JP4431926B2 - 超音波探傷装置及び超音波探傷方法 - Google Patents

超音波探傷装置及び超音波探傷方法 Download PDF

Info

Publication number
JP4431926B2
JP4431926B2 JP2000394045A JP2000394045A JP4431926B2 JP 4431926 B2 JP4431926 B2 JP 4431926B2 JP 2000394045 A JP2000394045 A JP 2000394045A JP 2000394045 A JP2000394045 A JP 2000394045A JP 4431926 B2 JP4431926 B2 JP 4431926B2
Authority
JP
Japan
Prior art keywords
echo
cross
probe
section
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000394045A
Other languages
English (en)
Other versions
JP2002195988A (ja
Inventor
裕久 山田
智紀 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Corp
Priority to JP2000394045A priority Critical patent/JP4431926B2/ja
Publication of JP2002195988A publication Critical patent/JP2002195988A/ja
Application granted granted Critical
Publication of JP4431926B2 publication Critical patent/JP4431926B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼材の溶接箇所における欠陥を超音波を用いて非破壊で検査するための超音波探傷装置及び超音波探傷方法に関するものである。
【0002】
【従来の技術】
従来より、鋼材の溶接箇所に生じうる欠陥を非破壊で検査する装置として、超音波探傷装置が知られている。かかる超音波探傷装置は、探触子を用いて、被検査体内の欠陥の検査を行うものである。被検査体には溶接部の溶接線と平行にガイドレールが取り付けられ、探触子はこのガイドレールに平行な方向及び直交する方向に沿って移動することができる。この探触子は、超音波を被検査体中に入射させ、被検査体内の反射源で反射された超音波(反射エコー)を受信するものである。超音波は、被検査体中を伝播しているときに、欠陥や溶接部の余盛等の不均一な部分があると、それを反射源として反射される。このため、探触子が受信する反射エコーには、欠陥で反射された欠陥エコーだけでなく、溶接部の余盛で反射された形状エコー等が含まれる。
【0003】
超音波探傷装置は、探触子で受信した反射エコーに基づいて、そのエコー高さと反射源の位置とを特定する。このとき、反射源の位置は、溶接線上の所定位置を原点とする座標系において定められる。具体的には、まず、探触子に対する反射源の位置を求めた後、ガイドレール上の所定の位置に対する探触子の位置、ガイドレールと溶接線との間隔、溶接部の余盛の幅等に基づいて、当該座標系における反射源の位置を演算する。超音波探傷装置は、各反射源と溶接部との位置関係を調べることにより、各反射源が欠陥である否かを識別する。そして、各欠陥の位置にそのエコー高さをプロットした探傷画像を作成し、表示装置の画面上に表示する。
【0004】
【発明が解決しようとする課題】
ところで、通常、ガイドレールはマグネットにより被検査体に取り付けられるので、ガイドレールの取り付け精度があまりよくない。また、溶接部の余盛も常に一定の幅を有しているわけではなく、ある程度のばらつきがある。さらに、被検査体によっては被検査体内部の音速が一様でないことがあり、その場合には、探傷屈折角度が探傷中に変わってしまうことがある。上述したように、従来の超音波探傷装置では、溶接線上の所定位置を原点とする座標系において反射源の位置を特定しているので、ガイドレールの取り付け誤差、余盛の幅のばらつき、屈折角度のずれ等があると、当該座標系における反射源の位置も正確に求めることはできない。このため、例えば、欠陥エコーを形状エコーと判断したり、逆に、形状エコーを欠陥エコーと判断したりして、欠陥の識別を高精度で行うことができないという問題があった。
【0005】
本発明は上記事情に基づいてなされたものであり、欠陥か否かの識別を高精度で行うことができる超音波探傷装置及び超音波探傷方法を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
上記の目的を達成するための本発明に係る超音波探傷装置は、被検査体中に超音波を入射し、前記被検査体内の反射源で反射して戻る反射エコーを受信する探触子と、前記被検査体の溶接線に沿っての各位置において前記溶接線に直交する方向に所定のピッチで前記探触子を走査する走査手段と、前記走査手段による走査時に前記探触子で受信された反射エコーに基づいて、各ピークのエコー高さと各ピークに対応する反射源の位置とを求める第一処理手段と、前記第一処理手段で得られた結果を用いて、前記溶接線に垂直な各断面においてエコー高さが最大であるピークを求め、その求めたピークに対応する反射源の位置に基づいて当該断面における溶接部からの形状エコーの位置を特定する第二処理手段と、前記溶接線に垂直な各断面毎に前記第二処理手段で特定した形状エコーの位置を原点とする座標系を設定し、前記第一処理手段で求めた各反射源の位置を前記座標系における位置座標で表し、且つ、前記座標系を用いて表された反射源の位置が所定の範囲内に含まれているときに当該反射源を欠陥であると識別する欠陥識別手段と、前記欠陥識別手段で得られた結果を出力する出力手段と、を具備することを特徴とするものである。
【0009】
また、上記の目的を達成するための本発明に係る超音波探傷方法は、被検査体の溶接線に沿っての各位置において前記溶接線に直交する方向に所定のピッチで探触子を走査しながら、前記探触子から前記被検査体中に超音波を入射し、前記被検査体内の反射源で反射して戻る反射エコーを前記探触子で受信する第一工程と、前記探触子で受信された反射エコーに基づいて、各ピークのエコー高さと各ピークに対応する反射源の位置とを求める第二工程と、前記第二工程で得られた結果を用いて、前記溶接線に垂直な各断面においてエコー高さが最大であるピークを求め、その求めたピークに対応する反射源の位置に基づいて当該断面における溶接部からの形状エコーの位置を特定する第三工程と、前記溶接線に垂直な各断面毎に前記第三工程で特定した形状エコーの位置を原点とする座標系を設定し、前記第二工程で求めた各反射源の位置を前記座標系における位置座標で表し、且つ、前記座標系を用いて表された反射源の位置が所定の範囲内に含まれているときに当該反射源を欠陥であると識別する第四工程と、前記第四工程で得られた結果を出力する第五工程と、を具備することを特徴とするものである。
【0010】
【発明の実施の形態】
以下に本発明の一実施形態について図面を参照して説明する。図1は本発明の一実施形態である超音波探傷装置の概略構成ブロック図、図2はその超音波探傷装置における走査装置の概略平面図、図3はその超音波探傷装置における探触子の走査の仕方を説明するための図、図4はその探触子で受信するデータの収録範囲を説明するための図である。
【0011】
かかる超音波探傷装置は、図1、図2及び図3に示すように、二つの探触子10,10と、各探触子毎に設けられた走査装置20と、AD変換部30,30と、記憶部40と、制御部50と、表示装置60とを備えるものである。
【0012】
この超音波探傷装置は、被検査体2の溶接部4における欠陥を検出するためのものである。特に、本実施形態では、被検査体2として、二つの平板状の鋼材の間にV形開先を設け、それらを突合せ溶接したものを用いることにする。このとき、開先部には表面から溶着金属が盛り上がった余盛が形成される。例えば、図3に示すように、鋼材の上側には幅広の余盛ができ、その下側には幅狭の余盛ができる。
【0013】
尚、以下では、溶接部4の溶接線と平行な方向をX方向、被検査体2の表面に平行な方向であってX方向と直交する方向をY方向、そして、X方向とY方向とに直交する被検査体4の深さ方向をZ方向とする。ここで、溶接線とは、溶接部を一つの線として表すときの仮想線のことである。
【0014】
探触子10は、超音波を被検査体2中に入射し、被検査体2内の反射源で反射して戻る超音波(反射エコー)を受信するものである。この探触子10としては、公知のものを使用することができるので、ここでは探触子10の構造についての詳細な説明を省略する。
【0015】
走査装置20は、探触子10を被検査体2上で走査するものであり、図2に示すように、ガイドレール21と、腕部22とを有する。走査装置20は、ガイドレール21が溶接部4の溶接線と平行になるように被検査体2上に設置される。ここで、ガイドレール21と溶接部4の溶接線との間隔は予め所定の間隔に設定される。
【0016】
また、腕部22はガイドレール21に直交する方向(Y方向)に伸びており、ガイドレール21に沿って移動することができる。この腕部22には、探触子10が取り付けられており、腕部22上を移動することできる。したがって、探触子10は、腕部22の移動を制御することによりX方向に沿って移動し、また、探触子10自体の移動を制御することによりY方向に沿って移動する。かかる腕部22及び探触子10の移動は、制御部50により制御される。このため、制御部50は、ガイドレール21上の所定の基準位置に対する腕部22(探触子10)のX方向位置、及びその基準位置に対する探触子10のY方向位置を容易に算出することができる。
【0017】
本実施形態では、図3に示すように、走査装置20、したがって探触子10を幅広の余盛が形成された側に配置することにする。ここで、探触子10が配置された側と同じ被検査体2の側を「表側」と言い、探触子10が配置された側と反対の被検査体2の側を「裏側」と言うことにする。また、裏側の余盛のことを「裏波」とも称する。
【0018】
二つの探触子10,10は、図3に示すように、溶接部4の両側に配置される。一般に、溶接部4の余盛の形状は波うっており、凹凸が激しい。このため、溶接部4の欠陥を調べるのに、余盛の表面に略垂直に進行する超音波を用いたのでは、超音波はうまく溶接部4内に入っていかない。これに対し、被検査体2の母材の方は略一定の形状をしている。このため、母材の表面に対して斜めに進行する超音波を用いて、溶接部4の欠陥を調べることにしている。いわゆる斜角探傷である。
【0019】
各探触子10は、いわゆる縦方形走査により移動される。すなわち、探触子10は、図3において太い矢印で示すように、X方向に沿って所定の走査間隔だけ移動し、そのX方向位置においてY方向に沿って所定のピッチで移動する。そして、探触子10は、Y方向に沿って所定のピッチだけ移動する度に探傷動作を行う。
【0020】
探傷動作が開始すると、まず、探触子10は超音波を発生する。探触子10から発生した超音波は、探触子10と被検査体4との境界面で屈折して被検査体4内に入る。ここで、境界面での探傷屈折角は、境界面への入射角、被検査体4内を伝播する超音波の音速により、スネルの法則から求められる。被検査体4内に入った超音波は、溶接部4に向かって伝播する。そして、探触子10は、その超音波が反射源で反射して戻ってきた反射エコーを受信する。
【0021】
探傷屈折角は一定であるので、探触子10が溶接部4に近いところに位置しているときには、溶接部4の浅い位置を探傷でき、探触子10が溶接部4から遠いところに位置しているときには、溶接部4の深い位置を探傷できる。特に、溶接部4の表側の表面を探傷する場合には、探触子10を溶接部4から遠く離れたところに位置しておき、被検査体2の裏側の表面で一回反射した超音波を用いることになる。このように、探触子10をあるX方向位置においてY方向に沿って所定のピッチで走査して、探傷することにより、当該X方向位置における溶接部4の深さ方向に渡って欠陥を検査することができる。本実施形態では、二つの探触子10,10を用いて、かかる探傷動作を各探触子10毎に行う。
【0022】
図5(a)は探触子10があるX方向位置及びY方向位置に位置するときに得られた波形データの一例を示す図である。図5(a)において縦軸はエコー高さを、横軸はビーム路程を表す。ビーム路程とは、超音波が入射点から反射源まで被検査体2中を通過した距離のことである。被検査体2内を伝播する超音波の音速は略一定であるので、ビーム路程はその距離だけ伝播するのに要した時間を表しているとも言える。
【0023】
ところで、探触子10が受信する反射エコーには、欠陥エコー、形状エコーや遅れエコーが含まれる。欠陥エコーとは、超音波がきず等の欠陥で反射して探触子10に戻ってきたエコーのことである。形状エコーとは、超音波が溶接部4の余盛で反射して探触子10に戻ってきたエコーのことである。これは溶接部4の形状に起因するために「形状」エコーと言われている。特に、探触子10から発せられた超音波は、被検査体2の裏側表面で反射せずに、裏側の幅狭の余盛に直接入射したときに、そこで反射して大きなエコーとして探触子10に戻ってくる。以下では、この裏側の余盛からの形状エコーのことを、「裏波エコー」とも称することにする。通常、形状エコーのエコー高さは、欠陥エコーのエコー高さよりも高いが、欠陥の程度によっては、欠陥エコーのエコー高さのほうが高い場合もある。
【0024】
次に、遅れエコーについて説明する。図6は遅れエコーを説明するための図である。いま、図6(a)に示すように、超音波が探触子10から裏側の余盛に直接入射する場合を考える。このとき、図6(b)に示すように、裏側の余盛から大きな形状エコーE10だけでなく、典型的には、その形状エコーE10の他に少し遅れて、二つぐらいのエコーE11,E12が探触子10に戻ってくる。これらのエコーE11,E12が「遅れエコー」である。この遅れエコーE11,E12は次のようにして発生したものである。探触子10が発生する超音波としては横波を用いている。それが裏側の余盛に入射したときにそのまま反対方向に反射して探触子10に戻る横波が、形状エコーE10である。また、超音波が裏側の余盛に入射したときには、いろいろな方向に反射する縦波や横波が発生する。ここで発生した縦波のうちには、例えば、表側の余盛に向かって伝播し、そこで反射して縦波として裏側の余盛に戻った後、裏側の余盛で反射して横波となって探触子10に戻るものがある。このルートで戻ってきたのが遅れエコーE11である。また、裏側の余盛で発生した横波のうちには、例えば、表側の余盛に向かって伝播し、そこで反射して裏側の余盛に戻った後、裏側の余盛で反射して探触子10に戻るものがある。このルートで戻ってきたのが遅れエコーE12である。
【0025】
このように、反射エコーには、欠陥エコー、形状エコー、遅れエコー等が含まれており、溶接部4の検査に際しては、反射エコーの中から欠陥エコーを正確に識別する必要がある。
【0026】
AD変換部30は、探触子10が受信した反射エコーの探傷波形データをAD変換して、デジタルの波形データにするものである。例えば、エコー高さは1バイトのデータであり、0から255までの値をとる。このデジタルの波形データは、記憶部40に記憶される。
【0027】
ところで、探触子10で受信された探傷波形データには、溶接部4から遠く離れたところで反射された反射エコーについてのデータも含まれている。探傷波形データはすべて記憶部40に保存しておくことが望ましいが、これではデータ量がとても多くなってしまう。このため、本実施形態では、図4に示すように、溶接部4を含む所定のデータ収録範囲R内から戻ってきた反射エコーについてのデータのみを記憶部40に記憶することにする。反射エコーがかかるデータ収録範囲R内から戻ってきたものか否かは、探触子10の位置とビーム路程により判断することができる。
【0028】
制御部50は、探触子10の走査を制御したり、探触子10で得られたデータを処理するものである。この制御部50は、図1に示すように、ピーク検出手段(第一処理手段)51と、探傷画像データ作成手段52と、裏波エコー検出手段(第二処理手段)53と、欠陥識別手段54と、探傷画像作成手段55とを有する。
【0029】
ピーク検出手段51は、探触子10で受信された反射エコーに基づいて、各ピークのエコー高さと各ピークに対応する反射源の位置(エコー位置)とを求めるものである。探傷画像データ作成手段52は、ピーク検出手段51で得られた各エコー位置及びエコー高さを用いて、探傷画像データを作成するものである。裏波エコー検出手段53は、探傷画像データを用いて、各X方向位置でのYZ平面上においてエコー高さが最大であるピークを求め、その求めたピークのエコー位置に基づいて当該YZ平面における裏波エコーの位置を特定するものである。また、欠陥識別手段54は、各X方向位置でのYZ平面毎に、裏波エコー検出手段53で特定した裏波エコーの位置を原点とするXYZ基準座標系を設定し、ピーク検出手段51で求めた各エコー位置をXYZ基準座標系における位置座標で表し、且つ、XYZ基準座標系で表されたエコー位置が所定の欠陥識別範囲内に含まれているときに当該エコーを欠陥エコーであると識別するものである。探傷画像作成手段55は、欠陥識別手段54で識別された各欠陥エコーや形状エコー、遅れエコー等について、そのエコー位置にエコー高さをプロットした探傷画像を作成するものである。
【0030】
表示装置60は、裏波エコー検出手段53や欠陥識別手段54で得られた結果を表示したり、探傷画像作成手段55で作成された探傷画像を表示したりするものである。
【0031】
次に、本実施形態の超音波探傷装置において探触子10で得られたデータの処理手順を説明する。図7は本実施形態の超音波探傷装置において波形データの処理手順を説明するためのフローチャートである。また、図8は裏波エコー位置の検出方法を説明するための図、図9は欠陥識別範囲を説明するための図、図10は探傷画像の作成方法を説明するための図である。
【0032】
制御部50は、探触子10の走査及び探傷動作が終了し、記憶部40に波形データが格納された後、図7のフローに従った処理を実行する。最初に、制御部50のピーク検出手段51は、波形データに基づいて各ピークのエコー高さとエコー位置を求める(S1)。具体的には、ピーク検出手段51は、まず、図5(a)に示すような波形データから各ピークを見い出し、各ピークについてエコー高さとビーム路程とを抽出する。例えば、ピークP0 については、そのエコー高さがE0 、ビーム路程がW0 である。また、ピークP1 については、そのエコー高さがE1 、ビーム路程がW1 である。次に、ピーク検出手段51は、各ピークに対して、その抽出したビーム路程と探傷屈折角とを用いて、エコー位置を算出する。ここで算出するエコー位置は、ガイドレール21上の基準位置を原点とするXYZ座標系で表したものであり、上述のXYZ基準座標系で表したものではない。例えば、探傷屈折角がθである場合、図5(b)に示すように、ピークP0について、超音波の入射点から反射源までのY方向距離はY=W0 × sinθで、そのZ方向距離はZ=W0 × cosθで与えられる。そして、探触子10のXYZ座標系における位置は既知であるので、これにより、ピークP0 についてのエコー位置を求めることができる。その後、こうして得られたエコー位置に当該エコー高さを対応させ、記憶部40に記憶する。ピーク検出手段51は、図5(a)に示すような波形データのすべてのピークに対して同様の処理を行う。
【0033】
次に、探傷画像データ作成手段52は、探傷画像データを作成する(S2)。まず、探傷画像データ作成手段52は、図10に示すようにデータ収録範囲Rを所定サイズのセルに分割する。ここで、セルは、一辺の長さが1mmの立方体とするのが基本であるが、任意に設定可能である。次に、探傷画像データ作成手段52は、ピーク検出手段51により記憶部40に保存された各ピークについて、XYZ座標系における座標で表されたエコー位置に対応するセルに当該エコー高さをセットすることにより探傷画像データを作成する。このとき、異なる探傷点における波形データのピークが同じセルにセットする必要が生じた場合には、エコー高さの高い方のデータをセットするものとする。こうして作成された探傷画像データは、記憶部40に保存される。
【0034】
次に、裏波エコー検出手段53は、探傷画像データを用いて、各X方向位置でのYZ平面上における裏波エコーの位置を求める(S3)。この裏波エコー位置を求める処理は次にようにして行われる。裏波の存在するおおよその位置というのは予め分かっている。裏波エコー検出手段53は、図8(a)に示すように、各X方向位置でのYZ平面上において、その裏波の存在するおおよその位置Pを含むようにして裏波エコー検出範囲Rを設定する。例えば、裏波の存在するおおよその位置Pとしては、探触子10と反対側にある母材における開先の下部をとればよい。実際には余盛が拡がっているため、裏波の位置は多少変動するが、これはあまり厳密に考える必要はない。裏波エコー検出範囲Rをある程度大きく設定することで対応できるからである。また、裏波エコー検出範囲Rは、例えば、その裏波の存在するおおよその位置Pを中心とし一辺の長さ6mmの正方形の範囲に設定される。この裏波エコー検出範囲Rは任意に設定することができる。裏波エコー検出手段53は、各X方向位置でのYZ平面上において、裏波エコー検出範囲R内でエコー高さが最大となる位置(最大エコー位置)を求める。通常、裏波エコーのエコー高さは欠陥エコーのエコー高さよりも大きいので、こうして求められた最大エコー位置は裏波エコー位置であると考えられる。
【0035】
ところで、裏波エコー検出範囲R内に大きな欠陥があったりすると、その欠陥エコーのエコー高さが裏波エコーのエコー高さよりも大きいことがある。この場合、単純に最大エコー位置を裏波エコー位置とすると、欠陥エコー位置を裏波エコー位置としてしまう。通常、裏波エコー位置はX方向から見たときに一定の範囲内に収まっており、この範囲に含まれないエコー位置は裏波エコー位置と考えることはできない。本実施形態では、最大裏波エコースキップ距離rを設定し、YZ平面上において所定の位置を中心として最大裏波エコースキップ距離rを半径とする円の内部を、裏波エコー位置が存在する範囲としている。この最大裏波エコースキップ距離rは任意に設定可能である。
【0036】
裏波エコー検出手段53は、今回、X方向位置XでのYZ平面において、最大エコー位置(X,Y′,Z′)を求めたときに、その求めた最大エコー位置(X,Y′,Z′)と、当該X方向位置XでのYZ平面に隣り合うX方向位置Xn−1でのYZ平面において前回の走査で特定した裏波エコー位置(Xn−1,Yn−1,Zn−1)をX方向位置XでのYZ平面上に投影した位置(X,Yn−1,Zn−1)との間の距離Dを算出する。すなわち、D={(Yn−1−Y′)+(Zn−1−Z′)1/2である。この距離Dが最大裏波エコースキップ距離r以下であるときに、当該最大エコー位置(X,Y′,Z′)を、X方向位置XでのYZ平面における裏波エコー位置(X,Y,Z)であると判断する。一方、距離Dが最大裏波エコースキップ距離rよりも大きいときには、当該最大エコー位置(X,Y′,Z′)を欠陥エコー位置であると判断し、X方向位置XでのYZ平面における裏波エコー位置(X,Y,Z)としては、前回の走査で特定した裏波エコー位置(Xn−1,Yn−1,Zn−1)をX方向位置XでのYZ平面上に投影した位置(X,Yn−1,Zn−1)を採用する。こうして得られた各YZ平面における裏波エコー位置を繋ぐことにより、裏波線が得られる。尚、チャンネル毎に、すなわち左右の探触子10毎に、裏波エコー位置は異なる。
【0037】
次に、欠陥識別手段54は、各X方向位置でのYZ平面において、裏波エコー位置を原点とするXYZ基準座標系をとり、ピーク検出手段51で求めた各エコーについてのエコー位置をXYZ基準座標系における位置座標で表す(S4)。その後、欠陥識別手段54は、ピーク検出手段51で求めた各エコーについて、それが欠陥エコーであるか否かを識別する(S5)。これは次のようにして行われる。本実施形態では、図9に示すように、予め欠陥の識別範囲Rを設定している。この欠陥識別範囲Rは、欠陥が存在すると考えられる範囲であり、開先の形状に応じて定められる。例えば、V形開先の場合には、図9に示すように、開先の両端を一定距離だけ広げた範囲を欠陥識別領域Rとしている。このように欠陥識別範囲Rに、開先を含むようにしてある程度余裕を持たせているのは、開先の位置を厳密に特定できないことによる。欠陥識別手段54は、XYZ基準座標系で表された各エコー位置が、欠陥識別範囲Rに含まれるか否かを判断する。各エコー位置が欠陥識別範囲Rに含まれるときには、当該エコーを欠陥エコーと判断する。一方、当該エコーが欠陥識別範囲Rに含まれないときには、当該エコーを欠陥エコーでないと判断する。
【0038】
尚、XYZ基準座標系において、Z方向位置が原点から上側に一定の高さ位置との間にあって且つY方向位置が原点から当該探触子10と反対側にある範囲、すなわち図9における範囲R(斜線を施した範囲)に含まれるエコーについては、それがたとえ欠陥識別領域Rに含まれるときであっても、欠陥エコーであると判断しない。かかる範囲Rは裏波が存在すると考えられる範囲だからである。したがって、欠陥識別領域Rとは、厳密に言うと、図9における網掛けを施した範囲から、その網掛けを施した範囲と上記範囲Rとの共通する部分を除いた範囲である。
【0039】
また、裏波の近傍における欠陥の判断はあまり厳密に行う必要はない。当該裏波の近傍における欠陥は、当該探触子10と反対側の探触子10による探傷により、正確に判断することができるからである。
【0040】
次に、探傷画像作成手段55は、記憶部40に保存されている探傷画像データや欠陥識別結果をもとに探傷画像を作成する(S6)。ここで、探傷画像データとしては、XYZ基準座標系における座標で表されたエコー位置に対応するセルに当該エコー高さをセットすることにより得られたものを用いる。具体的には、例えば、探傷画像データをもとにエコー高さに応じて色分けすることによりプロットする。これを各ピークエコーに対して行う。こうして、探傷画像が作成される。尚、探傷画像作成手段55は、エコー高さが所定の値(しきい値)以上のピークエコーについてだけ、プロットするようにしてもよい。これにより、ノイズが原因と考えられるエコーを取り除くことができる。このしきい値は任意に設定可能である。
【0041】
また、探傷画像として、図10に示すような立体図を用いたのでは、オペレータは欠陥の評価をしにくいこともある。このため、各エコー高さをXY面、YZ面、ZX面にそれぞれ投影して作成した三つの画像を作成することもできる。さらに、探傷画像作成手段55は欠陥識別結果にもとづいて、欠陥のみをプロットするようにすることも可能である。
【0042】
こうして作成された探傷画像は、表示装置60に表示される(S7)。オペレータは、表示装置60に表示された探傷画像を見ながら、欠陥の有無や、欠陥が発生している場合にはその欠陥が許容できるものであるか等を調べる。そして、オペレータは、最終的に当該被検査体2の合否を判定する。これで、図7の処理フローが終了する。
【0043】
ところで、本発明者は、複数の試験体を作製し、それらの試験体について本実施形態の超音波探傷装置と従来の超音波探傷装置とを用いて欠陥を検出する実験を行った。図11(a)は従来の超音波探傷装置を用いたときの実験結果を示す図、図11(b)は本実施形態の超音波探傷装置を用いたときの実験結果を示す図である。尚、図11(a),(b)において点線は開先を示している。
【0044】
図11(a),(b)において、縦軸は深さ(Z方向位置)、横軸は軸位置(Y方向位置)を表す。但し、図11(a)と同11(b)とでは、座標系の原点の位置が異なる。従来の超音波探傷装置を用いた場合には、ガイドレール21上の所定の基準位置から推定した溶接線の位置をY方向位置の原点とし、ガイドレール21上の基準位置をZ方向位置の原点とするYZ座標系をとっている。したがって、従来の超音波探傷装置では、溶接線の位置を想定し、検出したエコー位置を、溶接線に対する相対位置としてプロットすることにより探傷画像を作成している。一方、本実施形態の超音波探傷装置を用いた場合には、上述したように、波形データから裏波エコー位置を求め、その裏波エコー位置を原点とするYZ基準座標系をとっている。
【0045】
また、この実験では、各試験体として、一つの大きな欠陥を持つものを製作した。すなわち、ここで使用する試験体では、欠陥エコーのエコー高さが裏波エコーのエコー高さよりも大きい。また、各試験体における欠陥の位置はそれぞれ異なる。
【0046】
本発明者等は次のようにして実験を行った。まず、各試験体について溶接部の探傷を行い、エコー位置を検出する。このエコー位置の情報から欠陥候補の領域が分かる。次に、この拡がりをもった欠陥候補の領域内における複数のエコーのうち、最大エコー高さを有するものを特定する。実際には、欠陥を領域としてそのまま特定するのが望ましいのであるが、ここでは、処理を簡略に行うため、最大エコー高さを有するエコーの位置(最大エコー位置)を、その試験体に含まれる欠陥候補の代表位置として特定する。そして、その最大エコー位置を、所定のYZ座標系においてプロットする。したがって、各試験体については一つの点がプロットされる。これをすべての試験体について行うことにより、図11に示すようなグラフが得られる。尚、図11では、説明を簡単にするため、一回反射したときの反射エコーを無視し、直射エコーのみを示している。
【0047】
図11に示す実験結果によれば、本実施形態の超音波探傷装置を用いた場合の方が、従来の超音波探傷装置を用いた場合に比べて、最大エコー位置の分布のばらつきが小さく、ほとんど溶接部4内に収まっていることが分かる。具体的には、最大エコー位置についての深さ方向の分布は、図11(a)でも図11(b)でもそれ程変わらない。しかし、最大エコー位置についての軸方向の分布は、図11(a)では−8mmから+3mmの広い範囲に渡っているのに対し、図11(b)では0mmから8mmの狭い範囲に渡っている。このように、従来の超音波探傷装置を用いた場合には、最大エコー位置の分布がY方向に関して大きくばらついている。
【0048】
超音波探傷装置は、かかる結果に基づいて各試験体のきず識別を実行するのであるが、図11(a)の場合は、最大エコー位置が大きくばらついているために、試験体の合否判定がとても困難である。例えば、超音波探傷装置は、図11中に示したような裏波の想定位置をもとに、裏波にも一定の幅があることから、その想定した裏波の位置を中心として、例えば上下左右に3mmの範囲を裏波の存在する範囲と考える。このとき、この裏波の存在する範囲内にあるエコーを裏波エコーであると判断し、その裏波の存在する範囲外であって溶接部4内に存在するエコーだけを欠陥エコーであると判断することにすると、かなりの数の試験体は欠陥のない良品としてしまう。このように、従来の超音波探傷装置を用いた場合には、欠陥を精度よく識別することができない。
【0049】
これに対して、図11(b)の場合は、想定裏波位置よりも当該探触子10の側に存在するエコーを欠陥エコーであると判断することにより、ほとんどすべての試験体を欠陥品であると判定できる。したがって、本実施形態の超音波探傷装置では、従来のものに比べて、欠陥を高精度で識別することができる。
【0050】
尚、欠陥を識別する際に、欠陥の絶対位置についての情報はあまり重要ではない。欠陥の絶対位置を知ることができても、その前提となる欠陥の有無を正確に判断できなければ、欠陥判定の精度を高めることができないからである。
【0051】
本実施形態の超音波探傷装置では、裏波エコー検出手段が、ピーク検出手段で得られた結果を用いて、各X方向位置でのYZ平面上においてエコー高さが最大であるピークを求め、その求めたピークに対応するエコー位置に基づいて当該断面における裏波エコー位置を特定した後、欠陥識別手段が、各X方向位置でのYZ平面毎に裏波エコー位置を原点とする基準座標系を設定し、ピーク検出手段で求めた各エコー位置を基準座標系における位置座標で表し、且つ、基準座標系を用いて表されたエコー位置が所定の範囲内に含まれているときに当該エコーを欠陥エコーであると識別する。これにより、ガイドレールの取り付け誤差、余盛の幅のばらつき、屈折角度のずれ等があっても、欠陥か否かの識別を高精度で行うことができる。
【0052】
尚、本発明は上記の実施形態に限定されるものではなく、その要旨の範囲内において種々の変形が可能である。
【0053】
上記の実施形態では、探触子をV形開先における幅広の余盛の側に配置し、裏波エコー検出手段が幅狭の余盛における形状エコーの位置を検出する場合について説明したが、逆に、探触子を幅狭の余盛の側に配置し、幅広の余盛における形状エコーの位置を検出するようにしてもよい。一般に、裏波エコー検出手段は、開先の形状にかかわらず、溶接部の余盛における形状エコーの位置を検出すればよい。したがって、V形開先を有する被検査体だけでなく、例えばX形開先、I形開先を有する被検査体に対しても、本実施形態の超音波探傷装置を用いて欠陥を検出することができる。
【0054】
また、上記の実施形態では、平板状の被検査体を用いた場合について説明したが、例えば、円筒状の被検査体に対しても本実施形態の超音波探傷装置を用いて欠陥を検出することができる。
【0055】
また、上記の実施形態では、直交座標系において探触子の位置やエコー位置等を特定する場合について説明したが、例えば円筒座標系において探触子の位置やエコー位置等を特定するようにしてもよい。
【0056】
更に、本発明の超音波探傷装置は、余盛における形状エコーの位置を検出することにより、余盛の有無や余盛の形状等に基づいて溶接の良否を判定する場合にも適用することができる。例えば、上記の実施形態において、裏波エコー検出手段で裏波線を求め、その裏波線の各X方向位置においてエコー高さを調べることにより、余盛の有無を知ることができる。溶接部の強度を確保するために、余盛がしっかりと形成されていることが要求される場合には、かかる余盛の有無を調べることによって溶接の良否を判定することができる。また、裏波線の形状を調べ、例えば、裏波線が蛇行したりしているときには、溶接が不良であると判断することができる。
【0057】
【発明の効果】
以上説明したように本発明の超音波探傷装置によれば、第二処理手段が、第一処理手段で得られた結果を用いて、溶接線に垂直な各断面においてエコー高さが最大であるピークを求め、その求めたピークに対応する反射源の位置に基づいて当該断面における溶接部からの形状エコーの位置を特定し、欠陥識別手段が、溶接線に垂直な各断面毎に第二処理手段で特定した形状エコーの位置を原点とする座標系を設定し、第一処理手段で求めた各反射源の位置を前記座標系における位置座標で表し、且つ、前記座標系を用いて表された反射源の位置が所定の範囲内に含まれているときに当該反射源を欠陥であると識別する。これにより、走査手段の取り付け誤差、余盛の幅のばらつき、屈折角度のずれ等があっても、欠陥か否かの識別を高精度で行うことができる。
【0058】
また、本発明の超音波探傷装置では、第二処理手段が溶接部からの形状エコーの位置を特定することにより、余盛の有無や裏波線の形状を調べ、これに基づいて溶接の良否を判定することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態である超音波探傷装置の概略構成ブロック図である。
【図2】その超音波探傷装置における走査装置の概略平面図である。
【図3】その超音波探傷装置における探触子の走査の仕方を説明するための図である。
【図4】その探触子で受信するデータの収録範囲を説明するための図である。
【図5】(a)は波形データの一例を示す図、(b)は波形データからエコー位置を求める処理を説明するための図である。
【図6】遅れエコーを説明するための図である。
【図7】本実施形態の超音波探傷装置において波形データの処理手順を説明するためのフローチャートである。
【図8】裏波エコー位置の検出方法を説明するための図である。
【図9】欠陥の識別範囲を説明するための図である。
【図10】探傷画像の作成方法を説明するための図である。
【図11】(a)は従来の超音波探傷装置を用いたときの実験結果を示す図、(b)は本実施形態の超音波探傷装置を用いたときの実験結果を示す図である。
【符号の説明】
2 被検査体
4 溶接部
10 探触子
20 走査装置
21 ガイドレール
22 腕部
30 AD変換部
40 記憶部
50 制御部
51 ピーク検出手段
52 探傷画像データ作成手段
53 裏波エコー検出手段
54 欠陥識別手段
55 探傷画像作成手段
60 表示装置

Claims (8)

  1. 被検査体中に超音波を入射し、前記被検査体内の反射源で反射して戻る反射エコーを受信する探触子と、
    前記被検査体の溶接線に沿っての各位置において前記溶接線に直交する方向に所定のピッチで前記探触子を走査する走査手段と、
    前記走査手段による走査時に前記探触子で受信された反射エコーに基づいて、各ピークのエコー高さと各ピークに対応する反射源の位置とを求める第一処理手段と、
    前記第一処理手段で得られた結果を用いて、前記溶接線に垂直な各断面においてエコー高さが最大であるピークを求め、その求めたピークに対応する反射源の位置に基づいて当該断面における溶接部からの形状エコーの位置を特定する第二処理手段と、
    前記溶接線に垂直な各断面毎に前記第二処理手段で特定した形状エコーの位置を原点とする座標系を設定し、前記第一処理手段で求めた各反射源の位置を前記座標系における位置座標で表し、且つ、前記座標系を用いて表された反射源の位置が所定の範囲内に含まれているときに当該反射源を欠陥であると識別する欠陥識別手段と、
    前記欠陥識別手段で得られた結果を出力する出力手段と、
    を具備することを特徴とする超音波探傷装置。
  2. 前記第二処理手段は、前記溶接線に垂直なある断面においてエコー高さが最大であるピークを求めた場合、その求めたピークに対応する反射源の位置と当該断面に隣り合う断面において前回の走査で特定した形状エコーの位置を当該断面上に投影した位置との間の距離を算出し、その算出した距離が所定の基準値以下であるときに、その反射源の位置を当該断面における形状エコーの位置として特定し、一方、その算出した距離が前記基準値より大きいときに、前回の走査で特定した形状エコーの位置を当該断面上に投影した位置を、当該断面における形状エコーの位置として特定することを特徴とする請求項1に記載の超音波探傷装置。
  3. 前記第二処理手段が特定する形状エコーの位置は、前記探触子が走査する側と反対側に形成された溶接部の余盛の位置であることを特徴とする請求項1又は2に記載の超音波探傷装置。
  4. 一対の前記探触子が前記溶接線を挟んで両側に配置されていることを特徴とする請求項1、2又は3に記載の超音波探傷装置。
  5. 被検査体の溶接線に沿っての各位置において前記溶接線に直交する方向に所定のピッチで探触子を走査しながら、前記探触子から前記被検査体中に超音波を入射し、前記被検査体内の反射源で反射して戻る反射エコーを前記探触子で受信する第一工程と、
    前記探触子で受信された反射エコーに基づいて、各ピークのエコー高さと各ピークに対応する反射源の位置とを求める第二工程と、
    前記第二工程で得られた結果を用いて、前記溶接線に垂直な各断面においてエコー高さが最大であるピークを求め、その求めたピークに対応する反射源の位置に基づいて当該断面における溶接部からの形状エコーの位置を特定する第三工程と、
    前記溶接線に垂直な各断面毎に前記第三工程で特定した形状エコーの位置を原点とする座標系を設定し、前記第二工程で求めた各反射源の位置を前記座標系における位置座標で表し、且つ、前記座標系を用いて表された反射源の位置が所定の範囲内に含まれているときに当該反射源を欠陥であると識別する第四工程と、
    前記第四工程で得られた結果を出力する第五工程と、
    を具備することを特徴とする超音波探傷方法。
  6. 前記第三工程では、前記溶接線に垂直なある断面においてエコー高さが最大であるピークを求めた場合、その求めたピークに対応する反射源の位置と当該断面に隣り合う断面において前回の走査で特定した形状エコーの位置を当該断面上に投影した位置との間の距離を算出し、その算出した距離が所定の基準値以下であるときに、その反射源の位置を当該断面における形状エコーの位置として特定し、一方、その算出した距離が前記基準値より大きいときに、前回の走査で特定した形状エコーの位置を当該断面上に投影した位置を、当該断面における形状エコーの位置として特定することを特徴とする請求項5に記載の超音波探傷方法。
  7. 前記第三工程で特定する形状エコーの位置は、前記探触子が走査する側と反対側に形成された溶接部の余盛の位置であることを特徴とする請求項5又は6に記載の超音波探傷方法。
  8. 一対の前記探触子が前記溶接線を挟んで両側に配置されていることを特徴とする請求項5、6又は7に記載の超音波探傷方法。
JP2000394045A 2000-12-26 2000-12-26 超音波探傷装置及び超音波探傷方法 Expired - Fee Related JP4431926B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000394045A JP4431926B2 (ja) 2000-12-26 2000-12-26 超音波探傷装置及び超音波探傷方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000394045A JP4431926B2 (ja) 2000-12-26 2000-12-26 超音波探傷装置及び超音波探傷方法

Publications (2)

Publication Number Publication Date
JP2002195988A JP2002195988A (ja) 2002-07-10
JP4431926B2 true JP4431926B2 (ja) 2010-03-17

Family

ID=18859735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000394045A Expired - Fee Related JP4431926B2 (ja) 2000-12-26 2000-12-26 超音波探傷装置及び超音波探傷方法

Country Status (1)

Country Link
JP (1) JP4431926B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4690934B2 (ja) * 2006-04-28 2011-06-01 三菱重工業株式会社 超音波探傷データ処理装置、方法及びプログラム
JP5955638B2 (ja) * 2012-05-16 2016-07-20 一般財団法人電力中央研究所 溶接金属形状の推定方法、推定装置及び推定プログラム
US9638673B2 (en) * 2012-10-18 2017-05-02 Olympus Scientific Solutions Americas Inc. Ultrasonic testing instrument with dithery pulsing
WO2015001624A1 (ja) * 2013-07-03 2015-01-08 株式会社 日立製作所 超音波探傷方法、超音波探傷装置ならびにパネル構造体の溶接部検査方法
CN113447574B (zh) * 2021-06-23 2023-02-03 北京世纪东方智汇科技股份有限公司 一种基于超声波轨道探伤的图显示方法及装置
CN113554964A (zh) * 2021-07-30 2021-10-26 乐金显示光电科技(中国)有限公司 一种显示面板的检测方法
JP7101303B1 (ja) 2021-09-29 2022-07-14 三菱重工パワー検査株式会社 超音波探傷データ処理プログラム、超音波探傷データ処理装置及び被検体の判定方法

Also Published As

Publication number Publication date
JP2002195988A (ja) 2002-07-10

Similar Documents

Publication Publication Date Title
US5497662A (en) Method and apparatus for measuring and controlling refracted angle of ultrasonic waves
JP5868198B2 (ja) 溶接部の超音波探傷装置及び超音波探傷方法
JP2007046913A (ja) 溶接構造体探傷試験方法、及び鋼溶接構造体探傷装置
CA1270940A (en) Method for classification of point and elongated single defects in workpieces by means of ultrasonics
WO2015001625A1 (ja) 超音波探傷装置、超音波探傷方法ならびにパネル構造体の溶接部検査方法
JP2014219390A (ja) フェーズドアレイ溶接検査に関する自動ビーム最適化
JP4431926B2 (ja) 超音波探傷装置及び超音波探傷方法
CN114019024B (zh) 一种测量搭接焊中焊缝下层进入熔深的方法及***
JP2013156166A (ja) 超音波探傷方法
CN111458415B (zh) 一种超声相控阵换能器与待测工件耦合状态的检测方法
CN113866279A (zh) 曲面双轴肩搅拌摩擦焊缝的超声波相控阵检测方法
JP4511487B2 (ja) 水素に起因する損傷及び腐食減肉現象の検査方法
RU2651431C1 (ru) Способ промышленной ультразвуковой диагностики вертикально ориентированных дефектов призматической металлопродукции и устройство для его осуществления
JP4364031B2 (ja) 超音波探傷画像処理装置及びその処理方法
JP2007178186A (ja) 超音波探傷方法及び装置
JP2012255653A (ja) 超音波探傷試験体の表面形状同定方法、表面形状同定装置及び表面形状同定プログラム、並びに、超音波探傷試験体の表面形状同定処理を組み込んだ超音波探傷試験方法、超音波探傷試験装置及び超音波探傷試験プログラム
JP2002243703A (ja) 超音波探傷装置
JPH03122563A (ja) 超音波探傷装置
JP2009014513A (ja) 超音波探傷方法
JP4699242B2 (ja) 超音波探触子のカップリングチェック方法、及びコンピュータプログラム
JP3497984B2 (ja) 超音波探傷装置
JP2006138672A (ja) 超音波検査方法及び装置
JPH0419558A (ja) 超音波探傷試験における画像処理方法
JP2018136252A (ja) 超音波検査装置、それを備えた超音波検査システム、及び超音波検査方法並びにプログラム
JP3557553B2 (ja) 溶接継手の超音波探傷試験方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061026

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061212

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091209

R150 Certificate of patent or registration of utility model

Ref document number: 4431926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees