JP4426396B2 - 冷却装置 - Google Patents

冷却装置 Download PDF

Info

Publication number
JP4426396B2
JP4426396B2 JP2004224841A JP2004224841A JP4426396B2 JP 4426396 B2 JP4426396 B2 JP 4426396B2 JP 2004224841 A JP2004224841 A JP 2004224841A JP 2004224841 A JP2004224841 A JP 2004224841A JP 4426396 B2 JP4426396 B2 JP 4426396B2
Authority
JP
Japan
Prior art keywords
temperature
water
flow rate
air
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004224841A
Other languages
English (en)
Other versions
JP2006046974A (ja
Inventor
和広 中村
哲也 嶋田
克彦 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Espec Corp
Original Assignee
Espec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Espec Corp filed Critical Espec Corp
Priority to JP2004224841A priority Critical patent/JP4426396B2/ja
Priority to TW094121172A priority patent/TWI278977B/zh
Priority to KR1020050068888A priority patent/KR100835261B1/ko
Priority to US11/195,418 priority patent/US7558064B2/en
Publication of JP2006046974A publication Critical patent/JP2006046974A/ja
Priority to KR1020080025661A priority patent/KR100866889B1/ko
Application granted granted Critical
Publication of JP4426396B2 publication Critical patent/JP4426396B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2872Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
    • G01R31/2874Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature
    • G01R31/2875Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature related to heating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D7/00Devices using evaporation effects without recovery of the vapour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2891Features relating to contacting the IC under test, e.g. probe heads; chucks related to sensing or controlling of force, position, temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Description

本発明は、平面状の一面を備えていて通電されると発熱し目的とする温度より高い温度まで上昇し前記一面の温度が上昇する半導体デバイスを前記目的とする温度にするように冷却可能な冷却装置に関する。
半導体デバイス(以下単に「デバイス」という)のバーンイン装置としては、多数のデバイスをバーンインボードに装着し、これを恒温槽に多段に積載し、デバイスに通電すると共に、槽内で例えば125℃の一定の温度に調整された熱風をバーンインボードに対して平行に流し、多数のデバイスを一様に冷却しつつ循環させるようにした装置が一般的である(例えば特許文献1、2、3参照)。このようなバーンイン装置によれば,従来のデバイスであれば、循環される熱風の温度に対応して、通電によって発熱するデバイスの内部温度が150℃程度のバーンインに適当な温度になるとされていて、多数のデバイスを能率良くバーンイン試験することができた。
又、上記特許文献3には、従来技術として、槽内の温度を検出してこれを一定温度にするだけでは、デバイス自体の温度を直接制御しないため、半導体チップの空きスペースにダイオードを形成し、その電気特性から半導体チップのジャンクション温度を推定することが行われていたことが記載されている。(同特許文献3参照)。
更に上記特許文献3では、個々の半導体チップの集積回路部にその全体にわたって温度測定用配線部を配置し、集積回路部の通電用接続パッドと同様な状態で設けた接続パッドを介してチップの平均的温度を検出し、温度調整装置に個々の半導体チップに対応して配置した送風ファンから温調された空気を送り、チップの平均的温度を目的とするバーンイン温度にするように個々のチップに送る送風量を制御するようにしたバーンイン試験装置が提案されている。
一方、最近では、通電時に例えば300W程度まで発熱する高発熱デバイスが出現してきていて、バーンイン装置をこのような高発熱デバイスのバーンインに対応させる必要がある。ところが、上記の従来の一般的な熱風循環式の装置では、通電時に発生するデバイスの高熱量を除去すべき熱媒体が空気であり、その比重及び比熱が小さく除去熱量が少ないため、上記のような高発熱デバイスには対応できない。そのため、循環空気の温度を下げると共に風速を上げて風量を多くして除去熱量を増やすことになるが、その場合には、装置が大型化したり、循環空気の上流側と下流側とで冷却効果に大きな差が生じてバーンイン温度の精度が低下すると共に、そのようにしても、除去熱量としては30W程度が限界になる。そのため、熱風循環式装置では、上記のような高発熱デバイスのバーンイン試験をすることができない。
又、個々のチップの温度を検出して個々のチップに送る冷却風量を制御する装置では、ある程度風量を多くして除去熱量を大きくすることができるが、冷却媒体が空気であるため、除去熱量を大幅に増加させることはできず、同様に高発熱デバイスのバーンインには対応できない。
デバイスのバーンイン等に使用される装置の他の例としては、個々の対象物毎にその上下位置に空気噴射ノズルを配置し、これらのノズルから低温空気を噴射させるようにした空気噴射式温度制御装置が知られている(特許文献4参照)。この装置では、空気の流速を上げて流量を多くしてもデバイス間の温度分布の問題は生じないが、熱媒体が空気であるため、同様に除去熱量を格段に増加させることはできず、高発熱デバイスにまでは対応できない。
熱風を用いないバーンイン装置としては、バーンインボードであるプリント基板上に多数のデバイスである電子部品を搭載し、これに水冷される熱交換器で冷却された冷媒液が循環される冷却プレートを接触させ、必要なときに冷却しつつ電子部品の温度試験をするようにした温度試験装置が知られている(特許文献5参照)。
この装置では、液冷媒の沸騰蒸発によって電子部品の熱を取るので冷却熱量を大きくすることが可能である。しかしながら、このような装置では、プレート底面の全面を液冷媒で覆いその面のうち電子部品と接触している面だけから入熱があるので、液冷媒側における熱伝達が完全な膜沸騰蒸発になるため、その面部分の熱伝達率が格段に大きな値にはならないこと、プレート内の圧力と通常大気圧である外圧との間に圧力差が生じると共に全電子部品を1枚のプレートで冷却するのでプレート面積が大きくなるため、プレートの厚みを薄くして熱通過性を良くすることができないこと、プレートが曲げ剛性の高い平坦面にされているので、僅かなレベル差が不可避的に生ずる個々の電子部品の全てに対して十分な接触が得られないこと、等の問題があり、高発熱デバイスのバーンイン試験ができる程の冷却能力が得られない。
実装された半導体チップの冷却構造としては、個々の半導体チップのそれぞれにキャップを被せて、これらの間をベローズで仕切り、個々のキャップのそれぞれの上にノズルを配置し、これに冷媒供給管から液体状の冷媒を供給し、ノズルで冷媒液を微粒化してキャップに吹き付け、半導体チップから発生しキャップに伝達された熱を冷媒粒子が吸収して蒸発し排出口から排出され、冷凍機で冷却され液化されて再び冷媒供給管に供給されるようにして、実装された半導体チップの熱を効率良く除去できるようにした冷却構造が知られている(特許文献6参照)。
この冷却構造によれば、冷媒液を微粒化するので、冷媒液が核沸騰に近い状態で沸騰するため効率良くチップの熱を除去できるとされている。しかしながら、液だけを圧力を上げてノズルの先端から噴出させても、液を微粒化できる程度は限られている。そのため、チップの発熱で昇温したキャップに冷媒液が触れたときに、これを瞬時的に蒸発させ核沸騰状態にするためには、キャップ表面の温度と冷媒液の温度との差を大きくする必要がある。そのため、上記文献では、使用する冷媒液として沸点が20℃程度より低いパーフルオロカーボンを例示している。
しかしながら、使用する熱媒体がこのような低沸点冷媒に限られるとすれば、使用可能な熱媒体の種類が限定されると共に、例えば水のように低価額で廃棄容易な熱媒体を使用することができなくなり、又、冷凍機が必要になって装置構成が複雑化すると共に装置コストが高くなるという問題がある。
又、冷却作用の大きい潜熱冷却をする一種類の冷媒のみを使用する場合には、デバイスの発熱による昇温が過渡状態にある運転開始時に、液を供給すると、液が微小粒子状であっても、デバイスの発熱量不足によって冷却面に液溜まりが生じ、昇温後の定常的な核沸騰状態への移行が円滑に行われないという問題がある。この場合、液冷媒だけを圧力噴射させているので、圧力を下げて冷媒噴射量を減らすと液が微粒化しなくなるため、液量の調整可能な範囲が狭く、昇温過程で供給液量を少なくすることができないという問題もある。更に運転終了時の液溜まりの問題もある。
又、実装された半導体チップを冷却する場合には、チップの動作信頼性が得られチップの耐久性を維持できる程度にチップを適当に低い温度にすればよいので、定常運転中にはほぼ一定流量の一種類だけの液冷媒を使用してもよい。しかし、冷却装置を高発熱デバイスのバーンインにも使用可能にするとすれば、デバイス内部の温度を通常150℃程度に維持した運転をする必要があるため、上記のように流量調整範囲の狭い冷媒供給構造では、精度の良い温度制御ができないという問題がある。
特開平8−211122号公報(図1及び明細書の関連説明) 特開平11−231943号公報(図1及び明細書の段落25) 特開2000-97990号公報(図4及び明細書の段落3、4、図1、2及び明細書の関連説明) 特開平4−321113号公報(図1及び明細書の関連説明) 実開昭61−114377号公報(図1及び明細書の関連説明) 特開平4−61259号公報(図1及び明細書の関連説明)
本発明は従来技術における上記種々の問題を解決し、簡単な構成で装置及び運転費用が安価で高発熱デバイスのバーンインも可能な冷却装置を提供することを課題とする。
本発明は上記課題を解決するために、請求項1の発明は、平面状の一面を備えていて通電されると発熱しバーンイン温度より高い温度まで上昇し前記一面の温度が上昇する半導体デバイスを大気圧下で前記バーンイン温度にするように冷却可能な冷却装置において、 圧縮空気を供給可能な圧縮空気供給手段と、前記冷却のための熱媒体になる水であって前記大気圧下で前記上昇するときの前記一面の温度より低い飽和温度を持つ水を供給可能な水供給手段と、前記圧縮空気と前記水とが供給されて前記水が前記圧縮空気と混合されると前記大気圧下にある前記一面に向かって放出され微小粒になって放射状に広がって前記一面の一定範囲の部分に当たるように設けられた噴霧器と、前記半導体デバイスの温度を検出する温度検出手段と、前記水の流量を調整可能にする流量調整手段と、前記温度検出手段が検出した温度が前記バーンイン温度になるように前記流量調整手段を制御する制御手段と、を有し、
前記流量調整手段は、前記水供給手段から供給される水の流量を調整可能にする水流量調整弁と前記圧縮空気供給手段から供給される圧縮空気の流量を調整可能にする圧縮空気流量調整弁とからなり、前記制御手段は、前記半導体デバイスが通電された初期に温度上昇するときには前記圧縮空気流量調整弁を一定開度で一定時間開くように制御することを特徴とする。
請求項2の発明は、平面状の一面を備えていて通電されると発熱しバーンイン温度より高い温度まで上昇し前記一面の温度が上昇する半導体デバイスを大気圧下で前記バーンイン温度にするように冷却可能な冷却装置において、
圧縮空気を供給可能な圧縮空気供給手段と、前記冷却のための熱媒体になる水であって前記大気圧下で前記上昇するときの前記一面の温度より低い飽和温度を持つ水を供給可能な水供給手段と、前記一面への圧接と該一面からの離間とが可能にされていて前記圧接時に前記一面を覆い該一面の熱を通過容易にするように設けられた分離部材と、前記圧縮空気と前記水とが供給されて前記水が前記圧縮空気と混合されると前記大気圧下にある前記分離部材の前記一面の反対側面に向かって放出され微小粒になって放射状に広がって前記反対側面の一定範囲の部分に当たるように設けられた噴霧器と、前記半導体デバイスの温度を検出する温度検出手段と、前記水の流量を調整可能にする流量調整手段と、前記温度検出手段が検出した温度が前記バーンイン温度になるように前記流量調整手段を制御する制御手段と、を有し、
前記流量調整手段は、前記水供給手段から供給される水の流量を調整可能にする水流量調整弁と前記圧縮空気供給手段から供給される圧縮空気の流量を調整可能にする圧縮空気流量調整弁とからなり、前記制御手段は、前記半導体デバイスが通電された初期に温度上昇するときには前記圧縮空気流量調整弁を一定開度で一定時間開くように制御することを特徴とする。
請求項1の発明では、前記一面が下方に向いている構造にすることができる。
請求項3の発明は、請求項2の発明に加えて、前記分離部材は、中央部分から前記一面に接触し該一面に圧接されると平面になるように前記一面の側に凸曲面状の薄肉板で形成されていることを特徴とする。
請求項1又は2の発明では、前記流量調整手段は前記水供給手段から供給される水の流量を調整可能にする水流量調整弁と前記圧縮空気供給手段から供給される圧縮空気の流量を調整可能にする圧縮空気流量調整弁とからなり、前記制御手段は前記水の流量と前記空気の流量との比率を変えるように前記水流量調整弁と前記圧縮空気流量調整弁とを制御する構成にすることができる。
以上の如く本発明によれば、請求項1の発明においては、平面状の一面を備えていて通電されると発熱しバーンイン温度より高い温度まで上昇し一面の温度が上昇する半導体デバイスを大気圧下でバーンイン温度にするように冷却可能な冷却装置が、圧縮空気を供給可能な圧縮空気供給手段と冷却のための熱媒体になるであって一面の温度が大気圧下で上昇するときのその一面の温度より低い飽和温度を持つを供給可能な供給手段とを有していると共に、これらから圧縮空気ととが供給されてが圧縮空気と混合されると、この水が大気圧下にある一面に向かって放出され微小粒になって放射状に広がって一面の一定範囲の部分に当たるように設けられた噴霧器を有するので、半導体デバイスが作動したときに発生する熱量が大きくても、その熱量を除去することができる。
即ち、熱媒体となるの飽和温度を一面の温度より低い温度にすることにより、が一面から蒸発潜熱を吸収できるようにしていること、半導体デバイスを冷却する熱媒体として空気の他にが加わると、は、空気に較べて比重及び比熱が十分大きいと共に蒸発するときに吸熱可能な十分大きい潜熱を持っているので、体積流量が少量であっても、多量の熱を吸収できること、その結果、少量のを多量の空気と混合させ、それによってを微粒化できること、このようにを微小粒にして一面に到達可能なようにしているので、一面に到達したときには、微小粒が一面上で熱伝達率が最も大きくなる核沸騰状態になるため、その面上に存在する間に確実に蒸発すること、は、微小化していてもこれを混合している空気よりも格段に比重が大きいので、その一面に向かう速度成分により、空気流が偏向するときでもほぼ確実に一面に到達すること、というような請求項1の発明の構成と作用効果との関連が生じ、結局、の吸熱時の顕熱及び潜熱からなる大きな吸熱量により、半導体デバイスの発生させる大きな熱量を、一面を介して確実に除去することができる。
又、除熱量の小さい空気と除熱量の大きいとを供給可能にするので、半導体デバイスを作動させた初期でその発熱量が小さい間には、直ちにを供給して過大に冷却することによってバーンイン温度への到達時間を不必要に遅らせ、発熱と除熱との安定した比率を得て安定してバーンイン温度が得られるようになる時間を大幅に遅らせることなく、除熱量の小さい空気を最初に供給することにより、発熱による半導体デバイスの急激な温度上昇を抑制して適当な昇温状態になるようにし、初期状態からを使用した定常発熱・定常除熱の状態に円滑に移行させることができる。
又、半導体デバイスの作動の停止時には、バーンイン温度以下になるとの供給を停止し、空気の供給だけを継続させ、の蒸発によって相当の湿り状態になっている周囲の雰囲気を発熱を利用して乾燥状態に復元させることができる。
又、を微小化し半導体デバイスの一面において最も熱伝達率の高くなる核沸騰状態にするので、一面との間で大きな温度差がなくても半導体デバイスの発生させる熱を除去することができる。
又、除熱量の小さい空気と大きいとを供給可能にするので、これらの供給量を組合せて調整することにより、半導体デバイスを早く且つ精度良くバーンイン温度にすることができる。
請求項2の発明においては、請求項1の発明と同じ構成部分によって同じ作用効果が得られることに加えて、前記一面への圧接とこれからの離間とが可能にされていて圧接時に一面を覆いその熱を通過容易にするように設けられた分離部材を有するので、空気及びが直接デバイスの一面に当たらないため、この面が空気やの衝突による影響を受けず、汚れたり変色する可能性を確実に防止することができる。
この場合、上記の如く噴霧器から供給され半導体デバイスの一面に到達可能な空気及びの微小粒が直接一面に当たらないようにされているが、一面の熱がこれに圧接される分離部材の反対側面まで通過容易な構造にされるので、この反対側面の温度が一面の温度に近い温度まで上昇し、空気及び前記微小粒を一面に直接当てるときと同様に前記反対側面に当てて流すことにより、空気及び微小粒を昇温させ微小粒を蒸発させ、反対側面及び分離部材を介して一面から半導体デバイスの発熱量を必要なだけ除去することができる。
そして、分離部材により、噴霧器によりが微小粒となって当たることになる分離部材における一面の反対側面から半導体デバイスを含む電気構造部分を仕切ることができるので、が蒸発しこれを含有した空気が高湿度になり、この高湿度空気が、半導体デバイスを冷却するために通常囲い構造によって閉鎖される閉鎖空間の中で常温に近い囲い構造のうちの上部分で露点以下の温度まで下がって結露し、これが下方の電気構造部分の上に落下したり、噴霧器が使用される初期にが微小粒にならない状態で下方に落下したり、場合によってはの蒸発不足によって下方に溜まりが生じる等により、短絡によって電気部分が誤作動したり、錆びが発生したり故障したりする等のおそれを完全に防止することができる。
請求項1の発明において、一面が下方に向いている構成にする、半導体デバイスが下向きに装着され、それにより、このデバイスが結合される電気構造部分をデバイスの上方に配置することができる。その結果、上記の如く、結露水や噴霧器の使用初期に微小粒にならなかったが下方に落下したり、の蒸発不足によって下方に溜まりが生じる等の場合にも、短絡によって電気部分が誤作動したり、錆びが発生したり故障したりする等のおそれを防止することができる。
この場合、空気及びの微小粒を上方に噴射させて下向きの半導体デバイスの一面に当てるが、空気の比重は十分小さく、は比重が大きくても微小粒径になっていてそれぞれの粒は十分軽量であり高速の空気流れの中に存在することになるので、それらの動きに対して自重は殆ど関係しない。従って、が一面に当たったときに、瞬時に蒸発しなかった一部分のものも、自重によって落下する方向にまで動くことはなく、一面に到達したときの進行方向から曲がって一面に沿う方向に動き、その間に確実に蒸発することになる。
請求項3の発明によれば、請求項2の発明に加えて、分離部材が、中央部分から一面に接触し一面に圧接されると平面になるように一面の側に凸曲面状の薄肉板で形成されているので、更に冷却効果を良くすることができる。
請求項1又は2の発明においては、半導体デバイスの温度を検出する温度検出手段と水の流量を調整可能にする流量調整手段と温度検出手段が検出した温度がバーンイン温度になるように流量調整手段を制御する制御手段とを設けるので、半導体デバイスが定常的作動状態になったときに、人の操作が不要になり、省力化が図られると共に運転時の信頼性を向上させることができる。
この場合、を空気と混合させて微小粒にしているので、の流量を変えても微小粒の大きさはそれ程変化しない。その結果、が確実に蒸発するので、の流量の制御状態が良く、従って精度良く半導体デバイスをバーンイン温度にすることができる。
流量調整手段が水供給手段から供給される水の流量を調整可能にする水流量調整弁と圧縮空気供給手段から供給される圧縮空気の流量を調整可能にする圧縮空気流量調整弁とで構成されていて、制御手段が、水の流量と空気の流量との比率を変えるように水流量調整弁と圧縮空気流量調整弁とを制御するように構成すれば、細かく熱量を調整できる圧縮空気の使用によってバーンイン温度をより精度良く調整することができる。
請求項1〜の発明においては、目的とする温度が半導体デバイスをバーンインする温度であるときに、水を熱媒体液にした構成にするので、液を容易且つ安価に得ることができる。この場合、半導体デバイスの水の当たる一面をより清浄に保つために、水として純水を使用するとしても、半導体デバイス製造工場等では純水が容易に且つ安価に得られる。又、水を液にするときにはその廃棄も容易になる。
一方、バーンイン試験では半導体デバイスに過酷な温度条件を与えるため、バーンイン温度は150℃程度又はそれ以上にされるので、半導体デバイスの一面の温度は100℃以上になる。そのため,大気圧下での蒸発温度が100℃の水であっても、その微小粒が前記一面に接触すると沸騰し、半導体デバイスの発熱を除去することができる。そしてこの場合、水は液の中で通常比重及び比熱が最大で蒸発潜熱は他の液の数倍以上であるため、高発熱型の半導体デバイスをバーンインするときの液として最適である。
請求項1〜3の発明においては、流量調整手段は、水供給手段から供給される水の流量を調整可能にする水流量調整弁と圧縮空気供給手段から供給される圧縮空気の流量を調整可能にする圧縮空気流量調整弁とからなり、前記制御手段は、前記半導体デバイスが通電された初期に温度上昇するときには前記圧縮空気流量調整弁を一定開度で一定時間開くように制御するように構成されているので、半導体デバイスの急激な温度上昇を緩和し、水冷却主体の冷却に円滑に移行させることができる。
図1は本発明を適用した冷却装置の全体構成の一例を示し、図2はこの冷却装置に使用される気液混合手段としての噴霧器の構成例を示す。
本例の冷却装置は、平面状の一面として本例では上面11を備えていて通電されると発熱し目的とする温度として本例ではほぼ150℃程度の温度tより高い温度まで上昇してこれに対応して上面11の温度も上昇するように形成された半導体デバイスであるデバイス1を温度tにするように冷却可能な冷却装置としてデバイス1のバーンインに用いられる装置であり、圧縮空気供給手段としての空気供給系2、液供給手段としての水供給系3、気液混合手段としての噴霧器4、等を有する。
冷却装置の通常の構造部分としては、デバイス1を搭載するためのバーンインボード51(以下単に「ボード51」という)、これを冷却装置内に挿入及び抜き出しするためのガイド溝52、ケース53、中継ボード100が電気的に結合されるコネクタ54、等が設けられている。ボード51は、プリント基板からなり、その上にソケット55が取り付けられていて、先端には、コネクタ54に着脱されるエッジコネクタ51aが形成されている。バーンイン試験装置としては、冷却装置に加えて、冷却装置の外に配設され順次中継ボード100に結合される図示しないドライバー/テストボード、中継ボード、コントロールボード等が準備される。そしてこれらにより、デバイス1に通電し必要な電気信号を与えてバーンインのためにデバイス1を作動させることができる。
なお、図では4個のデバイス1が搭載される冷却装置の1段部分を示しているが、通常この部分と同じ構造のものが例えば5〜10段程度の多段に積層された構造にされる。それぞれの段は、扉部分53aを含むケース53と仕切板56で囲われていて排気口57が開けられただけの閉鎖空間58にされている。第1段部分の下方は機械配置区画59にされ、水及び空気供給系の主な機械部分はこの区画に設けられる。ケース53は機械配置区画59の部分を除いて断熱構造にされる。
多段でデバイス1も多数個搭載されるような冷却装置では、ボード51をコネクタ54に機械的に着脱させる機構を設けるようにしてもよい。そのときには、プリント基板に補強構造部分が付加されて、この部分にコネクタへの着脱機構の係合部分が設けられることになる。
デバイス1は、通電時に300W程度までの熱量を発生させる高発熱型のものであるが、通常のものと同様に、図3(a)に示すピン12を多数個備えていて、バーンインボードに着脱するときにはそれらがソケット55に着脱される構造になっている。前記上面11は、放熱しやすいように銅にニッケルメッキをしたような伝熱性のよい金属でできていて、例えば4cm角程度の広い平坦な面になっている。下面13は通常耐熱樹脂製である。なお、図3に示す形状や構造とは異なった形状や構造のデバイス1に対しても本発明を適用できることは勿論である。
このような高発熱型のデバイス1には、温度管理の重要性から温度センサ14を内蔵した構造のものがある。その場合には、センサ14は、多数個のピン12の中の適当なものと接続され、ボード51のプリント配線を介して前記図示しないコントロールボードから外部配線として取り出され、温度表示や温度制御用として使用される。温度センサ14がデバイス1に内蔵されていない場合には、図3(b)に示す如く、ピン15aと一体になった仮温度センサ15を下面13に取り付け、これらを同様にボード51のプリント配線に接続するような構造にされる。
圧縮空気系2は、圧縮空気を供給可能な手段であり、空気圧縮機21、空気タンク22、空気元弁23、全段空気共通系24、個別空気弁25、個別空気系26、等を備えていて、本例では圧力0.6MPa 程度の圧縮空気を噴霧器4に供給する。空気タンク22は、圧力0.8MPa 程度までの圧縮空気槽にされることが望ましい。そのため空気圧縮機21は、空気タンク22の圧力を0.8MPa までの一定の狭い圧力範囲に維持するように通常自動発停される。なお、圧縮空気の温度が適当な温度になるように制御するようにしてもよい。
水供給系3は、冷却のための熱媒体になる液としての水を供給可能な手段であり、水ポンプ31、水タンク32、水元弁33、全段水共通系34、個別水弁35、個別水系36、等を備えていて、大気圧より少し高い圧力の水を噴霧器4に供給する。水としては、純水を使用することが望ましく、通常そのようにされる。なお、半導体製造工場では純水を多用していて、安価に調達されるようになっている。水タンク32は、圧力0.1MPaG程度の圧力タンクにされることが望ましい。そのため水ポンプ31は、タンク32の水面を一定範囲のレベルに維持するように通常自動発停されている。なお、タンク32を大気開放のヘッドタンクにしたり、水ポンプ31をタンク32の後流位置に設けるようにしてもよい。
水としては通常常温の水が使用されるが、水供給系3に熱交換器を設けて、供給する水の温度を適当な温度にすることも可能である。例えば、加熱器を設けて水を加熱してその温度を80℃程度に自動又は手動で調整するようにしてもよい。そのようにすれば、後述するようにミストを発生させてこれをデバイス1に当ててこれを冷却する場合に、水による顕熱冷却効果は低下するが、水温が飽和温度に近づいているため、デバイス1に当たったときに容易に完全に蒸発し、確実に潜熱冷却効果が得られ、ミストの蒸発不足に伴う不具合の発生を防止することができる。
噴霧器4は、圧縮空気と水とがそれぞれの供給系2、3から供給され、水が圧縮空気と混合されて微小粒になってデバイス1の上面11に到達するように設けられた手段であり、図2(a)及び(b)にその概略構造を例示している。(a)の噴霧器4は、空気入口41、空気出口42、水入口43、水出口44、これらが形成されている外筒45、内筒46、水量を調整可能にするニードル弁47、調整ネジ48及び調整ノブ49、等で構成されている。(b)の噴霧器4は、同様に空気入口41、水入口43、出口4a、これらが形成されている上部構造体4b、下部構造体4c、空気ノズル部4d、水室4e、混合ノズル部4f、混合室4g、噴射室4h、等で構成されている。
なお、本例では、上記の如く1つの噴霧器4で圧縮空気と水とを内部又は外部で混合させて空気ミスト混合流を形成させているが、水用のノズルと空気用のノズルとを別個に設けて、これらの2個のノズルから噴射された水と空気とをノズルの外部で混合させて空気ミスト混合流にして供給することも可能である。又、デバイスの発熱量に対応して1個のデバイス1に対して複数の噴霧器4を設けるようにしてもよい。更に、噴射物は、液体と空気の他に、氷の微粒やドライアイスの微粒等であってもよい。
以上のような冷却装置は次のように運転され、その作用効果を発揮する。
デバイス1のバーンイン試験をするときには、まず空気供給系2及び水供給系3が運転される。空気供給系2では、空気圧縮機21が自動運転され、空気タンク22には圧力0.65〜0.7MPa 程度の範囲で圧力制御された圧縮空気が充填される。この中の空気は、圧縮機付きの図示しない空気冷却器で冷却された空気であると共に滞留時間内に周囲に放熱した空気であるため、通常その環境の温度である常温より少し高い程度の温度になっていて、例えば常温が20℃であれば30℃程度の温度になっている。
又、空気供給系2で個々のデバイス毎に設けられている個別空気弁25は、全段空気共通系24から分岐した個別空気系26や個々の噴霧器4の特性に合わせて、何れの噴霧器4からもほぼ同流量の空気が噴出されるように調節される。但し、試験されるデバイス1が全て同じ発熱量のものでない場合には、それぞれのデバイス1の発熱量に対応した空気流量になるように個別空気弁25が調節される。
水供給系3では、ポンプ31が自動運転され、水タンク32には水位が図1に示すような位置を中心として一定の高低レベルの範囲内になり、圧力が0.11〜0.12MPa 程度の範囲になるように水が供給される。この水は、例えば半導体製造工場の純水配水ラインから取水され、通常ほぼ常温になっている。水供給系3の個々のデバイス毎に設けられている個別水弁35も、個別空気弁25と同様に、何れの噴霧器にも同程度の水量が供給される開度に調節される。デバイス1の発熱量が同じでない場合にはそれぞれの発熱量に対応して調節される。
次にデバイス1をボード51に取り付けられているソケット55に装着し、このボード51の幅X方向の両端をガイド溝52に嵌め込み、これに沿わせてボード51を奥行きY1 方向に挿入し、先端のエッジコネクタ51aをコネクタ54に差し込む。これにより、デバイス1は、順次、ボード51、中継ボード100、図示しないドライバー/テストボード及び中継ボードを介してコントロールボードに接続される。
以上のような操作によりバーンイン試験を実施可能な状態になり、試験装置を操作してデバイス1に給電し、必要な電気信号を与えてデバイス1を作動状態にする。又、これと同時に冷却装置の空気供給系2の空気元弁23を開く。水供給系3の水元弁33は、試験対象となるデバイス1の昇温特性に対応して例えば1分程度後に開かれる。
デバイス1が作動状態になると、最大300W程度の電力を消費し、この電力に対応して熱が発生し、デバイス1は最初の常温状態から次第に昇温する。しかし、この初期状態では、デバイス1の上面11の温度が十分高くなっていないので、上記の如く空気元弁23だけを開く。
空気元弁23を開くと、個々の噴霧器ごとに予め開度調節されている個別空気弁25から全噴霧器4にほぼ同量の圧縮空気が供給される。圧縮空気が空気入口41から器内に入ると、この空気は、圧力が速度に変換されることにより、図2(a)又は(b)の噴霧器4において、空気出口42又は出口4aから高速で流出し、図4(a)及び簡略には図1、2に示すように広がり、デバイス1の上面11の一定範囲の部分に当たり、上面11の残りの部分に沿って流れると共に上面11から反射し、その間に上面11の熱を吸収し、閉鎖空間58内に拡散した後排気口57から排出される。
図4(b)に示す如く、デバイス1の一辺a=40mmの正方形の上面11において空気の当たる部分は、図において丸で囲った範囲内の直径dの円形部11aになる。この直径dはaの1/2程度より大きいことが望ましく、空気や水の流量、噴霧器4の構造や大きさや種類、その設置位置等によって定まり、同図(c)及び(d)に示すように、例えばd=3a/4程度になるように諸条件が選択される。そのようにすれば、上面11の相当部分に直接空気が当たり、その空気の大部分が上面11の残りの部分に沿って流れてその面から吸熱し、周辺からの放熱状態に対応してデバイス1に良好な冷却効果を与えることができる。なお、噴霧器4の設置位置を上面11に直角な方向である上下方向に手動又は自動で位置調整し、dの範囲をある程度調整できるような構造を採用することも可能である。
以上のような空気流れによれば、空気が主として上面11に衝突するように流れるので、従来のような上面11に平行に空気を流す熱風循環式のバーンイン装置に較べて、大幅に熱交換性を良くして、冷却効果を向上させることができる。そして、デバイス1の急激な温度上昇を緩和し、次に水冷却主体の冷却に円滑に移行させることができる。なお、空気元弁23を最初から全開にするのではなく、例えば数十秒の時間をかけて全開させたり、デバイス1の温度に対応して開くようにしてもよい。
このようにデバイス1を空冷しつつ継続して給電して作動状態にすると、デバイス1の発熱量に対して空気の除熱量が不足するため、デバイス1が昇温する。そのため、給電及び空冷後前記のように1分程度の時間T1 が経過した後水供給系3の水元弁33を開き、噴霧器4を介してデバイス1に水を供給する。時間T1 は、通常デバイス1に組み込まれている温度センサ14の検出温度ta又はデバイス1に仮に取り付けられた仮温度センサ15の検出温度ta1 により判断される。
即ち、例えばtaが130℃程度又はta1 が110℃程度になると、デバイス1の上面11の温度として平均温度tfが100℃を超えるようになる。そのため、本例ではこのtfより低い飽和温度を持つ液として水が採用されている。従って、tfが100℃を超えるようになった後には、デバイス1に水を供給すると、水が蒸発して大きな潜熱冷却作用が生じるので、これを可能にするように、ta又はta1 の温度を判断する。なお、デバイスや空冷条件が同じであれば時間T1 はほぼ一定時間になるので、冷却装置を含むバーンイン装置の製造工場やデバイスの製造工場におけるバーンイン試験において予めT1 を測定し、そのT1 により、人の操作やタイマ等により水元弁33を開くようにしてもよい。
空気及び水の元弁23、33を開くと、図2(a)に示す噴霧器4では、前記の如く空気が出口42から高速で流出すると共に、水は、水入口43から器内に入り、大気圧より少し高い内部圧力と高速空気流によって負圧が形成されている水出口44部分との圧力差によって狭くなった水出口44から高速で噴出し、放射状に広がって細粒化すると共に、高速空気流によって粉砕されて微粒化し、本例の装置では直径10〜20ミクロン程度の水の微小粒(以下仮に「ミスト」という)となって空気と混合し、主として空気流によって搬送され、空気と共に図4に示したように上面11のうちの直径dの円の面積内に当たる。
図2(b)の噴霧器4では、空気入口41から入った圧縮空気は空気ノズル4dの中で膨張して高速で混合ノズル部4fに流出し、水入口43から入った水は水室4eから空気流に混入して混合ノズル部4fに入り、これらの空気と水はこの部分でよく混合し、更に断面が急拡大した混合室4gで十分混合された後噴射室4hに入り、上記と同程度の直径のミストになって噴出し、同様に図4に示す上面11のうちの直径dの円面積内に当たることになる。
このとき、上面11の平均温度tfが100℃を超える温度になっているので、微細なミストは上面11からの熱伝達によって直ちに昇温し蒸発する。又、上面11に当たって瞬間的に蒸発しなかったミストは、図4(a)、(c)のように上面11に沿った速度成分及び空気流れにより、同図(b)、(d)に示すように直径dの円の面積内からその周囲に放射状に移動し、その移動過程で表面11から吸熱し、表面11上で完全に蒸発することになる。空気は、これまでのように上面11を空冷する。
このようにミストが蒸発すると、蒸発潜熱が大きいため大きな除熱量になる。即ち、空気及び水の流量をq1 及びq2 (l/min )、それぞれの密度をρ1 、ρ2 (kg/l)、
定圧比熱をc1 及びc2 (kj/kg ℃))、デバイス1を冷却したときの空気及び水の温度上昇をΔt1 及びΔt2 (℃)、それによる除去顕熱量をQ1 及びQ2 (kj/ min )、水による除去潜熱量をQ3 (kj/ min )、水の潜熱をR(kj/kg )とすると、水の全除去熱量(Q2 +Q3 )と空気の全除去熱量Q1 との比率は、
( Q2 +Q3 )/Q1
=q2 ・ρ2 (c2 ・Δt2 +R)/q1 ・ρ1 ・c1 ・Δt1
となる。ここで、仮に水が20℃から100℃までΔt2 =80℃昇温して蒸発するとすると、詳細計算を省略するが、
(c2 ・Δt2 +R)≒8c2 ・Δt2
となり、
(Q2 +Q3 )≒8Q2 =8q2 ・ρ2 ・c2 ・Δt2
となり、
( Q2 +Q3 )/Q1
=8(q2 /q1 )・(ρ2 /ρ1 )・(c2 /c1 )・(Δt2 /Δt1
となる。
ここで、空気は仮にその全量が20℃から60℃までΔt1 =40℃昇温するとし、q1 が最大30l/min でq2 が最大8ml/min で仮にq2 /q1 =8/(30×103 )とすれば、(ρ2 /ρ1 )≒1/(1.2/103 )≒103 /1.2で、(c2 /c1 )≒4/1で、Δt2 /Δt1 =80/40になるので、
( Q2 +Q3 )/Q1 ≒8×8×103 ×4×80/(30×103 ×1.2 ×1×40) ≒14.2
となる。即ち、この例では、デバイス1からの水の除去熱量は、小流量であっても空気のそれの約14倍という十分大きい値になる。
その結果、従来の空気冷却では対応できなかった300Wにもなる高発熱デバイスの過大な熱量を除去し、デバイスをバーンインするときの150℃程度の目的とする温度に維持した運転をすることが可能になる。
デバイス1を作動させ、一定時間空気及び水を供給しつつこれを冷却する過渡的な運転状態が経過すると、デバイス1はほぼ一定の熱量を発生させ、冷却装置がこれに対応するほぼ一定の熱量を除去しつつ、デバイス1の内部温度tをほぼ150℃に維持するという定常的なバーンイン運転が48時間程度継続される。この間には、デバイス1が高発熱条件で運転されるので、冷却効果の大きい水を最大流量に近い流量で流し、圧縮空気は水をミストにするために必要なだけの比較的少ない流量で流される。
このような定常運転においても、運転環境の変動等によって温度tが不可避的に変動するので、その変動が一定範囲を超えないようにして精度の良いバーンイン試験をする必要がある。そのため、冷却装置の冷却熱量を調整することになる。
冷却熱量は、主として水流量を変えることにより、又図2(b)の噴霧器4では圧縮空気の流量を変えることによってもより細かく、調整可能である。直接水の流量を変えるときには、水元弁33又は個別水弁35の開度を調整して増減させるが、この調整により、噴霧器4に供給される水の圧力が変動するので、水出口44から噴出する水の粒子の大きさが変動することになる。しかし前記の如く、細粒化した水を更に高速空気流によって微粒化するので、水の圧力の変動にそれ程影響されることなく水を必要な粒径のミストにすることができる。その結果、調整によって量が増減されるミストを確実に蒸発させ、その量に対応してデバイス1の熱量を除去することができ、バーンイン試験時の温度精度を良好に維持することができる。
図2(b)の噴霧器4では、上記の如く図2(a)のものと同様に直接水量を変えて冷却熱量を変えることができるが、圧縮空気の流量を変え、間接的に水量を変えて冷却熱量を調整することができる。即ち、一定の圧縮空気の流量範囲では、圧縮空気の流量を多くすると、混合ノズル4f内の圧力が高くなり、その影響を受けて水の流れが減少する傾向になり、この特性を利用して水量調整をすることができる。そして、このように空気流量を調整する場合には、比較的微調整することが可能であると共に、水のように非圧縮性流体ではないので弁開度の急変が可能であるため、結局水量を精度良く且つ迅速に調整し、同様に冷却熱量を調整することができる。
一方、図2(a)の噴霧器4では、冷却熱量を空気流量によって直接的により細かく調整することも可能である。例えば、バーンインの設定温度ts=150℃に対して、tsに対応する温度としてセンサ14による実測又はセンサ15による実測からの推定による測定温度ta又はta1 が例えば3℃を超える程度に大幅に変動したときには、最初に水元弁33の開度を調整し、除熱効果の大きい水の流量を変動させ、tsとtaの差が例えば3℃以下の一定の小幅になったときには、空気元弁23の開度を調整し、水よりも十分小さい空気の冷却作用によって冷却熱量を小幅に変動させる。このようにすれば、早く且つ精度の良いバーンイン温度を得ることができる。
バーンイン時間が経過して試験を終了するときには、デバイスへの供給電力を下げて行き、最終的には通電を停止する。このときには、taが大幅に低下して行くので、それに対応して水元弁33を閉鎖して行き、これが全閉になると、空気元弁23を閉鎖して行く。空気元弁23をある程度閉めて、taが150℃以下になると、このときの空気流量を一定の短い時間の間維持し、デバイス1の発熱を利用して、空気の供給及び排出によって閉鎖空間58の中を乾燥させる。
1回のバーンイン試験が終了すると、エッジコネクタ51aをコネクタ54から引き抜いてバーンインボード51を冷却装置から抜き出し、デバイス1をソケット55から取り外す。このような試験を繰り返し、最終的にバーンイン試験を終了するときには、圧縮機21及びポンプ31の運転を停止する。
本発明を適用した冷却装置を用いると、以上のように高発熱デバイスをバーンイン試験することができる。そしてこの場合、空気による冷却及びミスト搬送作用を利用することにより、試験の開始時には、デバイスの始動状態から定常状態への移行を容易にし、定常状態においては、デバイスの大きな発熱量を除去すると共にバーンイン試験の温度を小幅に精度良く調整可能にし、試験の終了時には、空気による乾燥効果が得られるので、極めて好都合にバーンイン試験を行うことができる。
図5は発明者等がデバイス1を模擬した供試品を製作して空気及びミストによる冷却試験を行った結果を示す。その結果は以下のとおりである。
1.この試験で使用した製品
1)供試品1´:デバイス1を模擬して製作したもの
構造;上面11がニッケルメッキされた銅製の上部分16と耐熱樹脂製の下部分17との間に発熱体18を介装した構造のものである。上面11は図4に示すものと同様に一辺の長さaが40mmの正方形である。この面の中心位置で発熱体18の上下位置であるB点及びA点には温度測定制御用の下温度センサ19a及び上温度センサ19bが取り付けられている。
発熱体の発熱量;210W
2)空気弁:後述する図10の個別電動空気弁27に相当するもの
供給される最大空気圧;0.6MPaG
流量変化幅 ;0〜30l(リットル)/min
3)水弁;図10の個別電動水弁37に相当するもの
供給される最大水圧 ;0.1MPaG
流量変化幅 ;2〜8ml(ミリリットル)/min
2.試験条件
この試験では、供試品に通電し定格電流を流して発熱体を210Wの出力で発熱させ、これと同時に空気弁を全開させ、弁37を下温度センサ19aの検出温度による制御状態にしている。それから約12分間の連続定格通電試験を行い、通電を停止し出力を0にした。この試験での周囲温度は約15℃で、水温及び空気温度も同程度の温度であった。
3.試験結果
1)制御対象部分であるA点の温度を3℃程度までの変動範囲内に制御することができた。
2)B点の温度は約10℃までの幅で変動しているが、これは、B点が制御対象でないことと噴霧器4からのミストの噴射を直接受けるためである。
3)この試験では、上面11に直接ミストが当たる範囲の直径dが約10mm(a/4)という狭い範囲であった。そのため、中心位置のB点温度が100℃以下の70℃〜80℃程度まで下がり、測定していないが表面中心の温度は65℃〜75℃まで下がっていたと推定される。
4)このように上面11の中心位置では100℃まで昇温していなかったが、この面にミストが当たると、瞬時に又は少し動いて100℃以上の温度になっていたと推定される位置で直ちに蒸発しているように観察され、上面11の上に水滴が残るような状態は全く見られなかった。
以上から、高速空気流に混合しているミストが適当な粒径になって上面11まで到達し、この面を通じてデバイスの内部まで冷却し、その温度をほぼ一定の温度に維持できることが確認された。なお、この試験で準備した噴霧器4は、作動時にその開度が10%以下になるような過大なサイズのものであったため、上面11までの距離を近づけて上記直径dをa/4のように狭い範囲にする必要があったが、噴霧器4の最適設計に近づけることにより、dを2a/4乃至3a/4以上にして、デバイス1の内部温度を均一に目的とする温度にすることができる。
なお、このように上面11に向かう方向からこれにミストを当てると、ミストにより中心部が最も良く冷却されそれから離れる程冷却効果が減少する傾向になるが、デバイス1の角部や周辺では放熱しやすいので、結局デバイス内部を均一冷却する効果が得られることになる。
図6は本発明を適用した冷却装置の他の例を示す。
本例の冷却装置は、デバイス1の上面11への圧接とこれからの離間とが可能で圧接時に上面11を覆いこの面の熱を通過容易にするように設けられた分離部材6を有する。上記において圧接と離間とが可能で圧接時に上面11の熱を通過容易にする分離部材の取付構造部7としては、本例では、分離部材6の周囲に取り付けられこれを囲う囲い部材としてのベローズ71、これが取り付けられた剛性の高い支持板72、これをバーンインボード51に固定可能にすると共にデバイス1と閉鎖空間58とを仕切るように取り付けられた側板73、足板74、足板74が差し込まれるとこれを押さえて固定するようにバーンインボード51に取り付けられた止め部材75、側板73を拘束しないようにこれと分離していて同様に仕切るように取り付けられた前後板76、等が設けられている。支持板72には、X方向の曲げ剛性を高めるために必要に応じて同図(b)に二点鎖線で示す横桁77が取り付けられる。
本例の装置では、噴霧器4は、前記分離部材6の面のうちデバイス1の上面11とは反対側の反対側面6aに到達するように設けられる。
分離部材6は、熱の通過を容易にするように通常銅やアルミニウム等の熱伝導率のよい金属でできていて、その厚みが例えば1mm程度以下の薄肉板にされる。薄肉板は、平面板にされるか、又は図7(a)に示す如く、上面11に適当な力で押しつけられたときにほぼ完全な平面になるように上面11側に僅かに凸状になった曲面板にされる。
分離部材6が曲面板にされるときには、例えば0.1mm程度の特に薄肉の金属にされるが、金属よりも変形容易な耐熱樹脂等を使用して、曲面の曲率をより小さくした形状にされてもよい。分離部材6が曲面にされる場合には、囲い部材をベローズのように伸縮自在な部材でなく、図7(b)に示すように単なる板材78にすることも可能である。このような曲面状の分離部材6では、圧接時に中央側が大きく変形して圧接力が大きくなり、デバイスの上面11のうち周囲からの放熱がなく温度が高くなる中央部分を効果的に冷却することができる。
側板73は、足板74を止め板75に差し込んで取付構造部7をバーンインボード51に取り付けたときに、ベローズ71を圧縮し、デバイス1の熱が上面11から分離部材6に良好に伝達されるように分離部材6に上面11に対する必要な圧接力を付与するような寸法にされる。又側板73は、足板74を止め板75に差し込み容易にするようにある程度曲がり易いものにされる。
以上のような分離部材6及びその取付構造部7は次のように使用されてその作用効果を発揮する。
バーンイン試験をするときに4個のデバイス1をバーンインボード51に装着すると、分離部材6が下方に突出して取り付けられた取付構造部7を分離部材6が4個のデバイス1に接触するように置き、上からベローズ71を圧縮しつつ側板73の先端側をX方向に狭めた後復元させ、足板74を止め板75の中に差し込む。
この操作により、分離部材6がベローズ71の弾性力によってデバイスの上面11に圧接し、取付構造部7もバーンインボード51に装着されたことになる。このような操作は容易である。なお、図6(c)に示す如く、足め板74に傾斜部74aを設けると、側板73及び足板74は、これらを上から押さえるだけの操作により、傾斜部74aを図の二点鎖線で示すように移動させつつ足板74を止め板75の下に差し込むことができ、操作が更に容易になる。なお、傾斜部は止め板75側にあってもよい。
この後の操作は図1の装置のときと同じである。本例の装置によれば、噴霧器4から噴射された空気及びミストがデバイスの上面11に直接当たらないが、上面11の熱が分離部材6の上面まで通過容易な構造にされているので、この上面の温度がデバイスの上面11の温度に近い温度まで上昇し、空気及びミストを図1のときと同様に分離部材の上面になる反対側面6aに当てて流すことにより、空気及びミストを昇温させミストを蒸発させ、反対側面6a及び分離部材6を介してデバイスの上面11からデバイスの発熱量を必要なだけ除去することができる。
一方、空気及びミストが直接デバイスの上面11に当たらないため、上面11が空気やミストの衝突による影響を受けず、上面11が汚れたり変色する可能性を確実に防止することができる。又、デバイス1、ソケット55、バーンインボード51等の電気構造部分へのミストの影響をなくすることができる。
即ち、ミストが蒸発しこれを含有した空気が高湿度になり、この高湿度空気が閉鎖空間58の中で温度の低い仕切板56のうちの天井になる上仕切板56aで部分的に露点以下の温度まで下がって結露し、これが下方の電気的構造部分の上に落下したり、場合によっては直接電気構造部分に結露したり、ミストの蒸発不足によって下方に水溜まりが生じる等により、短絡によって電気部分が誤作動したり、錆びが発生したり故障する等のおそれを完全に防止することができる。
分離部材6をデバイスの表面11に圧接させる構造としては、図7(c)〜(f)や図8に示す如く、他の適当な構造を用いることができる。図7(c)では、分離部材6をデバイス1の上面11に圧接させるためのベローズ71の弾性力が不足する場合に、これを補助するために圧縮バネ79aを追加している。(d)では、分離部材6を囲う囲い部材をベローズに代えて板材78とし、分離部材6を引っ張りバネ79bで引っ張って上面11に圧接させるようにしている。このような圧接構造を採用すれば、分離部材を必要十分な力で上面11に圧接させることができ、これらの間の熱伝達性を一層良くすることができる。
なお図7(e)では、分離部材6に棒状の放熱フィン6aを固着させている。このようにすれば、デバイス1の冷却性能を更に良くすることができる。又、同図(f)では、噴霧器4の高さ位置を少し高くしたり噴霧角度を広くすることにより、ベローズ71にもミストがかかるようにしている。このようにすれば、ベローズ71が熱交換面積の拡大された放熱体としての作用をすることになり、デバイス1の冷却効果を向上させることができる。
図8は分離部材6をデバイスの上面11に機械力で圧接させる構造の一例を示す。
この例では、支持板72に取り付けられた横桁77をX方向にケース53の外側まで延長し、その両端部分を上下Z方向に伸びた軸80に連結し、軸80を縦方向に適当にガイドしつつその上端からバネ81で吊り下げ、その下端位置をシリンダ機構のような縦移動装置82でZ方向に移動可能にした構造にしている。なお、軸80を個別に縦移動装置82で上下移動させるのではなく、片側の軸又は全ての軸80と結合されZ方向に移動案内される平面枠を設けて、これを両端に各1台又は全体に1台設けられる縦移動装置82で上下移動させるようにしてもよい。
取付構造部7をこのような装置にすれば、バーンイン試験をするときには、通常の装置の場合と同様にボード51にはデバイス1だけを着脱し、ボード51をバーンイン装置、バーンインラック等試験エリアに取り付けた後縦移動装置82を作動させるだけの操作により、分離部材6を上面11に圧接させることができる。従って、分離部材の圧接又は圧接解除の作業を一層容易にすることができる。
図9は本発明を適用した冷却装置の更に他の例を示す。この図では、図1と同じ構造部分の符号の一部分を省略している。
本例の装置では、図9(a)に示す如く、これまでの装置と同様に噴霧器4が構造体であるケース53と仕切板56によって囲われた空間である閉鎖空間58の中に設けられていると共に、デバイス1の上面11が下方に向いている。
デバイス1の上面11が下方に向いている装置にするために、図1(a)の閉鎖空間58内及びその中のものを上下反転させて配置した構造にしている。即ち、バーンインボード51は仕切板56のうちの上仕切板56aの下の位置で表裏反転していて、その表面側に下向きにソケット55が取り付けられこれにデバイス1が装着され、デバイス1の上面11は下方に向いていて、その下方に噴霧器4があり、下方に向いた上面11に対して上方に空気及びミストを噴射させるように噴霧器4も上下反転している。
本例の装置も図1の装置と全く同様に運転され、同じ作用効果を発生させる。即ち、本例の装置は空気及びミストを上方に噴射させて下向きの上面11に当てるが、空気の比重は十分小さく、ミストは比重が大きい水であっても微小粒径になっていてそれぞれの粒は十分軽量であり高速の空気流れの中に存在するので、それらの動きに対して自重は殆ど関係しない。従って、ミストが上面11に当たったときに、瞬時に蒸発しなかったものも、自重によって落下する方向に動くことはなく、噴射されたときの進行方向から曲がって上面11に沿う方向に動き、その間に確実に蒸発することになる。
又、冷却される上面11が下方になるが、デバイス1の発熱時の熱は熱伝導によって移動し対流の影響は殆どないので、上下方向は熱移動に関係せず、従って冷却効果については図1の上面11を上から冷却するときと全く同じである。
そして本例の装置によれば、図6の分離部材6及びその取付構造部7を設けない場合でも、図6の装置に近い作用効果が得られる。即ち、上仕切板56aは高湿空気の当たらないバーンインボード51の上の位置になり、この板面に結露水が付着することがなくなるので、電気構造部分への結露水の落下の問題が解消され、又、運転開始時に噴霧器4から噴射された水がミストにならず水滴として落下したりミストが完全に蒸発せず下に溜まるようなことがあったとしても、仕切板56のうちの床になる下仕切板56bの上に溜まることになるので、短絡等によって電気部分が誤作動したり故障したりこの部分に錆びが発生するような問題はほぼ完全に解消される。なお、圧縮空気を加熱すれば、ミスト噴射後に噴霧器4の中に残った水を蒸発させ、装置の使用停止中及び使用開始直後の水滴の落下を防止することができる。
図9(b)は、デバイス1を目的とする温度にするように冷却するときにケース53及び仕切板56の温度より低い温度に冷却される冷却構造体としての冷却プレート9が設けられた例を示す。この冷却プレート9は、閉鎖空間58内の温度環境によって常温より高い温度になっているケース53及び仕切板56よりも低い温度になるように、図示しない水冷配管又は簡単な冷凍機の冷媒配管によって冷却される。
このような冷却プレートを設けると、閉鎖空間58内の高湿度空気から水蒸気を凝縮させ、空間内の高湿度状態を解消させ、電気関係部品への結露を防止してこれらを一層良好な状態に維持することができる。
図10は冷却装置を自動化するときの構成例を示す。
本例の装置は、デバイス1の温度を検出する温度検出手段として図3にも示した温度センサ14、液の流量を調整可能にする流量調整手段としての電動個別水弁37(以下「弁37」という)、温度センサ14が検出した温度taが目的する温度としてバーンインするときのデバイス1の設定温度tsになるように弁37を制御する制御手段としての温度調節器10、等を有する。温度調節器10はデバイス温度制御装置Cに組み込まれている。
温度センサ14の信号は、前記の如くデバイス1からソケット55、バーンインボード51から中継ボード等を介して図示しないコントロールボードから取り出されるが、図では仮にバーンインボード51から取り出されるように示している。弁37は、パルス信号が与えられることによってそれに対応して回転する図示しないモータで駆動される。
設定温度tsは、デバイス温度制御装置Cに設けられた温度設定器Csで任意の温度に設定可能にされていて、例えば150℃にされる。このtsは温度調節器10に送信される。なお、デバイス1が温度センサ14を内蔵していない場合には、温度検出手段として図3に示した仮温度センサ15を取り付け、その検出温度ta1 が設定温度ts1 になるように制御する。その場合には、予め別の試験等によってts1 とtsとの対応を明らかにしておく。温度調節器10は、デバイスごとに設けられる温度センサ14に対応して10−1から10− nまで例えば20個のデバイス1ごとに設けられる。
このような制御装置によれば、長時間連続して行われるバーンイン試験において、図1に示す装置の場合の個別水弁の事前開度調整を含めて人の操作が不要になって省力化が図られると共に、自動運転によって運転時の信頼性を向上させることができる。又、電動個別水弁37の開度を個々に制御しているので、20個のデバイス1が全て同じものでなく、その中に種々の異なった発熱量のデバイスが存在していても、それぞれの弁37の開度が自動調整されることにより、対応するデバイスの冷却に必要な水量を供給することができる。従って、発熱量の異なった各種デバイスを1つのバーンイン装置で試験できることになり、装置の利用性が良くなる。この場合、デバイスによってバーンインすべき温度が異なるときには、温度設定器Csにより、同じ設定温度tsでなく、デバイスに対応して異なった設定温度tsiを対応する温度調節器10−iに与えることになる。
なお、この制御では水量を変化させているが、本発明では水を空気と混合させて微小粒にしているので、水の流量を変えても微小粒の大きさはそれ程変化しない。その結果、水が確実に蒸発するので、水の流量の制御状態が良く、従ってバーンイン時の温度taを設定温度tsに十分近づけた精度の良いバーンイン試験をすることができる。
上記の如く空気流量を一定にして水量だけを調整してもバーンイン温度を十分精度良く制御可能であるが、本例の冷却装置では、個別空気系26の弁も電動個別空気弁27(以下「弁27」という)とし、温度調節器10の制御信号を弁27の方にも送信し、定常運転時に発停時も加えて弁37と弁27とを複合制御するようにしている。
即ち、温度調節器10は、150℃に設定されるtsとtaとの差が例えば3℃以上であれば、冷却効果が大きくなる弁37に上記差に対応した信号を送り、弁37の開度を調整し、早くtaをtsに接近させ、上記差が3℃以下になると、冷却効果が小さくなる弁27に上記差に対応した信号を送り、弁27の開度を調整し、細かくtaを調整してtsとの差を十分小さくし、バーンイン温度の精度を良くするような制御を行う。
なお、上記の弁37と弁27との複合制御においては、噴霧器4の構造によって作用効果に差が生ずる。即ち、図2(a)の噴霧器4では、弁27の開度を制御した場合には、それによって空気流量が変動し、その変動では噴霧器4を通過する水量は殆ど変わらず、従って、空気流量の変化によって冷却効果が変化することになる。
一方、図2(b)の噴霧器4では、弁27の開度を制御した場合には、それによって空気流量が変動するが、弁37の開度を変えなくても、前記の如く噴霧器4が水を通過させる量即ちミストになる水量が変化し、その関係は、空気量を増やすと水量が減り、空気量を減らすと水量が増えるようになっているが、水量の変化の方が冷却熱量の変化に対して支配的であるため,結局、空気量を増やすと冷却熱量が減少し、空気量を減らすと冷却熱量が増加することになる。
従って、図2(a)の噴霧器の場合とは、冷却熱量を増減させるときの弁37の開閉方向が逆になる。なお、空気流量を変化させて冷却熱量を変える図2(b)の噴霧器4の方が、より精度良く且つ迅速に冷却熱量を調整できることは前述のとおりである。このように水量も変化させる電動個別空気弁27は、弁37及び図2(b)に示す噴霧器4と共に液の流量を調整可能にする流量調整手段に相当する。
デバイス1に通電してバーンイン試験を開始したときには、上記taとtsの差に関係なく弁27を一定開度で一定時間開き、通電後のデバイス1を適当な速度で温度上昇させ、弁37を制御する定常状態に円滑に移行させ、デバイス1の通電を遮断してバーンイン試験を終了するときには、弁37を閉鎖して弁27を一定開度で一定時間開いて空気の供給を継続させ、発熱したデバイス1の余熱を利用して高湿になっている閉鎖空間を乾燥させるように制御する。このような制御によれば、全体的に良好な状態でバーンイン試験を行うことができる。
本例のように流量調整手段として弁37に加えて弁27を設ける場合には、これらを液流量調整弁及び圧縮空気流量調整弁として、制御手段としての温度調節器10が、液の流量と空気の流量との比率を変えるように弁37と弁27の開度を調整し、それによってtaがtsになるように制御するように構成することも可能である。その場合でも、細かく熱量を調整できる圧縮空気の使用によってtaを精度良くtsにすることができる。
なお以上では、冷却装置がバーンイン装置に適用される場合について説明したが、本発明の冷却装置は、高発熱デバイスの冷却のための他の各種装置に適用可能なものである。又、熱媒体として水を使用する例について説明したが、バーンイン装置を含めて他の装置に冷却装置を適用する場合の熱媒体としては、例えばパーフルオロカーボン等の飽和温度の低い適当な冷媒等を使用することができる。
本発明は、半導体デバイスのうち特に発熱量の大きいもののバーンイン装置に好都合に適用される。
本発明を適用した冷却装置の全体構成の一例を示す説明図で、(a)及び(b)は内部の正面及び平面状態を示す。 (a)及び(b)は上記装置に用いられる噴霧器の構成例を示す断面図である。 (a)、(b)は上記装置で冷却されるデバイスの一例を示す説明図である。 (a)乃至(d)はデバイスに空気及びミストが当たる状態を示した説明図である。 (a)乃至(c)はデバイスの冷却試験の状態及び試験結果を示す説明図である。 本発明を適用した冷却装置の他の例の全体構成を示す説明図で、(a)及び(b)は内部の正面及び平面状態を示し(c)は取付構造部の装着時の状態一例を示す。 (a)乃至(f)は分離部材の圧接構造の他の例を示す説明図である。 圧接構造を機械化した例の説明図で、(a)及び(b)は内部の正面及び平面状態を示す。 (a)及び(b)は本発明を適用した冷却装置の他の例の全体構成を示す説明図で共に内部の正面状態を示す。 本発明を適用した冷却装置の制御系の説明図である。
符号の説明
1 デバイス(半導体デバイス)
2 空気供給系(圧縮空気供給手段)
3 水供給系(液供給手段)
4 噴霧器(気液混合手段)
6 分離部材
6a 反対側面
10 温度調節器(制御手段)
11 上面(一面)
14 温度センサ(温度検出手段)
15 仮温度センサ(温度検出手段)
37 電動個別水弁(流量調整手段)
t 温度(目的とする温度)
ts 設定温度(目的とする温度)

Claims (3)

  1. 平面状の一面を備えていて通電されると発熱しバーンイン温度より高い温度まで上昇し前記一面の温度が上昇する半導体デバイスを大気圧下で前記バーンイン温度にするように冷却可能な冷却装置において、
    圧縮空気を供給可能な圧縮空気供給手段と、前記冷却のための熱媒体になる水であって前記大気圧下で前記上昇するときの前記一面の温度より低い飽和温度を持つ水を供給可能な水供給手段と、前記圧縮空気と前記水とが供給されて前記水が前記圧縮空気と混合されると前記大気圧下にある前記一面に向かって放出され微小粒になって放射状に広がって前記一面の一定範囲の部分に当たるように設けられた噴霧器と、前記半導体デバイスの温度を検出する温度検出手段と、前記水の流量を調整可能にする流量調整手段と、前記温度検出手段が検出した温度が前記バーンイン温度になるように前記流量調整手段を制御する制御手段と、を有し、
    前記流量調整手段は、前記水供給手段から供給される水の流量を調整可能にする水流量調整弁と前記圧縮空気供給手段から供給される圧縮空気の流量を調整可能にする圧縮空気流量調整弁とからなり、前記制御手段は、前記半導体デバイスが通電された初期に温度上昇するときには前記圧縮空気流量調整弁を一定開度で一定時間開くように制御することを特徴とする冷却装置。
  2. 平面状の一面を備えていて通電されると発熱しバーンイン温度より高い温度まで上昇し前記一面の温度が上昇する半導体デバイスを大気圧下で前記バーンイン温度にするように冷却可能な冷却装置において、
    圧縮空気を供給可能な圧縮空気供給手段と、前記冷却のための熱媒体になる水であって前記大気圧下で前記上昇するときの前記一面の温度より低い飽和温度を持つ水を供給可能な水供給手段と、前記一面への圧接と該一面からの離間とが可能にされていて前記圧接時に前記一面を覆い該一面の熱を通過容易にするように設けられた分離部材と、前記圧縮空気と前記水とが供給されて前記水が前記圧縮空気と混合されると前記大気圧下にある前記分離部材の前記一面の反対側面に向かって放出され微小粒になって放射状に広がって前記反対側面の一定範囲の部分に当たるように設けられた噴霧器と、前記半導体デバイスの温度を検出する温度検出手段と、前記水の流量を調整可能にする流量調整手段と、前記温度検出手段が検出した温度が前記バーンイン温度になるように前記流量調整手段を制御する制御手段と、を有し、
    前記流量調整手段は、前記水供給手段から供給される水の流量を調整可能にする水流量調整弁と前記圧縮空気供給手段から供給される圧縮空気の流量を調整可能にする圧縮空気流量調整弁とからなり、前記制御手段は、前記半導体デバイスが通電された初期に温度上昇するときには前記圧縮空気流量調整弁を一定開度で一定時間開くように制御することを特徴とする冷却装置。
  3. 前記分離部材は、中央部分から前記一面に接触し該一面に圧接されると平面になるように前記一面の側に凸曲面状の薄肉板で形成されていることを特徴とする請求項2に記載の冷却装置。
JP2004224841A 2004-07-30 2004-07-30 冷却装置 Expired - Fee Related JP4426396B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004224841A JP4426396B2 (ja) 2004-07-30 2004-07-30 冷却装置
TW094121172A TWI278977B (en) 2004-07-30 2005-06-24 Cooling equipment
KR1020050068888A KR100835261B1 (ko) 2004-07-30 2005-07-28 냉각 장치
US11/195,418 US7558064B2 (en) 2004-07-30 2005-08-01 Cooling apparatus
KR1020080025661A KR100866889B1 (ko) 2004-07-30 2008-03-20 냉각 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004224841A JP4426396B2 (ja) 2004-07-30 2004-07-30 冷却装置

Publications (2)

Publication Number Publication Date
JP2006046974A JP2006046974A (ja) 2006-02-16
JP4426396B2 true JP4426396B2 (ja) 2010-03-03

Family

ID=35731920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004224841A Expired - Fee Related JP4426396B2 (ja) 2004-07-30 2004-07-30 冷却装置

Country Status (4)

Country Link
US (1) US7558064B2 (ja)
JP (1) JP4426396B2 (ja)
KR (2) KR100835261B1 (ja)
TW (1) TWI278977B (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062845A1 (fr) * 2006-11-22 2008-05-29 Kaisui Chemical Industry Co., Ltd. Procédé de refroidissement / refroidissement à l'air destiné à une structure
US7911161B2 (en) * 2007-06-28 2011-03-22 GM Global Technology Operations LLC Automotive power inverter with reduced capacitive coupling
KR101672910B1 (ko) * 2008-07-22 2016-11-04 에스펙 가부시키가이샤 결로량이 제어 가능한 환경 시험 장치 및 그 제어 방법
US20100219259A1 (en) * 2009-02-27 2010-09-02 Mario Starcic Hvac disinfection and aromatization system
US20100219258A1 (en) * 2009-02-27 2010-09-02 Mario Starcic Hvac disinfection and aromatization system
DE102009056483A1 (de) * 2009-12-01 2011-06-09 Hydac Cooling Gmbh Kühlvorrichtung
AU2010330689B2 (en) * 2009-12-08 2016-02-25 Fusion Hvac Pty Ltd A system and method for delivering air
US8992201B2 (en) 2010-01-14 2015-03-31 Toyota Jidosha Kabushiki Kaisha Apparatus for cooling stator
US20120061059A1 (en) * 2010-09-09 2012-03-15 Taiwan Semiconductor Manufacturing Company, Ltd. Cooling mechanism for stacked die package and method of manufacturing the same
US9343436B2 (en) 2010-09-09 2016-05-17 Taiwan Semiconductor Manufacturing Company, Ltd. Stacked package and method of manufacturing the same
EP2770335B1 (en) * 2013-02-20 2015-03-04 Multitest elektronische Systeme GmbH Apparatus and method for testing electronic devices
US9997434B2 (en) * 2014-05-19 2018-06-12 Hewlett Packard Enterprise Development Lp Substrate sprayer
US10622329B2 (en) * 2014-10-27 2020-04-14 Asm Technology Singapore Pte Ltd Bond head cooling apparatus
CN105792523B (zh) * 2016-04-05 2018-05-11 苏州市惠利华电子有限公司 Pcb板喷锡后处理的方法
US10312214B2 (en) * 2016-09-08 2019-06-04 Asm Technology Singapore Pte Ltd Atomization mechanism for cooling a bond head
JP6771407B2 (ja) * 2017-03-07 2020-10-21 株式会社フェザーグラス 除熱方法及び除熱システム
JP2018202324A (ja) * 2017-06-05 2018-12-27 いすゞ自動車株式会社 噴射試験装置
CN111552359B (zh) * 2019-02-12 2022-03-22 鸿富锦精密电子(天津)有限公司 浸没式液体冷却槽及冷却装置
KR102363018B1 (ko) * 2020-07-14 2022-02-15 주식회사 엑시콘 냉각 성능이 우수한 반도체 디바이스 테스트 시스템
TWI769627B (zh) * 2020-12-18 2022-07-01 鴻勁精密股份有限公司 溫控單元及其應用之作業設備
CN113091348B (zh) * 2021-04-07 2022-10-21 青岛科技大学 半导体tec超低温制冷辅助循环***和方法
CN113218132B (zh) * 2021-04-29 2022-04-29 扬州辰亚光学科技有限公司 一种电子设备光学零部件研发冷却装置

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114377A (ja) 1984-11-08 1986-06-02 Fujitsu Ltd 線分作成方式
US4745354A (en) * 1985-05-20 1988-05-17 Fts Systems, Inc. Apparatus and methods for effecting a burn-in procedure on semiconductor devices
JPH065700B2 (ja) * 1987-07-22 1994-01-19 株式会社日立製作所 電子回路デバイスの冷却装置
JPH0330459A (ja) 1989-06-28 1991-02-08 Fujitsu Ltd 冷却装置
JPH0461259A (ja) 1990-06-29 1992-02-27 Hitachi Ltd 半導体集積回路装置の冷却方法および冷却構造
US5148003A (en) * 1990-11-28 1992-09-15 International Business Machines Corporation Modular test oven
US5131233A (en) * 1991-03-08 1992-07-21 Cray Computer Corporation Gas-liquid forced turbulence cooling
JP2519845B2 (ja) 1991-04-22 1996-07-31 タバイエスペック株式会社 空気噴射式温度制御装置
JP2765282B2 (ja) 1991-06-20 1998-06-11 日立電子エンジニアリング株式会社 Icハンドラの冷却装置
US5515910A (en) * 1993-05-03 1996-05-14 Micro Control System Apparatus for burn-in of high power semiconductor devices
US5582235A (en) * 1994-08-11 1996-12-10 Micro Control Company Temperature regulator for burn-in board components
JP2876106B2 (ja) 1995-01-31 1999-03-31 タバイエスペック株式会社 バーンイン用複合体及び複合体使用バーンイン装置
US6310484B1 (en) * 1996-04-01 2001-10-30 Micron Technology, Inc. Semiconductor test interconnect with variable flexure contacts
US5943211A (en) * 1997-04-18 1999-08-24 Raytheon Company Heat spreader system for cooling heat generating components
US5909123A (en) * 1996-11-08 1999-06-01 W. L. Gore & Associates, Inc. Method for performing reliability screening and burn-in of semi-conductor wafers
US5924482A (en) * 1997-10-29 1999-07-20 Motorola, Inc. Multi-mode, two-phase cooling module
JP3399826B2 (ja) 1998-02-09 2003-04-21 エスペック株式会社 環境装置の送風装置
JP3949256B2 (ja) * 1998-02-19 2007-07-25 富士通株式会社 半導体素子試験用キャリア及び半導体素子試験方法及び半導体素子試験用装置
AU4596899A (en) * 1998-07-10 2000-02-01 Ipsco Inc. Method and apparatus for producing martensite- or bainite-rich steel using steckel mill and controlled cooling
TW436634B (en) * 1998-07-24 2001-05-28 Advantest Corp IC test apparatus
JP2000097990A (ja) 1998-09-24 2000-04-07 Mitsubishi Electric Corp 半導体デバイスのバーンイン試験装置
US5999404A (en) * 1998-10-14 1999-12-07 Sun Microsystems, Inc. Spray cooled module with removable spray cooled sub-module
JP2000214213A (ja) 1999-01-26 2000-08-04 Hitachi Ltd バ―ンイン装置およびそれを用いた半導体装置のエ―ジング方法
US6108201A (en) * 1999-02-22 2000-08-22 Tilton; Charles L Fluid control apparatus and method for spray cooling
US6205799B1 (en) * 1999-09-13 2001-03-27 Hewlett-Packard Company Spray cooling system
KR100346329B1 (ko) 2000-02-24 2002-07-26 미래산업 주식회사 핸들러에서 액체질소를 챔버 내로 공급하는 공급라인의 성에 생성 방지장치
US20020070745A1 (en) * 2000-04-27 2002-06-13 Johnson James E. Cooling system for burn-in unit
JP2002043381A (ja) * 2000-07-19 2002-02-08 Tokyo Electron Ltd ウエハ温度制御装置
US6377458B1 (en) * 2000-07-31 2002-04-23 Hewlett-Packard Company Integrated EMI containment and spray cooling module utilizing a magnetically coupled pump
US6394575B1 (en) * 2001-01-31 2002-05-28 Hewlett-Packard Company Inkjet airbrush system
US6550263B2 (en) * 2001-02-22 2003-04-22 Hp Development Company L.L.P. Spray cooling system for a device
US6595014B2 (en) * 2001-02-22 2003-07-22 Hewlett-Packard Development Company, L.P. Spray cooling system with cooling regime detection
US6498725B2 (en) * 2001-05-01 2002-12-24 Mainstream Engineering Corporation Method and two-phase spray cooling apparatus
JP2003028918A (ja) 2001-05-10 2003-01-29 Shinano Electronics:Kk 電子部品の試験用取扱装置,icテストハンドラ及び液体窒素用ポンプ
US6861861B2 (en) 2002-07-24 2005-03-01 Lg Electronics Inc. Device for compensating for a test temperature deviation in a semiconductor device handler
KR100479988B1 (ko) * 2002-07-24 2005-03-30 미래산업 주식회사 반도체 소자 테스트 핸들러의 발열 보상방법
US7102374B2 (en) 2002-08-16 2006-09-05 Credence Systems Corporation Spray cooling thermal management system and method for semiconductor probing, diagnostics, and failure analysis
US6880350B2 (en) * 2002-09-13 2005-04-19 Isothermal Systems Research, Inc. Dynamic spray system
US6857283B2 (en) * 2002-09-13 2005-02-22 Isothermal Systems Research, Inc. Semiconductor burn-in thermal management system
US6889509B1 (en) * 2002-09-13 2005-05-10 Isothermal Systems Research Inc. Coolant recovery system
US7159414B2 (en) * 2002-09-27 2007-01-09 Isothermal Systems Research Inc. Hotspot coldplate spray cooling system
US20040182564A1 (en) * 2002-12-17 2004-09-23 Micro Control Company Heat exchange system chip temperature sensor
KR100505070B1 (ko) * 2002-12-31 2005-08-03 미래산업 주식회사 반도체 소자 테스트 핸들러의 소자 온도 측정장치
US6975028B1 (en) * 2003-03-19 2005-12-13 Delta Design, Inc. Thermal apparatus for engaging electronic device
US6995980B2 (en) * 2003-08-21 2006-02-07 Unisys Corporation Temperature control system which sprays liquid coolant droplets against an IC-module and directs radiation against the IC-module
US7310230B2 (en) * 2003-08-21 2007-12-18 Delta Design, Inc. Temperature control system which sprays liquid coolant droplets against an IC-module at a sub-atmospheric pressure

Also Published As

Publication number Publication date
JP2006046974A (ja) 2006-02-16
KR20060048857A (ko) 2006-05-18
US7558064B2 (en) 2009-07-07
KR20080033209A (ko) 2008-04-16
KR100835261B1 (ko) 2008-06-05
US20060023424A1 (en) 2006-02-02
TWI278977B (en) 2007-04-11
KR100866889B1 (ko) 2008-11-04
TW200607064A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
JP4426396B2 (ja) 冷却装置
US7257956B2 (en) Cooling apparatus
US7134289B2 (en) Multi-state spray cooling system
KR100838695B1 (ko) 번 인 장치
US7284389B2 (en) Two-fluid spray cooling system
CN100568497C (zh) 电子器件冷却装置及电子器件冷却方法
US6952346B2 (en) Etched open microchannel spray cooling
JP5576282B2 (ja) 再循環気体ラック冷却アーキテクチャ
TWI251067B (en) Spray cooling and transparent cooling plate thermal management system
US9713285B2 (en) Electronic apparatus having a cooling apparatus
EP1991041A2 (en) Spray cooling system
AU2017200027B2 (en) Temperature regulation system with active jetting type refrigerant supply and regulation
JP2009243754A (ja) 室外機用補助冷却装置
KR100887730B1 (ko) 냉온풍 분출 장치와 이를 이용한 메모리 모듈 온도검사장치
US20070163756A1 (en) Closed-loop latent heat cooling method and capillary force or non-nozzle module thereof
US6971441B2 (en) Device and method for removing heat from object by spraying cooling agent
CN219841819U (zh) 一种用于冷却塔的降温冷却装置
US20120096880A1 (en) Temperature regulation system with active jetting type refrigerant supply and regulation
CN219938782U (zh) 电子设备的冷却装置及电子设备
KR20240017625A (ko) 노즐냉각수단이 구비된 디스펜싱밸브

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091210

R150 Certificate of patent or registration of utility model

Ref document number: 4426396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees