JP4421025B2 - Conductive resin composition - Google Patents

Conductive resin composition Download PDF

Info

Publication number
JP4421025B2
JP4421025B2 JP25679799A JP25679799A JP4421025B2 JP 4421025 B2 JP4421025 B2 JP 4421025B2 JP 25679799 A JP25679799 A JP 25679799A JP 25679799 A JP25679799 A JP 25679799A JP 4421025 B2 JP4421025 B2 JP 4421025B2
Authority
JP
Japan
Prior art keywords
weight
parts
resin composition
resistance value
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25679799A
Other languages
Japanese (ja)
Other versions
JP2001084834A (en
Inventor
徹夫 藤村
孝 富澤
幸夫 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP25679799A priority Critical patent/JP4421025B2/en
Publication of JP2001084834A publication Critical patent/JP2001084834A/en
Application granted granted Critical
Publication of JP4421025B2 publication Critical patent/JP4421025B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Description

【0001】
【発明の属する技術分野】
本発明はばらつきが少なく、安定した表面固有抵抗値をもつ導電樹脂組成物に関する。
【0002】
【従来の技術】
導電樹脂組成物は、電気部品、コンピューター、家電製品等の静電防止等に利用されたり、ICの搬送、ICの乾燥工程に使用されるICトレイ等の用途に使用され、ICトレイの帯電を防ぎ、更には帯電したICをトレイ上に置いた時の急速放電による破壊を防ぐ目的より、105〜109Ω/□の比較的高い表面固有抵抗値が要求されている。
【0003】
通常ポリスチレン系樹脂等の芳香族ビニル化合物系重合体、ポリフェニレンエーテル樹脂などの熱可塑性樹脂の導電化には、熱可塑性樹脂にカーボンブラック、炭素繊維、金属粉末、酸化亜鉛等の高い導電性を有する添加物を数〜数十重量%添加して製造されており、特にカーボンブラックでは少量の添加で効果的に導電性を発現出来る、大きい比表面積を持ち、且つ高ストラクチャー品が使用される。このような例としては、特開平9−245524、特開平9−76425、特開平9−76424、特開平9−76423、特開平8−337714、特開平8−188710、特開平8−239568、特開昭54−152580がある。
【0004】
しかしながら、このような導電性を付与した樹脂組成物を溶融加熱後、金型内に高速で射出して製造された成形体では、表面固有抵抗値が102〜1014Ω/□の範囲で大きく変動してしまうという欠点がある。そのため、従来は数種類の導電性を付与した樹脂組成物を用いて射出成形して成形体の抵抗値を測定し、この抵抗値が所望の値となる様に樹脂の配合設計を変更したり、金型の試作等を数回繰り返さなければならなかった。
【0005】
あるいは、熱可塑性樹脂に108〜1012Ω/□の表面固有抵抗値を発現させる場合、従来はアルキル硫酸ナトリウム等のアニオン系、アルキルアンモニウム塩等のカチオン系、多価アルコール等の非イオン系の界面活性剤を樹脂中に添加したり、或いは成形体に界面活性剤を塗布する方法もあるが、界面活性剤による制電性の発現は使用環境中の水分の吸着に依存しているため、安定的な抵抗値が発現できなかったり、又は成形品の水洗、摩耗により成形品表面の界面活性剤が流出することにより抵抗値が大きく変化する問題があった。
【0006】
【発明が解決しようとする課題】
本発明の目的は、射出成形条件や成形体の形状、成形体の抵抗値の測定個所、にとらわれずに、安定的に目的とする抵抗値を発現する導電樹脂組成物を提供することにある。
【0007】
【課題を解決する為の手段】
このような導電樹脂組成物は、従来使われていなかった比表面積が小さく、平均一次粒子径の大きいカーボンブラックを特定の添加量の範囲で用いることにより、或いは導電樹脂組成物の流動性が一定の範囲となるよう該カーボンブラックを添加することにより、更には該カーボンブラックを特定の範囲でかつまた導電樹脂組成物の流動性が一定の範囲となるよう添加することにより得ることができる。
【0008】
即ち本発明は、(1)芳香族ビニル化合物系重合体(A)及び/またはポリフェニレンエーテル樹脂(B)より選択される重合体が99〜80重量部、芳香族ビニル化合物と共役ジエン化合物の共重合体及び/またはその水素添加物(C)が1〜20重量部である樹脂と、比表面積が30〜50m/g、平均一次粒子径が40nmを超えるカーボンブラックを樹脂成分100重量部に対して10〜40重量部を含有し、射出成形温度における流動性がカーボンブラックを含まないものと下記の式1で表される範囲にある導電樹脂組成物、
【0009】
【式3】

Figure 0004421025
【0010】
(2)充填速度25ml/秒の射出成形により成形した幅50mm、長さ200mm、肉厚2mmの短冊状成形品の表面固有抵抗値が10 4 〜10 12 Ω/□であり、そのばらつきが式2の範囲にある(1)に記載の導電樹脂組成物、
【0011】
【式4】
Figure 0004421025
【0012】
(3)(1)または(2)に記載の導電樹脂組成物を用いてなる電子部品包装材、である。
【0013】
以下本発明を詳細に説明する。
表面固有抵抗値が成形物の場所や成形条件により変動するのは、成形体中の樹脂の剪断速度の違いを原因として生じると考えられる。射出成型条件や金型寸法が異なると成形体のゲート付近と流動末端付近との抵抗値が大きく異なったり、樹脂の収縮率が変化したりして設計通りの成形品が得られ難い。そのため成形体の表面固有抵抗値が変動し、同一の成形体においても測定個所によって抵抗値が大きく異なってしまう。従来は、104〜1012Ω/□の表面固有抵抗値の範囲は、熱可塑性樹脂中に添加する、比表面積の大きいカーボンブラック等の導電材の添加量を微調整することに依っていたが、前記の通り成形条件、及び成形体中の成形時の樹脂の剪断速度の異なる箇所において表面固有抵抗値が大きく変化してしまうため、この領域の表面固有抵抗値を制御することは非常に困難である。
【0014】
本発明の導電樹脂組成物は表面固有抵抗値のばらつきをおさえ、安定にするために比表面積が小さく、平均一次粒子径の大きいカーボンブラックが用いられる。その種類は、オイルファーネスブラック、チャンネルブラック、アセチレンブラック等特に限定されないが、その比表面積は窒素吸着法により1グラム当たり30〜50平方メーターである。そして、その一次粒子径は40nmを超えるものである。この比表面積、一次粒子径を有するカーボンブラックは導電性の樹脂組成物には使われないものであるが本願ではこのようなカーボンブラックが用いられる。比表面積が通常使われているカーボンブラックのように大きく、平均一次粒子径が小さくなると、射出成形品中の成形時の樹脂の剪断速度の違いによる抵抗値の変化が大きく、成形品中での抵抗値のバラツキが生じ易いため、安定した抵抗値が得られず好ましくない。比表面積が1グラム当たり5平方メーター以下で平均一次粒子径が大きくなると導電性の発現が得られ難いため好ましくない。なお、少量であれば比表面積が大きく、平均一次粒子径の大きいカーボンブラックを併用することはできる。
【0015】
カーボンブラックの添加量は樹脂の組成、カーボンの種類により一概に定まらないが、樹脂100重量部に対して10〜40重量部である。この範囲において流動性が所定の範囲内に入るよう添加するとよい。カーボンブラックの量が多過ぎても少な過ぎても表面固有抵抗値のばらつきがますと共に、量が多いと樹脂との混練が難しくなり、或いは成型品の衝撃強度、成形時の流動性を著しく悪化させる原因となる。尚、これらのカーボンブラックは1種類又は2種類以上混合して用いることも可能である。
【0016】
本発明においてはカーボンブラックの添加量を、カーボンブラックを添加した場合としない場合の流動性の比が一定となる範囲に調節することにより表面固有抵抗値のばらつきを低減し、安定させることができる。すなわち、導電樹脂組成物の流動性を下式の範囲とすることにより表面固有抵抗値のばらつきをおさえ、安定とすることができる。流動性の測定条件は測定温度[320−ポリフェニレンエーテル樹脂の重量比](℃)、荷重10kgfである。
【0017】
【式5】
Figure 0004421025
【0018】
この範囲を外れると表面固有抵抗値のばらつきが増加すると共に、0.3未満では流動性が著しく低下することにより成形性が悪くなり、衝撃強度が低下する。また、0.75を越えると樹脂の導電化の効果が発現し難くなる。樹脂100重量部に対するカーボンブラックの添加量が10〜40重量部であり、かつまた前記流動性の範囲とすることは本発明において好ましい形態である。
【0019】
本発明では、比表面積が小さく、平均一次粒子径の大きいカーボンブラックを用いることにより表面固有抵抗値のばらつきの少ない安定した導電樹脂組成物をうることができるが、それに用いられる樹脂としては、ポリスチレン系樹脂、ポリフェニレンエーテル系樹脂において好適であり、特に芳香族ビニル化合物系重合体、ポリフェニレンエーテル樹脂、芳香族ビニル化合物と共役ジエン化合物の共重合体、その水素添加物において好適である。
【0020】
芳香族ビニル化合物系重合体としては、ビニルベンゼンを重合して得られるGPポリスチレン樹脂(ポリスチレンホモポリマー)の他、共役ジエンと共重合したハイインパクトポリスチレン、ポリ(α−メチルスチレン)、ポリジビニルベンゼン、アクリロニトリル−スチレン共重合樹脂、スチレン−アクリロニトリル−共役ジエン共重合樹脂、スチレン−メチルメタクリレート共重合樹脂、及びこれらのブレンド樹脂等である。尚、これらの樹脂は、その一部、或いは全部の水素が置換された誘導体樹脂であっても良く、又。これらの芳香族ビニル化合物系重合体は単独、又は2種以上で用いても良い。
【0021】
本発明に使用するポリフェニレンエーテル樹脂としては、下記の一般式で表される単位構造を有する。これらのポリフェニレンエーテル樹脂は単独、又は2種以上で用いても良い。
【0022】
【化1】
Figure 0004421025
【0023】
式中、R1、R2、R3、R4は水素、及びハロゲン、炭化水素、置換炭化水素、シアノ基、アミノ基、ニトロ基、スルホン基等で水素が置換された誘導体樹脂である。
【0024】
芳香族ビニル化合物系重合体、ポリフェニレンエーテル樹脂は単独で、或いは任意の比率で混合した2種以上の樹脂のブレンド物であってもよい。
【0025】
芳香族ビニル化合物と共役ジエン化合物の共重合体としては、スチレン−1,3−ブタジエン−スチレン、スチレン-イソプレン-スチレン、或いはその誘導体等、芳香族ビニル化合物と共役ジエン化合物の共重合体の水素添加物としてはスチレン-1,3-ブタジエン-スチレン、スチレン-イソプレン-スチレン等の水素添加物或いはその誘導体等である。これらの共重合体は、芳香族ビニル化合物系重合体及びポリフェニレンエーテル樹脂99〜80重量部に対して1〜20重量部添加すると樹脂組成物の衝撃強度を向上させることが出来る。1重量以下の添加量では補強の効果が十分ではなく、また20重量部以上の添加では著しく樹脂の弾性が低下するため好ましくない。
【0026】
本発明では樹脂組成物の用途に応じた強度を付与するため、特に芳香族ビニル化合物系重合体、或いはポリフェニレンエーテル樹脂について公知の熱可塑性エラストマーを配合することが出来る。用いる熱可塑性エラストマーとしては、オレフィン系、ポリ塩化ビニル系、ウレタン系、ポリエステル系、ポリアミド系、フッ素系、塩素化ポリエチレン系熱可塑性エラストマーが挙げられる。
【0027】
更には、本発明では樹脂組成物の用途に応じた強度を付与するため本組成物に無機フィラーを配合する事も可能である。配合する無機フィラーとしては、タルク、マイカ、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ガラスビーズ、ガラスファイバー、カーボンファイバー等が挙げられる。更には、本発明組成物には本発明の目的を損なわない範囲で発泡剤、滑剤、酸化防止剤、紫外線防止剤、カップリング剤、難燃剤、三酸化アンチモン等の難燃助剤、耐熱安定剤を配合することも可能である。
【0028】
本発明の樹脂組成物を作製する方法としては特に限定しないが、公知の方法、例えば単軸押出機や二軸押出機による溶融混練押出、ブラベンダーによる溶融混練等で実施出来る。又、本発明の樹脂組成物から、IC包装用部材等を成形する方法に関しては特に限定はされないが、通常行われる射出成形機による成形、又は溶融プレスによる方法等が用いられる。
【0029】
本発明の導電樹脂組成物はエンボスキャリアテープ、IC用トレイ、マガジン、チップトレイ等の電子部品包装材として好適に使用することができる。
【0030】
【実施例】
以下実施例によって本発明を具体的に説明する。
【0031】
(実施例1)
芳香族ビニル化合物系重合体としてハイインパクトポリスチレン樹脂(電気化学工業製 デンカスチロールHI−U3B):97重量部、芳香族ビニル化合物と共役ジエン化合物との共重合体としてスチレン-ブタジエン-スチレンブロックコポリマー(JSR製 TR2003):3重量部に対し、窒素吸着法により測定した比表面積の値が1グラム当たり30平方メーター、平均一次粒子径が60nmのオイルファーネス系カーボンブラック(東海カーボン製 シーストG−FY):20重量部を添加し、二軸押出機により溶融混練した。
【0032】
このコンパウンドを使用し射出成形にて図1に示すプレートを成形し、ゲートに近い剪断速度の速い箇所(A)の表面固有抵抗値、及びゲートから遠い剪断速度の遅い箇所(B)の表面固有抵抗値を測定した。尚、成形品は、巾:50mm×長さ:200mm、肉厚2mmの短冊状である。射出成形に於ける樹脂の充填速度は、25ml/秒で実施した。
【0033】
図2に示す様なICトレイ形状の成形体を成形し、得られたICトレイの射出時の樹脂の剪断速度が異なる2箇所(D)、(E)、の表面固有抵抗値を測定した。射出成形に於ける樹脂の充填速度は、60ml/秒で実施した。これらの評価結果を表1に示すが、測定個所の違いによる抵抗値の差異は殆ど観られなかった。
【0034】
(実施例2)
芳香族ビニル化合物系重合体としてハイインパクトポリスチレン:45重量部、ポリフェニレンエーテル樹脂(三菱エンジニアリングプラスチックス製 YPX−100F):50重量部、芳香族ビニル化合物と共役ジエン化合物との共重合体の水素添加物としてスチレン-エチレン-ブテン-スチレンブロックコポリマー(シェル製 クレイトンG1652):5重量部の合計100重量部に対し、窒素吸着法により測定した比表面積の値が1グラム当たり41平方メーター、平均一次粒子径が48nmのオイルファーネス系カーボンブラック(三菱化学 三菱ブラック#3040):18重量部を添加後二軸押出機により溶融混練し、実施例1と同様の評価を行った。評価結果を表1に示すが、測定個所の違いによる抵抗値の差異は殆ど観られなかった。
【0035】
(実施例3)
実施例2の樹脂組成物のコンパウンドを使用し、プレート、及びトレイ成形時の樹脂の充填速度を実施例3の時の1.5倍である、プレート:37ml/秒、トレイ:90ml/分の条件にて成形を行い、所定の位置の抵抗値を測定した。評価結果を表1に示すが、実施例2と比較し抵抗値の違いは殆ど観られず、また測定個所による抵抗値の差異も殆ど観られなかった。
【0036】
(実施例4)
芳香族ビニル化合物系重合体としてハイインパクトポリスチレン:47.5重量部、ポリフェニレンエーテル樹脂:50重量部、芳香族ビニル化合物と共役ジエン化合物との共重合体の水素添加物としてスチレン-エチレン-ブテン-スチレンブロックコポリマー:2.5重量部、の合計100重量部に対し、更に追加の補強材としてエチレン−エチルアクリレート共重合体を2.5重量部、窒素吸着法により測定した比表面積の値が1グラム当たり32平方メーター、平均一次粒子径が55nmのオイルファーネス系カーボンブラック(東海カーボン製 トーカブラック#4300)を23重量部添加後二軸押出機により溶融混練し、実施例1と同様の評価を行った。評価結果を表1に示すが、測定個所の違いによる抵抗値の差異は殆ど観られなかった。
【0037】
(実施例5)
芳香族ビニル化合物系重合体としてハイインパクトポリスチレン:17重量部、ポリフェニレンエーテル樹脂:80重量部、芳香族ビニル化合物と共役ジエン化合物との共重合体の水素添加物としてスチレン-エチレン-ブテン-スチレンブロックコポリマー:3重量部の合計100重量部に対し、窒素吸着法により測定した比表面積の値が1グラム当たり32平方メーター、平均一次粒子径が55nmのオイルファーネス系カーボンブラック(東海カーボン トーカブラック#4300)を24重量部添加後、二軸押出機により溶融混練し、プレート状成形体への樹脂の充填速度は40ml/秒、ICトレイ形状の成形体への樹脂の充填速度は、105ml/秒で実施し、実施例1と同様の評価を行った。評価結果を表1に示すが、測定個所の違いによる抵抗値の差異は殆ど観られなかった。
【0038】
(比較例1)
実施例1の比較として、芳香族ビニル化合物系重合体としてハイインパクトポリスチレン樹脂:97重量部、芳香族ビニル化合物と共役ジエン化合物との共重合体としてスチレン-ブタジエン-スチレンブロックコポリマー:3重量部の合計100重量部に対し、表面固有抵抗値が実施例1と同等の値となる様に窒素吸着法により測定した比表面積の値が1グラム当たり125平方メーター、平均一次粒子径が20nmのオイルファーネス系カーボンブラック(三菱化学 三菱ブラック#3350)を15重量部添加し、二軸押出機により溶融混練した。このコンパウンドを使用し実施例1と同様の評価を行った。この評価結果を表2に示すが、成形時の樹脂の剪断速度の異なる箇所に於いて抵抗値に大きなバラツキがあり安定した抵抗値が得られなかった。
【0039】
(比較例2)
実施例2の比較として、芳香族ビニル化合物系重合体としてハイインパクトポリスチレン:45重量部と、ポリフェニレンエーテル樹脂:50重量部、芳香族ビニル化合物と共役ジエン化合物との共重合体の水素添加物としてスチレン-エチレン-ブテン-スチレンブロックコポリマー:5重量部の合計100重量部に対し、表面固有抵抗値が実施例2と同等の値となるように窒素吸着法により測定した比表面積の値が1グラム当たり135平方メーター、平均一次粒子径が21nmのオイルファーネス系カーボンブラック(東海カーボン製 トーカブラック#7550/F):16重量部を添加後二軸押出機により溶融混練し、実施例1と同様の評価を行った。評価結果を表2に示すが、成形体の成形時の樹脂の剪断速度の異なる個所で、抵抗値の差異が大きく、安定した抵抗値は得られなかった。
【0040】
(比較例3)
実施例3の比較として、比較例2の樹脂組成物を使用し、プレート、及びトレイ成形時の樹脂の充填速度を比較例2の時の1.5倍である、プレート:37ml/秒、トレイ:90ml/秒の条件にて成形を行い、所定の位置の抵抗値を測定した。評価結果を表2に示すが、比較例2と比べ抵抗値が大きく増大し、また測定個所による抵抗値の差異も大きく、安定した抵抗値は得られなかった。
【0041】
(比較例4)
実施例2の比較として、芳香族ビニル化合物系重合体としてハイインパクトポリスチレン:45重量部、ポリフェニレンエーテル樹脂:50重量部、スチレン-エチレン-ブテン-スチレンブロックコポリマー:5重量部の合計100重量部に対し、窒素吸着法により測定した比表面積の値が1グラム当たり41平方メーター、平均一次粒子径が48nmのオイルファーネス系カーボンブラック(三菱化学製 三菱ブラック#3040)を8重量部添加後、二軸押出機により溶融混練し、実施例1と同様の評価を行ったが、CB添加時と無添加時の流動性の比が0.83と大きく、また表面固有抵抗値は1015Ω以上であり、カーボンブラック添加の効果は全く観られなかった。
【0042】
(比較例5)
実施例2の比較として、比較例3の樹脂組成でのオイルファーネス系カーボンブラックの添加量を45重量部とした時の樹脂組成物のIZOD衝撃強度、及び流動性の評価を行った。その結果、衝撃強度の低下が著しく、またCB添加時と無添加時の流動性の比が0.28と小さく、流動性の低下により従来の射出条件での成形が困難であった。
【0043】
(比較例6)
実施例4の比較として、芳香族ビニル化合物系重合体としてハイインパクトポリスチレン:47.5重量部、ポリフェニレンエーテル樹脂:50重量部、芳香族ビニル化合物と共役ジエン化合物との共重合体の水素添加物としてスチレン-エチレン-ブテン-スチレンブロックコポリマー:2.5重量部の合計100重量部に対し、及び追加の補強材としてエチレン−エチルアクリレート共重合体を2.5重量部、表面固有抵抗値が実施例4と同等の値となるように、窒素吸着法により測定した比表面積の値が1グラム当たり142平方メーター、平均一次粒子径が19nmのオイルファーネス系カーボンブラック(東海カーボン シースト9)を17重量部添加後二軸押出機により溶融混練し、実施例1と同様の評価を行った。評価結果を表2に示すが、成形体の成形時の樹脂の剪断速度の異なる個所で抵抗値の差異が大きく、安定した抵抗値は得られなかった。
【0044】
(比較例7)
実施例5の比較として、芳香族ビニル化合物系重合体としてハイインパクトポリスチレン:17重量部、ポリフェニレンエーテル樹脂:80重量部、芳香族ビニル化合物と共役ジエン化合物との共重合体の水素添加物としてスチレン-エチレン-ブテン-スチレンブロックコポリマー:3重量部の合計100重量部に対し、表面固有抵抗値が実施例5と同等の値となるように、窒素吸着法により測定した比表面積の値が1グラム当たり119平方メーター、平均一次粒子径が22nmのオイルファーネス系カーボンブラック(東海カーボン シースト6)を18.5重量部添加後二軸押出機により溶融混練し、実施例5と同様の評価を行った。評価結果を表2に示すが、成形体の成形時の樹脂の剪断速度の異なる個所で抵抗値の差異が大きく、安定した抵抗値は得られなかった。
【0045】
【表1】
Figure 0004421025
【0046】
表中の略称は以下の通り。
HIPS:ハイインパクトポリスチレン樹脂
PPE:ポリフェニレンエーテル樹脂
SBS:スチレン−ブタジエン−スチレンブロックコポリマー
SEBS:スチレン−エチレン−ブテン−スチレンブロックコポリマー
O−CB:オイルファーネス系カーボンブラック
EEA:エチレンエチルアクリレート共重合体
【0047】
【表2】
Figure 0004421025
【0048】
【発明の効果】
本発明の成形材料は、成形体形状、成形体の抵抗値測定個所、成形条件に依らず安定的な表面固有抵抗値を有し、特にIC包装用部材組成物、及び静電気防止用包装部材として優れている。
【図面の簡単な説明】
【図1】プレート形状の成形品
【図2】トレイ形状の成形品[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a conductive resin composition having little variation and having a stable surface specific resistance value.
[0002]
[Prior art]
The conductive resin composition is used for antistatics of electrical parts, computers, home appliances, etc., and is used for IC trays used for IC transportation and IC drying processes, etc. A relatively high surface resistivity of 10 @ 5 to 10 @ 9 .OMEGA ./. Quadrature. Is required for the purpose of preventing, and further preventing damage caused by rapid discharge when a charged IC is placed on a tray.
[0003]
Usually, thermoplastic resins such as aromatic vinyl compound polymers such as polystyrene resins and polyphenylene ether resins have high conductivity such as carbon black, carbon fiber, metal powder, and zinc oxide. It is manufactured by adding several to several tens of weight percent of additives. In particular, carbon black has a large specific surface area that can effectively exhibit conductivity when added in a small amount and has a high structure. Examples thereof include JP-A-9-245524, JP-A-9-76425, JP-A-9-76424, JP-A-9-76423, JP-A-8-337714, JP-A-8-188710, JP-A-8-239568, and the like. There is Kaisho 54-152580.
[0004]
However, in a molded product produced by melting and heating such a resin composition imparted with conductivity and then injecting it into a mold at a high speed, the surface specific resistance value greatly fluctuates in the range of 10 2 to 10 14 Ω / □. There is a disadvantage that it ends up. Therefore, conventionally, the resistance value of the molded body is measured by injection molding using a resin composition imparted with several types of conductivity, and the compounding design of the resin is changed so that the resistance value becomes a desired value. We had to repeat the mold prototyping several times.
[0005]
Alternatively, when a surface resistivity value of 10 8 to 10 12 Ω / □ is expressed in a thermoplastic resin, conventionally, an anionic system such as sodium alkyl sulfate, a cationic system such as an alkyl ammonium salt, and a nonionic surface activity such as a polyhydric alcohol. There are also methods to add an agent to the resin or to apply a surfactant to the molded body, but the antistatic property due to the surfactant depends on the adsorption of moisture in the usage environment, so it is stable. There is a problem that a large resistance value cannot be expressed, or the resistance value largely changes due to the surface-active agent flowing out of the surface of the molded product due to washing or abrasion of the molded product.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a conductive resin composition that stably expresses a desired resistance value without being limited by the injection molding conditions, the shape of the molded body, and the measurement location of the resistance value of the molded body. .
[0007]
[Means for solving the problems]
Such a conductive resin composition has a small specific surface area that has not been used in the past, and carbon black having a large average primary particle size is used in a specific addition amount range, or the fluidity of the conductive resin composition is constant. The carbon black is added so as to be in the above range, and further, the carbon black is added in a specific range and also in such a way that the fluidity of the conductive resin composition is within a certain range.
[0008]
That is, the present invention relates to (1) 99 to 80 parts by weight of a polymer selected from an aromatic vinyl compound polymer (A) and / or a polyphenylene ether resin (B), and a copolymer of an aromatic vinyl compound and a conjugated diene compound. a polymer and / or its hydrogenated product (C) from 1 to 20 parts by weight der Ru resin, a specific surface area of 30 to 50 m 2 / g, average primary particle diameter of 100 parts by weight of the resin component of carbon black exceeding 40nm Containing 10 to 40 parts by weight of the resin composition, the fluidity at the injection molding temperature does not include carbon black and the conductive resin composition in the range represented by the following formula 1,
[0009]
[Formula 3]
Figure 0004421025
[0010]
(2) The surface specific resistance value of a strip-shaped molded product having a width of 50 mm, a length of 200 mm, and a thickness of 2 mm formed by injection molding at a filling rate of 25 ml / second is 10 4 to 10 12 Ω / □, and the variation is expressed by the formula The conductive resin composition according to (1) in the range of 2,
[0011]
[Formula 4]
Figure 0004421025
[0012]
(3) An electronic component packaging material using the conductive resin composition according to (1) or (2 ).
[0013]
The present invention will be described in detail below.
It is considered that the surface specific resistance value fluctuates depending on the location of the molded product and molding conditions due to the difference in the shear rate of the resin in the molded body. If the injection molding conditions and the mold dimensions are different, the resistance value near the gate and near the flow end of the molded body is greatly different, or the shrinkage rate of the resin is changed, and it is difficult to obtain a molded product as designed. For this reason, the surface specific resistance value of the molded body fluctuates, and even in the same molded body, the resistance value varies greatly depending on the measurement location. Conventionally, the range of the surface resistivity value of 10 4 to 10 12 Ω / □ depends on fine adjustment of the addition amount of a conductive material such as carbon black having a large specific surface area, which is added to the thermoplastic resin. As shown in the figure, the surface resistivity varies greatly at different locations in the molding conditions and the shear rate of the resin during molding in the molded body, so it is very difficult to control the surface resistivity in this region. .
[0014]
In the conductive resin composition of the present invention, carbon black having a small specific surface area and a large average primary particle diameter is used in order to suppress variation in surface resistivity and stabilize the conductive resin composition. Although the kind is not specifically limited, such as oil furnace black, channel black, acetylene black, The specific surface area is 30-50 square meters per gram by a nitrogen adsorption method. And the primary particle diameter exceeds 40 nm. Carbon black having this specific surface area and primary particle diameter is not used in the conductive resin composition, but such carbon black is used in the present application. When the specific surface area is large like the commonly used carbon black and the average primary particle size is small, the resistance value changes greatly due to the difference in the shear rate of the resin during molding in the injection molded product. Since the resistance value is likely to vary, a stable resistance value cannot be obtained, which is not preferable. When the specific surface area is 5 square meters or less per gram and the average primary particle size is large, it is difficult to obtain conductivity, which is not preferable. If the amount is small, carbon black having a large specific surface area and a large average primary particle diameter can be used in combination.
[0015]
The amount of carbon black added is generally not determined by the resin composition and the type of carbon, but is 10 to 40 parts by weight with respect to 100 parts by weight of the resin. In this range, the fluidity may be added so as to fall within a predetermined range. If the amount of carbon black is too large or too small, the surface resistivity varies, and if it is too large, it becomes difficult to knead with the resin, or the impact strength of the molded product and the fluidity during molding are significantly deteriorated. Cause it. These carbon blacks can be used alone or in combination.
[0016]
In the present invention, the variation in surface resistivity can be reduced and stabilized by adjusting the amount of carbon black added to a range in which the ratio of fluidity with and without carbon black is constant. . That is, by setting the fluidity of the conductive resin composition within the range of the following formula, the variation in the surface specific resistance value can be suppressed and stabilized. The measurement conditions for fluidity are a measurement temperature [320-polyphenylene ether resin weight ratio] (° C.) and a load of 10 kgf.
[0017]
[Formula 5]
Figure 0004421025
[0018]
Outside this range, the variation of the surface resistivity increases, and if it is less than 0.3, the fluidity is remarkably lowered, the moldability is deteriorated, and the impact strength is lowered. On the other hand, if it exceeds 0.75, it will be difficult to achieve the effect of conducting the resin. The addition amount of carbon black with respect to 100 parts by weight of the resin is 10 to 40 parts by weight, and it is also a preferable form in the present invention to be within the fluidity range.
[0019]
In the present invention, the specific surface area is small, it is possible to sell a small variation stable conductive resin composition of the surface resistivity by using a large carbon black having an average primary particle size, the resin used therefor, poly Suitable for styrene resins and polyphenylene ether resins, particularly for aromatic vinyl compound polymers, polyphenylene ether resins, copolymers of aromatic vinyl compounds and conjugated diene compounds, and hydrogenated products thereof.
[0020]
As an aromatic vinyl compound polymer, in addition to GP polystyrene resin (polystyrene homopolymer) obtained by polymerizing vinylbenzene, high impact polystyrene copolymerized with conjugated diene, poly (α-methylstyrene), polydivinylbenzene Acrylonitrile-styrene copolymer resin, styrene-acrylonitrile-conjugated diene copolymer resin, styrene-methyl methacrylate copolymer resin, and blended resins thereof. These resins may be derivative resins in which part or all of the hydrogen is substituted. These aromatic vinyl compound polymers may be used alone or in combination of two or more.
[0021]
The polyphenylene ether resin used in the present invention has a unit structure represented by the following general formula. These polyphenylene ether resins may be used alone or in combination of two or more.
[0022]
[Chemical 1]
Figure 0004421025
[0023]
In the formula, R1, R2, R3, and R4 are derivative resins in which hydrogen is substituted with hydrogen and halogen, hydrocarbon, substituted hydrocarbon, cyano group, amino group, nitro group, sulfone group, and the like.
[0024]
The aromatic vinyl compound polymer and the polyphenylene ether resin may be a single product or a blend of two or more resins mixed at an arbitrary ratio.
[0025]
As a copolymer of an aromatic vinyl compound and a conjugated diene compound, hydrogen of a copolymer of an aromatic vinyl compound and a conjugated diene compound, such as styrene-1,3-butadiene-styrene, styrene-isoprene-styrene, or a derivative thereof. Examples of the additive include hydrogenated substances such as styrene-1,3-butadiene-styrene and styrene-isoprene-styrene, or derivatives thereof. When these copolymers are added in an amount of 1 to 20 parts by weight with respect to 99 to 80 parts by weight of the aromatic vinyl compound polymer and the polyphenylene ether resin, the impact strength of the resin composition can be improved. If the addition amount is 1 weight or less, the effect of reinforcement is not sufficient, and if it is 20 parts by weight or more, the elasticity of the resin is remarkably lowered.
[0026]
In the present invention, a known thermoplastic elastomer can be blended particularly with respect to the aromatic vinyl compound polymer or polyphenylene ether resin in order to impart strength according to the use of the resin composition. Examples of the thermoplastic elastomer used include olefin-based, polyvinyl chloride-based, urethane-based, polyester-based, polyamide-based, fluorine-based, and chlorinated polyethylene-based thermoplastic elastomers.
[0027]
Furthermore, in this invention, in order to provide the intensity | strength according to the use of the resin composition, it is also possible to mix | blend an inorganic filler with this composition. Examples of the inorganic filler to be blended include talc, mica, calcium carbonate, magnesium carbonate, calcium silicate, glass beads, glass fiber, and carbon fiber. Furthermore, the composition of the present invention includes flame retardant aids such as foaming agents, lubricants, antioxidants, UV inhibitors, coupling agents, flame retardants, antimony trioxide, and the like, as long as the object of the present invention is not impaired. It is also possible to mix an agent.
[0028]
Although it does not specifically limit as a method of producing the resin composition of this invention, It can implement by a well-known method, for example, the melt kneading extrusion by a single screw extruder or a twin screw extruder, the melt kneading by a Brabender, etc. Further, a method for molding an IC packaging member or the like from the resin composition of the present invention is not particularly limited, but a usual molding method using an injection molding machine or a melt press method may be used.
[0029]
The conductive resin composition of the present invention can be suitably used as a packaging material for electronic parts such as embossed carrier tapes, IC trays, magazines and chip trays.
[0030]
【Example】
The present invention will be specifically described below with reference to examples.
[0031]
Example 1
High impact polystyrene resin as an aromatic vinyl compound polymer (Denkastyrol HI-U3B manufactured by Denki Kagaku Kogyo): 97 parts by weight, styrene-butadiene-styrene block copolymer as a copolymer of an aromatic vinyl compound and a conjugated diene compound ( TR2003) manufactured by JSR: Oil furnace carbon black having a specific surface area measured by the nitrogen adsorption method of 30 square meters per gram and an average primary particle size of 60 nm (3 to parts by weight) (Tokai Carbon Seast G-FY) : 20 parts by weight was added and melt kneaded by a twin screw extruder.
[0032]
The plate shown in FIG. 1 is formed by injection molding using this compound, and the surface specific resistance value of the portion (A) where the shear rate is high near the gate (A) and the surface characteristic of the portion (B) where the shear rate is far from the gate. The resistance value was measured. The molded product has a strip shape with a width of 50 mm, a length of 200 mm, and a wall thickness of 2 mm. The resin filling rate in the injection molding was 25 ml / second.
[0033]
A molded product having an IC tray shape as shown in FIG. 2 was molded, and the surface specific resistance values at two locations (D) and (E) at different shear rates of the resin upon injection of the obtained IC tray were measured. The resin filling speed in the injection molding was 60 ml / second. The evaluation results are shown in Table 1. Almost no difference in resistance value due to the difference in measurement location was observed.
[0034]
(Example 2)
High impact polystyrene as an aromatic vinyl compound polymer: 45 parts by weight, polyphenylene ether resin (YPX-100F manufactured by Mitsubishi Engineering Plastics): 50 parts by weight, hydrogenation of a copolymer of an aromatic vinyl compound and a conjugated diene compound Styrene-ethylene-butene-styrene block copolymer (Clayton G1652 made by Shell) as a product: The specific surface area value measured by the nitrogen adsorption method is 41 square meters per gram with respect to a total of 100 parts by weight of 5 parts by weight, average primary particles Oil furnace carbon black having a diameter of 48 nm (Mitsubishi Chemical Mitsubishi Black # 3040): 18 parts by weight was added and then melt-kneaded with a twin-screw extruder, and the same evaluation as in Example 1 was performed. The evaluation results are shown in Table 1. Almost no difference in resistance value due to the difference in measurement location was observed.
[0035]
(Example 3)
The compound of the resin composition of Example 2 was used, and the filling rate of the resin at the time of molding the plate and tray was 1.5 times that of Example 3, Plate: 37 ml / second, Tray: 90 ml / min Molding was performed under the conditions, and the resistance value at a predetermined position was measured. The evaluation results are shown in Table 1. Compared with Example 2, the difference in resistance value was hardly observed, and the difference in resistance value at the measurement location was hardly observed.
[0036]
Example 4
High impact polystyrene as aromatic vinyl compound polymer: 47.5 parts by weight, polyphenylene ether resin: 50 parts by weight, styrene-ethylene-butene- as hydrogenated copolymer of aromatic vinyl compound and conjugated diene compound Styrene block copolymer: 2.5 parts by weight, 100 parts by weight in total, and further 2.5 parts by weight of ethylene-ethyl acrylate copolymer as an additional reinforcing material, specific surface area value measured by nitrogen adsorption method is 1 After adding 23 parts by weight of oil furnace carbon black (Tokai Carbon Toka Black # 4300) having an average primary particle size of 55 nm per gram per gram, it was melt kneaded by a twin screw extruder and evaluated in the same manner as in Example 1. went. The evaluation results are shown in Table 1. Almost no difference in resistance value due to the difference in measurement location was observed.
[0037]
(Example 5)
High impact polystyrene as aromatic vinyl compound polymer: 17 parts by weight, polyphenylene ether resin: 80 parts by weight, styrene-ethylene-butene-styrene block as a hydrogenated copolymer of aromatic vinyl compound and conjugated diene compound Copolymer: Oil furnace carbon black (Tokai Carbon Talker Black # 4300) having a specific surface area of 32 square meters per gram and an average primary particle size of 55 nm measured by the nitrogen adsorption method with respect to a total of 100 parts by weight of 3 parts by weight. ) Is melt-kneaded by a twin-screw extruder, the resin filling rate into the plate-shaped molded body is 40 ml / second, and the resin filling speed into the IC tray-shaped molded body is 105 ml / second. And the same evaluation as in Example 1 was performed. The evaluation results are shown in Table 1. Almost no difference in resistance value due to the difference in measurement location was observed.
[0038]
(Comparative Example 1)
As a comparison with Example 1, high impact polystyrene resin as an aromatic vinyl compound polymer: 97 parts by weight, styrene-butadiene-styrene block copolymer as a copolymer of an aromatic vinyl compound and a conjugated diene compound: 3 parts by weight Oil furnace with a specific surface area measured by the nitrogen adsorption method of 125 square meters per gram and an average primary particle size of 20 nm so that the surface specific resistance value is equivalent to that of Example 1 with respect to a total of 100 parts by weight. 15 parts by weight of carbon black (Mitsubishi Chemical Mitsubishi Black # 3350) was added and melt-kneaded by a twin screw extruder. Evaluation similar to Example 1 was performed using this compound. The evaluation results are shown in Table 2. As shown in Table 2, the resistance value had a large variation at locations where the shear rate of the resin during molding was different, and a stable resistance value could not be obtained.
[0039]
(Comparative Example 2)
As a comparison with Example 2, as an aromatic vinyl compound polymer, high impact polystyrene: 45 parts by weight, polyphenylene ether resin: 50 parts by weight, as a hydrogenated copolymer of an aromatic vinyl compound and a conjugated diene compound Styrene-ethylene-butene-styrene block copolymer: 1 gram of specific surface area measured by the nitrogen adsorption method so that the surface specific resistance value is equivalent to that of Example 2 with respect to a total of 100 parts by weight of 5 parts by weight. Oil furnace type carbon black (Tokai Carbon # 75550 / F manufactured by Tokai Carbon Co., Ltd.) having an average primary particle diameter of 21 nm per addition, 16 parts by weight, and melt-kneaded with a twin screw extruder, the same as in Example 1 Evaluation was performed. The evaluation results are shown in Table 2. As a result, the difference in the resistance value was large at a portion where the shear rate of the resin during molding of the molded body was different, and a stable resistance value could not be obtained.
[0040]
(Comparative Example 3)
As a comparison with Example 3, the resin composition of Comparative Example 2 was used, and the resin filling speed at the time of molding the plate and tray was 1.5 times that of Comparative Example 2, Plate: 37 ml / second, tray : Molding was performed under the condition of 90 ml / second, and the resistance value at a predetermined position was measured. The evaluation results are shown in Table 2. As compared with Comparative Example 2, the resistance value increased greatly, and the difference in resistance value depending on the measurement location was also large, so that a stable resistance value could not be obtained.
[0041]
(Comparative Example 4)
As a comparison with Example 2, as an aromatic vinyl compound polymer, high impact polystyrene: 45 parts by weight, polyphenylene ether resin: 50 parts by weight, styrene-ethylene-butene-styrene block copolymer: 5 parts by weight, a total of 100 parts by weight On the other hand, after adding 8 parts by weight of oil furnace carbon black (Mitsubishi Chemical Mitsubishi Black # 3040) having a specific surface area measured by the nitrogen adsorption method of 41 square meters per gram and an average primary particle size of 48 nm, biaxial The melt was kneaded with an extruder and evaluated in the same manner as in Example 1. However, the ratio of fluidity when CB was added and when CB was not added was as large as 0.83. The effect of adding black was not observed at all.
[0042]
(Comparative Example 5)
As a comparison with Example 2, the IZOD impact strength and fluidity of the resin composition when the amount of oil furnace carbon black added in the resin composition of Comparative Example 3 was 45 parts by weight were evaluated. As a result, the impact strength was remarkably reduced, and the ratio of fluidity when CB was added and when CB was not added was as small as 0.28. Due to the decrease in fluidity, molding under conventional injection conditions was difficult.
[0043]
(Comparative Example 6)
As a comparison with Example 4, high impact polystyrene as the aromatic vinyl compound polymer: 47.5 parts by weight, polyphenylene ether resin: 50 parts by weight, hydrogenated copolymer of aromatic vinyl compound and conjugated diene compound Styrene-ethylene-butene-styrene block copolymer: 2.5 parts by weight of the total styrene-ethylene-butene-styrene block copolymer and 2.5 parts by weight of ethylene-ethyl acrylate copolymer as an additional reinforcing material 17 weights of oil furnace carbon black (Tokai Carbon Seast 9) having a specific surface area measured by the nitrogen adsorption method of 142 square meters per gram and an average primary particle diameter of 19 nm so as to be the same value as in Example 4 After part addition, the mixture was melt-kneaded with a twin-screw extruder and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 2, and the difference in resistance value was large at different locations where the shear rate of the resin during molding of the molded body was different, and a stable resistance value could not be obtained.
[0044]
(Comparative Example 7)
As a comparison with Example 5, high impact polystyrene as an aromatic vinyl compound polymer: 17 parts by weight, polyphenylene ether resin: 80 parts by weight, styrene as a hydrogenated product of a copolymer of an aromatic vinyl compound and a conjugated diene compound -Ethylene-butene-styrene block copolymer: The specific surface area measured by the nitrogen adsorption method is 1 gram so that the surface specific resistance value is equivalent to that of Example 5 with respect to a total of 100 parts by weight of 3 parts by weight. 18.5 parts by weight of oil furnace carbon black (Tokai Carbon Seast 6) having an average primary particle size of 22 nm per unit was melted and kneaded by a twin screw extruder, and the same evaluation as in Example 5 was performed. . The evaluation results are shown in Table 2, and the difference in resistance value was large at different locations where the shear rate of the resin during molding of the molded body was different, and a stable resistance value could not be obtained.
[0045]
[Table 1]
Figure 0004421025
[0046]
Abbreviations in the table are as follows.
HIPS: High impact polystyrene resin PPE: Polyphenylene ether resin SBS: Styrene-butadiene-styrene block copolymer SEBS: Styrene-ethylene-butene-styrene block copolymer O-CB: Oil furnace carbon black EEA: Ethylene ethyl acrylate copolymer ]
[Table 2]
Figure 0004421025
[0048]
【The invention's effect】
The molding material of the present invention has a stable surface specific resistance value regardless of the shape of the molded body, the location where the molded body resistance is measured, and the molding conditions, and particularly as an IC packaging member composition and an antistatic packaging member. Are better.
[Brief description of the drawings]
[Fig. 1] Plate-shaped molded product [Fig. 2] Tray-shaped molded product

Claims (3)

芳香族ビニル化合物系重合体(A)及び/またはポリフェニレンエーテル樹脂(B)より選択される重合体が99〜80重量部、芳香族ビニル化合物と共役ジエン化合物の共重合体及び/またはその水素添加物(C)が1〜20重量部である樹脂と、比表面積が30〜50m/g、平均一次粒子径が40nmを超えるカーボンブラックを樹脂成分100重量部に対して10〜40重量部を含有し、射出成形温度における流動性がカーボンブラックを含まないものと下記の式1で表される範囲にある導電樹脂組成物から、電子部品包装材を射出成形により成形する成形方法。
【式1】
Figure 0004421025
99-80 parts by weight of polymer selected from aromatic vinyl compound polymer (A) and / or polyphenylene ether resin (B), copolymer of aromatic vinyl compound and conjugated diene compound and / or hydrogenation thereof 10 to 40 parts by weight of resin having 1 to 20 parts by weight of the product (C) and carbon black having a specific surface area of 30 to 50 m 2 / g and an average primary particle diameter of more than 40 nm with respect to 100 parts by weight of the resin component A molding method in which an electronic component packaging material is molded by injection molding from a conductive resin composition that contains and does not contain carbon black and has a fluidity at an injection molding temperature and is in the range represented by the following formula 1 .
[Formula 1]
Figure 0004421025
前記導電性樹脂組成物が、充填速度25ml/秒の射出成形により成形した幅50mm、長さ200mm、肉厚2mmの短冊状成形品の表面固有抵抗値が104〜1012Ω/□であり、そのばらつきが式2の範囲にある導電樹脂組成物である請求項1に記載の成形方法。
【式2】
Figure 0004421025
The surface specific resistance value of a strip-shaped product having a width of 50 mm, a length of 200 mm, and a thickness of 2 mm formed by injection molding of the conductive resin composition at a filling rate of 25 ml / second is 10 4 to 10 12 Ω / □. The molding method according to claim 1, which is a conductive resin composition whose variation is in the range of Formula 2 .
[Formula 2]
Figure 0004421025
請求項1または請求項2に記載の成形方法によって成形した導電樹脂組成物を用いてなるIC用トレイ、マガジン、またはチップトレイ。 An IC tray, magazine, or chip tray formed using the conductive resin composition molded by the molding method according to claim 1 or 2 .
JP25679799A 1999-09-10 1999-09-10 Conductive resin composition Expired - Fee Related JP4421025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25679799A JP4421025B2 (en) 1999-09-10 1999-09-10 Conductive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25679799A JP4421025B2 (en) 1999-09-10 1999-09-10 Conductive resin composition

Publications (2)

Publication Number Publication Date
JP2001084834A JP2001084834A (en) 2001-03-30
JP4421025B2 true JP4421025B2 (en) 2010-02-24

Family

ID=17297585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25679799A Expired - Fee Related JP4421025B2 (en) 1999-09-10 1999-09-10 Conductive resin composition

Country Status (1)

Country Link
JP (1) JP4421025B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5129561B2 (en) * 2007-03-09 2013-01-30 大日精化工業株式会社 Antistatic resin composition

Also Published As

Publication number Publication date
JP2001084834A (en) 2001-03-30

Similar Documents

Publication Publication Date Title
EP1012853B1 (en) Electrically conductive compositions and methods for producing same
US8003016B2 (en) Thermoplastic composition with improved positive temperature coefficient behavior and method for making thereof
EP2049586B1 (en) Improved thermal conductive polymeric ptc compositions
JP4421025B2 (en) Conductive resin composition
CN1326921C (en) Electroconductive resin composition
JPS60124654A (en) Electrically conductive resin composition
JP5264790B2 (en) Thermoplastic resin composition and molded article
JP4567218B2 (en) Conductive polyphenylene ether resin composition and molded article thereof
JP4429706B2 (en) Conductive thermoplastic resin composition and molded article using the same
JPH0450344B2 (en)
JP3485168B2 (en) Resin composition
JP2002146138A (en) Electroconductive resin composition
JP2008179807A (en) Electroconductive polyamide resin composition
JP4300822B2 (en) Conductive resin composition
JP3313458B2 (en) Conductive polyolefin masterbatch
JPH11349756A (en) Resin composition
JPH08337714A (en) Heat-resistant electroconductive resin composition
JP2000345056A (en) Conductive resin composition
JP3313459B2 (en) Conductive polyolefin masterbatch
JPH09245524A (en) Heat resistant conductive resin composition
JPH06329897A (en) Electrically-conductive polyphenylene ether-based resin composition
JPH06240131A (en) Electrically conductive polyphenylene ethereal resin composition
JPH04288355A (en) Composition
JP2005171198A (en) Electroconductive thermoplastic resin composition
JPH01278554A (en) Highly electrically conductive resin composition and electrically conductive film with the same composition as substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees