JP4449669B2 - 車両の減速度制御装置 - Google Patents

車両の減速度制御装置 Download PDF

Info

Publication number
JP4449669B2
JP4449669B2 JP2004264068A JP2004264068A JP4449669B2 JP 4449669 B2 JP4449669 B2 JP 4449669B2 JP 2004264068 A JP2004264068 A JP 2004264068A JP 2004264068 A JP2004264068 A JP 2004264068A JP 4449669 B2 JP4449669 B2 JP 4449669B2
Authority
JP
Japan
Prior art keywords
deceleration
control mode
deceleration control
decel
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004264068A
Other languages
English (en)
Other versions
JP2006076491A (ja
Inventor
淳 田端
和俊 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004264068A priority Critical patent/JP4449669B2/ja
Priority to US11/195,776 priority patent/US7383115B2/en
Priority to DE102005040567.3A priority patent/DE102005040567B4/de
Priority to CN2005100934661A priority patent/CN1743200B/zh
Publication of JP2006076491A publication Critical patent/JP2006076491A/ja
Application granted granted Critical
Publication of JP4449669B2 publication Critical patent/JP4449669B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Regulating Braking Force (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Transmission Device (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Description

本発明は車両の減速度制御装置に係り、特に、減速度制御モードの解除方法に関するものである。
(a) 減速度制御モードに設定できるとともに、その減速度制御モードを解除できる減速度制御モード選択手段と、(b) 前記減速度制御モードに設定されると、減速度設定手段の操作に従って目標減速度を増減設定する目標減速度制御手段と、(c) その目標減速度制御手段によって設定された前記目標減速度に応じてブレーキ力を制御するブレーキ制御手段と、を有する車両の減速度制御装置が提案されている。特許文献1に記載の装置はその一例で、シフトレバーがEポジションへ操作されると減速度制御モードが設定され、そのEポジションにおいてDecel(減速促進) 側またはCan−Decel(減速抑制)側へ操作されることにより、目標減速度が増減設定されるとともに、その目標減速度に応じて所定のブレーキ力を発生するように、自動変速機の変速制御や電動機の力行トルク制御或いは回生トルク制御が行われるようになっている。また、シフトレバーの他にステアリングホイールにもDecelスイッチおよびCan−Decelスイッチが設けられ、それ等のDecelスイッチおよびCan−Decelスイッチを操作することによっても、目標減速度を増減設定することができる。
特開2000−245016号公報
ところで、前記特許文献1では、シフトレバーをEポジションへ操作して減速度制御モードに設定しない限り、ステアリングホイールのDecelスイッチおよびCan−Decelスイッチが無効であるため、必ずしも操作性が良くない。このため、シフトレバーをDポジション(前進走行ポジション)に保持したままステアリングホイールのDecelスイッチを操作した場合でも、減速度制御モードに設定して減速度制御が行われるようにすることが考えられるが、その場合には減速度制御モードをどのようにして解除するかが問題になる。また、減速度制御モードが解除された時に、目標減速度が大きい状態で減速度制御を急に終了すると、ブレーキ力(駆動力)が急に変化して運転者に違和感を生じさせる恐れがあるなど、減速度制御モードの解除方法について未だ改善の余地があった。
本発明は以上の事情を背景として為されたもので、その目的とするところは、減速度制御モードを簡単操作で解除できるとともに、その解除時のブレーキ力変動を抑制することにある。
かかる目的を達成するために、第1発明は、減速度制御モードが設定されると、減速度設定手段の操作に従って増減設定される目標減速度に応じてブレーキ力を制御する車両の減速度制御装置において、(a) 前記減速度制御モードに設定できるとともに、その減速度制御モードを解除できる減速度制御モード選択手段を備えており、(b) その減速度制御モード選択手段の操作で前記減速度制御モードに設定できる他、その減速度制御モード選択手段によって減速度制御モードが選択されていない状態でも前記減速度設定手段の操作で減速度制御モードに設定できる一方、(c) 前記減速度設定手段を複数備えているとともに、その複数の減速度設定手段のうちの少なくとも1つの減速度設定手段の操作により、前記目標減速度が前記減速度制御モードによる減速度制御が実施されていない場合と同等の減速度まで低下させられた場合には、前記減速度制御モード選択手段によって前記減速度制御モードが選択されていないことを条件として前記減速度制御モードを解除することを特徴とする。
第2発明は、減速度制御モードが設定されると、減速度設定手段の操作に従って増減設定される目標減速度に応じてブレーキ力を制御する車両の減速度制御装置において、(a) 前記減速度制御モードに設定できるとともに、その減速度制御モードを解除できる減速度制御モード選択手段を備えており、(b) 前記減速度制御モードは、その減速度制御モード選択手段および前記減速度設定手段の両方で解除できるが、解除する際の前記目標減速度の変更方法が異なり、減速度制御モード選択手段の操作で解除される場合はその目標減速度を徐々に低下させることを特徴とする。
発明は、第発明の車両の減速度制御装置において、前記目標減速度を徐々に低下させる際の変化パターンが車速によって異なることを特徴とする。
第1発明の車両の減速度制御装置においては、減速度制御モード選択手段の操作で減速度制御モードに設定できる他、その減速度制御モード選択手段によって減速度制御モードが選択されていない状態でも前記減速度設定手段の操作で減速度制御モードに設定できるため、簡単操作で減速度制御を行うことができる一方、目標減速度を増減設定する複数の減速度設定手段のうちの少なくとも1つの減速度設定手段の操作で目標減速度が減速度制御モードによる減速度制御が実施されていない場合と同等の減速度まで低下させられた場合には、減速度制御モード選択手段によって減速度制御モードが選択されていないことを条件として減速度制御モードが解除されるため、減速度制御モードの解除操作が容易になって減速度制御の使い勝手が向上する。
特に、減速度設定手段によって設定される目標減速度が、減速度制御モードによる減速度制御が実施されていない場合と同等の減速度まで低下させられた場合に、減速度制御モードが解除されるため、目標減速度が徐々に変化させられて減速度制御モードが解除されることになり、動力源ブレーキなどのブレーキ力の急な変化が抑制されて乗り心地が向上する。
第2発明の車両の減速度制御装置は、減速度制御モードの設定および解除を行うことができる減速度制御モード選択手段を備えており、その減速度制御モード選択手段および減速度設定手段の両方で減速度制御モードを解除できるため、減速度制御モードの解除操作が容易になって減速度制御の使い勝手が向上する。また、その解除操作の種類に応じて目標減速度の変更方法が異なるため、解除方法に応じてブレーキ力変動(駆動力変動)を適切に抑制することが可能であり、減速度制御モード選択手段によって減速度制御モードが解除される場合には目標減速度が徐々に低下させられるため、目標減速度が大きい状態で減速度制御モードが解除されても、ブレーキ力の急な変化が抑制されて乗り心地が向上する。減速度設定手段の操作で減速度制御モードが解除される場合に、例えばブレーキ力変動が小さい場合は目標減速度を0として減速度制御を直ちに終了することにより、通常の走行モードなどへ速やかに移行できる。
発明では、目標減速度を徐々に低下させる際の変化パターン、例えば変化率などが車速によって異なるため、車速に応じて適切な変化パターンで目標減速度を低下させることにより、ブレーキ力の急な変化によるショックを抑制しつつ減速度制御を速やかに終了させることができる。
本発明の車両の減速度制御装置は、例えばエンジンおよび電動機を車両の駆動輪との間で動力伝達可能に備えている車両に好適に適用されるが、エンジンのみ或いは電動機のみ車両の駆動輪との間で動力伝達可能に備えているものでも良いなど、種々の車両に適用され得る。電動機は、電気エネルギーを回転運動に変換する電動モータや、回転運動を電気エネルギーに変換する発電機、或いはその両方の機能を備えているものである。
本発明は、エンジンのみを動力源とするエンジン駆動車両や、電動機のみを動力源とする電気自動車、エンジンおよび電動機の両方を動力源とするハイブリッド車両、エンジンや電動機以外の原動機を動力源として備えている車両、或いは3つ以上の原動機を備えている車両など、種々の車両に適用され得る。ハイブリッド車両には、エンジンの動力を直接駆動輪に伝達可能なパラレルハイブリッド車両と、エンジンからの動力は発電にのみ使用され駆動輪には直接伝達されないシリーズハイブリッド車両がある。
本発明は、例えば(a) 減速度制御モードが設定されると、減速度設定手段の操作に従って目標減速度を増減設定する目標減速度制御手段と、(b) その目標減速度制御手段によって設定された前記目標減速度に応じてブレーキ力を制御するブレーキ制御手段とを有して構成される。
上記ブレーキ制御手段によるブレーキ力の制御は、自動変速機の変速比の変更によるエンジンブレーキ制御や、電動機の回生制動トルク、逆回転方向の力行トルクによるブレーキ力の増大、或いは正回転方向の力行トルクによるブレーキ力の低減等により、所定のブレーキ力を発生するように行われるが、このような動力源ブレーキの他に、車輪に設けられたホイールブレーキ等の他の制動装置を用いてブレーキ力を制御することもできる。上記自動変速機としては、遊星歯車式や平行軸式等の有段変速機に限らず、ベルト式、トロイダル型等の無段変速機を用いることもできる。エンジンの種類によっては、吸排気バルブの開閉タイミングやリフト量、或いはスロットル弁開度などを制御してエンジンブレーキ力を制御することもできるなど、種々の態様が可能である。
有段変速機の変速制御と電動機のトルク制御を併用してブレーキ力を制御する場合、減速度設定手段の操作に従って目標減速度制御手段により目標減速度を段階的に変化させる時の変化量は、有段変速機の変速によって達成される減速度の変化量よりも小さく、電動機のトルク制御と変速制御との組合せにより、ブレーキ力がきめ細かく制御されるようにすることが望ましい。目標減速度制御手段によって増減設定される目標減速度の増大側の変化量と減少側の変化量は同じであっても良いが、増大側と減少側の変化量を相違させることもできる。
目標減速度に応じてブレーキ力を制御するブレーキ制御手段は、目標減速度が得られる必要ブレーキ力を予め定められた演算式やデータマップなどから求め、動力源ブレーキなどでその必要ブレーキ力を発生させるように構成されるが、必要ブレーキ力は路面勾配や車両重量(乗車人数など)等の運転環境によって変化するため、その運転環境をパラメータとして必要ブレーキ力を求めることが望ましい。減速度を検出して、目標減速度となるようにブレーキ力をフィードバック制御することも可能である。
第1発明の複数の減速度設定手段は、例えばシフトレバーの所定の操作ポジションや、ステアリングホイール、ステアリングコラム、インストルメントパネル等、運転席近傍の種々の部位に配設することが可能で、例えば、シフトレバーの操作で増減指示する第1減速度設定手段と、ステアリングホイール或いはその近傍にシフトレバーとは別個に配設される第2減速度設定手段とを有して構成される。シフトレバーは、ステアリングコラムに配設されるものでも、運転席横のセンターコンソール部分に配設されるものでも良いが、ステアリングホイールまたはその近傍に第2減速度設定手段が設けられる場合には、運転席横のセンターコンソール部分に配設することが望ましい。
減速度設定手段は、例えば自動的に原位置に復帰する自動復帰型のスイッチが用いられ、押釦式やレバー式など種々の態様が可能で、例えば1回のON操作毎に目標減速度が1段階ずつアップダウンされるが、ON操作の継続時間によって目標減速度が2段階以上連続的に変化したり飛び越して変化したりするようにしても良い。ON操作の継続時間に応じて目標減速度が連続的に増減されるようにしても良い。1つの減速度設定手段は、例えば目標減速度を大きくするDecel用、および目標減速度を小さくするCan−Decel用の一対のスイッチで構成される。
そして、例えばステアリングホイールまたはその近傍に配設される第2減速度設定手段のDecelスイッチがON操作されることにより減速度制御モードが設定されるとともに、その第2減速度設定手段のCan−DecelスイッチのON操作で減速度制御モードを解除できるように構成される。すなわち、Can−Decelスイッチにより減速度制御モードによる減速度制御が実施されていない場合と同等の減速度まで目標減速度が低下させられた場合に減速度制御モードが解除されるように構成される。
速度制御モード選択手段は、例えばシフトレバーの操作ポジションとして、減速度制御モード選択ポジションを設け、その減速度制御モード選択ポジションへ操作されることにより減速度制御モードが設定されるように構成される。また、その減速度制御モード選択ポジションに、例えば第1減速度設定手段としてDecel用およびCan−Decel用のスイッチが設けられ、シフトレバーの操作で目標減速度をアップダウンできるように構成される。減速度制御モード選択手段としては、シフトレバーとは別個にON−OFFスイッチ等を設けることも可能である。
発明において、減速度設定手段により減速度制御モードが解除される場合の目標減速度の変更方法としては、例えば第1発明のように減速度制御モードによる減速度制御が実施されていない場合と同等の減速度まで目標減速度が低下させられた場合に減速度制御モードが解除される場合、目標減速度は既に低下しているため目標減速度を0、すなわち減速度制御を行わない状態として、減速度制御を直ちに終了するように構成される。
発明において、目標減速度を徐々に低下させる際の変化パターンは、例えば一定の変化率で低下するもので、車速に応じてその変化率が相違させられ、例えば車速が大きい程大きな変化率で低下するように定められる。第発明の実施に際しては、例えば減速度制御モードの解除時における目標減速度に応じて変化パターン(変化率など)を相違させ、目標減速度が大きい程大きな変化率で低下させるようにするなど、種々の態様が可能である。変化パターンは、目標減速度を段階的に低下させるものでも良く、その段数や時間を車速等によって変化させるようにしても良い。
以下、本発明の実施例を図面を参照しつつ詳細に説明する。
図1の(a) は、本発明が適用されたハイブリッド車両用の駆動装置8の骨子図で、(b) は、駆動装置8に設けられた自動変速機10の複数のギヤ段を成立させる際の係合要素の作動状態を説明する作動表である。車両用駆動装置8は、燃料の燃焼によって動力を発生するエンジン30、第1電動機MG1、第2電動機MG2、および自動変速機10を、その順番で同軸上に備えており、車両の前後方向(縦置き)に搭載するFR車両に好適に用いられる。そして、主としてエンジン30および第2電動機MG2が走行用の動力源として使用され、第1電動機MG1は、主としてエンジン始動用および発電用として用いられる。第1電動機MG1、第2電動機MG2は、何れも電動モータおよび発電機の両方の機能を有するものである。また、第1電動機MG1は、図示しないダンパを介してエンジン30に接続されているとともに、第1電動機MG1と第2電動機MG2との間にはクラッチCiが設けられ、エンジン30および第1電動機MG1と第2電動機MG2との間の動力伝達を遮断できるようになっている。なお、電動機MG1、MG2、自動変速機10は中心線に対して略対称的に構成されており、図1(a) では中心線の下半分が省略されている。
自動変速機10は、ダブルピニオン型の第1遊星歯車装置12を主体として構成されている第1変速部14と、シングルピニオン型の第2遊星歯車装置16およびダブルピニオン型の第3遊星歯車装置18を主体として構成されている第2変速部20とを同軸線上に有し、入力軸22の回転を変速して出力軸24から出力する。入力軸22は入力部材に相当するもので、第2電動機MG2のロータに一体的に連結されており、出力軸24は出力部材に相当するもので、プロペラシャフトや差動歯車装置を介して左右の駆動輪を回転駆動する。
図2は、上記自動変速機10の第1変速部14および第2変速部20の各回転要素(サンギヤS1〜S3、キャリアCA1〜CA3、リングギヤR1〜R3)の回転速度を直線で表すことができる共線図で、下の横線が回転速度「0」で、上の横線が回転速度「1.0」すなわち入力軸22と同じ回転速度であり、クラッチC1〜C4、ブレーキB1、B2の作動状態(係合、解放)に応じて第1速前進ギヤ段「1st」〜第8速前進ギヤ段「8th」の8つの前進ギヤ段が成立させられるとともに、第1後進ギヤ段「Rev1」および第2後進ギヤ段「Rev2」の2つの後進ギヤ段が成立させられる。図1の(b) の作動表は、上記各ギヤ段とクラッチC1〜C4、ブレーキB1、B2の作動状態との関係をまとめたもので、「○」は係合を表している。各ギヤ段の変速比は、第1遊星歯車装置12、第2遊星歯車装置16、および第3遊星歯車装置18の各ギヤ比(=サンギヤの歯数/リングギヤの歯数)ρ1、ρ2、ρ3によって適宜定められ、図1(b) に示す変速比は、ρ1=0.463、ρ2=0.463、ρ3=0.415の場合である。なお、図1(a) の符号26はトランスミッションケースである。
図3は、上記自動変速機10やエンジン30、電動機MG1、MG2などを制御するために車両に設けられた制御系統の概略を説明するブロック線図で、アクセルペダル50の操作量Accがアクセル操作量センサ52により検出されるようになっている。アクセルペダル50は、運転者の出力要求量に応じて大きく踏み込み操作されるもので、アクセル操作部材に相当し、アクセル操作量Accは出力要求量に相当する。エンジン30の吸気配管には、スロットルアクチュエータ54によって開き角(開度)θTHが制御される電子スロットル弁56が設けられている。また、エンジン30の回転速度NEを検出するためのエンジン回転速度センサ58、エンジン30の吸入空気量Qを検出するための吸入空気量センサ60、上記電子スロットル弁56の全閉状態(アイドル状態)およびその開度θTHを検出するためのアイドルスイッチ付スロットル弁開度センサ62、車速V(出力軸24の回転速度Nout に対応)を検出するための車速センサ64、第1電動機MG1の回転速度NM1を検出するためのMG1回転速度センサ66、第2電動機MG2の回転速度NM2(=入力軸22の回転速度Nin)を検出するためのMG2回転速度センサ68、シフトレバー72の操作ポジション(操作位置)PSHを検出するためのレバーポジションセンサ74、シフトレバー72がEポジションへ操作されたことを検出するためのEポジションスイッチ76、電動機MG1、MG2に接続されたバッテリ77の残容量SOCを検出するためのSOCセンサ78、第1Decelスイッチ80、第1Can−Decelスイッチ81、第2Decelスイッチ82、第2Can−Decelスイッチ83などが設けられており、それらのセンサやスイッチから、エンジン回転速度NE、吸入空気量Q、スロットル弁開度θTH、車速V、第1電動機回転速度NM1、第2電動機回転速度NM2、シフトレバー72の操作ポジションPSH、Eポジションへの操作の有無、残容量SOC、第1Decel指令Decel1、第1Can−Decel指令Can−Decel1、第2Decel指令Decel2、第2Can−Decel指令Can−Decel2などを表す信号が電子制御装置90に供給されるようになっている。
前記電子制御装置90は、CPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより、エンジン30の出力制御や自動変速機10の変速制御、電動機MG1、MG2の力行/回生制御などを行い、エンジン30や電動機MG1、MG2の作動状態が異なる複数の運転モードで走行する。図5は、運転モードの一例で、エンジン走行モードでは、クラッチCiを係合させてエンジン30を接続し、そのエンジン30により駆動力を発生させて走行する。エンジン30に余裕がある場合など、必要に応じて第1電動機MG1を回生制御してバッテリ77を充電することもできる。エンジン+モータ走行モードでは、クラッチCiを係合させてエンジン30を接続し、そのエンジン30および第2電動機MG2により駆動力を発生させて走行する。モータ走行モードでは、クラッチCiを解放してエンジン30を遮断し、第2電動機MG2により駆動力を発生させて走行する。残容量SOCが少ない場合など、必要に応じてエンジン30を作動させるとともに第1電動機MG1を回生制御してバッテリ77を充電する。減速度制御モードでは、クラッチCiを係合させてエンジン30を接続し、フューエルカットによりエンジン30に対する燃料供給を遮断してエンジンブレーキを発生させるとともに、第2電動機MG2を力行或いは回生制御することにより、所定の動力源ブレーキを発生させる。第1電動機MG1についても、第2電動機MG2と同様に力行或いは回生制御して、動力源ブレーキの調整に使用することができる。
また、上記電子制御装置90による自動変速機10の変速制御は、シフトレバー72の操作ポジションPSHに応じて行われる。シフトレバー72は運転席の近傍(センターコンソール部分)に配設され、図6に示すシフトパターン120に従って移動操作されるようになっており、シフトパターン120には、「P(パーキング)」、「R(リバース)」、「N(ニュートラル)」、「D(ドライブ)」、「7」、「6」、・・・「L」の操作ポジションが車両の前後方向に沿って設けられている。「P」ポジションは駐車位置で、自動変速機10は動力伝達遮断状態とされるとともに、例えばシフトレバー72の移動操作に従ってパーキングロック機構などにより機械的に出力軸24、すなわち駆動輪が回転不能に固定される。「R」ポジションは後進走行を行なう後進走行位置で、例えばシフトレバー72の移動操作に従って油圧制御回路98(図3参照)のマニュアルバルブが機械的に切り換えられることにより、自動変速機10は前記後進ギヤ段「Rev1」または「Rev2」が成立させられる。「N」ポジションは動力伝達遮断位置で、例えばシフトレバー72の移動操作に従ってマニュアルバルブが機械的に切り換えられることにより、自動変速機10はクラッチC1〜C4、ブレーキB1、B2の全部が解放されて動力伝達遮断状態とされる。
「D」ポジションは、自動変速機10の前進ギヤ段を自動的に切り換えて前進走行する前進走行位置すなわち前進走行ポジションで、例えばシフトレバー72の移動操作に従ってマニュアルバルブが機械的に切り換えられることにより、総ての前進ギヤ段「1st」〜「8th」を成立させることが可能とされ、それ等の総ての前進ギヤ段「1st」〜「8th」を用いて自動的に変速する最上位のDレンジ(自動変速モード)が成立させられる。すなわち、シフトレバー72が「D」ポジションへ操作されると、そのことをレバーポジションセンサ74の信号から判断してDレンジを電気的に成立させ、第1速前進ギヤ段「1st」〜第8速前進ギヤ段「8th」の総ての前進ギヤ段を用いて変速制御を行う。具体的には、油圧制御回路98に設けられた複数のソノレイド弁やリニアソレノイド弁のATソレノイド99の励磁、非励磁を制御することにより油圧回路を切り換え、図1(b) に示すようにクラッチC1〜C4およびブレーキB1、B2の作動状態を変化させて、第1速前進ギヤ段「1st」〜第8速前進ギヤ段「8th」の何れかの前進ギヤ段を成立させるのである。この変速制御は、例えば図8に示すように車速Vおよびアクセル操作量Accをパラメータとして予め記憶された変速マップ等の変速条件に従って行われ、車速Vが低くなったりアクセル操作量Accが大きくなったりするに従って変速比が大きい低速側の前進ギヤ段を成立させる。
「7」〜「L」ポジションは、予め定められた複数の変速レンジを手動操作で切り換えるマニュアル変速ポジションで、それ等の操作ポジション「7」、「6」、・・・「L」に応じて図9に示す7、6、・・・Lの各変速レンジが成立させられる。図9は、変速レンジとその変速範囲を示す図で、ギヤ段の欄の数字「1」〜「8」は第1速前進ギヤ段「1st」〜第8速前進ギヤ段「8th」を表しており、変速比が最も大きい最低速前進ギヤ段は何れも第1速前進ギヤ段「1st」で、最高速前進ギヤ段が1つずつ変化している。また、各変速レンジでは、第1速前進ギヤ段「1st」からその最高速前進ギヤ段までの範囲で、前記Dレンジと同じ変速条件に従って自動的に変速が行なわれる。したがって、例えば下り坂などでシフトレバー72が「D」ポジションから、「7」ポジション、「6」ポジション、「5」ポジション、・・・へ順次切換操作されると、変速レンジがD→7→6→5→・・・へ切り換えられ、第8速前進ギヤ段「8th」から第7速前進ギヤ段「7th」、第6速前進ギヤ段「6th」、第5速前進ギヤ段「5th」・・・へ順次ダウンシフトされることになる。Dレンジは第1の前進走行レンジに相当し、L〜7レンジは第2の前進走行レンジに相当する。
前記「D」ポジションの横すなわち運転席に近い側には「E」ポジションが設けられている。この「E」ポジションは、前記図5の減速度制御モードを実施するための減速度制御モード選択ポジションで、シフトレバー72が「E」ポジションへ移動操作されると、そのことがEポジションスイッチ76によって検出される。「E」ポジションの前後には、目標減速度を小さくするための「Can−Decel」位置、および目標減速度を大きくするための「Decel」位置が設けられており、シフトレバー72がそれ等の「Decel」位置または「Can−Decel」位置へ操作されると、そのことが前記第1Decelスイッチ80、第1Can−Decelスイッチ81によって検出され、第1Decel指令Decel1、第1Can−Decel指令Can−Decel1を表す減速指示信号が電子制御装置90に供給される。これにより、動力源ブレーキによって減速度を制御する減速度制御モードにおける目標減速度が変更され、減速度を増したい場合、すなわち急激な制動を行いたい場合には、シフトレバー72を後方(「Decel」位置側)へ倒せば良く、減速度を低減したい場合、すなわち緩やかな制動を行いたい場合には、シフトレバー72を前方(「Can−Decel」位置側)へ倒せば良い。
シフトレバー72は、前後方向に連続的にスライドするのではなく、節度感を持って動く。すなわち、シフトレバー72は、中立状態、前方に倒した状態、後方に倒した状態の3つのうち何れかの状態を採る。運転者がシフトレバー72に加える力を緩めれば、シフトレバー72はスプリング等の付勢手段により直ちに中立位置すなわち「E」ポジションへ戻されるようになっており、第1Decelスイッチ80および第1Can−Decelスイッチ81はそれぞれスプリング等の付勢手段により自動的にOFF状態に復帰する。これ等の第1Decelスイッチ80および第1Can−Decelスイッチ81をON操作するシフトレバー72は第1の減速度設定手段である。なお、シフトレバー72は減速度制御モード選択手段を兼ねており、「E」ポジションへ操作されることによりEポジションスイッチ76をONにして減速度制御モードに設定するとともに、「D」ポジションへ戻されることによりEポジションスイッチ76をOFFにして減速度制御モードを解除する。
減速度制御モードではまた、上述したシフトレバー72の操作の他、図7に示すようにステアリングホイール84の近傍のステアリングコラム86に配設された第2Decelスイッチ82および第2Can−Decelスイッチ83が矢印で示すように回動操作(ON操作)されることによっても、目標減速度が増減させられる。すなわち、第2Decelスイッチ82、第2Can−Decelスイッチ83が回動操作されると、これ等の第2Decelスイッチ82、第2Can−Decelスイッチ83から前記電子制御装置90に第2Decel指令Decel2、第2Can−Decel指令Can−Decel2を表す減速指示信号が出力され、目標減速度が増減させられるのである。第2Decelスイッチ82および第2Can−Decelスイッチ83は、何れも運転者によりON操作される自動復帰型のスイッチで、それぞれスプリング等の付勢手段により自動的に原位置(OFF状態)まで戻り回動させられる。また、運転者がステアリングホイール84を回転操作している最中でも、右手或いは左手の人指し指で容易に操作できる場所に設けられている。これ等の第2Decelスイッチ82および第2Can−Decelスイッチ83は第2の減速度設定手段である。
減速度制御モードによる減速度制御は、前記電子制御装置90が機能的に備えている図4の減速度制御モード実行手段110によって実行され、前記シフトレバー72が「Decel」位置または「Can−Decel」位置へ操作されることによって出力される第1Decel指令Decel1や第1Can−Decel指令Can−Decel1、および前記ステアリングコラム86に配設された第2Decelスイッチ82、第2Can−Decelスイッチ83の操作で出力される第2Decel指令Decel2、第2Can−Decel指令Can−Decel2に応じて目標減速度を変更しつつ動力源ブレーキを制御する。減速度制御モード実行手段110は、目標減速度制御手段112および動力源ブレーキ制御手段114を有し、図10および図11のフローチャートに従って信号処理を行うようになっている。図10のステップS12は減速度制御モード設定手段で、ステップS3は目標減速度を徐々に低下させて減速度制御を終了する減速度制御徐変終了手段で、ステップS6は減速度制御を直ちに終了する減速度制御終了手段で、ステップS4は減速度制御モード解除手段である。また、ステップS9およびS13は目標減速度制御手段112によって実行され、ステップS10は動力源ブレーキ制御手段114によって実行される。図11は、図10のステップS10の処理内容を具体的に説明するフローチャートである。また、図17〜図19は、図10、図11のフローチャートに従って減速度制御が行われた場合のタイムチャートの一例である。
図10のフローチャートは、シフトレバー72が「D」ポジションまたは「E」ポジションへ操作されている場合に実行され、ステップS1では減速度制御モードを実行中か否かを、例えば実行中であることを表すフラグなどで判断する。減速度制御モードを実行中の場合はステップS2以下を実行するが、実行中でない場合はステップS11で減速度制御モードが選択されたか否かを判断する。これは、シフトレバー72が「D」ポジションから「E」ポジションへ操作された場合の他、ステアリングコラム86に配設された第2Decelスイッチ82がON操作された場合も、減速度制御モードが選択されたものと判断するようになっており、簡単操作で減速度制御モードへ移行できる。第2Decelスイッチ82がON操作された場合は、誤操作によって減速度制御モードへ移行することを防止するため、減速度制御モード実行中にステップS9でON操作されたか否かを判断する場合よりも長い時間継続してON操作された場合だけ、減速度制御モードが選択されたものと判断するようになっている。なお、第2Can−Decelスイッチ83がON操作された場合は、それ以上減速度を小さくすることはできないため、減速度制御モードへ移行することなく、そのまま終了する。
そして、減速度制御モードが選択された場合には、ステップS12で減速度制御モードに設定するとともに、減速度制御モードを実行中であることを表すフラグをONにする。これにより、以後のサイクルではステップS1に続いてステップS2以下が実行されるようになる。また、ステップS13で目標減速度の初期値を設定した後、ステップS10を実行して、その目標減速度で減速するように動力源ブレーキ、すなわち自動変速機10の変速制御によるエンジンブレーキ制御および第2電動機MG2のトルク制御を行う。目標減速度の初期値は、例えば図12に実線で示すように車速Vをパラメータとして高車速程大きな値が設定されるようになっており、破線で示すように減速度制御モードによる減速度制御が実行されていない場合、すなわちDレンジにおいてアクセルOFFの惰性走行時で、フューエルカット状態のエンジンブレーキのみが作用している場合の減速度を基準として、それより所定量だけ大きい減速度が定められている。すなわち、新たに減速度制御モードが開始される場合には、その開始時の減速度(図12の破線)を基準としてその時の車速Vに応じて目標減速度(図12の実線)が設定されるのである。減速度制御モードが実行されていない場合の減速度は、ギヤ段の切換位置に凹凸ができるが、図12の破線はその凹凸を平滑化して示したものであり、初期値やその後の減速度制御モードで増減設定される目標減速度は、図12に実線や一点鎖線で示すようにそのような凹凸の無いデータマップ或いは演算式に従って設定される。
図17の時間t1 は、第2Decelスイッチ82のON操作で減速度制御モードへ移行して目標減速度(初期値)が設定され、その目標減速度に応じて第2電動機MG2の回生トルク制御が開始された時間である。図17における目標減速度=0は、DレンジにおけるアクセルOFF時に特別な減速度制御を行うことなく得られる減速度で、自動変速機10のギヤ段に基づいて車速Vに応じて発生するエンジンブレーキ力によって得られる基準値(図12の破線)を意味している。なお、上記目標減速度の設定に際しては、図13に示すように路面勾配を考慮することも可能で、下り勾配では水平な平坦路よりも大きな目標減速度が設定されるようにしても良い。
前記ステップS1の判断がYESの場合、すなわち既に減速度制御モードを実行中の場合には、ステップS2でシフトレバー72を「E」ポジションから「D」ポジションへ戻す解除操作が為されたか否かを判断し、解除操作された場合にはステップS3以下を実行するが、そうでない場合、すなわち「E」ポジションまたは「D」ポジションに保持されたままか、或いは「D」ポジションから「E」ポジションへ移動操作された場合には、ステップS5以下を実行する。ステップS5では、シフトレバー72が「Can−Decel」位置へ操作されるか第2Can−Decelスイッチ83の操作で目標減速度が低下し、DレンジにおけるアクセルOFF走行時の減速度と同程度になったか否か、すなわち目標減速度が0で減速度制御モードによる減速度制御が実施されない場合と同等の減速度(図12の破線)まで低下したか否かを判断し、Dレンジ相当まで低下した場合はステップS6以下を実行するが、そうでない場合にはステップS9を実行する。
ステップS9では、減速度の増減指示があったか否かを判断して、増減指示があれば目標減速度を増減設定し、増減指示が無ければ現在の目標減速度を維持する。本実施例では、シフトレバー72が「Decel」位置または「Can−Decel」位置へ操作されることによって出力される第1Decel指令Decel1および第1Can−Decel指令Can−Decel1と、ステアリングコラム86に配設された第2Decelスイッチ82、第2Can−Decelスイッチ83の操作で出力される第2Decel指令Decel2および第2Can−Decel指令Can−Decel2とを区別することなく処理し、それ等の何れか1つでも予め定められた一定時間以上継続して供給されたか否かを判断する。そして、Decel指令Decel1またはDecel2が供給された場合には、目標減速度を予め定められた一定の変化量βだけ増大させる一方、Can−Decel指令Can−Decel1またはCan−Decel2が供給された場合には、目標減速度を変化量βだけ減少させた後、ステップS10で動力源ブレーキ制御を実施し、何れの信号も供給されなかった場合には、現在の目標減速度を維持したままステップS10を実行する。本実施例では変化量βが一定値であるが、車速V等をパラメータとして可変設定されるようにしても良いし、目標減速度の増加側と減少側とで異なる値としても良い。また、Decel指令Decel1、Decel2やCan−Decel指令Can−Decel1、Can−Decel2の継続時間に応じて変化量βを連続的に変化させ、目標減速度を連続的に増減させるようにすることもできる。
図17の時間t2 は、シフトレバー72が「D」ポジションから「E」ポジションへ操作されるとともに「Decel」位置へ操作されて第1Decel指令Decel1が供給されることにより、目標減速度が更に1段階(β)増加させられた時間で、時間t4 は、ステアリングコラム86の第2Decelスイッチ82が操作されて第2Decel指令Decel2が供給されることにより、目標減速度が更に1段階(β)増加させられた時間である。また、時間t5 は、ステアリングコラム86の第2Can−Decelスイッチ83が操作されて第2Can−Decel指令Can−Decel2が供給されることにより、目標減速度が1段階(β)減少させられた時間で、時間t6 は、シフトレバー72が「Can−Decel」位置へ操作されて第1Can−Decel指令Can−Decel1が供給されることにより、目標減速度が更に1段階(β)減少させられた時間である。変化量βは、自動変速機10の変速によって達成される減速度の変化量よりも小さく、第2電動機MG2の回生トルク制御と変速制御との組合せによってブレーキ力がきめ細かく制御されるようになっており、時間t4 では、自動変速機10が第8速前進ギヤ段「8th」から第7速前進ギヤ段「7th」へダウンシフトされるとともに、第2電動機MG2の回生トルクが1段階だけ小さくされることにより、目標減速度の変化量βに対応する所定量だけ動力源ブレーキが増大させられる。
また、前回のON操作からの時間間隔TDが予め定められたOFF時間よりも短い場合には、短時間の連続操作によって減速度が大きく変化することを回避するため、そのON操作を無効とするようになっており、図17の時間t3 は、シフトレバー72の「Decel」位置への操作に拘らず現在の目標減速度が維持された場合である。このOFF時間は、シフトレバー72の「Can−Decel」位置への操作や第2Decelスイッチ82、第2Can−Decelスイッチ83についても同様に適用され、急な減速度の変化が防止されるが、Decel側すなわち目標減速度の増大側のみ制限し、目標減速度を低減するCan−Decel側については連続操作を有効とするなど、種々の態様が可能である。この他、減速度制御による自動変速機10のダウンシフトでエンジン回転速度NEがオーバー回転になる場合等も、動力源ブレーキの増減制御がキャンセルされる。
上記ステップS10の動力源ブレーキ制御を図11のフローチャートを参照しつつ具体的に説明する。図11のステップR1では、前記ステップS9、またはS13で設定された目標減速度に応じて必要ブレーキトルクを算出する。これは、例えば図14に実線で示すように、目標減速度が大きくなる程必要ブレーキトルクが大きくなるように予め定められたデータマップや演算式に従って求められるが、目標減速度を設定する段階で路面勾配を考慮しない場合には、必要ブレーキトルクを求める段階で路面勾配を考慮して、例えば図14に破線で示すように、下り勾配では水平な平坦路よりも大きな必要ブレーキトルクが算出されるようにすることが望ましい。この他、車両重量(乗車人数など)についても、車両重量が大きくなる程必要ブレーキトルクが大きくなるようにすることが望ましい。但し、フットブレーキ操作の有無やフットブレーキ力とは関係なく定められ、フットブレーキ操作の変化によって動力源ブレーキが変化することはない。
ステップR2では、バッテリ77の残容量SOCが予め定められた上限値α以下か否かを判断し、SOC≦αであればバッテリ77の充電が可能であるため、ステップR3で、必要ブレーキトルクを発生させることができる範囲で高速側の前進ギヤ段を設定するとともに、ステップR4で第2電動機MG2を回生制御し、エンジンブレーキ力および回生トルクの両方で目的とするブレーキトルクが得られるようにする。また、SOC>αの場合には、バッテリ77の充電が不可であるため、ステップR5で、必要ブレーキトルクを発生させることができる範囲で低速側の前進ギヤ段を設定するとともに、ステップR6で第2電動機MG2を力行制御し、その力行トルクでエンジンブレーキ力を低減することにより目的とするブレーキトルクが得られるようにする。
すなわち、動力源ブレーキトルクは、自動変速機10のギヤ段に応じて得られるエンジンブレーキトルクと第2電動機MG2の力行トルク或いは回生トルクとを加算したものであるため、図15に実線で示す各前進ギヤ段におけるエンジンブレーキトルクを中心として、第2電動機MG2を回生制御すれば、その回生トルクに応じて動力源ブレーキトルクをそれぞれ破線で示す範囲まで増大させることができる。また、第2電動機MG2を力行制御すれば、その力行トルクに応じて動力源ブレーキトルクを一点鎖線で示す範囲まで減少させることが可能で、各ギヤ段において得られる動力源ブレーキトルクの範囲が互いにオーバーラップさせられているのである。例えば、第7速前進ギヤ段「7th」で第2電動機MG2を回生制御することによって得られる動力源ブレーキトルクの範囲と、第6速前進ギヤ段「6th」で第2電動機MG2を力行制御することによって得られる動力源ブレーキトルクの範囲は、互いに重複している。したがって、基本的には第2電動機MG2を回生制御してバッテリ77を充電しつつ目的とするブレーキトルクを発生させるが、バッテリ77が満充電で充電不可の場合には、ギヤ段を下げてエンジンブレーキトルクを増大させるとともに、第2電動機MG2を力行制御してブレーキトルクを低下させることにより、目的とするブレーキトルクを得ることができるのである。
なお、第2電動機MG2に加えて第1電動機MG1を力行或いは回生制御すれば、各前進ギヤ段における動力源ブレーキトルクの制御範囲を更に拡大することが可能で、必要ブレーキトルクに応じて3つ以上の前進ギヤ段の中から適当なギヤ段を選択して動力源ブレーキ制御を行うことができるようにすることもできる。第2電動機MG2のトルク容量が大きい場合も、同様に3つ以上の前進ギヤ段の中から選択できるようにすることができる。また、前記ステップR5、R6では、低速側の前進ギヤ段を設定するとともに第2電動機MG2を力行制御してブレーキトルクを低下させるようになっていたが、高速側の前進ギヤ段を設定するとともに第2電動機MG2に逆回転方向の力行トルクを加えてブレーキトルクを増大させるようにしても良い。
また、電動機MG1、MG2のフェールで回生トルクが得られない場合には、自動変速機10の変速制御によるエンジンブレーキ力のみで対応する。逆に、車速Vが低下してクラッチCiが解放された場合など、エンジンブレーキ力が得られない場合は、第2電動機MG2の回生制御のみで対応する。
図10に戻って、前記ステップS2の判断がYES(肯定)の場合、すなわちシフトレバー72が「E」ポジションから「D」ポジションへ戻し操作(E→Dシフト)された場合には、ステップS3で目標減速度を徐々に低下させて0とするとともに、その目標減速度に応じて減速度制御を行うことにより、動力源ブレーキを徐々に低下させて減速度制御を終了する。この減速度制御徐変終了処理では、目標減速度が図16に示すように車速Vをパラメータとして定められた変化率に従って徐々に低下させられ、車速Vが大きい程大きな変化率で低下させられる。目標減速度が大きく、自動変速機10がダウンシフトされた状態で減速度制御モードの解除操作(E→Dシフト)が行われた場合には、自動変速機10のアップシフトを併用して減速度が徐変制御される。図18のタイムチャートの時間t2 は、E→DシフトによりステップS2の判断がYESになった時間で、本実施例では一点鎖線で示すように目標減速度や第2電動機MG2の回生制動トルクが徐変させられる。このため、実線で示すように直ちに目標減速度=0として減速度制御を終了する場合に比較して、動力源ブレーキが滑らかに変化させられ、減速度制御の終了時のショックが抑制される。なお、点線で示すように段階的に低下させることもできる。
そして、次のステップS4で減速度制御モードを解除するとともに、減速度制御モードを実行中であることを表すフラグをOFFにする。これにより、以後のサイクルではステップS1の判断がNO(否定)になり、ステップS11が実行されるようになる。
また、ステップS5の判断がYES(肯定)になった場合、すなわちシフトレバー72が「Can−Decel」位置へ操作されるか第2Can−Decelスイッチ83のON操作で目標減速度が低下し、DレンジにおけるアクセルOFF走行時の減速度と同程度になった場合には、ステップS6で目標減速度に基づく減速度制御を終了する。図19のフローチャートの時間t3 は、シフトレバー72が「Can−Decel」位置へ繰り返し操作されることにより目標減速度が段階的に低下させられて0となり、減速度制御が終了した時間である。
次のステップS7では、シフトレバー72が「E」ポジションか否かを判断し、「E」ポジションであればステップS8で減速度制御モードを維持したまま終了するが、「E」ポジションでない場合にはステップS4で減速度制御モードを解除する。すなわち、シフトレバー72が「D」ポジションに保持された状態で第2Decelスイッチ82がON操作されることにより減速度制御モードに設定された場合に、第2Can−Decelスイッチ83がON操作されてDレンジ相当まで減速度が復帰した場合には、その第2Can−Decelスイッチ83のON操作に基づいて減速度制御モードが解除される一方、シフトレバー72が「E」ポジションに保持されている場合には、目標減速度が0となって減速度制御が終了しても減速度制御モードはそのまま継続し、ステップS1に続いてステップS2以下を実行することにより、シフトレバー72が「Decel」位置へ操作されるか第2Decelスイッチ82がON操作されることにより、直ちにステップS9以下の減速度制御が行われる。
なお、減速度制御モードの実行中にアクセルペダル50が踏込み操作された場合には、第2電動機MG2のトルク制御を中止するとともに、自動変速機10のギヤ段はそのままでエンジン30の出力をアクセル操作量Accに応じて制御する。
ここで、本実施例の減速度制御装置は、目標減速度を増減設定する減速度設定手段として、シフトレバー72の他に第2Decelスイッチ82および第2Can−Decelスイッチ83がステアリングコラム86に設けられており、シフトレバー72を「D」ポジションに保持したままでも、第2Decelスイッチ82をON操作することにより減速度制御モードへ移行することが可能で、簡単操作で減速度制御を行うことができる。その場合に、シフトレバー72をD→E→Dシフトすることにより、ステップS3、S4で減速度制御モードを解除できるが、本実施例では第2Can−Decelスイッチ83がON操作されてDレンジ相当まで減速度が復帰した場合にも、ステップS6に続いてステップS4が実行されることにより減速度制御モードが解除されるため、減速度制御モードの解除操作が容易になって減速度制御の使い勝手が一層向上する。
また、本実施例では、第2Can−Decelスイッチ83のON操作でDレンジ相当まで減速度が復帰した場合に、減速度制御モードが解除されるため、目標減速度が徐々に低下させられて減速度制御モードが解除されることになり、目標減速度が大きい状態で急に減速度制御モードが解除されて動力源ブレーキが大きく変化する恐れがなく、乗り心地が向上する。
また、第2Can−Decelスイッチ83のON操作でDレンジ相当まで減速度が復帰した場合には、ステップS6で減速度制御を直ちに終了するため、通常の走行モードなどへ速やかに移行できる一方、シフトレバー72のD→E→Dシフト、或いはE→Dシフトで減速度制御モードが解除される場合は、ステップS3で目標減速度が徐々に低下させられるため、目標減速度が大きい状態で減速度制御モードが解除された場合でも、動力源ブレーキの急な変化が抑制されて乗り心地が向上する。
また、上記ステップS3では、目標減速度を徐々に低下させる際の変化率が車速Vをパラメータとして定められ、車速Vが大きい程大きな変化率で低下させられるため、動力源ブレーキの急な変化によるショックを抑制しつつ減速度制御を速やかに終了させることができる。
なお、上記実施例ではシフトレバー72が減速度制御モード選択手段として機能し、「E」ポジションへ操作することによって減速度制御モードに設定できるようになっていたが、図20に示すようにシフトパターン122とは別にEモード選択スイッチ124を設け、そのEモード選択スイッチ124のON、OFFで減速度制御モードを設定、およびその設定を解除できるようにすることもできる。シフトパターン122は、「D」ポジションの左右両側に「Decel」位置および「Can−Decel」位置が設けられており、シフトレバー72がそれ等の「Decel」位置または「Can−Decel」位置へ操作されると、そのことが第1Decelスイッチ80、第1Can−Decelスイッチ81によって検出される。
シフトレバー72は、左右方向に連続的にスライドするのではなく、節度感を持って動く。すなわち、シフトレバー72は、中立状態、左側へ倒した状態、右側へ倒した状態の3つのうち何れかの状態を採る。運転者がシフトレバー72に加える力を緩めれば、シフトレバー72はスプリング等の付勢手段により直ちに中立位置すなわち「D」ポジションへ戻されるようになっており、第1Decelスイッチ80および第1Can−Decelスイッチ81はそれぞれスプリング等の付勢手段により自動的にOFF状態に復帰する。
この場合に、Eモード選択スイッチ124がON操作されて減速度制御モードが設定されている場合のみ、シフトレバー72による上記第1Decelスイッチ80、第2Can−Decelスイッチ81のON操作が有効となって目標減速度が増減させられるようにすれば、実質的に前記実施例と同様の作用効果が得られる。
一方、Eモード選択スイッチ124がOFFで減速度制御モードが設定されていない場合でも、シフトレバー72が「Decel」位置側へ倒されて第1Decelスイッチ80がON操作されることにより減速度制御モードが設定されるとともに、シフトレバー72が「Can−Decel」位置側へ倒されて第1Can−Decelスイッチ81がON操作され、Dレンジ相当まで減速度が復帰した場合に減速度制御モードが解除されるようにすれば、ステアリングコラム86の第2Decelスイッチ82および第2Can−Decelスイッチ83と同じ使い方をすることができる。すなわち、前記図10のフローチャートにおいて、ステップS2、S7でEモード選択スイッチ124がONか否かを判断し、ONの場合にYES(肯定)となってステップS3或いはS8が実行されるようにするとともに、ステップS11で第1Decelスイッチ80がONの場合も減速度制御モードが選択されたものと判断するようにすれば、そのフローチャートをそのまま使って減速度制御を行うことができる。
以上、本発明の実施例を図面に基づいて詳細に説明したが、これはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更,改良を加えた態様で実施することができる。
本発明が好適に適用される車両用駆動装置の一例を説明する図で、(a) は骨子図、(b) は複数のギヤ段を成立させる際の係合要素の作動状態を説明する作動表である。 図1の自動変速機の共線図である。 図1の車両用駆動装置が備えている制御系統の要部を説明するブロック線図である。 減速度制御に関して図3の電子制御装置が備えている機能を説明するブロック線図である。 図1の車両用駆動装置で可能な運転モードの一例を説明する図である。 図3のシフトレバーのシフトパターンの一例を示す図である。 ステアリングコラムに配設された第2Decelスイッチおよび第2Can−Decelスイッチの一例を示す図である。 図1の自動変速機の前進ギヤ段を自動的に切り換える変速マップの一例を示す図である。 図1の自動変速機の変速レンジと変速範囲を説明する図である。 図4の減速度制御モード実行手段によって実行される信号処理の内容を具体的に説明するフローチャートである。 図10のステップS9の処理内容を具体的に説明するフローチャートである。 図10のステップS9、S13で目標減速度を設定する際のデータマップの一例である。 路面勾配を考慮して目標減速度を設定する場合のデータマップの一例である。 図11のステップR1で目標減速度から必要ブレーキトルクを求める際のデータマップの一例である。 エンジンブレーキおよび電動機のトルク制御により車速に応じて得られる動力源ブレーキを説明する図である。 図10のステップS3で目標減速度を徐変させる際の変化率を車速Vに応じて設定する際のデータマップの一例である。 図10、図11のフローチャートに従って減速度制御モードが設定され、減速度制御が行われる場合のタイムチャートの一例である。 シフトレバーがEポジションからDポジションへ操作されることにより減速度制御モードが解除される場合のタイムチャートの一例である。 目標減速度がDレンジ相当の減速度(目標減速度=0)となって減速度制御が終了される場合のタイムチャートの一例である。 減速度制御モード選択手段の別の例を示す図である。
符号の説明
72:シフトレバー(減速度制御モード選択手段、減速度設定手段) 82:第2Decelスイッチ(減速度設定手段) 83:第2Can−Decelスイッチ(減速度設定手段) 90:電子制御装置 110:減速度制御モード実行手段 112:目標減速度制御手段 114:動力源ブレーキ制御手段 124:Eモード選択スイッチ(減速度制御モード選択手段)
ステップS3:減速度制御徐変終了手段
ステップS4:減速度制御モード解除手段
ステップS6:減速度制御終了手段

Claims (3)

  1. 減速度制御モードが設定されると、減速度設定手段の操作に従って増減設定される目標減速度に応じてブレーキ力を制御する車両の減速度制御装置において、
    前記減速度制御モードに設定できるとともに、該減速度制御モードを解除できる減速度制御モード選択手段を備えており、
    該減速度制御モード選択手段の操作で前記減速度制御モードに設定できる他、該減速度制御モード選択手段によって該減速度制御モードが選択されていない状態でも前記減速度設定手段の操作で該減速度制御モードに設定できる一方、
    前記減速度設定手段を複数備えているとともに、該複数の減速度設定手段のうちの少なくとも1つの減速度設定手段の操作により、前記目標減速度が前記減速度制御モードによる減速度制御が実施されていない場合と同等の減速度まで低下させられた場合には、前記減速度制御モード選択手段によって前記減速度制御モードが選択されていないことを条件として前記減速度制御モードを解除する
    ことを特徴とする車両の減速度制御装置。
  2. 減速度制御モードが設定されると、減速度設定手段の操作に従って増減設定される目標減速度に応じてブレーキ力を制御する車両の減速度制御装置において、
    前記減速度制御モードに設定できるとともに、該減速度制御モードを解除できる減速度制御モード選択手段を備えており、
    前記減速度制御モードは、該減速度制御モード選択手段および前記減速度設定手段の両方で解除できるが、解除する際の前記目標減速度の変更方法が異なり、該減速度制御モード選択手段の操作で解除される場合は該目標減速度を徐々に低下させる
    ことを特徴とする車両の減速度制御装置。
  3. 前記目標減速度を徐々に低下させる際の変化パターンが車速によって異なる
    ことを特徴とする請求項に記載の車両の減速度制御装置。
JP2004264068A 2004-08-30 2004-09-10 車両の減速度制御装置 Active JP4449669B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004264068A JP4449669B2 (ja) 2004-09-10 2004-09-10 車両の減速度制御装置
US11/195,776 US7383115B2 (en) 2004-08-30 2005-08-03 Vehicle deceleration control apparatus
DE102005040567.3A DE102005040567B4 (de) 2004-08-30 2005-08-26 Fahrzeugverzögerungssteuervorrichtung
CN2005100934661A CN1743200B (zh) 2004-08-30 2005-08-30 车辆减速度控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004264068A JP4449669B2 (ja) 2004-09-10 2004-09-10 車両の減速度制御装置

Publications (2)

Publication Number Publication Date
JP2006076491A JP2006076491A (ja) 2006-03-23
JP4449669B2 true JP4449669B2 (ja) 2010-04-14

Family

ID=36156305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004264068A Active JP4449669B2 (ja) 2004-08-30 2004-09-10 車両の減速度制御装置

Country Status (1)

Country Link
JP (1) JP4449669B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5333139B2 (ja) * 2009-10-07 2013-11-06 トヨタ自動車株式会社 車両制御装置
JP7067345B2 (ja) * 2018-07-31 2022-05-16 トヨタ自動車株式会社 車両の制御装置

Also Published As

Publication number Publication date
JP2006076491A (ja) 2006-03-23

Similar Documents

Publication Publication Date Title
JP2006094589A (ja) 車両の減速度制御装置
US7383115B2 (en) Vehicle deceleration control apparatus
JP3918841B2 (ja) 車両の減速度制御装置
JP3680734B2 (ja) 電動機のトルクにより制動する車両及びその制御方法
JP4501790B2 (ja) 車両の減速度制御装置
JP5071438B2 (ja) 車両用動力伝達装置の制御装置
JP4457981B2 (ja) 車両用駆動装置の制御装置
JP2008207690A (ja) 車両用駆動装置の制御装置
JP2009012730A (ja) ハイブリッド車両用動力伝達装置のエンジン始動装置
JP2008290555A (ja) 車両用駆動装置の制御装置
JP4135030B1 (ja) 車両の制御装置、制御方法、その方法を実現するプログラムおよびそのプログラムを記録した記録媒体
JP3951494B2 (ja) 車両用モータの制御装置
JP2009215925A (ja) 車両およびその制御方法
JP4320624B2 (ja) 車両の減速度制御装置
JP5515467B2 (ja) 車両の制御装置
JP4449669B2 (ja) 車両の減速度制御装置
JP4853410B2 (ja) ハイブリッド車両用動力伝達装置の制御装置
JP3705230B2 (ja) 車両の減速度制御装置
JP4259436B2 (ja) 車両の減速度制御装置
JP4661166B2 (ja) 車両用減速度制御装置
JP4007365B2 (ja) 車両用減速度制御装置
JP2010126094A (ja) 車両用動力伝達装置の制御装置
JP4063270B2 (ja) 車両用減速度制御装置
JP5387516B2 (ja) 車両用駆動装置の制御装置
JP2013107446A (ja) ハイブリッド車両の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100118

R151 Written notification of patent or utility model registration

Ref document number: 4449669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4