JP4449190B2 - 電圧駆動型半導体素子のゲート駆動装置 - Google Patents

電圧駆動型半導体素子のゲート駆動装置 Download PDF

Info

Publication number
JP4449190B2
JP4449190B2 JP2000226759A JP2000226759A JP4449190B2 JP 4449190 B2 JP4449190 B2 JP 4449190B2 JP 2000226759 A JP2000226759 A JP 2000226759A JP 2000226759 A JP2000226759 A JP 2000226759A JP 4449190 B2 JP4449190 B2 JP 4449190B2
Authority
JP
Japan
Prior art keywords
voltage
semiconductor element
overvoltage
circuit
driven semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000226759A
Other languages
English (en)
Other versions
JP2001119926A (ja
Inventor
秀昭 柿木
邦夫 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2000226759A priority Critical patent/JP4449190B2/ja
Publication of JP2001119926A publication Critical patent/JP2001119926A/ja
Application granted granted Critical
Publication of JP4449190B2 publication Critical patent/JP4449190B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Power Conversion In General (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、電力変換装置を構成する電圧駆動型半導体素子のゲート駆動装置、特に電力変換装置を高電圧化するために、電圧駆動型半導体素子を直列接続して構成される電力変換装置に用いて好適なゲート駆動装置に関する。
【0002】
【従来の技術】
図9に、電圧駆動型半導体素子としてIGBT(絶縁ゲートバイポーラトランジスタ)を用いたチョッパ回路の例を示す。これは、直流電源Edに対し上アームにはIGBT1と、これに逆並列に接続されたフリーホイーリングダイオードFWD1と、下アームにはIGBT2とこれに逆並列に接続されたFWD2とが設けられ、IGBT1には負荷が接続されている。GDU1,GDU2はゲート駆動装置で、具体的には例えば図10に示すように、IGBTをオン,オフさせるためのトランジスタTR1,TR2、抵抗Rg(on),Rg(off)およびインターフェイス回路IFなどから構成される。
【0003】
いま、図9のIGBT2をターンオンすると、負荷を通して電流が流れる。次に、IGBT2をターンオフすると負荷よりIGBT2を流れていた電流は、FWD1へ転流する(フリーホイーリングモード)。この状態でIGBT2がターンオンするとFWD1は逆回復し、電流は再度負荷からIGBT2を通るルートに切り替わる。このとき、FWD1へ転流したフリーホイーリング電流が、素子の定格の1/10以下の低電流時にFWD1が逆回復すると、大きなサージ電圧が発生することが指摘されている。そのときの様子を示すのが図11,図12で、FWD1に定格以上のサージ電圧が印加された例が示されている。なお、図12は図11の部分(要部)拡大図である。
【0004】
図9では1つのアームに1つの電圧駆動型半導体素子を用いる例であるが、上記の問題は図13のように1つのアームに複数(図では2つ)の素子を設けて高電圧化を図る電力変換装置の場合も同様で、そのときの様子を図14に点線で示している。これは、ゲート駆動装置GDU3,4により下アーム素子IGBT3,4を動作させるときの上アームのFWD1,2の逆回復時にIGBT1,2に印加される電圧波形を示している。IGBT1,2のいずれにも点線で示すような定格以上のサージ電圧が印加されていることが分かる。
【0005】
【発明が解決しようとする課題】
このようなサージ電圧は時に素子の定格耐圧を大きく超え、最悪の場合は素子破壊に至るおそれがある。このため、従来は例えば図10に示すゲートオン抵抗Rg(on)の値を大きくすることで、IGBT2のターンオン時間を遅くしIGBT2側で電圧を保持する時間を長くし、FWD1に印加される電圧を低くしてサージ電圧を抑制する方法が用いられている。しかし、ゲート抵抗が大きいと電圧保持時間が増大し、ターンオン損失が増加する。このターンオン損失の増加は、素子全体の総損失を増加させ、動作周波数を低下させたり出力電流を低下させなければならないという問題が生じる。
【0006】
また、1つのアームに複数の素子を設けて高電圧化を図る場合には、上記の問題に加えてさらに、素子特性のばらつき等による問題が発生する。この問題を説明するのが図15で、複数の素子間の素子特性のばらつき等によりIGBTのターンオンタイミングに違いが生じ、電圧分担にアンバランスが生じた場合を示す。ここでは、例えば図13の上アームのIGBT2の方が早くオンし、このときIGBT1がオフしているため、IGBT1にだけ電圧が印加されると言うアンバランスが生じている例である。このとき、IGBT1のコレクタ−エミッタ間電圧VCE(1)と、IGBT2のコレクタ−エミッタ間電圧VCE(2)を加えた電圧が直流電圧Edに等しくならない期間があるのは、スナバコンデンサCと主回路浮遊インダクタンスLmとの共振動作によるものである。
【0007】
このように電圧アンバランスが発生するが、その対策として、例えば図13にも示すように各IGBTにスナバコンデンサC,スナバ抵抗R等からなるRCスナバ回路を付加することによって、遅れてオンするIGBT1の電圧上昇率(dv/dt)を低減させて、IGBT1にオン信号が入るまでの期間(Δt)、IGBT1に印加される電圧を抑制するようにしている。
【0008】
IGBTを直列接続して用いる場合、上述のように、各IGBTにRCスナバ回路を付加することにより、ターンオンタイミングがずれた場合の電圧アンバランスによる過電圧印加およびそれによる素子破壊を防ぐことができるが、許容可能なターンオンタイミングの時間差を大きくしようとすると、付加するスナバのコンデンサ容量を大きくしなければならず、そうすると発生損失が増大するために抵抗Rの形状が大きくなり、装置全体も大きくなるなどの問題が生じる。
したがって、この発明の課題はターンオン損失を増加させたり、スナバのコンデンサ容量を大きくすることなく、IGBTの保護を図ることにある。
【0009】
【課題を解決するための手段】
このような課題を解決するため、請求項1の発明では、電力変換装置の各アームに複数個直列接続される電圧駆動型半導体素子をそれぞれオン,オフ駆動するためのゲート駆動装置であって、
前記電圧駆動型半導体素子に印加される電圧を検出し過電圧か否かを判断する過電圧判別回路と、電圧駆動型半導体素子のターンオン時に電圧駆動型半導体素子を通常の順バイアス電圧よりも高い電圧でターンオンさせるオーバドライブ回路とを備え、前記各直列接続された電圧駆動型半導体素子のターンオンタイミングの差により、各電圧駆動型半導体素子の印加電圧にアンバランスが発生し、前記過電圧判別回路にて過電圧を検出したときは、前記オーバドライブ回路にて過電圧が印加された電圧駆動型半導体素子を通常の順バイアス電圧よりも高い電圧でターンオンさせることにより、電圧駆動型半導体素子への過電圧印加およびこれにもとづく素子破壊を防止することを特徴とする。
【0010】
上記請求項1の発明においては、前記電圧駆動型半導体素子のターンオフ時に過電圧が検出されたら、過電圧が検出された電圧駆動型半導体素子を再びオンさせる再オン回路を付加し、前記各直列接続された電圧駆動型半導体素子のターンオフ時の電圧アンバランスによる電圧駆動型半導体素子への過電圧印加、およびこれにもとづく素子破壊を防止することができる(請求項2の発明)。この請求項1または2の発明においては、前記オーバドライブ回路は、電圧駆動型半導体素子に一定時間だけ通常の順バイアス電圧よりも高い電圧を印加する電圧印加回路を含むことができる(請求項3の発明)。
【0011】
【発明の実施の形態】
図1はこの発明の第1の実施の形態を示す構成図で、図13と同じく、電圧駆動型半導体素子としてIGBTQ1からQ4を直列接続して構成されるインバータ1相分を示し、上アームはQ1,Q2、下アームはQ3,Q4の各直列接続回路からなり、各素子Q1〜Q4にはRCスナバ回路が設けられて構成される。すなわち、図13に示すものに対し、検出抵抗R1〜R4を付加した程度であるが、ゲート駆動装置GDUが図2(a)のように、図10に示す従来のゲート駆動装置に対して過電圧判別回路OVとオーバドライブ回路ODとを有する点で異なっている。過電圧判別回路OVは、検出抵抗によって検出された電圧が過電圧かどうかを判別するものであり、オーバドライブ回路ODはIGBTのターンオン時、これに順バイアス電圧を重畳させるものである。Dd1は逆流防止用のダイオードである。なお、FWDをIGBTから切り離して考える必要がない場合は、これらをまとめて電圧駆動型半導体素子QまたはIGBTと言うものとする。
【0012】
図2(b)を参照して、ゲート駆動装置の動作について説明する。
最初にQ2がターンオンしたものとすると、Q1のコレクタ−エミッタ間電圧VCE(Q1)が上昇を始め、検出抵抗によって検出される電圧が過電圧検知レベルに達すると、過電圧判別回路OVは過電圧状態であると判断する。これによりオーバドライブ回路ODが動作し、Q1を通常の順バイアス電圧よりも高い電圧でターンオン動作(オーバドライブ動作)させる。Q1をオーバドライブ回路ODを介して動作させることで、通常のターンオン動作よりも速くターンオンさせるようにする。
【0013】
その様子を示すのが図3で、オーバドライブ回路ODを用いた場合は同図に実線で示すように、点線で示すオーバドライブ回路ODを用いない場合に比べてΔTだけ速くターンオンできることになる。
こうすることにより、Q1への過電圧印加時に、コレクタ−エミッタ間電圧VCEが速やかに下降して行くので、過電圧印加によるQ1の破壊を高速に防ぐことが可能となり、発生する損失も低減される。
【0014】
図4にオーバドライブ回路ODの具体例を示す。破線部分がオーバドライブ回路ODであり、その他の部分は図2(a)と同様である。すなわち、オーバドライブ回路ODはMOSFET等の電界効果トランジスタTR3、インバータ,ノアゲート等のロジックIC1,IC2、直流電源Vおよびタイマー回路TMから構成される。
この回路ODに、過電圧判別回路OVから過電圧検知信号がタイマー回路TMに入力されると、ロジックIC1の出力がH(ハイ)からL(ロー)に変化し、TR1がオフする。これと同時にTR3がオンし、IGBTのゲート−エミッタ間電圧が直流電源電圧Vにバイアスされる。この電圧Vを通常の順バイアス電圧よりも高い電圧(ここでは順バイアス電圧15V、オーバドライブ電圧20V)としている。タイマー時間後にはTR3がオフし、オーバドライブ回路ODは切り離されるため、通常の順バイアス電圧に戻る。
【0015】
図5はこの発明の第2の実施の形態を説明する説明図で、同図(a)はゲート駆動装置、同図(b)はそのオーバドライブ回路の詳細例を示す。
これはオーバドライブ回路を同図(b)のように構成したもので、図2(a)との相違点は、オーバドライブ回路ODをIGBTのゲート端子(G)に直接接続した点、オーバドライブ回路動作時に通常オン回路を切り離す(TR1をオフにする)機能をインターフェイス回路IFに持たせた点にある。この例では、オーバドライブ時にゲート抵抗(R)を任意に設定でき、電圧アンバランス発生時のIGBTの高速な保護が可能となる。なお、回路動作は図2(a)と同様なので説明は省略する。
【0016】
図6はこの発明の第3の実施の形態を説明する説明図で、同図(a)はゲート駆動装置、同図(b)はその動作説明図である。
図6(a)からも明らかなように、図2(a)に示すものに対し、オン・オフ判別回路OFおよび再オン回路ROを付加して構成される。オン・オフ判別回路OFはIGBT素子のターンオン,ターンオフを判別し、再オン回路ROはIGBTのターンオフ時にこれを再オンさせるものである。
図6(b)からも明らかなように、ターンオン時の動作は図2(b)および図3と全く同様でなので、ターンオフ時の電圧アンバランス発生時についてのみ、以下に説明する。
【0017】
いま、IGBT(Q1)のターンオフ時に、検出抵抗を介して検出されるIGBTのコレクタ−エミッタ間電圧が過電圧検知レベルに達すると、過電圧判別回路OVにより過電圧状態と判断される。オン・オフ判別回路OFは回路OVの出力を受けて再オン回路ROを起動するので、再オン回路ROによりターンオン動作(再オン)が開始される。Q1が再オンすると、そのコレクタ−エミッタ間電圧は下降して行くので、Q2がターンオフするまでの間、Q1に過電圧が印加されるのを防ぐことができる。
このように、ターンオン時の電圧アンバランスはオーバドライブ回路により、またターンオフ時の電圧アンバランスは再オン回路により抑制することが可能となる。
【0018】
図7はこの発明の応用例を示す構成図である。
これは、FWD逆回復時のサージ電圧に対処するもので、図10に示す従来のゲート駆動装置に対し、抵抗R,コンデンサCからなる遅延回路、抵抗Rg(on)1およびトランジスタTR10を付加して構成される。
したがって、インターフェイス回路IFを介してTR1をオンさせると、まず抵抗Rg(on)を介してIGBTのゲートが駆動される。その後、遅延回路のCR時定数で決まる一定時間が経過するとTR10がオンし、これによりIGBTのゲートは、抵抗Rg(on)と抵抗Rg(on)1の並列抵抗により駆動される。このとき、並列抵抗値は抵抗Rg(on)よりも小さくなるので、このゲート駆動装置を用いれば、IGBTのゲートは最初は高抵抗で、一定時間後は低抵抗で駆動されることになる。なお、トランジスタTR2側の遅延回路は、TR1側で遅延させた分だけターンオフタイミングを調整するためのものである。
【0019】
図8は図7の動作を説明するための波形図である。
図7のゲート駆動装置が先の図9に示すGDU2に対応するものとし、インターフェイス回路IFを介してTR1をオンとしIGBT2を動作させる場合、図8のGDU2波形に示すように、FWD1の低電流逆回復時の期間t1までは高抵抗で駆動し、IGBT2側で電圧を保持することでFWD1側のサージ電圧を抑制する。また、大電流逆回復時である期間t2では低抵抗で駆動することによりターンオン時間を早め、ターンオン損失を低減するようにしている。その結果、IGBT2のコレクタ−エミッタ間電圧,FWD1電圧,電流波形は図示のようになり、図11,12の場合に比べてサージ電圧が抑制されていることが分かる。なお、IGBT2のコレクタ−エミッタ間電圧,FWD1電圧,電流波形は実線で大電流時の動作を、また、点線で低電流時の動作を示している。
【0020】
以上は、図9の如きアームの素子が1つの場合であるが、図13のようにアームの素子が複数の場合も上記と同様に、図7に示すゲート駆動装置により最初は高抵抗で駆動し、一定時間後は低抵抗で駆動することにより、サージ電圧を抑制しターンオン損失を低減させることが可能となる。このときの様子を示すのが図14で、ゲート駆動装置GDU3,4で下アーム素子IGBT3,4を動作させるときの上アームのFWDの逆回復時にIGBT1,2に印加される電圧波形を示している。すなわち、Δtだけ早く逆回復するIGBT2側の電圧は、IGBT1側で分担する電圧が重畳し、点線で示すようにさらにサージ電圧が発生し、素子破壊に至る可能性がある。しかし、図7に示すゲート駆動装置を用いた場合の逆回復動作では、実線で示すようにサージ電圧の発生を抑制し、Δtだけ早く
逆回復するIGBT2側の電圧分担を最小限に抑えることが可能となり、素子破壊を防止できることになる。
【0021】
【発明の効果】
請求項1の発明によれば、インバータを含む電力変換装置の各アームを、IGBT等の電圧駆動型スイッチング素子を直列接続して構成する場合、素子間の電圧アンバランスによって発生する過電圧から、素子を従来の場合より高速に保護することができ、かつ、充放電スナバのコンデンサ容量を低減できるため、装置の小型化が可能となる。また、オーバドライブ回路により通常の順バイアス電圧より高い電圧で動作させるため発生する損失も小さく、ターンオン損失の増加は殆どない。
さらに、請求項2,3のように再オン回路を付加することで、ターンオン時だけでなく、ターンオフ時の過電圧による素子破壊も防ぐことができる。
【図面の簡単な説明】
【図1】 この発明の第1の実施の形態を示す回路構成図である。
【図2】 ゲート駆動装置の具体例とその動作説明図である。
【図3】 オーバドライブ動作の説明図である。
【図4】 オーバドライブ回路の具体例を示す回路図である。
【図5】 この発明の第2の実施の形態を説明する説明図である。
【図6】 この発明の第3の実施の形態を説明する説明図である。
【図7】 この発明の応用例を示す構成図である。
【図8】 図7の動作を説明するための波形図である。
【図9】 チョッパ回路の従来例を示す構成図である。
【図10】 ゲート駆動装置の従来例を示す回路図である。
【図11】 図10の動作説明図である。
【図12】 図11の要部拡大図である。
【図13】 素子直列接続式電力変換装置の1相分を示す回路図である。
【図14】 図13の逆回復時の動作説明図である。
【図15】 図13の電圧アンバランス動作説明図である。
【符号の説明】
Q…絶縁ゲートバイポーラトランジスタスイッチ(IGBT)、GDU…ゲート駆動装置、Ed…直流電源、R…抵抗、C…コンデンサ、D,Dd1…ダイオード、TR…トランジスタ、IF…インターフェイス回路、OV…過電圧判別回路、OD…オーバドライブ回路、TM…タイマー回路、OF…オン・オフ判別回路、RO…再オン回路。

Claims (3)

  1. 電力変換装置の各アームに複数個直列接続される電圧駆動型半導体素子をそれぞれオン,オフ駆動するためのゲート駆動装置であって、
    前記電圧駆動型半導体素子に印加される電圧を検出し過電圧か否かを判断する過電圧判別回路と、電圧駆動型半導体素子のターンオン時に電圧駆動型半導体素子を通常の順バイアス電圧よりも高い電圧でターンオンさせるオーバドライブ回路とを備え、前記各直列接続された電圧駆動型半導体素子のターンオンタイミングの差により、各電圧駆動型半導体素子の印加電圧にアンバランスが発生し、前記過電圧判別回路にて過電圧を検出したときは、前記オーバドライブ回路にて過電圧が印加された電圧駆動型半導体素子を通常の順バイアス電圧よりも高い電圧でターンオンさせることにより、電圧駆動型半導体素子への過電圧印加およびこれにもとづく素子破壊を防止することを特徴とする電圧駆動型半導体素子のゲート駆動装置。
  2. 前記電圧駆動型半導体素子のターンオフ時に過電圧が検出されたら、過電圧が検出された電圧駆動型半導体素子を再びオンさせる再オン回路を付加し、前記各直列接続された電圧駆動型半導体素子のターンオフ時の電圧アンバランスによる電圧駆動型半導体素子への過電圧印加、およびこれにもとづく素子破壊を防止することを特徴とする請求項1に記載の電圧駆動型半導体素子のゲート駆動装置。
  3. 前記オーバドライブ回路は、電圧駆動型半導体素子に一定時間だけ通常の順バイアス電圧よりも高い電圧を印加する電圧印加回路を含むことを特徴とする請求項1または2のいずれかに記載の電圧駆動型半導体素子のゲート駆動装置。
JP2000226759A 1999-08-10 2000-07-27 電圧駆動型半導体素子のゲート駆動装置 Expired - Fee Related JP4449190B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000226759A JP4449190B2 (ja) 1999-08-10 2000-07-27 電圧駆動型半導体素子のゲート駆動装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-226127 1999-08-10
JP22612799 1999-08-10
JP2000226759A JP4449190B2 (ja) 1999-08-10 2000-07-27 電圧駆動型半導体素子のゲート駆動装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009244730A Division JP2010022190A (ja) 1999-08-10 2009-10-23 電圧駆動型半導体素子のゲート駆動装置

Publications (2)

Publication Number Publication Date
JP2001119926A JP2001119926A (ja) 2001-04-27
JP4449190B2 true JP4449190B2 (ja) 2010-04-14

Family

ID=26527010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000226759A Expired - Fee Related JP4449190B2 (ja) 1999-08-10 2000-07-27 電圧駆動型半導体素子のゲート駆動装置

Country Status (1)

Country Link
JP (1) JP4449190B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100398000B1 (ko) * 2001-09-11 2003-09-19 현대자동차주식회사 이중 모듈의 전력용 반도체 소자 구동용 게이트 구동 장치
JP4437685B2 (ja) * 2004-03-24 2010-03-24 三菱電機株式会社 電力変換器におけるゲート駆動回路
JP4726499B2 (ja) * 2005-01-17 2011-07-20 東芝三菱電機産業システム株式会社 電圧駆動型半導体スイッチング素子の制御装置
JP5195836B2 (ja) 2010-07-12 2013-05-15 株式会社デンソー ソフトスイッチング制御装置およびその製造方法
CN107835002B (zh) 2017-09-20 2024-03-12 同方威视技术股份有限公司 固态脉冲调制器中的保护电路、振荡补偿电路和供电电路

Also Published As

Publication number Publication date
JP2001119926A (ja) 2001-04-27

Similar Documents

Publication Publication Date Title
JP4432215B2 (ja) 半導体スイッチング素子のゲート駆動回路
JP2669117B2 (ja) 電圧駆動形半導体素子の駆動回路
US7535283B2 (en) Gate drive circuit, semiconductor module and method for driving switching element
JP3339311B2 (ja) 自己消弧形半導体素子の駆動回路
JP6617571B2 (ja) 半導体スイッチング素子のゲート駆動回路
JPH0479758A (ja) 電流センスigbtの駆動回路
JP4120329B2 (ja) 電圧駆動型半導体素子のゲート駆動装置
JP4321491B2 (ja) 電圧駆動型半導体素子の駆動装置
JP4449190B2 (ja) 電圧駆動型半導体素子のゲート駆動装置
JPH08172769A (ja) インバータ装置
JP5298557B2 (ja) 電圧駆動型半導体素子のゲート駆動装置
JPH05218836A (ja) 絶縁ゲート素子の駆動回路
JP2003189593A (ja) 絶縁ゲート型半導体素子のゲート駆動回路、絶縁ゲート型半導体モジュール及び電力変換装置
JP3598870B2 (ja) ドライブ回路
JP4946103B2 (ja) 電力変換装置
JP2010022190A (ja) 電圧駆動型半導体素子のゲート駆動装置
JP2005328668A (ja) 自己消弧形半導体素子の駆動回路
JP3661813B2 (ja) 電圧駆動形半導体素子の駆動回路
JP2002153043A (ja) 電圧駆動型半導体素子のゲート駆動装置
JP3568024B2 (ja) 電圧駆動型半導体素子のゲート駆動回路
JP3558324B2 (ja) 電圧駆動型素子のゲート駆動装置
JPH10209832A (ja) 半導体スイッチ回路
JP3724255B2 (ja) 電圧駆動型半導体素子のゲート駆動回路
JP3340786B2 (ja) パワートランジスタの過電流保護回路
JP2004260981A (ja) 電力変換装置及びこれを用いた電機システム

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040121

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100118

R150 Certificate of patent or registration of utility model

Ref document number: 4449190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees