%程度となる。
このとき、第2凝縮器15における第2酸素富化ガス流体の蒸発圧力が従来例と同じ場合でも、本形態例では第3酸素富化液化流体中の酸素組成が低い分だけ蒸発温度が低くなっている。このため、第2凝縮器15,115における第2窒素ガスと第2酸素富化ガス流体の温度差が同じであっても、従来例に比較して第3精留塔13の運転圧力を下げることができる。さらに、第3精留塔13の運転圧力が下がることから、第1精留塔11の運転圧力も下げることが可能となる。
つまり本形態例では、第2凝縮器15に導入する第3酸素富化液化流体の酸素組成を低くすることにより、第3精留塔13をはじめとして装置全体の運転圧力を下げることが可能となる。これにより、従来例より低い圧力で製品窒素ガスを低原単位で供給することが可能となる。
さらに、本形態例では、第1凝縮器14で気化しなかった第2酸素富化液化流体の残部を第4酸素富化液化流体(経路33)として抜き出すことにより、第1凝縮器14の冷流体である第2酸素富化液化流体の蒸発温度を低くでき、従来は効率的な運転が困難であった製品窒素圧力範囲でも効率的な運転が可能となる。
すなわち、図2(a)に示すように、第2酸素富化液化流体の残部を経路33から酸素組成55%の液体で抜き出し、その他を第1凝縮器で気化させた場合の第2酸素富化液化流体の気化温度は、図2(b)に示すように、第2酸素富化液化流体を全量気化させた後、その一部を経路33aから酸素組成55%のガスで抜き出した場合に比べて低くなることを利用している。これは、前者の場合、第2酸素富化液化流体の気化温度は、液相酸素組成55%(気相酸素組成は例えば29%)の流体の気液平衡温度となるが、後者の場合の気化温度は気相酸素組成55%(液相酸素組成は55%より多い)の流体の気液平衡温度となるからである。
したがって、図2(a)に示すように、第2酸素富化液化流体の一部を液で抜き出すことにより、第1凝縮器14の気化温度が下がり、その結果、従来例と比較して第1精留塔11,111に必要な運転圧力を下げることができる。なお、上記比較において、同じ酸素組成55%の液体あるいはガスを抜出すのは、第2精留塔12の上部から導出する第2原料空気の酸素組成を同じとするためである。
つまり、本形態例は、第2凝縮器15の冷流体である第2酸素富化ガス流体の酸素組成を低くすることによって、第3精留塔13の運転圧力を下げることと、第2酸素富化液化流体の残部を液として抜き出し、結果的に第1精留塔11の運転圧力を下げることにより、従来例では対応できなかった比較的圧力の低い製品窒素の製造に対応が可能なプロセスとなっている。
図3は本発明の第2形態例を示す窒素製造装置の系統図である。なお、以下の説明において、前記第1形態例に示した各構成要素と同一の構成要素には、それぞれ同一符号を付して詳細な説明は省略する。
本形態例に示す窒素製造装置は、前記第1形態例における第2精留塔12及び第1凝縮器14に代えて、内部熱交換型精留塔(Heat Integrated Distillation Column:以下HIDiCと言う。)17を用いた例を示している。第1精留塔11の上部から経路26に導出され、経路31に分岐した第1窒素ガスの一部は、HIDiC17の温流体通路17aの上部に導入され、第1精留塔11の下部から経路29に導出され、減圧弁30で減圧された第1酸素富化液化流体は、HIDiC17の冷流体通路17bの上部に導入される。
温流体通路17aを下降する第1窒素ガスは、冷流体通路17bを下降する第1酸素富化液化流体との間接熱交換で一部が液化して第1液化窒素となり、温流体通路17aの下部から経路32に導出されて第1精留塔11の上部に導入される。また、液化しなかった第1窒素ガスは、温流体通路17aの下部から経路27に導出され、前記主熱交換器24で常温まで昇温した後、第1製品回収経路28から第1製品窒素ガスとして導出される。
冷流体通路17bを下降する第1酸素富化液化流体は、前記第1窒素ガスとの間接熱交換により、一部の流体の気化と低温精留とが行われ、冷流体通路17bの下部からは酸素組成が高くなった、例えば酸素組成55%の第2酸素富化液化流体が経路33に抜き出され、減圧弁47で減圧された後、第3凝縮器16に導入され、前記経路26から経路48に分岐した第1窒素ガスとの熱交換によって全量が気化し、主熱交換器24に導入される。一方、冷流体通路17bの上部からは、酸素組成が第1酸素富化液化流体よりも低く、例えば大気組成と同程度にまで低くなった第2原料空気が経路34に導出され、第3精留塔13の下部に導入される。
このように、第1形態例における第2精留塔12及び第1凝縮器14を、内部熱交換型精留塔(HIDiC)17に置き換えても前記第1形態例と同様の作用効果が得られる。また、第3凝縮器16をHIDiC17に一体に組み込むことも可能である。
図4は本発明の第3形態例を示す窒素製造装置の要部の系統図である。本形態例は、前記第1形態例における第2精留塔12及び第1凝縮器14を、第1凝縮器14を内蔵した気液分離器18に置き換えた例を示している。
第1精留塔11の下部から経路29に導出され、減圧弁30で減圧された第1酸素富化液化流体は、下部に第1凝縮器14を備えた気液分離器18に導入され1段の気液分離によって、気液分離器18の上部から酸素組成が低くなった第2原料空気を得ることができる。このように、第2分離工程を1回の気液平衡で行うことによって、従来例に比べて酸素組成の低い第2原料空気を経路34に導出して第3精留塔に導入することができる。また、第2酸素富化液化流体は、気液分離器18の下部から経路33に抜き出され、減圧弁47で減圧されてから第3凝縮器16に導入される。
図5は本発明の第4形態例を示す窒素製造装置の要部の系統図である。本形態例は、前記第1形態例における第2精留塔12を気液分離器19に置き換えた例を示している。
第1精留塔11の下部から経路29に導出され、減圧弁30で減圧された第1酸素富化液化流体は、第1凝縮器14に導入されて第1窒素ガスとの間接熱交換により一部が気化し、気液混合状態の第1酸素富化気液混相流体となり気液分離器19に導入される。気液分離器19では、気液平衡に基づいて気相には酸素組成が第1酸素富化液化流体よりも低い第2原料空気が分離し、液相には第1酸素富化液化流体よりも酸素組成が高い第2酸素富化液化流体が分離する。また、第2原料空気は、気液分離器19の上部から経路34に導出されて第3精留塔13の下部に導入され、第2酸素富化液化流体は、気液分離器19の下部から経路33に抜き出され、減圧弁47で減圧されてから第3凝縮器16に導入される。
図1の第1形態例に示した構成の窒素製造装置において、製品窒素ガスの圧力を0.6MPa、製品窒素ガス中の許容酸素組成を0.1ppmとしてシミュレーションを行った。
原料空気は、0.63MPa、40℃で主熱交換器24に導入されて露点付近まで冷却された後、経路25から第1精留塔11に導入されて上部の第1窒素ガスと、下部の酸素組成が38%の第1酸素富化液化流体とに分離する。この第1精留塔11の製品収率は約44%である。第1精留塔11の下部から導出された第1酸素富化液化流体は、第2精留塔12の上部に導入され、第2精留塔12及び第1凝縮器14の作用で酸素組成19%の第2原料空気と、酸素組成55%の第4酸素富化液化流体とが得られる。第2原料空気は、第3精留塔13に導入されて上部の第2窒素ガスと、下部の酸素組成が36%の第3酸素富化液化流体とに分離する。第3精留塔13の製品収率は約50%であり、第1窒素ガスを合わせると、プロセス全体の製品収率は57%となる。
原料空気の流量を100としたときの各経路のプロセス値を表1に示す。なお、第1精留塔11,第2精留塔12,第3精留塔13は棚段式の精留塔を想定したが、不規則充填材又は規則充填材を使用した充填塔等を用いると、精留塔の圧力損失が低減されることで、動力費の改善が可能となる。
Figure 0004451438
図3の第2形態例に示した構成の窒素製造装置において、同じ製品仕様の条件でシミュレーションを行った。原料空気の流量を100としたときの各経路のプロセス値を表2に示す。
Figure 0004451438
実施例1と実施例2とを比較すると、実施例2における第3精留塔13の運転圧力が約0.04MPa高いことがわかる。これは、実施例1では第1凝縮器14で所定の温度差(数℃)を確保する必要があるのに対し、実施例2で採用したHIDiC17は、より小さい温度差でも運転が可能であることに起因している。このため、実施例1に比較して実施例2では約0.04MPa高い圧力の第2製品窒素ガスを採取することができ、第2製品窒素ガスを昇圧する必要がある場合には、窒素圧縮機38の動力削減が期待できる。
また、第2酸素富化気化流体の運転圧力を更に下げることも可能であり、実施例2では更に低い圧力の製品窒素ガスの採取にも対応が可能となる。実施例1の動力原単位を100としたときの実施例2と従来例との比較を表3に示す。なお、今回の比較の条件下では製品圧力が0.6MPaの場合、従来例では成立しなかった。
Figure 0004451438
さらに、実施例2に用いたHIDiCは、軸方向長さが1000〜2000mm程度で所定の性能が得られることが確認できた。これにより、精留段式又は規則充填式の第2精留塔12及びプレートフィン式熱交換器の第1凝縮器14を用いる場合に比べて装置の小型化が可能であり、配管も簡素化することができる。
本発明の第1形態例を示す窒素製造装置の系統図である。 第1凝縮器を備えた第2精留塔部分の説明図である。 本発明の第2形態例を示す窒素製造装置の系統図である。 本発明の第3形態例を示す窒素製造装置の要部の系統図である。 本発明の第4形態例を示す窒素製造装置の要部の系統図である。 従来プロセスの一例を示す窒素製造装置の系統図である。
符号の説明
11…第1精留塔、12…第2精留塔、13…第3精留塔、14…第1凝縮器、15…第2凝縮器、16…第3凝縮器、17…内部熱交換型精留塔(HIDiC)、18…第1凝縮器を内蔵した気液分離器、19…気液分離器、20…フィルター、21…原料空気圧縮機、22…アフタークーラー、23…精製器、24…主熱交換器、28…第1製品回収経路、30…減圧弁、37…第2製品回収経路、38…窒素圧縮機、39…アフタークーラー、40…製品供給経路、42…減圧弁、47…減圧弁、52…膨張タービン、55…減圧弁、56…減圧弁、57…寒冷補給経路

Claims (8)

  1. 原料空気を深冷液化分離して製品窒素を採取する窒素製造方法において、圧縮、精製、冷却した第1原料空気を低温蒸留して第1窒素ガスと第1酸素富化液化流体とに分離する第1分離工程と、前記第1酸素富化液化流体を減圧後に、後述の第1酸素富化ガス流体の全量との低温蒸留によって第2原料空気と第2酸素富化液化流体とに分離する第2分離工程と、前記第2酸素富化液化流体の一部と前記第1窒素ガスの一部とを間接熱交換させて第1窒素ガスを凝縮液化して第1液化窒素を得ると同時に第2酸素富化液化流体の一部を蒸発ガス化して第1酸素富化ガス流体を得る第1間接熱交換工程と、前記第2原料空気を低温蒸留して第2窒素ガスと第3酸素富化液化流体とに分離する第3分離工程と、前記第2窒素ガスの一部と減圧後の前記第3酸素富化液化流体とを間接熱交換させて第2窒素ガスを凝縮液化して第2液化窒素を得ると同時に第3酸素富化液化流体を蒸発ガス化して第2酸素富化ガス流体を得る第2間接熱交換工程と、前記第2酸素富化液化流体の残部を減圧後に前記第1窒素ガスの残部の一部と間接熱交換させて第1窒素ガスを凝縮液化して第3液化窒素を得ると同時に第2酸素富化液化流体の全量を蒸発ガス化して第3酸素富化ガス流体を得る第3間接熱交換工程と、前記第1窒素ガスの残部を熱回収後に第1製品窒素ガスとして導出する第1製品回収工程と、前記第2窒素ガスの残部を熱回収後に第2製品窒素ガスとして導出する第2製品回収工程と、を含むことを特徴とする窒素製造方法。
  2. 前記第2分離工程と第1間接熱交換工程とは、内部熱交換型精留塔で行うことを特徴とする請求項1記載の窒素製造方法。
  3. 前記第2分離工程の低温蒸留は、1回の気液平衡のみで行うことを特徴とする請求項1記載の窒素製造方法。
  4. 原料空気を深冷液化分離して製品窒素を採取する窒素製造方法において、圧縮、精製、冷却した第1原料空気を低温蒸留して第1窒素ガスと第1酸素富化液化流体とに分離する第1分離工程と、前記第1窒素ガスの一部と減圧後の前記第1酸素富化液化流体とを間接熱交換させて第1窒素ガスを凝縮液化して第1液化窒素を得ると同時に第1酸素富化液化流体の一部を蒸発ガス化して第1酸素富化気液混相流体を得る第1間接熱交換工程と、前記第1酸素富化気液混相流体を1回の気液平衡のみで第2原料空気と第2酸素富化液化流体とに分離する第2分離工程と、前記第2原料空気を低温蒸留して第2窒素ガスと第3酸素富化液化流体とに分離する第3分離工程と、前記第2窒素ガスの一部と減圧後の前記第3酸素富化液化流体とを間接熱交換させて第2窒素ガスを凝縮液化して第2液化窒素を得ると同時に第3酸素富化液化流体を蒸発ガス化して第2酸素富化ガス流体を得る第2間接熱交換工程と、減圧後の前記第2酸素富化液化流体と前記第1窒素ガスの残部の一部とを間接熱交換させて第1窒素ガスを凝縮液化して第3液化窒素を得ると同時に第2酸素富化液化流体の全量を蒸発ガス化して第3酸素富化ガス流体を得る第3間接熱交換工程と、前記第1窒素ガスの残部を熱回収後に第1製品窒素ガスとして導出する第1製品回収工程と、前記第2窒素ガスの残部を熱回収後に第2製品窒素ガスとして導出する第2製品回収工程と、を含むことを特徴とする窒素製造方法。
  5. 請求項1の原料空気を深冷液化分離して製品窒素を採取する方法を実施する窒素製造装置において、圧縮、精製、冷却した第1原料空気を低温蒸留して第1窒素ガスと第1酸素富化液化流体とに分離する第1分離工程を行う精留塔と、前記第1酸素富化液化流体を減圧手段で減圧後に、後述の第1酸素富化ガス流体の全量との低温蒸留によって第2原料空気と第2酸素富化液化流体とに分離する第2分離工程を行う精留塔と、前記第2酸素富化液化流体の一部と前記第1窒素ガスの一部とを間接熱交換させて第1窒素ガスを凝縮液化して第1液化窒素を得ると同時に第2酸素富化液化流体の一部を蒸発ガス化して第1酸素富化ガス流体を得る第1間接熱交換工程を行う凝縮器と、前記第2原料空気を低温蒸留して第2窒素ガスと第3酸素富化液化流体とに分離する第3分離工程行う精留塔と、前記第2窒素ガスの一部と減圧手段で減圧後の前記第3酸素富化液化流体とを間接熱交換させて第2窒素ガスを凝縮液化して第2液化窒素を得ると同時に第3酸素富化液化流体を蒸発ガス化して第2酸素富化ガス流体を得る第2間接熱交換工程を行う凝縮器と、前記第2酸素富化液化流体の残部を減圧手段で減圧後に前記第1窒素ガスの残部の一部と間接熱交換させて第1窒素ガスを凝縮液化して第3液化窒素を得ると同時に第2酸素富化液化流体の全量を蒸発ガス化して第3酸素富化ガス流体を得る第3間接熱交換工程を行う凝縮器と、前記第1窒素ガスの残部を熱回収手段で熱回収後に第1製品窒素ガスとして導出する第1製品回収経路と、前記第2窒素ガスの残部を熱回収手段で熱回収後に第2製品窒素ガスとして導出する第2製品回収経路と、を備えていることを特徴とする窒素製造装置。
  6. 前記第2分離工程行う精留塔と前記第1間接熱交換工程を行う凝縮器とが内部熱交換型精留塔であることを特徴とする請求項5記載の窒素製造装置。
  7. 前記第2分離工程を行う精留塔は、前記第1間接熱交換工程を行う凝縮器を内蔵した気液分離器であることを特徴とする請求項5記載の窒素製造装置。
  8. 請求項4の原料空気を深冷液化分離して製品窒素を採取する方法を実施する窒素製造装置において、圧縮、精製、冷却した第1原料空気を低温蒸留して第1窒素ガスと第1酸素富化液化流体とに分離する第1分離工程を行う精留塔と、前記第1窒素ガスの一部と減圧手段で減圧後の前記第1酸素富化液化流体とを間接熱交換させて第1窒素ガスを凝縮液化して第1液化窒素を得ると同時に第1酸素富化液化流体の一部を蒸発ガス化して第1酸素富化気液混相流体を得る第1間接熱交換工程を行う凝縮器と、前記第1酸素富化気液混相流体を気液分離して第2原料空気と第2酸素富化液化流体とに分離する第2分離工程を行う気液分離器と、前記第2原料空気を低温蒸留して第2窒素ガスと第3酸素富化液化流体とに分離する第3分離工程を行う精留塔と、前記第2窒素ガスの一部と減圧手段で減圧後の前記第3酸素富化液化流体とを間接熱交換させて第2窒素ガスを凝縮液化して第2液化窒素を得ると同時に第3酸素富化液化流体を蒸発ガス化して第2酸素富化ガス流体を得る第2間接熱交換工程を行う凝縮器と、減圧手段で減圧後の前記第2酸素富化液化流体と前記第1窒素ガスの残部の一部とを間接熱交換させて第1窒素ガスを凝縮液化して第3液化窒素を得ると同時に第2酸素富化液化流体の全量を蒸発ガス化して第3酸素富化ガス流体を得る第3間接熱交換工程を行う凝縮器と、前記第1窒素ガスの残部を熱回収手段で熱回収後に第1製品窒素ガスとして導出する第1製品回収経路と、前記第2窒素ガスの残部を熱回収手段で熱回収後に第2製品窒素ガスとして導出する第2製品回収経路と、を備えていることを特徴とする窒素製造装置。
JP2006355080A 2006-12-28 2006-12-28 窒素製造方法及び装置 Active JP4451438B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006355080A JP4451438B2 (ja) 2006-12-28 2006-12-28 窒素製造方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006355080A JP4451438B2 (ja) 2006-12-28 2006-12-28 窒素製造方法及び装置

Publications (2)

Publication Number Publication Date
JP2008164236A JP2008164236A (ja) 2008-07-17
JP4451438B2 true JP4451438B2 (ja) 2010-04-14

Family

ID=39693958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006355080A Active JP4451438B2 (ja) 2006-12-28 2006-12-28 窒素製造方法及び装置

Country Status (1)

Country Link
JP (1) JP4451438B2 (ja)

Also Published As

Publication number Publication date
JP2008164236A (ja) 2008-07-17

Similar Documents

Publication Publication Date Title
JP5878310B2 (ja) 空気分離方法及び装置
JP5655104B2 (ja) 空気分離方法及び空気分離装置
JP5307055B2 (ja) 窒素及び酸素の製造方法並びに窒素及び酸素の製造装置。
JP5417054B2 (ja) 空気分離方法及び装置
JP6092804B2 (ja) 空気液化分離方法及び装置
JP5032407B2 (ja) 窒素製造方法及び装置
JP2007147113A (ja) 窒素製造方法及び装置
JP4401999B2 (ja) 空気分離方法および空気分離装置
KR101238063B1 (ko) 질소 발생 방법과 이에 이용되는 장치
JP5685168B2 (ja) 低純度酸素の製造方法及び低純度酸素の製造装置
JP2006349322A (ja) 深冷空気分離装置によるアルゴン製造方法
JP4519010B2 (ja) 空気分離装置
JP2017072282A (ja) 窒素製造方法、及び窒素製造装置
JP6086272B1 (ja) 窒素及び酸素製造方法、並びに窒素及び酸素製造装置
JP4230213B2 (ja) 空気液化分離装置及び方法
JP2016188751A (ja) 窒素及び酸素製造方法、並びに窒素及び酸素製造装置
JP4451438B2 (ja) 窒素製造方法及び装置
JP5005708B2 (ja) 空気分離方法及び装置
JP5027173B2 (ja) アルゴン製造方法およびその装置
JP3738213B2 (ja) 窒素製造方法及び装置
JP4515225B2 (ja) 窒素製造方法及び装置
JP6159242B2 (ja) 空気分離方法及び装置
JP5647853B2 (ja) 空気液化分離方法及び装置
JP2000018813A (ja) 窒素製造方法及び装置
JP4698989B2 (ja) 酸素製造装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100127

R150 Certificate of patent or registration of utility model

Ref document number: 4451438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250