JP4423496B2 - Electron emission electrode - Google Patents

Electron emission electrode Download PDF

Info

Publication number
JP4423496B2
JP4423496B2 JP2003342415A JP2003342415A JP4423496B2 JP 4423496 B2 JP4423496 B2 JP 4423496B2 JP 2003342415 A JP2003342415 A JP 2003342415A JP 2003342415 A JP2003342415 A JP 2003342415A JP 4423496 B2 JP4423496 B2 JP 4423496B2
Authority
JP
Japan
Prior art keywords
substrate
carbon
petal
electron emission
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003342415A
Other languages
Japanese (ja)
Other versions
JP2005108721A (en
Inventor
一仁 西村
秀紀 笹岡
南 江
宏興 王
博久 平木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOCHI INDUSTRIAL PROMOTION CENTER
Casio Computer Co Ltd
Kochi Prefecture
Original Assignee
KOCHI INDUSTRIAL PROMOTION CENTER
Casio Computer Co Ltd
Kochi Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOCHI INDUSTRIAL PROMOTION CENTER, Casio Computer Co Ltd, Kochi Prefecture filed Critical KOCHI INDUSTRIAL PROMOTION CENTER
Priority to JP2003342415A priority Critical patent/JP4423496B2/en
Publication of JP2005108721A publication Critical patent/JP2005108721A/en
Application granted granted Critical
Publication of JP4423496B2 publication Critical patent/JP4423496B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、電子放出特性に優れた炭素薄膜を備えた電子放出電極に関し、特に非チューブ状の炭素薄膜を備えた電子放出電極に関する。 The present invention relates to an electron emission electrodes having excellent thin carbon film to the electron emission characteristics, an electron emission electrode, particularly with a non-tubular carbon film.

電界放出型電子源においては、電子が放出される部分は、その先端部付近に電子を引っ張り出す強い電界集中が生じるため、低い印加電圧で電子放出が可能となる。このため、カーボンナノチューブ(以下、CNTという。)が発見されてより、ナノメートルサイズの微細構造を有する炭素物質を電子放出電極に応用する開発が数多くなされてきた。   In a field emission type electron source, a portion where electrons are emitted has a strong electric field concentration that pulls out electrons in the vicinity of the tip portion thereof, so that electrons can be emitted with a low applied voltage. For this reason, since the discovery of carbon nanotubes (hereinafter referred to as CNT), many developments have been made in which carbon materials having a nanometer-sized microstructure are applied to electron-emitting electrodes.

それら電子放出電極に関する開発例として、電子放出性電極となる金属基板をエッチング処理して一定間隔の凸部を設け、この凸部表面にAl等の導電体層を被膜しこの上に複数のCNTを付着させた後、導電体層を溶解させることによって、CNTが剥離しにくくなり、またCNTは導電体層を介して電極基板に電気的に接続されるので、電極基板とCNTとの導電性が良好となり、電子放出源の全域から均一な電子放出を得ることができることが報告されている(特許文献1)。
特開2003−59391号公報
As a development example related to these electron emission electrodes, a metal substrate to be an electron emission electrode is etched to provide convex portions with a constant interval, and a conductive layer such as Al is coated on the convex surface, and a plurality of CNTs are formed thereon. After attaching the conductive layer, the conductive layer is dissolved to make it difficult for the CNT to peel off, and since the CNT is electrically connected to the electrode substrate through the conductive layer, the conductivity between the electrode substrate and the CNT is reduced. It has been reported that uniform electron emission can be obtained from the entire region of the electron emission source (Patent Document 1).
JP 2003-59391 A

上記電子放出電極は、線状の複数のCNTを有機溶媒で分散させて電解質を加えた溶液に金属基板を浸漬し、電気泳動によりCNTを付着させているが、CNTはその名のごとくナノメータレベルの直径のため、外的な応力に対する機械的強度が脆弱なので、溶液中に分散させたり、電気泳動することによる液相中の抵抗により破損してしまう恐れがある。このようにCNTを金属基板とは別のところで生成後、電気泳動を行ったり、導電体を溶解させてCNTを固着させねばならず、CNTが生成されてからの工程が煩雑になりCNTのチューブ構造が破壊されやすい要因が増えてしまうといった問題があった。   The electron emission electrode is formed by immersing a metal substrate in a solution obtained by dispersing a plurality of linear CNTs in an organic solvent and adding an electrolyte, and attaching the CNTs by electrophoresis. Therefore, the mechanical strength against external stress is fragile, so that there is a risk of being broken by resistance in the liquid phase caused by dispersion in a solution or electrophoresis. As described above, after the CNT is generated separately from the metal substrate, it is necessary to perform electrophoresis or dissolve the conductor to fix the CNT, and the process after the CNT is generated becomes complicated, and the CNT tube There was a problem that the factors that the structure is easily destroyed increased.

以上説明したように、従来の電子放出電極は、製造方法及びその電子放出能力においてより改善が求められるものである。当然、これらの電子放出電極を用いた様々な電子装置も製造が困難で動作電圧が高い等の技術的課題を有している。   As described above, the conventional electron emission electrode is required to be improved in the manufacturing method and the electron emission capability. Naturally, various electronic devices using these electron-emitting electrodes also have technical problems such as difficulty in manufacturing and high operating voltage.

本発明は、上記実状に鑑みてなされたものであり、製造が容易で優れた電子放出特性を有する電子放出電極を提供することを利点とする The present invention has been made in consideration of the above, and an advantage thereof is to provide an electron emission electrodes having excellent electron emission characteristics it is easy to manufacture.

上記利点を得るために、この発明の第1の観点にかかる電子放出電極は、
基体と該基体上に配置された複数の粒状のダイヤモンドとから構成された基板と、
前記基板の前記粒状のダイヤモンドの表面に形成され、複数の炭素薄片で構成された花弁状炭素薄片集合体からなる電子放出膜とを備え、
前記炭素薄片は、厚さが1nm〜500nmのグラフェンシートにより構成され、外辺開口部における薄片同士の間隔が3μm以下であり、
前記炭素薄片集合体の大きさが5μm〜30μmで、隣接する炭素薄片集合体同士の間隔は薄片集合体の直径をDとした時に1D〜10Dである、
ことを特徴とする
In order to obtain the above advantages, the electron emission electrode according to the first aspect of the present invention is:
A substrate composed of a substrate and a plurality of granular diamonds disposed on the substrate;
An electron emission film formed on the surface of the granular diamond of the substrate and made of a petal-like carbon flake aggregate composed of a plurality of carbon flakes ;
The carbon flakes are composed of a graphene sheet having a thickness of 1 nm to 500 nm, and the interval between the flakes in the outer side opening is 3 μm or less,
The size of the carbon flake aggregate is 5 μm to 30 μm, and the distance between adjacent carbon flake aggregates is 1D to 10D, where D is the diameter of the flake aggregate.
It is characterized by that .

花弁状炭素薄片集合体は、その形状からその中央部に電界を集中する機能を有し、これに、炭素薄片自体の形状の効果による電界集中が加わる。さらに、突起物上に形成された花弁状炭素薄片集合体は、基板の平坦部に対して、陽極に向かって突出した位置にあり、電界を集中する機能を有する。従って、突起物上に形成された花弁状炭素薄片集合体の先端部では、二重の電界集中効果が生じ、電子放出が可能となる閾値電圧を引き下げることができる。   The petal-like carbon flake aggregate has a function of concentrating the electric field from its shape to the central portion thereof, and electric field concentration due to the effect of the shape of the carbon flake itself is added thereto. Further, the petal-like carbon flake aggregate formed on the protrusion is located at a position protruding toward the anode with respect to the flat portion of the substrate and has a function of concentrating the electric field. Therefore, a double electric field concentration effect occurs at the tip of the petal-like carbon flake aggregate formed on the protrusion, and the threshold voltage at which electrons can be emitted can be lowered.

炭素薄片は、例えば、グラフェンシートから構成される。炭素薄片をグラフェンシートから構成することにより、ダイヤモンドのような絶縁体やアモルファス状の炭素膜と比して電界集中度が高く、高い電子放出効率を得ることができる。   The carbon flakes are composed of graphene sheets, for example. By constituting the carbon flakes from a graphene sheet, the electric field concentration is higher than that of an insulator such as diamond or an amorphous carbon film, and high electron emission efficiency can be obtained.

前記基板は、例えば、基体と該基体上に配置されて前記突起物を構成する粒状物とから構成される。この粒状物は、例えば、粒径が5〜30μmのダイヤモンドの粒子から構成される。粒状物としてダイヤモンド微粒子を使用すれば、炭素膜形成における触媒として知られている鉄族元素などと異なり、成長端を触媒元素で汚染することもなく、また、基板面での炭素膜結晶(グラファイト)の核形成に必要なエネルギーを減少させることができるので、より結晶性のよい炭素薄片が得られる。 The substrate may, for example, composed of a granular material constituting the substrate, the collision Okoshibutsu disposed on said substrate. The granules, for example, the particle size is composed of diamond particles of 5 to 30 [mu] m. If diamond fine particles are used as the granular material, unlike the iron group element known as a catalyst in carbon film formation, the growth edge is not contaminated with the catalyst element, and the carbon film crystal (graphite on the substrate surface) ) Nucleation can be reduced, so that carbon flakes with better crystallinity can be obtained.

前記粒状物は、ダイヤモンドのように不純物濃度が低く、高温でも固相の状態を維持するので仮に不純物を含んでいても不純物を拡散して花弁状炭素薄片集合体の成長に悪影響をもたらすことはない。   Since the particulate matter has a low impurity concentration like diamond and maintains a solid phase state even at high temperatures, it does not adversely affect the growth of petal-like carbon flake aggregates by diffusing impurities even if they contain impurities. Absent.

上記構成によれば、炭素薄片が形成する花弁型の構造による電界集中と、炭素薄片自体の形状効果による電界集中が加わるため、集合体先端部での電界集中が強化され、電子放出特性が向上する。
また前記基板上で結晶成長することによって前記複数の突起物を形成する工程をさらに備えてもよく、このような突起物としてはダイヤモンドが特に好ましい。
According to the above configuration, the electric field concentration due to the petal-type structure formed by the carbon flakes and the electric field concentration due to the shape effect of the carbon flakes themselves are added, so the electric field concentration at the tip of the assembly is enhanced and the electron emission characteristics are improved. To do.
In addition, the method may further include a step of forming the plurality of protrusions by crystal growth on the substrate, and diamond is particularly preferable as such a protrusion.

以下、図面を参照して、本発明の実施の形態にかかる電子放出電極について説明する。   Hereinafter, electron emission electrodes according to embodiments of the present invention will be described with reference to the drawings.

この実施の形態にかかる電子放出電極10は、図1に断面で示すように、導電性の基体12と導電性基体12上に固着された複数の粒状物13とから構成された基板11と、粒状物13上に形成された花弁状の構造を有する花弁状炭素薄片集合体14と導電性基体12上に形成させた平面状炭素薄片集合膜16と、から構成されている。   As shown in a cross section in FIG. 1, an electron emission electrode 10 according to this embodiment includes a substrate 11 composed of a conductive substrate 12 and a plurality of granular materials 13 fixed on the conductive substrate 12, It consists of a petal-like carbon flake aggregate 14 having a petal-like structure formed on the granular material 13 and a planar carbon flake aggregate film 16 formed on the conductive substrate 12.

基板11を構成する導電性基体12は、ニッケルやシリコン結晶等の約950℃以上の温度に耐えうる導電性材料から構成され、負電圧を印加するための電極が接続されている。   The conductive substrate 12 constituting the substrate 11 is made of a conductive material that can withstand a temperature of about 950 ° C. or higher, such as nickel or silicon crystal, and is connected with an electrode for applying a negative voltage.

基板11を構成する粒状物13は、グラファイトが成長可能で且つ約950℃以上の温度(製造時の熱処理温度)に耐えうるダイヤモンド、モリブデン、SiC,SiN等の材料の微粒子から構成され、基板11の突出部を形成する。粒状物13は、基板11上の欠陥等のために生成する炭素の異常成長塊(通常、炭素薄片の塊)15のサイズよりも大きい粒径(5μm〜30μm程度)を有し、望ましい粒径は、5μm〜30μm程度である。また、導電性基体12の単位面積あたりの花弁状炭素薄片集合体14の表面積を大きくして電子放出特性を良好にするため、粒状物13は、その表面積が大きい多角的な形状が好ましく、電子を放出しやすいように所々に先端(角部、鋭角的な部分等)があることが好ましい。導電性基体12上の粒状物の配置密度は、放電電流等によるが、例えば、10個/cm〜10個/cm程度である。 The granular material 13 constituting the substrate 11 is composed of fine particles of a material such as diamond, molybdenum, SiC, SiN or the like that can grow graphite and can withstand a temperature of about 950 ° C. or higher (a heat treatment temperature during manufacturing). The protruding portion is formed. The granular material 13 has a particle size (about 5 μm to 30 μm) larger than the size of an abnormally grown carbon mass (usually a carbon flake mass) 15 generated due to defects on the substrate 11, and the desired particle size. Is about 5 μm to 30 μm. Further, in order to increase the surface area of the petal-like carbon flake aggregate 14 per unit area of the conductive substrate 12 to improve the electron emission characteristics, the granular material 13 preferably has a polygonal shape having a large surface area. It is preferable that there are tips (corners, sharp corners, etc.) in some places so as to easily release. The arrangement density of the particulate matter on the conductive substrate 12 is, for example, about 10 4 pieces / cm 2 to 10 7 pieces / cm 2 , depending on the discharge current or the like.

図2に平面図で、図3に図2のBB線断面図で模式的に示すように、典型的な花弁状炭素薄片集合体14は、粒状物13の表面を起点として成長し、曲面をなす花弁状の複数の炭素薄片14aが、粒状物13の表面に対して起立しながらも、互いにランダムな方向に繋がりあって構成されている。各炭素薄片14aは、数層のグラフェンシートから構成され、外辺開口部における薄片同士の間隔が3μm以下である。   As schematically shown in a plan view in FIG. 2 and a cross-sectional view taken along the line BB in FIG. 2, a typical petal-like carbon flake aggregate 14 grows from the surface of the granular material 13 and has a curved surface. A plurality of petal-like carbon flakes 14 a are formed so as to be connected to each other in a random direction while standing on the surface of the granular material 13. Each carbon flake 14a is composed of several layers of graphene sheets, and the distance between the flakes in the outer side opening is 3 μm or less.

1つの花弁状炭素薄片集合体14は、基体12の表面又は基体12上に形成された平面状炭素薄片集合膜16に対して粒状物13の高さに相当する5μm〜30μmの高さを有している。このため、陽極に対して基体12表面及び異常成長塊15よりも接近しており、粒状物を内包する花弁状構造による電界集中がおこる。   One petal-like carbon flake aggregate 14 has a height of 5 μm to 30 μm corresponding to the height of the granular material 13 with respect to the surface of the base 12 or the planar carbon flake aggregate film 16 formed on the base 12. is doing. For this reason, it is closer to the anode than the surface of the base 12 and the abnormally grown lump 15, and the electric field concentration occurs due to the petal-like structure containing the particulate matter.

前記構造をとることにより、各炭素薄片14aの形状による電界集中と、花弁状炭素薄片集合体14の形状による電界集中の相乗効果が発生する。対して粒状物13が形成されていない基板11の場合、粒状物13の表面に相当する位置に花弁状炭素薄片集合体14が形成されず、基体12の平滑な表面に平坦な平面状炭素薄片集合膜16が形成されるだけである。本発明における粒状物13及び花弁状炭素薄片集合体14を備えた電子放出電極10は、粒状物13及び花弁状炭素薄片集合体14のない平面状炭素薄片集合膜16で電子を放出する電子放出電極に比べて凹凸に富み、容易に電子の放出が可能となり、所定値の電界放出電流に達するまでの閾値電圧を引き下げることができる。   By adopting the above structure, a synergistic effect of the electric field concentration due to the shape of each carbon flake 14a and the electric field concentration due to the shape of the petal-like carbon flake aggregate 14 occurs. On the other hand, in the case of the substrate 11 on which the particulate matter 13 is not formed, the petal-like carbon flake aggregate 14 is not formed at a position corresponding to the surface of the particulate matter 13, and the flat planar carbon flake is flat on the smooth surface of the substrate 12. Only the aggregate film 16 is formed. The electron emission electrode 10 provided with the granular material 13 and the petal-like carbon flake aggregate 14 in the present invention emits electrons with the planar carbon flake aggregate film 16 without the granular material 13 and the petal-like carbon flake aggregate 14. Compared with the electrode, the surface is rich in unevenness, and electrons can be easily emitted, and the threshold voltage until a predetermined field emission current is reached can be lowered.

図4は、1つの花弁状炭素薄片集合体14のSEM(高分解能走査型電子顕微鏡)像を、図5はその中心部分の拡大像を示す。図示するように、曲面状の壁(炭素薄片14a)がランダムに繋がりあいながら開口部(空隙部)をおよそ取り囲み、花弁状に全体として1つの円形状の集合体を形成している。   FIG. 4 shows an SEM (high resolution scanning electron microscope) image of one petal-like carbon flake aggregate 14, and FIG. 5 shows an enlarged image of the central portion thereof. As shown in the figure, curved walls (carbon thin pieces 14a) are connected together at random to substantially surround the opening (gap) and form a circular aggregate as a whole in a petal shape.

この様な花弁状炭素薄片集合体14は、図6に示すように、花弁状炭素薄片集合体14の直径をDとした時に1D〜10Dの間隔に1つ配置されるように分布して形成されている。   Such petal-like carbon flake assemblies 14 are distributed and formed so as to be arranged at intervals of 1D to 10D when the diameter of the petal-like carbon flake assemblies 14 is D, as shown in FIG. Has been.

このような構成の電子放出電極においては、各炭素薄片14aは、基板11と接する基部の部分が曲線状で、垂直配向したカーボンナノチューブにおける点状接触と比較して、大面積で基板11に接触しているので、基板との密着強度は点状接触のカーボンナノチューブよりも非常に高い。   In the electron emission electrode having such a configuration, each carbon flake 14a has a curved base part in contact with the substrate 11, and has a large area in contact with the substrate 11 compared to the point-like contact in the vertically aligned carbon nanotube. Therefore, the adhesion strength with the substrate is much higher than the point-contact carbon nanotube.

粒状物13としてダイヤモンド微粒子を使用すれば、グラフェンシート形成における触媒として知られている鉄族元素などと異なり、成長端を触媒元素で汚染することもなく、また、基板11上での炭素結晶(グラファイト)の核形成に必要なエネルギーを減少させることができる。従って、結晶性のよい花弁状炭素薄片集合体14が得られる。   If diamond fine particles are used as the granular material 13, unlike the iron group element known as a catalyst in the graphene sheet formation, the growth edge is not contaminated with the catalyst element, and the carbon crystal ( The energy required for nucleation of (graphite) can be reduced. Therefore, the petal-like carbon flake aggregate 14 with good crystallinity is obtained.

次に、上記構成を有する電子放出電極10の製造方法を説明する。
まず、基体12をエタノールとアセトンで、それぞれ10分間超音波洗浄する。
続いて、粒径10μm〜30μmの窒化ケイ素等のセラミック粒子、ダイヤモンド、炭化珪素の少なくとも何れかを含む微粒子(砥粒)1gを有機溶剤(エタノール)25mlに加えた懸濁液を作成し、十分に攪拌する。
Next, a method for manufacturing the electron emission electrode 10 having the above configuration will be described.
First, the substrate 12 is ultrasonically cleaned with ethanol and acetone for 10 minutes each.
Subsequently, a suspension is prepared by adding 1 g of fine particles (abrasive grains) containing ceramic particles such as silicon nitride having a particle size of 10 μm to 30 μm, diamond, or silicon carbide to 25 ml of an organic solvent (ethanol). To stir.

続いて、洗浄後の基体12を、この混濁液に浸漬させ、43kHzの超音波を10分間印加する。   Subsequently, the cleaned substrate 12 is immersed in this turbid liquid, and a 43 kHz ultrasonic wave is applied for 10 minutes.

その後、基体12を取り出し、エタノールとアセトンで、それぞれ10分間超音波洗浄を施す。以上の工程により、基体12表面にダイヤモンドからなる粒状物13が固着した基板11が形成される。この段階での、基板11のSEM像を図7に示す。図7と図6の比較により、花弁状炭素薄片集合体14がダイヤモンド粒状物13を核として形成されることがわかる。   Thereafter, the substrate 12 is taken out and subjected to ultrasonic cleaning with ethanol and acetone for 10 minutes. Through the above steps, the substrate 11 is formed with the diamond particles 13 fixed on the surface of the base 12. An SEM image of the substrate 11 at this stage is shown in FIG. Comparison of FIG. 7 and FIG. 6 shows that the petal-like carbon flake aggregate 14 is formed with the diamond granular material 13 as a nucleus.

次に、この基板11を、図8に例示する構成のDC(直流)プラズマCVD装置200内のサセプタ202上に設置する。   Next, the substrate 11 is placed on a susceptor 202 in a DC (direct current) plasma CVD apparatus 200 having the configuration illustrated in FIG.

このDCプラズマCVD装置200は、汎用的な処理装置であり、処理容器(チャンバ)201と、サセプタ(下部電極)202と、上部電極203と、処理ガスシャワーヘッド204と、ガス供給管205,206と、パージガス供給管207と、排気管208と、直流電源209とを備える。   The DC plasma CVD apparatus 200 is a general-purpose processing apparatus, and includes a processing container (chamber) 201, a susceptor (lower electrode) 202, an upper electrode 203, a processing gas shower head 204, and gas supply pipes 205 and 206. A purge gas supply pipe 207, an exhaust pipe 208, and a DC power source 209.

サセプタ202は下部電極を兼ね、被処理体を載置する。上部電極203には、下部電極202よりも低い電圧を印加する。   The susceptor 202 also serves as a lower electrode and places an object to be processed. A voltage lower than that of the lower electrode 202 is applied to the upper electrode 203.

処理ガス供給管205は、MFC(マスフローコントローラ)やバルブを備え水素ガスをシャワーヘッド204に導く。処理ガス供給管206は、MFC(マスフローコントローラ)やバルブを備え、炭素含有ガス(例えば、メタン、エタン、アセチレンなどの炭化水素化合物、メタノール、エタノールなどの酸素含有炭化水素化合物、ベンゼン、トルエンなどの芳香族炭化水素、二酸化炭素及びこれらの混合物等)をシャワーヘッド204に導く。   The processing gas supply pipe 205 includes an MFC (mass flow controller) and a valve and guides hydrogen gas to the shower head 204. The processing gas supply pipe 206 includes an MFC (mass flow controller) and a valve, and includes carbon-containing gases (for example, hydrocarbon compounds such as methane, ethane, and acetylene, oxygen-containing hydrocarbon compounds such as methanol and ethanol, benzene, toluene, and the like. Aromatic hydrocarbons, carbon dioxide and mixtures thereof) are directed to the showerhead 204.

パージガス供給管207は、パージガスとしての窒素ガスを処理容器201内に導く。排気管208は、排気システム210に接続され、処理容器201内を排気する。直流電源209は、サセプタ202と上部電極203との間に直流電圧を印加する。   The purge gas supply pipe 207 guides nitrogen gas as the purge gas into the processing container 201. The exhaust pipe 208 is connected to the exhaust system 210 and exhausts the inside of the processing container 201. The DC power source 209 applies a DC voltage between the susceptor 202 and the upper electrode 203.

基板11のサセプタ202上への載置が完了すると、次に、処理容器11内を1Pa程度に減圧する。続いて、ガス供給源よりガス供給管205,206を介してシャワーヘッド204に水素ガスとメタン等の炭素含有ガスとを導き、サセプタ(下部電極)202と上部電極203間に、直流電源209から500V程度の電圧(上部電極203とサセプタ202の間隔が4cm程度の場合)を印加し、流れる電流を制御することにより、プラズマ状態及び基板11の温度を制御する。基板11の温度を950℃以上1200℃以下に制御することが望ましい。成長温度を950℃以上とする理由は、温度が950℃以下とすると、形成される炭素薄片の結晶の品質が低下し、一部がアモルファスとなるおそれがあるためである。一方、1200℃以下とする理由は、温度が高すぎると、炭素薄片の成長速度が遅くなったり、成長しなくなったり、熱膨張により基板等に反り或いは破損をもたらすためである。成膜処理を40〜180分程度継続する。   When the placement of the substrate 11 on the susceptor 202 is completed, the inside of the processing container 11 is then decompressed to about 1 Pa. Subsequently, hydrogen gas and a carbon-containing gas such as methane are led from the gas supply source to the shower head 204 through the gas supply pipes 205 and 206, and the DC power supply 209 is connected between the susceptor (lower electrode) 202 and the upper electrode 203. A plasma state and the temperature of the substrate 11 are controlled by applying a voltage of about 500 V (when the distance between the upper electrode 203 and the susceptor 202 is about 4 cm) and controlling the flowing current. It is desirable to control the temperature of the substrate 11 to 950 ° C. or more and 1200 ° C. or less. The reason why the growth temperature is set to 950 ° C. or higher is that if the temperature is set to 950 ° C. or lower, the quality of the crystals of the formed carbon flakes is lowered and a part thereof may become amorphous. On the other hand, the reason why the temperature is set to 1200 ° C. or lower is that if the temperature is too high, the growth rate of the carbon flakes slows or stops growing, or warps or breaks the substrate due to thermal expansion. The film forming process is continued for about 40 to 180 minutes.

成膜処理を一定時間実行すると、サセプタ202と上部電極203間への電圧の印加を停止し、続いて、処理ガスの供給を停止し、パージガス供給管207を介して処理容器201内に窒素ガスを供給して常圧に復帰した後、形成された電子放出電極10を取り出す。   When the film forming process is executed for a certain period of time, the application of voltage between the susceptor 202 and the upper electrode 203 is stopped, the supply of the processing gas is subsequently stopped, and the nitrogen gas is introduced into the processing container 201 via the purge gas supply pipe 207. Is returned to normal pressure, and the formed electron emission electrode 10 is taken out.

以上の工程により、DC(直流)プラズマCVD法というECRプラズマ装置などと比較して簡易な構成の処理装置を用いて、比較的簡易な工程により、電子放出力に優れた電子放出電極を製造することができる。   Through the above steps, an electron emission electrode excellent in electron emission and output is manufactured by a relatively simple process using a processing apparatus having a simple structure as compared with an ECR plasma apparatus such as a DC (direct current) plasma CVD method. be able to.

なお、この発明は上記実施の形態に限定されず、種々の変形及び応用が可能である。   In addition, this invention is not limited to the said embodiment, A various deformation | transformation and application are possible.

例えば、花弁状炭素薄片集合体14のサイズや密度は適宜変更可能である。
また、基板11を製造する工程や花弁状炭素薄片集合体14を製造する工程も適宜変更可能である。
For example, the size and density of the petal-like carbon flake aggregate 14 can be changed as appropriate.
In addition, the process for manufacturing the substrate 11 and the process for manufacturing the petal-like carbon flake aggregate 14 can be appropriately changed.

例えば、表面に突起を有する基板11を形成する工程は、上述の工程に限定されず、例えば、粒径5〜30μmのダイヤモンドまたは、炭化珪素砥粒で基体12の成膜部分の表面を擦り、基体12の表面に粒子による条痕を形成する。この処理により基体12表面に砥粒(粒状物)が埋め込まれる。この摩擦工程において、平均粒径をDとしたときの平均粒子間距離が1Dから10D、望ましくは3〜5Dとなるように、基体12への垂直応力と摩擦回数を調節する。続いて、余剰の砥粒を除去および基体12を洗浄するために、有機溶剤を用いて超音波洗浄器を用いて数分間洗浄を行う。この手法によっても、基体12に強固に粒状物13が固定され、突起部を備える基板11が得られる。   For example, the process of forming the substrate 11 having protrusions on the surface is not limited to the above-described process. For example, the surface of the film forming portion of the substrate 12 is rubbed with diamond having a particle diameter of 5 to 30 μm or silicon carbide abrasive grains. A streak of particles is formed on the surface of the substrate 12. By this treatment, abrasive grains (granular materials) are embedded in the surface of the base 12. In this friction step, the normal stress and the number of frictions are adjusted to the base 12 so that the average interparticle distance is 1D to 10D, preferably 3 to 5D, when the average particle diameter is D. Subsequently, in order to remove excess abrasive grains and clean the substrate 12, cleaning is performed for several minutes using an ultrasonic cleaner using an organic solvent. Also by this method, the granular material 13 is firmly fixed to the base body 12, and the substrate 11 having the protrusions is obtained.

また、CVD法によりダイヤモンド等を選択的に成長させてもよい(選択的核形成成長法)。この場合、まずシリコン基板からなる基体12上にフォトグラフィ法によりエッチングを行い、表面に縦横2x2μm高さ0.1μm〜0.2μmの凸部を、約5〜100μmの間隔(ピッチ)をおいて複数形成する。凸部は島状にしてマトリクス状にパターニングされていてもよいし、縦又は横方向に連続するストライプ状であってもよい。 Further, diamond or the like may be selectively grown by a CVD method (selective nucleation growth method). In this case, first, etching is performed on the substrate 12 made of a silicon substrate by a photolithography method, and convex portions of 2 × 2 μm 2 in height and 0.1 μm to 0.2 μm in height are formed on the surface, and an interval (pitch) of about 5 to 100 μm is provided. A plurality of them are formed. The protrusions may be island-like and patterned in a matrix, or may be stripes that are continuous in the vertical or horizontal direction.

次いで、基体12をエタノール、アセトン等の有機溶剤で洗浄後、微小のダイヤモンド核が分散された懸濁液を基体12上に塗布する。塗布回数は懸濁液中の微小ダイヤモンド核の濃度に応じて設定され、薄ければ懸濁液の塗布、乾燥を複数回繰り返せばよい。このようにして微小ダイヤモンド核を凸部の周囲に配置させる。この後基体12面の法線方向に対して60°〜80°の斜め方向からアルゴンビームを数分間〜30分間照射する。すると、被爆したダイヤモンド微小核が破壊され、凸部の立体障害によって被爆を免れたダイヤモンド微小核が残存することになる。   Next, the substrate 12 is washed with an organic solvent such as ethanol or acetone, and then a suspension in which minute diamond nuclei are dispersed is applied onto the substrate 12. The number of times of application is set according to the concentration of fine diamond nuclei in the suspension, and if thin, the application and drying of the suspension may be repeated a plurality of times. In this way, fine diamond nuclei are arranged around the convex portion. Thereafter, an argon beam is irradiated for several minutes to 30 minutes from an oblique direction of 60 ° to 80 ° with respect to the normal direction of the surface of the substrate 12. Then, the exposed diamond micronuclei are destroyed, and the diamond micronuclei that have escaped the exposure due to the steric hindrance of the convex portion remain.

続いて、マイクロ波プラズマCVD法によって残存するダイヤモンド微小核を結晶成長させ粒状物13を形成し、DCプラズマCVD法によって粒状物13の表面及び露出した基体12の表面に花弁状炭素薄片集合体14を成膜する。   Subsequently, the diamond micronuclei remaining by the microwave plasma CVD method are crystal-grown to form the granular material 13, and the petal-like carbon flake aggregate 14 is formed on the surface of the granular material 13 and the exposed surface of the substrate 12 by the DC plasma CVD method. Is deposited.

このような製法では、凸部の位置及び間隔を予め設定することで任意の位置に任意の径の粒状物13を形成することができるので、粒状物13の配列及び密度の精密制御ができる。   In such a manufacturing method, since the granular material 13 having an arbitrary diameter can be formed at an arbitrary position by setting the position and interval of the convex portions in advance, the arrangement and density of the granular material 13 can be precisely controlled.

なお、基体12の表面のエッチングはドライエッチでもウェットエッチでもよいが、残渣を残すとダイヤモンド結晶の成長に悪影響を及ぼすので、十分な洗浄が必要となる。また、十分な間隔をおいて凸部を形成するのであれば、メタルマスクで平滑な基体12の表面に導電体または半導体を成膜してもよい。   Etching of the surface of the substrate 12 may be dry etching or wet etching, but leaving a residue adversely affects the growth of the diamond crystal, so that sufficient cleaning is required. Further, if the convex portions are formed with a sufficient interval, a conductor or a semiconductor may be formed on the smooth surface of the base 12 using a metal mask.

次に、花弁状炭素薄片集合体14を形成する工程も任意である。例えば、処理装置の構造などは任意に変更可能である。   Next, the process of forming the petal-like carbon flake aggregate 14 is also optional. For example, the structure of the processing apparatus can be arbitrarily changed.

以下、上記実施の形態の一実施例を説明する。
φ40mmのニッケル基体を用意した。このニッケル基体に、エタノールとアセトンでそれぞれ10分間ずつ超音波洗浄を施した。
次に、洗浄済のニッケル基体を粒径20μmのダイヤモンド微粒子粉末1g/エタノール25mlの溶液中に浸漬させ、その表面にダイヤモンド微粒子を吸着させ、43kHzの超音波を10分間かけ、ダイヤモンド微粒子をニッケル基体に食い込ませて固着し、突起部を有する基板を形成した。このような基板表面のSEM像が前述の図7の像である。
An example of the above embodiment will be described below.
A nickel substrate having a diameter of 40 mm was prepared. The nickel substrate was subjected to ultrasonic cleaning with ethanol and acetone for 10 minutes each.
Next, the cleaned nickel substrate is immersed in a solution of 1 g of diamond fine particle powder having a particle size of 20 μm / 25 ml of ethanol, the diamond fine particles are adsorbed on the surface, and ultrasonic waves of 43 kHz are applied for 10 minutes. A substrate having protrusions was formed by biting into and fixing. Such an SEM image of the substrate surface is the image shown in FIG.

基板を取り出し、エタノールとアセトンで、それぞれ10分間ずつ超音波洗浄を行った。   The substrate was taken out and subjected to ultrasonic cleaning with ethanol and acetone for 10 minutes each.

次に、間隔が40mmのサセプタ(下部電極)とシャワーヘッド(上部電極)間に、700Vの電圧を印加し、電極間に流れる電流を4Aに制御し、さらに、原料ガスとして水素ガスとメタンガスを使用し、その全体圧力を8000Pa(60Torr)、メタンガスの割合を8%(体積比)、基板の温度を1000℃として、基体12及び粒状物13にわたって連続した層となる炭素薄片を60分間成膜した。   Next, a voltage of 700 V is applied between the susceptor (lower electrode) and the shower head (upper electrode) with a spacing of 40 mm, the current flowing between the electrodes is controlled to 4 A, and hydrogen gas and methane gas are used as source gases. A carbon flake that is a continuous layer over the substrate 12 and the granular material 13 is formed for 60 minutes, using an overall pressure of 8000 Pa (60 Torr), a methane gas ratio of 8% (volume ratio), and a substrate temperature of 1000 ° C. did.

図6からわかるように基板の上にほぼ分散して花弁状炭素薄片集合体14が形成されている。各花弁状炭素薄片集合体の平均直径は約10μmである。   As can be seen from FIG. 6, petal-like carbon flake aggregates 14 are formed in a substantially dispersed manner on the substrate. The average diameter of each petal-like carbon flake aggregate is about 10 μm.

図9にこの実施例及び比較例の電子放出電極の電子放出特性を示す。
比較例1は平滑な基体12に粒状物13を設けることなしに花弁状炭素薄片集合体14を成長させた電子放出電極であり、比較例2は基体12に粒状物13を設けた後、花弁状炭素薄片集合体14の代わりに非晶質炭素膜をコーティングしたものである。
FIG. 9 shows the electron emission characteristics of the electron emission electrodes of this example and the comparative example.
Comparative Example 1 is an electron emission electrode in which a petal-like carbon flake aggregate 14 is grown without providing a granular material 13 on a smooth substrate 12, and Comparative Example 2 is a petal after providing a granular material 13 on a substrate 12. An amorphous carbon film is coated instead of the carbon flake aggregate 14.

閾値電界(10μA/cmの放射電流密度を得るための電極間の電界を閾値電界と定義する)に達するまでの電界強度は、図から明らかなように、実施例の電子放出電極では約1V/μmであり、比較例1では約3.5V/μm、比較例2では約12V/μmとなっており、この実施例の電子放出電極が非常に優れた電子放出特性を示していることが確認された。このことから、単に花弁状炭素薄片集合体14が設けられていても、その下方に粒状物13が設けられていないと、比較例1のように十分な電子放出特性が得られず、単に粒状物13が設けられていても、実施例のように花弁状炭素薄片集合体14が設けられていないと、比較例2のように十分な電子放出特性が得られないことが理解できる。 The electric field strength until reaching the threshold electric field (the electric field between the electrodes for obtaining a radiation current density of 10 μA / cm 2 is defined as the threshold electric field) is about 1 V in the electron emission electrode of the example, as is apparent from the figure. / Μm, which is about 3.5 V / μm in Comparative Example 1 and about 12 V / μm in Comparative Example 2, indicating that the electron-emitting electrode of this example exhibits very excellent electron-emitting characteristics. confirmed. From this, even if the petal-like carbon flake aggregate 14 is simply provided, if the granular material 13 is not provided therebelow, sufficient electron emission characteristics cannot be obtained as in Comparative Example 1, and the granular material is simply granular. Even when the object 13 is provided, it can be understood that sufficient electron emission characteristics cannot be obtained as in Comparative Example 2 unless the petal-like carbon flake aggregate 14 is provided as in the example.

また、上記実施例の条件で成膜した花弁状炭素薄片集合体14をラマン分光法による構造解析を行った結果を図10に示す。図示するように、実施例の炭素薄片は、1580cm−1付近のグラファイトの炭素−炭素結合の六角格子内での炭素原子の振動に起因するGバンドと1350cm−1付近のDバンドのピーク強度比が鋭敏であり、また他のピークがほとんど見られないことから緻密で純度の高いグラファイトからなる花弁状炭素薄片集合体14が生成されていることが明らかである。 In addition, FIG. 10 shows the result of structural analysis of the petal-like carbon flake aggregate 14 formed under the conditions of the above-described example by Raman spectroscopy. As illustrated, the carbon flakes embodiment, the carbon graphite near 1580 cm -1 - peak intensity of G-band and 1350 cm -1 vicinity of D band caused by vibration of the carbon atoms in the hexagonal lattice of carbon coupling ratio It is clear that the petal-like carbon flake aggregate 14 composed of dense and high-purity graphite is produced from the fact that no other peaks are observed.

上記実施の形態に示された電子放出電極10では、粒状物13間の導電性基体12上に異常成長塊15や平面状炭素薄片集合膜16が形成されていたが、電界集中による電子放出は主に花弁状炭素薄片集合体14で起こるので異常成長塊15や平面状炭素薄片集合膜16はなくても電極として動作することができる。   In the electron emission electrode 10 shown in the above embodiment, the abnormally grown lump 15 and the planar carbon flake aggregate film 16 are formed on the conductive substrate 12 between the granular materials 13. Since it occurs mainly in the petal-like carbon flake aggregate 14, it can operate as an electrode without the abnormally growing lump 15 or the planar carbon flake aggregate film 16.

本発明の実施の形態にかかる電子放出電極の構造を示す断面図である。It is sectional drawing which shows the structure of the electron emission electrode concerning embodiment of this invention. 実施の形態にかかる典型的な花弁状炭素薄片集合体の構成を示す平面図である。It is a top view which shows the structure of the typical petal-like carbon thin piece aggregate | assembly concerning embodiment. 実施の形態にかかる典型的な花弁状炭素薄片集合体の構成を示す断面図である。It is sectional drawing which shows the structure of the typical petal-like carbon thin piece aggregate | assembly concerning embodiment. 花弁状炭素薄片集合体のSEM像である。It is a SEM image of a petal-like carbon flake aggregate. 花弁状炭素薄片集合体のSEM拡大像である。It is a SEM enlarged image of a petal-like carbon flake aggregate. 基板上の花弁状炭素薄片集合体の分布を示すSEM像である。It is a SEM image which shows distribution of a petal-like carbon flake aggregate on a substrate. 製造過程において、ダイヤモンド粒子をコーティングした状態の基板のSEM像である。It is a SEM image of the board | substrate of the state which coated the diamond particle in the manufacture process. 直流プラズマ処理装置の構成例を示す図である。It is a figure which shows the structural example of a DC plasma processing apparatus. 本実施例で製造された花弁状炭素薄片集合体の電子放出性能を説明するための図である。It is a figure for demonstrating the electron emission performance of the petal-like carbon flake aggregate manufactured by the present Example. 実施例の炭素薄片のラマンスペクトルを示すグラフである。It is a graph which shows the Raman spectrum of the carbon flake of an Example.

符号の説明Explanation of symbols

11 基板
12 基体
13 突起部(ダイヤモンド粒)
14 花弁状炭素薄片集合体
15 異常成長塊
16 平面状炭素薄片集合体
11 Substrate 12 Base 13 Protrusion (diamond grain)
14 Petal-like carbon flake aggregate 15 Abnormally growing lump 16 Planar carbon flake aggregate

Claims (1)

基体と該基体上に配置された複数の粒状のダイヤモンドとから構成された基板と、
前記基板の前記粒状のダイヤモンドの表面に形成され、複数の炭素薄片で構成された花弁状炭素薄片集合体からなる電子放出膜とを備え、
前記炭素薄片は、厚さが1nm〜500nmのグラフェンシートにより構成され、外辺開口部における薄片同士の間隔が3μm以下であり、
前記炭素薄片集合体の大きさが5μm〜30μmで、隣接する炭素薄片集合体同士の間隔は薄片集合体の直径をDとした時に1D〜10Dである、
ことを特徴とする電子放出電極。
A substrate composed of a substrate and a plurality of granular diamonds disposed on the substrate;
An electron emission film formed on the surface of the granular diamond of the substrate and made of a petal-like carbon flake aggregate composed of a plurality of carbon flakes ;
The carbon flakes are composed of a graphene sheet having a thickness of 1 nm to 500 nm, and the interval between the flakes in the outer side opening is 3 μm or less,
The size of the carbon flake aggregate is 5 μm to 30 μm, and the distance between adjacent carbon flake aggregates is 1D to 10D, where D is the diameter of the flake aggregate.
An electron emission electrode.
JP2003342415A 2003-09-30 2003-09-30 Electron emission electrode Expired - Fee Related JP4423496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003342415A JP4423496B2 (en) 2003-09-30 2003-09-30 Electron emission electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003342415A JP4423496B2 (en) 2003-09-30 2003-09-30 Electron emission electrode

Publications (2)

Publication Number Publication Date
JP2005108721A JP2005108721A (en) 2005-04-21
JP4423496B2 true JP4423496B2 (en) 2010-03-03

Family

ID=34536692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003342415A Expired - Fee Related JP4423496B2 (en) 2003-09-30 2003-09-30 Electron emission electrode

Country Status (1)

Country Link
JP (1) JP4423496B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5063002B2 (en) * 2006-01-06 2012-10-31 株式会社ライフ技術研究所 Electron emitter
JP2007299723A (en) * 2006-04-07 2007-11-15 Asahi Glass Co Ltd Field-electron emitting element
JP2008053177A (en) * 2006-08-28 2008-03-06 National Institute For Materials Science Nano carbon emitter, its manufacturing method and surface light emitting device
US7790242B1 (en) 2007-10-09 2010-09-07 University Of Louisville Research Foundation, Inc. Method for electrostatic deposition of graphene on a substrate
JP5429643B2 (en) * 2008-07-01 2014-02-26 日本電気株式会社 Semiconductor device using graphene / graphite film and manufacturing method thereof
JP5577136B2 (en) * 2010-04-05 2014-08-20 長三 井上 Graphene precursor compound, method for producing the same, and method for producing nanographene structure
US9643847B2 (en) * 2013-03-15 2017-05-09 Honda Motor Co., Ltd. Method for growth of vertically aligned carbon nanotubes on diamond substrates
KR102581259B1 (en) * 2021-01-15 2023-09-22 씨비테크 주식회사 X-ray Tube containing an emitter in which a vine-shaped carbon nano structure is formed
CN114334583A (en) * 2021-12-16 2022-04-12 金陵科技学院 Preparation method of petal-shaped graphene field emission cold cathode

Also Published As

Publication number Publication date
JP2005108721A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
JP3851167B2 (en) Diamond / carbon nanotube structures for efficient electron field emission
US20090200912A1 (en) Methods for Growing Carbon Nanotubes on Single Crystal Substrates
CN1189390C (en) Method for synthetizing vertical arrangement high-purity carbon nanometre tube in large-scale on large size substrate using hot CVD method
JP4379247B2 (en) Method for producing carbon nanostructure
JP4436821B2 (en) Single-wall carbon nanotube array growth apparatus and single-wall carbon nanotube array growth method
JP4988330B2 (en) Method for producing nitrogen-doped single-walled carbon nanotubes
JP5663648B2 (en) Reactor
JP2005075725A (en) Carbon nanotube structural body, producing method therefor, and electric field emission element and display unit obtained by applying the same
JP2004168634A (en) Carbon nanotube matrix and method of growing the same
JP2006114494A (en) Carbon nanotube emitter and its manufacturing method as well as field emission element adopting the same and its manufacturing method
WO2004027127A1 (en) Acicular silicon crystal and process for producing the same
JP4423496B2 (en) Electron emission electrode
JP2011068501A (en) Reused substrate for producing carbon nanotube, substrate for producing carbon nanotube, and method for manufacturing the substrate
Chang et al. Iron and cobalt silicide catalysts-assisted carbon nanostructures on the patterned Si substrates
TWI406808B (en) Method for making carbon nanotube structure
Yu et al. Patterned carbon nanotube field emitter using the regular array of an anodic aluminium oxide template
JP3913583B2 (en) Method for producing carbon nanotube
Cole et al. Engineered carbon nanotube field emission devices
Bayam et al. Synthesis of Ga2O3 nanorods with ultra-sharp tips for high-performance field emission devices
JP2011057544A (en) Device for forming diamond film
JP2014185072A (en) Method of producing recycled base material for carbon nano-tube production
JP2010006670A (en) Nanowire structure and method for producing the same
JP4829634B2 (en) Method for forming catalyst and method for producing carbon film using the same
Sankaran et al. Nitrogen incorporated (ultra) nanocrystalline diamond films for field electron emission applications
JP2012140268A (en) Determination method of substrate for producing carbon nanotube, and production method of carbon nanotube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees