JP4412675B2 - Static elimination transport apparatus and static elimination method during conveyance - Google Patents

Static elimination transport apparatus and static elimination method during conveyance Download PDF

Info

Publication number
JP4412675B2
JP4412675B2 JP2007120828A JP2007120828A JP4412675B2 JP 4412675 B2 JP4412675 B2 JP 4412675B2 JP 2007120828 A JP2007120828 A JP 2007120828A JP 2007120828 A JP2007120828 A JP 2007120828A JP 4412675 B2 JP4412675 B2 JP 4412675B2
Authority
JP
Japan
Prior art keywords
glass substrate
soft
arm
static elimination
charged body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007120828A
Other languages
Japanese (ja)
Other versions
JP2008277181A (en
Inventor
仁 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Future Vision Inc
Original Assignee
Takasago Thermal Engineering Co Ltd
Future Vision Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd, Future Vision Inc filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2007120828A priority Critical patent/JP4412675B2/en
Priority to TW097110372A priority patent/TW200847853A/en
Priority to CNA200810095707XA priority patent/CN101299899A/en
Priority to KR1020080040283A priority patent/KR100980280B1/en
Publication of JP2008277181A publication Critical patent/JP2008277181A/en
Application granted granted Critical
Publication of JP4412675B2 publication Critical patent/JP4412675B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67706Mechanical details, e.g. roller, belt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/061Lifting, gripping, or carrying means, for one or more sheets forming independent means of transport, e.g. suction cups, transport frames

Description

この発明は、帯電した製品などを搬送する際に除電を行う除電搬送装置および搬送時の除電方法に関する。   The present invention relates to a static elimination transport apparatus that performs static elimination when transporting a charged product or the like and a static elimination method during transport.

液晶パネルやプラズマディスプレイ、半導体基板などの電子デバイスは、クリーンルーム内で製造されるが、電子デバイスに静電気が帯電すると、電子デバイスを構成する絶縁体が電気的に破壊されたり、電子デバイスを構成する回路に微粒子が付着して短絡したりする静電気障害のリスクが生じる。このため、電子デバイスの製造工程において、軟X線式除電器や放電式イオナイザなどの除電器を用いて、電子デバイスに発生した静電気を除電する技術が知られている(例えば、特許文献1参照。)。   Electronic devices such as liquid crystal panels, plasma displays, and semiconductor substrates are manufactured in a clean room. When static electricity is charged in an electronic device, the insulator that constitutes the electronic device is electrically destroyed or the electronic device is configured. There is a risk of static electricity damage due to short-circuiting of fine particles on the circuit. For this reason, in the manufacturing process of an electronic device, the technique which neutralizes the static electricity which generate | occur | produced in the electronic device using static neutralizers, such as a soft X-ray-type static elimination device and a discharge type ionizer, is known (for example, refer patent document 1). .)

また、製造工程を経た電子デバイスをカセットに収納したり、次の工程に移送したりする搬送工程においても、電子デバイスに発生した静電気の除電が行われている。例えば、図10、11に示すように、製造設備100の出口側に移載室110が設けられ、この移載室110の天井側には、清浄空気を流出するファン120が配設されている。さらに、ファン120による気流の上流側に放電式イオナイザ130が配設され、下流側には搬送ロボット140が配設されている。そして、放電式イオナイザ130によって空気イオンを発生させた状態で、搬送ロボット140によって製造設備100側からガラス基板(電子デバイス)Mを保持し、ガラス基板Mをカセット150側に移送してカセット150に収納する。この移送中において、ガラス基板Mに発生した静電気が空気イオンによって中和され、除電されるものである。
特開2006−221998号公報
In addition, static electricity generated in the electronic device is removed in a transporting process in which the electronic device that has undergone the manufacturing process is stored in a cassette or transferred to the next process. For example, as shown in FIGS. 10 and 11, a transfer chamber 110 is provided on the outlet side of the manufacturing facility 100, and a fan 120 for flowing clean air is disposed on the ceiling side of the transfer chamber 110. . Further, a discharge ionizer 130 is disposed on the upstream side of the airflow generated by the fan 120, and a transfer robot 140 is disposed on the downstream side. In a state where air ions are generated by the discharge ionizer 130, the transfer robot 140 holds the glass substrate (electronic device) M from the manufacturing equipment 100 side, and transfers the glass substrate M to the cassette 150 side to the cassette 150. Store. During this transfer, static electricity generated in the glass substrate M is neutralized by air ions and is neutralized.
JP 2006-221998 A

ところで、ガラス基板Mの帯電面近傍に空気イオンが存在している厚みである除電空間厚さがある程度厚い場合(例えば10cm以上の場合)、除電器による除電効果(除電速度)は、帯電面近傍のイオン濃度と電界強度に大きく依存する。すなわち、イオン濃度が高く、電界強度が強いほど高い除電効果が得られる。これに対して、上記のような搬送工程における除電方法では、ガラス基板Mの周辺に存在する接地部材は、接地導体で構成された移載室110の天井や壁およびカセット150である。そして、移載室110の天井とガラス基板Mとの距離D1が大きい(例えば2m以上)ため、帯電面近傍の電界強度は弱く、高い除電効果が得られない。また、ガラス基板Mを製造設備100側から保持する際や、ガラス基板Mをカセット150に収納する際には、ガラス基板Mと壁との距離D2やガラス基板Mとカセット150との距離D3が狭まるが、非常に短時間であるためガラス基板Mを十分に除電することが困難である。さらに、ガラス基板Mの帯電面(水平面)に対して、移載室110の壁面は垂直に位置し、カセット150は横方向(同一水平面上)に位置し、対向していない。このため、ガラス基板Mを移載室110の壁やカセット150に長時間接近させたとしても、ガラス基板Mの帯電面の全面にわたって均一かつ強い電界を形成することができず、帯電面の全面を効果的に除電することは困難である。   By the way, when the static elimination space thickness, which is the thickness where air ions are present in the vicinity of the charged surface of the glass substrate M, is somewhat thick (for example, 10 cm or more), the static elimination effect (static elimination speed) by the static eliminator is near the charged surface. It greatly depends on the ion concentration and electric field strength. That is, the higher the ion concentration and the stronger the electric field strength, the higher the charge eliminating effect. On the other hand, in the static elimination method in the conveyance process as described above, the grounding member existing around the glass substrate M is the ceiling or wall of the transfer chamber 110 and the cassette 150 formed of a ground conductor. Since the distance D1 between the ceiling of the transfer chamber 110 and the glass substrate M is large (for example, 2 m or more), the electric field strength in the vicinity of the charging surface is weak, and a high charge removal effect cannot be obtained. Further, when the glass substrate M is held from the manufacturing equipment 100 side or when the glass substrate M is stored in the cassette 150, the distance D2 between the glass substrate M and the wall and the distance D3 between the glass substrate M and the cassette 150 are set. Although it is narrowed, it is difficult to sufficiently neutralize the glass substrate M because of a very short time. Furthermore, the wall surface of the transfer chamber 110 is positioned perpendicular to the charging surface (horizontal plane) of the glass substrate M, and the cassette 150 is positioned laterally (on the same horizontal plane) and is not opposed. For this reason, even if the glass substrate M is brought close to the wall of the transfer chamber 110 or the cassette 150 for a long time, a uniform and strong electric field cannot be formed over the entire charged surface of the glass substrate M, and the entire charged surface. It is difficult to remove the charge effectively.

図12は、上記のような除電方法で除電した場合(変化曲線L1)と、除電を行わない場合(変化曲線L2)とにおけるガラス基板Mの電位の変化の一例を表したものである。図中符号P1は、製造設備100においてガラス基板Mがリフトアップされる直前の時点を示し、符号P2はリフトアップされた時点を示し、符号P3は搬送中を示し、符号P4はガラス基板Mをカセット150に収納した時点(搬送ロボット140がガラス基板Mを離した時点)を示す。この図に示すように、上記のような除電方法では、ガラス基板Mの除電に長時間を要するとともに、完全には除電することができず、効果的(効率的)な除電ができないことがわかる。この結果、除電不足のままガラス基板Mを搬出などすると、静電気障害のリスクが高くなる。一方、十分な除電を行うために、除電器を多く設置すると設備コストの増大を招き、除電時間を長くすると生産性の低下を招くことになる。   FIG. 12 shows an example of changes in the potential of the glass substrate M when the charge is eliminated by the above-described charge elimination method (change curve L1) and when the charge is not eliminated (change curve L2). In the drawing, reference symbol P1 indicates a time point immediately before the glass substrate M is lifted up in the manufacturing facility 100, reference character P2 indicates a time point when the glass substrate M is lifted up, reference symbol P3 indicates that the glass substrate M is being conveyed, and reference symbol P4 indicates the glass substrate M. The time when it is stored in the cassette 150 (the time when the transfer robot 140 releases the glass substrate M) is shown. As shown in this figure, it can be understood that the above-described static elimination method requires a long time for static elimination of the glass substrate M, and cannot be completely eliminated, so that effective (effective) static elimination cannot be performed. . As a result, if the glass substrate M is carried out with insufficient charge removal, the risk of static electricity failure increases. On the other hand, if a large number of static eliminators are installed in order to perform sufficient static elimination, the equipment cost will increase, and if the static elimination time is lengthened, productivity will be reduced.

そこでこの発明は、帯電体を効果的に除電して搬送することが可能な除電搬送装置および搬送時の除電方法を提供することを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a static elimination transport apparatus capable of effectively neutralizing and transporting a charged body and a static elimination method during transport.

上記目的を達成するために請求項1に記載の発明は、清浄空気が上方から下方に向けて垂直流で供給されるクリーンルーム内に設置され、帯電した帯電体を水平方向に間隔をおいて平行に配設された2つのアームよって水平に維持した状態で移送する搬送ロボットと、前記アームと相対位置関係が常に一定となるように前記搬送ロボットに配設され、前記帯電体に帯電した電気を空気イオンによって中和して除電する軟X線照射器と、前記アームの支持凸部に前記帯電体が載置された状態で、前記帯電体の下方に位置し、前記帯電体と上下方向に所定の距離を隔てて対向するように前記アームに配設され、所定の電位に制御された導電部材と、を備え、前記軟X線照射器の照射中心軸を前記帯電体の下面と前記導電部材との間に位置させたことを特徴とする。 In order to achieve the above object, the invention according to claim 1 is provided in a clean room in which clean air is supplied in a vertical flow from the top to the bottom, and the charged charged bodies are parallel to each other in the horizontal direction. A transfer robot that is transported in a state of being maintained horizontally by two arms disposed in the arm, and the transfer robot disposed so that the relative positional relationship with the arm is always constant, and the charged body is charged with electricity. A soft X-ray irradiator that neutralizes and neutralizes with air ions, and the charged body is placed on the support convex portion of the arm, and is positioned below the charged body and vertically with respect to the charged body. A conductive member that is disposed on the arm so as to be opposed to each other with a predetermined distance and is controlled to a predetermined potential, and the irradiation central axis of the soft X-ray irradiator is set to the lower surface of the charged body and the conductive member. This is located between the parts The features.

搬送ロボットのアームで帯電体を保持すると、帯電体に上下方向に所定の距離を隔てて導電部材が対向し、軟X線照射器による軟X線の照射によって帯電体と導電部材との間に空気イオンが位置される。 When the charged body is held by the arm of the transfer robot, the conductive member faces the charged body at a predetermined distance in the vertical direction, and the soft X-ray irradiator emits soft X-rays between the charged body and the conductive member. Air ions are located.

請求項2に記載の発明は、請求項1に記載の除電搬送装置において、前記導電部材の電位が接地電位に設定されていることを特徴とする。 According to a second aspect of the present invention, in the static elimination transport apparatus according to the first aspect, the potential of the conductive member is set to a ground potential.

請求項3に記載の発明は、請求項1に記載の除電搬送装置において、前記導電部材が、対向する前記帯電体の面と全面において均等に対向するように形成、配設されていることを特徴とする。 According to a third aspect of the present invention, in the static eliminating and conveying apparatus according to the first aspect, the conductive member is formed and arranged so as to be evenly opposed to the entire surface of the opposed charged body. Features.

請求項4に記載の発明は、清浄空気が上方から下方に向けて垂直流で供給されるクリーンルーム内に、帯電した帯電体を水平方向に間隔をおいて平行に配設された2つのアームよって水平に維持した状態で移送する搬送ロボットを設置し、前記帯電体に帯電した電気を空気イオンによって中和して除電する軟X線照射器を前記アームと相対位置関係が常に一定となるように前記搬送ロボットに配設し、前記アームの支持凸部に前記帯電体を載置した状態で、前記帯電体の下方に位置し所定の電位に制御された導電部材を、前記帯電体と上下方向に所定の距離を隔てて対向させ、前記軟X線照射器の照射中心軸を前記帯電体の下面と前記導電部材との間に位置させて軟X線を照射することを特徴とする。
According to the fourth aspect of the present invention, in a clean room in which clean air is supplied in a vertical flow from above to below, a charged charged body is provided by two arms disposed in parallel in the horizontal direction. Install a transfer robot that transports the charged body in a horizontal state, and the soft X-ray irradiator that neutralizes the electricity charged in the charged body with air ions and eliminates the charge so that the relative positional relationship with the arm is always constant. With the charged body placed on the support convex portion of the arm and placed on the support robot, the conductive member positioned below the charged body and controlled at a predetermined potential is placed in the vertical direction with the charged body. And a soft X-ray is irradiated with the irradiation center axis of the soft X-ray irradiator positioned between the lower surface of the charged body and the conductive member.

請求項1および4に記載の発明によれば、搬送ロボットの保持部で帯電体が保持された状態では、所定の距離を隔てて帯電体と導電部材とが対向し、その間に空気イオンが位置される。このため、帯電体が搬送ロボットで保持された状態では、強くかつ安定した電界が帯電体と導電部材と間に(帯電体の周辺に)形成され、このような良好な電界下において空気イオンによる除電が効果的かつ安定的に行われる。この結果、帯電体を効果的に除電して搬送することが可能となる。 According to the first and fourth aspects of the present invention, in a state where the charged body is held by the holding portion of the transfer robot, the charged body and the conductive member are opposed to each other with a predetermined distance therebetween, and air ions are positioned between them. Is done. For this reason, when the charged body is held by the transfer robot, a strong and stable electric field is formed between the charged body and the conductive member (around the charged body), and air ions are generated under such a good electric field. Static elimination is performed effectively and stably. As a result, the charged body can be effectively discharged and transported.

また、軟X線照射器をアームと相対位置関係が常に一定となるように搬送ロボットに配設し、軟X線照射器の照射中心軸を帯電体の下面と導電部材との間に位置させて軟X線を照射するようにしているので、帯電体と導電部材との間に空気イオンを常に良好かつ安定して位置させて、帯電体を効果的に除電することが可能となる。さらに、帯電体の搬送中に空気イオンを位置させて(形成、供給して)除電することで、搬送と除電とを同時に行うことが可能となる。つまり、時間的に効率的な搬送、除電が可能となる。 Also, the soft X-ray irradiator is arranged on the transfer robot so that the relative positional relationship with the arm is always constant, and the irradiation central axis of the soft X-ray irradiator is positioned between the lower surface of the charged body and the conductive member. Since soft X-rays are irradiated , air ions can be positioned between the charged body and the conductive member in a good and stable manner, and the charged body can be effectively discharged. Furthermore, it is possible to carry out and carry out discharging at the same time by eliminating (by forming and supplying) air ions during transfer of the charged body. In other words, it is possible to carry out transport and static elimination efficiently in time.

さらに、帯電体は水平方向に間隔をおいて平行に配設された2つのアームに形成された支持凸部によって保持されるので、導電部材が帯電体のほぼ全面と対向することになり、帯電体の除電効果を高めることが可能となる。Further, since the charged body is held by the support convex portions formed on the two arms arranged in parallel at a distance in the horizontal direction, the conductive member is opposed to almost the entire surface of the charged body. It becomes possible to enhance the effect of neutralizing the body.

請求項2に記載の発明によれば、導電部材の電位が接地電位に設定されているため、例えば、接地された搬送ロボットを介して導電部材を接地することで、導電部材の電位を容易かつ安定的に制御することが可能となる。 According to the second aspect of the present invention, since the potential of the conductive member is set to the ground potential, for example, by grounding the conductive member via the grounded transfer robot, the potential of the conductive member can be easily and It becomes possible to control stably.

請求項3に記載の発明によれば、導電部材が対向する帯電体の全面において均等に対向するように形成、配設されているため、帯電体の全面周辺において均等かつ安定した電界が形成され、帯電体の全面を均等かつ効果的に除電することが可能となる。 According to the third aspect of the present invention, since the conductive member is formed and disposed so as to be evenly opposed across the entire surface of the opposite charged body, an even and stable electric field is formed around the entire surface of the charged body. Thus, it is possible to remove the entire surface of the charged body uniformly and effectively.

以下、この発明を図示の実施の形態に基づいて説明する。   The present invention will be described below based on the illustrated embodiments.

(実施の形態1)
図1は、この実施の形態に係る除電搬送装置1を示す概略構成図である。この除電搬送装置1は、製造設備100で製造されたフラットパネルディプレイ基板であるガラス基板(帯電体)Mを除電しながらカセット150側に移送(搬送)してカセット150に収納する装置であり、主として、搬送ロボット2と軟X線照射器(除電器)3とを備えている。ここで、上記の図10、11で説明した構成と同等の構成については、同一の符号を付して説明する。また、移載室110は、温度調整されたクリーンルーム内に設けられ、ファンフィルタユニット120からの清浄空気が垂直流で供給され、不図示のリターンチャンバまたはリターンダクトを経て循環されるようになっている。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram showing a static elimination transfer device 1 according to this embodiment. The static elimination transport apparatus 1 is an apparatus that transfers (conveys) a glass substrate (charged body) M, which is a flat panel display substrate manufactured by the manufacturing facility 100, to the cassette 150 side while discharging, and stores it in the cassette 150. It mainly includes a transfer robot 2 and a soft X-ray irradiator (static eliminator) 3. Here, the same components as those described in FIGS. 10 and 11 will be described with the same reference numerals. In addition, the transfer chamber 110 is provided in a temperature-controlled clean room, and clean air from the fan filter unit 120 is supplied in a vertical flow and circulated through a return chamber or return duct (not shown). Yes.

搬送ロボット2は、帯電したガラス基板Mを保持して搬送するロボットであり、移載室110内の製造設備100の出口側とカセット150との間に設置され、この実施の形態では、床面に接地、固定されている。この搬送ロボット2は、最下位に位置する基部21と、基部21の上位に位置する第1のリンク22と、第1のリンク22の上位に位置する第2のリンク23と、最上位に位置する2つのアーム(保持部)24とを備えている。第1のリンク22は、基部21に対して回動(垂直軸を中心とする回転)、揺動(水平軸を中心とする揺動)自在で、第2のリンク23は、第1のリンク22に対して揺動自在となっている。2つのアーム24は、図2、3に示すように、平板棒状で平行に配設され、第2のリンク23に対して揺動自在で、2つのアーム24で形成される面、つまり2つのアーム24を包含する平面が常に水平に位置するように制御されている。これにより、製造設備100の出口側でリフトアップされたガラス基板Mをアーム24で保持し、ガラス基板Mの板面を水平に維持した状態でカセット150側に移送して、カセット150に収納できるようになっている。   The transfer robot 2 is a robot that holds and transfers a charged glass substrate M, and is installed between the outlet side of the manufacturing equipment 100 in the transfer chamber 110 and the cassette 150. In this embodiment, the floor surface Grounded and fixed to. The transfer robot 2 includes a base 21 positioned at the lowest position, a first link 22 positioned higher than the base 21, a second link 23 positioned higher than the first link 22, and a highest position. And two arms (holding portions) 24 for performing the above operation. The first link 22 can freely rotate (rotate about the vertical axis) and swing (swing about the horizontal axis) relative to the base portion 21, and the second link 23 can be the first link. 22 can be swung freely. As shown in FIGS. 2 and 3, the two arms 24 are arranged in parallel in a flat bar shape, and are swingable with respect to the second link 23, that is, surfaces formed by the two arms 24, that is, two The plane including the arm 24 is controlled so as to be always positioned horizontally. As a result, the glass substrate M lifted up on the outlet side of the manufacturing facility 100 is held by the arm 24, and can be transferred to the cassette 150 side with the plate surface of the glass substrate M kept horizontal and stored in the cassette 150. It is like that.

アーム24には、導電性の金網板(導電部材)4が配設されている。この金網板4は、金網状の平板で、2つのアーム24で形成される面と平行に、2つのアーム24を貫通するように配設されている。また、金網板4の板面の大きさ(面積)は、ガラス基板Mと同寸法に設定され、アーム24でガラス基板Mを保持した状態で、対向するガラス基板Mの板面全面と対向するように配設されている。さらに、各アーム24の上面側には、上方に突出した支持凸部24aが長手方向に沿って2つ形成され、ガラス基板Mを保持(載置)した状態でガラス基板Mと金網板4との距離(隙間)Hが3cmになるように、支持凸部24aの高さが設定されている。これにより、ガラス基板Mを保持した状態で、金網板4がガラス基板Mの板面全面と対向し、かつその間隔が全面において均一となる。つまり、金網板4がガラス基板Mの板面全面において均等に対向する。   The arm 24 is provided with a conductive wire mesh plate (conductive member) 4. The wire mesh plate 4 is a wire mesh-like flat plate and is disposed so as to penetrate the two arms 24 in parallel with the surface formed by the two arms 24. In addition, the size (area) of the metal mesh plate 4 is set to the same size as the glass substrate M, and faces the entire plate surface of the opposing glass substrate M in a state where the glass substrate M is held by the arm 24. It is arranged like this. Further, on the upper surface side of each arm 24, two support protrusions 24 a protruding upward are formed along the longitudinal direction, and the glass substrate M and the metal mesh plate 4 are held with the glass substrate M held (mounted). The height of the support convex portion 24a is set so that the distance (gap) H is 3 cm. Thereby, in the state which hold | maintained the glass substrate M, the metal-mesh board 4 opposes the whole plate surface of the glass substrate M, and the space | interval becomes uniform in the whole surface. That is, the metal mesh plate 4 is evenly opposed on the entire surface of the glass substrate M.

ここで、ガラス基板Mと金網板4との距離Hが3cmに設定されているが、これは除電効果およびガラス基板Mの収納性を考慮したものである。すなわち、カセット150内のガラス基板Mの収納間隔として許容される距離であって、後述する軟X線照射器3による空気イオンがガラス基板Mと金網板4との隙間全体に形成される距離として、1〜4cmが適切と考えられ、この実施の形態では3cmに設定している。このように、この実施の形態では、距離Hが3cmに設定されているが、距離Hを1〜20cmとすると良好な除電効果が得られることが確認されており、この範囲において、ガラス基板Mの大きさや収納間隔などを考慮して距離Hを設定すればよい。   Here, the distance H between the glass substrate M and the metal mesh plate 4 is set to 3 cm, which takes into account the charge removal effect and the storage property of the glass substrate M. That is, it is a distance allowed as a storage interval of the glass substrate M in the cassette 150 and is a distance in which air ions by the soft X-ray irradiator 3 described later are formed in the entire gap between the glass substrate M and the metal mesh plate 4. 1 to 4 cm is considered appropriate, and is set to 3 cm in this embodiment. As described above, in this embodiment, the distance H is set to 3 cm, but it has been confirmed that when the distance H is set to 1 to 20 cm, a good static elimination effect can be obtained. In this range, the glass substrate M The distance H may be set in consideration of the size and the storage interval.

また、金網板4の電位は接地電位に設定(制御)されている。つまり、金網板4は搬送ロボット2を介して接地されている。このように、この実施の形態では、金網板4の電位を接地電位としているが、接地電位以外の電位、例えばガラス基板Mの電位と同等程度の電位に制御するようにしてもよい。つまり、後述するように、ガラス基板Mの周辺に強く安定した電界が形成されるように金網板4の電位が制御されていればよい。   Further, the potential of the metal mesh plate 4 is set (controlled) to the ground potential. That is, the wire mesh plate 4 is grounded via the transfer robot 2. As described above, in this embodiment, the potential of the metal mesh plate 4 is set to the ground potential. However, the potential may be controlled to a potential other than the ground potential, for example, approximately equal to the potential of the glass substrate M. That is, as will be described later, it is only necessary that the potential of the metal mesh plate 4 is controlled so that a strong and stable electric field is formed around the glass substrate M.

軟X線照射器3は、ガラス基板Mに帯電した静電気を空気イオンによって中和して除電する除電器である。すなわち、この実施の形態では、波長が0.5〜2Åの軟エックス線を空気中に照射することで、空気中の分子を電離して、空気イオンを発生させる。そして、ガラス基板Mに帯電した静電気の極性と反対極性の空気イオンが静電気と結びついて、静電気を中和、除電するものである。この軟X線照射器3は、搬送ロボット2の第2のリンク23の上端部に配設され、搬送ロボット2のアーム24に追従するようになっている。つまり、リンク22、23の回動、揺動によるアーム24の移動に伴って、軟X線照射器3もリンク22、23に従って移動し、アーム24と軟X線照射器3との相対位置関係が常に一定となる。   The soft X-ray irradiator 3 is a static eliminator that neutralizes static electricity charged on the glass substrate M with air ions and eliminates static electricity. That is, in this embodiment, air ions are generated by ionizing molecules in the air by irradiating the air with a soft X-ray having a wavelength of 0.5 to 2 mm. Then, air ions having a polarity opposite to the polarity of the static electricity charged on the glass substrate M are combined with the static electricity to neutralize and neutralize the static electricity. The soft X-ray irradiator 3 is disposed at the upper end portion of the second link 23 of the transfer robot 2 and follows the arm 24 of the transfer robot 2. That is, with the movement of the arm 24 due to the rotation and swing of the links 22 and 23, the soft X-ray irradiator 3 also moves according to the links 22 and 23, and the relative positional relationship between the arm 24 and the soft X-ray irradiator 3 is reached. Is always constant.

さらに、アーム24で保持されたガラス基板Mの上面および下面の全面周辺に軟X線が照射されるように、軟X線照射器3が配設されている。つまり、ガラス基板Mの上面側およびガラス基板Mと金網板4との間に空気イオンが形成される(位置する)ように軟X線照射器3が配設されている。このように軟X線照射器3が配設されていることによって、アーム24の移動中、つまりガラス基板Mの搬送中において常に、ガラス基板Mの上下面周辺に空気イオンが良好かつ安定して形成されるようになっている。ここで、軟X線照射器3の照射中心軸がガラス基板Mの下面と金網板4との間に位置するように、軟X線照射器3を配設するのが望ましい。これにより、最も除電効果が高いガラス基板Mと金網板4との間の全空間にわたって、より均等に空気イオンを形成することができるからである。   Further, the soft X-ray irradiator 3 is disposed so that the soft X-rays are irradiated around the entire upper and lower surfaces of the glass substrate M held by the arm 24. That is, the soft X-ray irradiator 3 is arranged so that air ions are formed (positioned) between the upper surface side of the glass substrate M and between the glass substrate M and the metal mesh plate 4. By providing the soft X-ray irradiator 3 in this way, air ions are always good and stable around the upper and lower surfaces of the glass substrate M during the movement of the arm 24, that is, during the conveyance of the glass substrate M. It is supposed to be formed. Here, it is desirable to dispose the soft X-ray irradiator 3 so that the irradiation central axis of the soft X-ray irradiator 3 is located between the lower surface of the glass substrate M and the wire mesh plate 4. This is because air ions can be formed more evenly over the entire space between the glass substrate M and the metal mesh plate 4 having the highest static elimination effect.

次に、このような構成の除電搬送装置1の動作および除電搬送装置1による搬送時の除電方法について説明する。ここで、ガラス基板Mを保持する前から軟X線照射器3を稼働して軟X線を照射し続けた場合(ケース1)と、ガラス基板Mを保持した直後に軟X線照射器3を稼働して軟X線を照射し続けた場合(ケース2)とについて説明する。また、ガラス基板Mは、製造設備100内の製造工程(前工程)で処理され、搬送ローラ101によって製造設備100の出口側に搬送され、リフトピン102によってリフトアップされるものとする。   Next, the operation of the static elimination transport apparatus 1 having such a configuration and the static elimination method during transport by the static elimination transport apparatus 1 will be described. Here, when the soft X-ray irradiator 3 is operated before the glass substrate M is held and the soft X-ray is continuously irradiated (case 1), immediately after the glass substrate M is held, the soft X-ray irradiator 3 is used. And the case of continuing to irradiate with soft X-rays (Case 2) will be described. Further, the glass substrate M is processed in a manufacturing process (previous process) in the manufacturing facility 100, transported to the outlet side of the manufacturing facility 100 by the transport roller 101, and lifted up by the lift pins 102.

ケース1では、まず、軟X線照射器3が稼働している状態で、リフトアップされたガラス基板Mを搬送ロボット2のアーム24で保持する。次に、リンク22、23が駆動して、ガラス基板Mの板面を水平に維持した状態でガラス基板Mをカセット150側に移送する。続いて、ガラス基板Mをカセット150に収納して、アーム24をガラス基板Mから離脱する。一方、この移送中において、軟X線照射器3で形成された空気イオンによって、ガラス基板Mに帯電した静電気が中和され、除電される。   In case 1, first, the glass substrate M that has been lifted up is held by the arm 24 of the transfer robot 2 while the soft X-ray irradiator 3 is operating. Next, the links 22 and 23 are driven to transfer the glass substrate M to the cassette 150 side while maintaining the plate surface of the glass substrate M horizontal. Subsequently, the glass substrate M is accommodated in the cassette 150, and the arm 24 is detached from the glass substrate M. On the other hand, during this transfer, static electricity charged on the glass substrate M is neutralized by the air ions formed by the soft X-ray irradiator 3, and the charge is eliminated.

ケース2では、まず、リフトアップされたガラス基板Mを搬送ロボット2のアーム24で保持し、その直後、軟X線照射器3を稼働する。その後は、ケース1と同様に、ガラス基板Mをカセット150側に移送してカセット150に収納する。そして、軟X線照射器3の稼働後において、軟X線照射器3によってガラス基板Mが除電される。   In case 2, first, the glass substrate M that has been lifted up is held by the arm 24 of the transfer robot 2, and immediately thereafter, the soft X-ray irradiator 3 is operated. Thereafter, like the case 1, the glass substrate M is transferred to the cassette 150 side and stored in the cassette 150. Then, after the soft X-ray irradiator 3 is operated, the glass substrate M is neutralized by the soft X-ray irradiator 3.

以上のように、この除電搬送装置1および除電方法によれば、アーム24でガラス基板Mを保持した状態では、接地電位に設定された金網板4とガラス基板Mとが対向し、その間に空気イオンが形成される。このため、ガラス基板Mと金網板4との間に(ガラス基板Mの周辺に)強くかつ安定した電界が形成され、このような良好な電界下において空気イオンによる除電が効果的かつ安定的に行われる。しかも、金網板4がガラス基板Mの板面全面において均等に対向するため、ガラス基板Mの全面周辺において均等かつ安定した電界が形成され、ガラス基板Mの全面を均等かつ効果的に除電することが可能となる。   As described above, according to the static elimination transport apparatus 1 and the static elimination method, in a state where the glass substrate M is held by the arm 24, the metal mesh plate 4 set to the ground potential and the glass substrate M face each other, and air is interposed therebetween. Ions are formed. For this reason, a strong and stable electric field is formed between the glass substrate M and the metal mesh plate 4 (around the glass substrate M), and neutralization by air ions is effectively and stably performed under such a good electric field. Done. In addition, since the metal mesh plate 4 is evenly opposed across the entire surface of the glass substrate M, a uniform and stable electric field is formed around the entire surface of the glass substrate M, and the entire surface of the glass substrate M is uniformly and effectively neutralized. Is possible.

さらに、上記のように、ガラス基板Mの搬送中において常に、ガラス基板Mの上下面周辺に空気イオンが良好かつ安定して形成されるため、ガラス基板Mを常に効果的に除電することが可能となる。また、上記のようにして搬送中に除電を行うことで、搬送と除電とを同時に行って、時間的に効率的な搬送、除電が可能となる。そして、これらの結果、製造工程を経たガラス基板Mを効果的、効率的に除電して搬送することが可能となる。   Further, as described above, since air ions are always formed well and stably around the upper and lower surfaces of the glass substrate M during the conveyance of the glass substrate M, the glass substrate M can always be effectively neutralized. It becomes. In addition, by performing static elimination during conveyance as described above, it is possible to perform conveyance and static elimination efficiently in time by performing conveyance and static elimination at the same time. As a result, the glass substrate M that has undergone the manufacturing process can be effectively and efficiently discharged and transported.

図4は、この除電搬送装置1で除電した場合のガラス基板Mの電位の変化の一例を表したものであり、図中曲線L3はケース1の場合を示し、曲線L4はケース2の場合を示し、曲線L2は除電を行わない場合を示している。また、符号P1は、ガラス基板Mがリフトアップされる直前の時点を示し、符号P2はリフトアップされた時点を示し、符号P3は搬送中を示し、符号P4はガラス基板Mをカセット150に収納した時点(アーム24がガラス基板Mから離脱した時点)を示す。   FIG. 4 shows an example of a change in the potential of the glass substrate M when the charge is removed by the charge removal transport device 1. In the figure, the curve L3 shows the case 1 and the curve L4 shows the case 2. A curve L2 indicates a case where static elimination is not performed. Further, symbol P1 indicates a time point immediately before the glass substrate M is lifted up, symbol P2 indicates a point in time when the glass substrate M is lifted up, symbol P3 indicates that the glass substrate M is being transported, and symbol P4 indicates that the glass substrate M is stored in the cassette 150. The time when the arm 24 is detached from the glass substrate M is shown.

この図に示すように、ケース1および2のいずれの場合も、従来の除電方法(図12の曲線L1)に比べて、ガラス基板Mが著しく効果的に除電されていることが認められる。すなわち、ケース1の場合(曲線L3)には、ガラス基板Mの最高電位が0.2〜0.3kV程度であり、保持から約2秒で完全に除電されている。また、ケース2の場合(曲線L4)には、ガラス基板Mの最高電位が1kV程度であり、保持から約3秒で完全に除電されている。また、アーム24がガラス基板Mから離脱するP4時おいて、アーム24とガラス基板Mの接触部(ハンドパット)との間で新たな帯電が生じるが、従来の除電方法では、この帯電を除電することができなかった。これに対し、ケース1および2ともに、このような帯電も完全に除電されていることが確認された。   As shown in this figure, in both cases 1 and 2, it can be seen that the glass substrate M has been discharged more effectively than the conventional charge removal method (curve L1 in FIG. 12). That is, in case 1 (curve L3), the maximum potential of the glass substrate M is about 0.2 to 0.3 kV, and the charge is completely removed in about 2 seconds from the holding. In the case 2 (curve L4), the maximum potential of the glass substrate M is about 1 kV, and the charge is completely removed in about 3 seconds from the holding. Further, at P4 when the arm 24 is detached from the glass substrate M, a new charge is generated between the arm 24 and the contact portion (hand pad) of the glass substrate M. In the conventional static elimination method, this charge is eliminated. I couldn't. On the other hand, in both cases 1 and 2, it was confirmed that such charge was completely discharged.

(実施の形態2)
図5は、この実施の形態に係る除電搬送装置11を示す概略構成図である。この実施の形態では、軟X線照射器3の配設位置が実施の形態1と異なり、実施の形態1と同等の構成については、同一符号を付して説明する。
(Embodiment 2)
FIG. 5 is a schematic configuration diagram showing the static elimination transport apparatus 11 according to this embodiment. In this embodiment, the arrangement position of the soft X-ray irradiator 3 is different from that of the first embodiment, and the same components as those of the first embodiment are described with the same reference numerals.

軟X線照射器3は、製造設備100の出口側と搬送ロボット2との間に設置、固定されている。すなわち、製造設備100の出口側と搬送ロボット2との間に、垂直に延びる設置ポール5が設置され、この設置ポール5の上端部に、照射口が上方を向くように軟X線照射器3が取り付けられている。また、搬送ロボット2のアーム24でガラス基板Mを移載室110内に搬入(移送)した状態で、図6に示すように、軟X線照射器3からの軟X線がガラス基板Mと金網板4の全面周辺に照射されるように、軟X線照射器3の設置高さおよび位置が設定されている。このような軟X線照射器3の設置によって、軟X線がガラス基板Mの板面に対して下方から垂直に照射され、金網板4の網目を介して、ガラス基板Mと金網板4との間に軟X線が照射されて、空気イオンが形成されるようになっている。   The soft X-ray irradiator 3 is installed and fixed between the exit side of the manufacturing facility 100 and the transfer robot 2. That is, a vertically extending installation pole 5 is installed between the exit side of the manufacturing facility 100 and the transfer robot 2, and the soft X-ray irradiator 3 is arranged at the upper end of the installation pole 5 so that the irradiation port faces upward. Is attached. Further, in a state where the glass substrate M is carried (transferred) into the transfer chamber 110 by the arm 24 of the transfer robot 2, as shown in FIG. The installation height and position of the soft X-ray irradiator 3 are set so that the entire periphery of the metal mesh plate 4 is irradiated. By installing the soft X-ray irradiator 3 as described above, soft X-rays are irradiated perpendicularly to the plate surface of the glass substrate M from below, and the glass substrate M, the metal mesh plate 4, and the like through the mesh of the metal mesh plate 4. During this period, soft X-rays are irradiated to form air ions.

次に、このような構成の除電搬送装置11の動作および除電搬送装置11による搬送時の除電方法について説明する。まず、軟X線照射器3が稼働している状態で、搬送ロボット2のアーム24でガラス基板Mを保持して、ガラス基板Mを軟X線照射器3の直上まで移送する。そして、この位置状態を一定時間維持することでガラス基板Mを除電し、その後、ガラス基板Mをカセット150側に移送して、カセット150に収納する。   Next, the operation of the static elimination transport apparatus 11 having such a configuration and the static elimination method during transport by the static elimination transport apparatus 11 will be described. First, in a state where the soft X-ray irradiator 3 is operating, the glass substrate M is held by the arm 24 of the transfer robot 2, and the glass substrate M is transferred to a position directly above the soft X-ray irradiator 3. The glass substrate M is neutralized by maintaining this position for a certain period of time, and then the glass substrate M is transferred to the cassette 150 side and stored in the cassette 150.

この除電搬送装置11および除電方法によれば、アーム24でガラス基板Mを保持した状態では、金網板4とガラス基板Mとが対向しているため、実施の形態1と同様に、ガラス基板Mの全面を均等かつ効果的に除電することが可能となる。また、軟X線をガラス基板M(金網板4)の板面に対して垂直に照射するため、ガラス基板Mの全面周辺にわたってより均等に軟X線が照射されて、より均等に空気イオンが形成される。この結果、ガラス基板Mの板面積が大きい場合であっても、全面にわたって均等かつ効果的に除電することが可能となる。   According to this static elimination conveyance apparatus 11 and the static elimination method, in the state which hold | maintained the glass substrate M with the arm 24, since the metal-mesh board 4 and the glass substrate M have opposed, the glass substrate M similarly to Embodiment 1. FIG. It becomes possible to discharge the entire surface uniformly and effectively. Moreover, since soft X-rays are irradiated perpendicularly to the plate surface of the glass substrate M (metal mesh plate 4), soft X-rays are irradiated more uniformly around the entire surface of the glass substrate M, and air ions are more evenly distributed. It is formed. As a result, even when the plate area of the glass substrate M is large, it is possible to remove charges uniformly and effectively over the entire surface.

図7は、この除電搬送装置11で除電した場合のガラス基板Mの電位の変化曲線L5の一例を表したものである。この図に示すように、ガラス基板Mが軟X線照射器3の直上に位置するまでは除電が行われないため、ガラス基板Mの電位が高いが、軟X線照射器3の直上に位置した直後から電位が急激に下がり、短時間で除電されていることが認められる。   FIG. 7 shows an example of a change curve L5 of the potential of the glass substrate M when the charge is removed by the charge removal transport device 11. As shown in FIG. As shown in this figure, since the static elimination is not performed until the glass substrate M is located immediately above the soft X-ray irradiator 3, the potential of the glass substrate M is high, but the position is directly above the soft X-ray irradiator 3. Immediately after this, the potential drops sharply, and it is recognized that the charge is removed in a short time.

以上、この発明の実施の形態について説明したが、具体的な構成は、上記の実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても、この発明に含まれる。例えば、実施の形態1では、ガラス基板Mの上面側およびガラス基板Mと金網板4との間に軟X線を照射して空気イオンを形成しているが、他の空間で形成した空気イオンをガラス基板Mの上面側およびガラス基板Mと金網板4との間に供給するようにしてもよい。さらに、上記の実施の形態では、除電器として軟X線照射器3を使用しているが、コロナ放電式のイオナイザなどその他の除電器であってもよい。   Although the embodiment of the present invention has been described above, the specific configuration is not limited to the above embodiment, and even if there is a design change or the like without departing from the gist of the present invention, Included in the invention. For example, in Embodiment 1, air ions are formed by irradiating soft X-rays between the upper surface side of the glass substrate M and between the glass substrate M and the metal mesh plate 4, but air ions formed in other spaces are used. May be supplied between the upper surface side of the glass substrate M and between the glass substrate M and the wire mesh plate 4. Furthermore, in the above embodiment, the soft X-ray irradiator 3 is used as a static eliminator, but other static eliminators such as a corona discharge ionizer may be used.

また、搬送ロボット2のアーム24をスライド式にしてもよい。すなわち、図8、9に示すように、アーム24を第1のアーム241と第2のアーム242とから構成し、第1のアーム241を第2のリンク23に配設し、第2のアーム242を第1のアーム241に対してスライド自在に配設する。また、金網板4は第1のアーム241に配設する。そして、ガラス基板Mを保持してカセット150側に移送する間は、第2のアーム242を第1のアーム241に重ねた状態とする。一方、ガラス基板Mをカセット150に収納する際には、第2のアーム242を前方にスライドさせて、第2のアーム242とガラス基板Mのみをカセット150内に位置させる。これにより、ガラス基板Mの全面周辺にわたってより均等に軟X線が照射されるように、ガラス基板Mと金網板4との距離Hを広く確保しても、第1のアーム241はカセット150内に位置しないため、ガラス基板Mの収納間隔を許容範囲に抑えることが可能となる。つまり、高い除電効果を確保した上で、ガラス基板Mの収納間隔を狭くすることが可能となる。   Further, the arm 24 of the transfer robot 2 may be slidable. That is, as shown in FIGS. 8 and 9, the arm 24 includes a first arm 241 and a second arm 242, the first arm 241 is disposed on the second link 23, and the second arm 242 is slidably disposed with respect to the first arm 241. Further, the metal mesh plate 4 is disposed on the first arm 241. The second arm 242 is placed on the first arm 241 while the glass substrate M is held and transferred to the cassette 150 side. On the other hand, when the glass substrate M is stored in the cassette 150, the second arm 242 is slid forward, and only the second arm 242 and the glass substrate M are positioned in the cassette 150. As a result, even if the distance H between the glass substrate M and the metal mesh plate 4 is secured wide so that soft X-rays are irradiated more evenly around the entire surface of the glass substrate M, the first arm 241 remains in the cassette 150. Therefore, the storage interval of the glass substrates M can be kept within an allowable range. That is, it is possible to narrow the storage interval of the glass substrates M while ensuring a high charge removal effect.

さらに、搬送ロボット2のアーム24にガラス基板Mを載置することでガラス基板Mを保持しているが、吸引などによってガラス基板Mを保持し、アーム24の下方にガラス基板Mが位置するようにしてもよい。この際、実施の形態2において、軟X線照射器3をアーム24の上方に設置して、ファンフィルタユニット120による気流に従って軟X線がガラス基板Mに向かうようにしてもよい。また、搬送ロボット2は走行可能なものであってもよく、ガラス基板M以外の電子デバイス(帯電体)、例えば半導体基板などの除電、搬送にも適用できることは勿論である。さらに、導電部材は、金網板4に限らず、帯電体の形状や除電器の種類などに応じて、棒体で構成されたものや、平板に複数のパンチ孔が形成されたもの、あるいは平板状や凹凸を有する変形板状のものなどであってもよい。なお、リフトピン102と金網板4とが干渉する場合には、製造設備100側でガラス基板Mの端縁を保持してリフトアップしたり、干渉しないように金網板4を分割してもよい。   Further, the glass substrate M is held by placing the glass substrate M on the arm 24 of the transfer robot 2, but the glass substrate M is held by suction or the like so that the glass substrate M is positioned below the arm 24. It may be. At this time, in the second embodiment, the soft X-ray irradiator 3 may be installed above the arm 24 so that the soft X-rays are directed toward the glass substrate M according to the airflow generated by the fan filter unit 120. Of course, the transfer robot 2 may be capable of traveling, and can be applied to charge removal and transfer of electronic devices (charged bodies) other than the glass substrate M, such as a semiconductor substrate. Further, the conductive member is not limited to the metal mesh plate 4, but is constituted by a rod, a plate in which a plurality of punch holes are formed, or a flat plate according to the shape of the charged body or the type of static eliminator. It may be a deformed plate having a shape or irregularity. In the case where the lift pins 102 and the metal mesh plate 4 interfere with each other, the edge of the glass substrate M may be held on the manufacturing equipment 100 side, and the metal mesh plate 4 may be divided so as not to interfere.

以上のように、この発明に係る除電搬送装置および搬送時の除電方法は、帯電体を効果的に除電して搬送できる装置および方法として極めて有用である。   As described above, the static eliminating / conveying device and the neutralizing method during conveyance according to the present invention are extremely useful as an apparatus and method that can effectively neutralize and convey a charged body.

この発明の実施の形態1に係る除電搬送装置を示す概略構成図である。It is a schematic block diagram which shows the static elimination conveying apparatus which concerns on Embodiment 1 of this invention. 図1の除電搬送装置の搬送ロボットのアーム周辺を示す拡大平面図である。FIG. 2 is an enlarged plan view showing the periphery of an arm of a transfer robot of the static elimination transfer apparatus of FIG. 1. 図2のY−Y断面図である。It is YY sectional drawing of FIG. 図1の除電搬送装置で除電した場合のガラス基板の電位の変化の一例を表した図である。It is the figure showing an example of the change of the electric potential of the glass substrate at the time of static elimination with the static elimination conveyance apparatus of FIG. この発明の実施の形態2に係る除電搬送装置を示す概略構成図である。It is a schematic block diagram which shows the static elimination conveying apparatus which concerns on Embodiment 2 of this invention. 図5のZ−Z方向から見た概略平面図である。It is the schematic plan view seen from the ZZ direction of FIG. 図5の除電搬送装置で除電した場合のガラス基板の電位の変化の一例を表した図である。It is the figure showing an example of the change of the electric potential of the glass substrate at the time of static elimination with the static elimination conveyance apparatus of FIG. この発明の実施の形態における搬送ロボットのアームの変形例を示す図である。It is a figure which shows the modification of the arm of the conveyance robot in embodiment of this invention. 図8のアームの第2のアームが前方にスライドした状態を示す図である。It is a figure which shows the state which the 2nd arm of the arm of FIG. 8 slid ahead. 従来の搬送時の除電方法を示す概略構成図である。It is a schematic block diagram which shows the static elimination method at the time of the conventional conveyance. 図10のX−X方向から見た概略平面図である。It is the schematic plan view seen from the XX direction of FIG. 図10の除電方法で除電した場合のガラス基板の電位の変化の一例を表した図である。It is the figure showing an example of the change of the electric potential of the glass substrate at the time of static elimination with the static elimination method of FIG.

1、11 除電搬送装置
2 搬送ロボット
24 アーム(保持部)
3 軟X線照射器(除電器)
4 金網板(導電部材)
5 設置ポール
100 製造設備
110 移載室
120 ファンフィルタユニット
150 カセット
M ガラス基板(帯電体)
1, 11 Static elimination transfer device 2 Transfer robot 24 Arm (holding part)
3 Soft X-ray irradiator (static eliminator)
4 Wire mesh plate (conductive member)
5 Installation pole 100 Manufacturing equipment 110 Transfer chamber 120 Fan filter unit 150 Cassette M Glass substrate (charged body)

Claims (4)

清浄空気が上方から下方に向けて垂直流で供給されるクリーンルーム内に設置され、帯電した帯電体を水平方向に間隔をおいて平行に配設された2つのアームよって水平に維持した状態で移送する搬送ロボットと、
前記アームと相対位置関係が常に一定となるように前記搬送ロボットに配設され、前記帯電体に帯電した電気を空気イオンによって中和して除電する軟X線照射器と、
前記アームの支持凸部に前記帯電体が載置された状態で、前記帯電体の下方に位置し、前記帯電体と上下方向に所定の距離を隔てて対向するように前記アームに配設され、所定の電位に制御された導電部材と、
を備え、
前記軟X線照射器の照射中心軸を前記帯電体の下面と前記導電部材との間に位置させたことを特徴とする除電搬送装置。
Installed in a clean room where clean air is supplied in a vertical flow from the top to the bottom, and the charged charged body is transported in a state where it is maintained horizontally by two arms arranged in parallel at intervals in the horizontal direction. A transfer robot
A soft X-ray irradiator that is disposed in the transfer robot so that the relative positional relationship with the arm is always constant, and neutralizes the electricity charged in the charged body with air ions to eliminate static electricity;
In a state where the charging member is placed on the support convex portion of the arm, the charging member is located below the charging member and is disposed on the arm so as to face the charging member in a vertical direction with a predetermined distance therebetween. A conductive member controlled to a predetermined potential;
With
A static elimination transport apparatus, wherein an irradiation central axis of the soft X-ray irradiator is positioned between a lower surface of the charged body and the conductive member.
前記導電部材の電位が接地電位に設定されていることを特徴とする請求項1に記載の除電搬送装置。   The static elimination conveyance apparatus according to claim 1, wherein a potential of the conductive member is set to a ground potential. 前記導電部材が、対向する前記帯電体の面と全面において均等に対向するように形成、配設されていることを特徴とする請求項1に記載の除電搬送装置。   2. The charge eliminating and conveying apparatus according to claim 1, wherein the conductive member is formed and disposed so as to be evenly opposed to the entire surface of the opposite charged body. 清浄空気が上方から下方に向けて垂直流で供給されるクリーンルーム内に、帯電した帯電体を水平方向に間隔をおいて平行に配設された2つのアームよって水平に維持した状態で移送する搬送ロボットを設置し、前記帯電体に帯電した電気を空気イオンによって中和して除電する軟X線照射器を前記アームと相対位置関係が常に一定となるように前記搬送ロボットに配設し、前記アームの支持凸部に前記帯電体を載置した状態で、前記帯電体の下方に位置し所定の電位に制御された導電部材を、前記帯電体と上下方向に所定の距離を隔てて対向させ、前記軟X線照射器の照射中心軸を前記帯電体の下面と前記導電部材との間に位置させて軟X線を照射することを特徴とする搬送時の除電方法。 Transporting a charged charged body in a clean room where clean air is supplied in a vertical flow from the top to the bottom in a state where it is maintained horizontally by two arms arranged in parallel at intervals in the horizontal direction. established a robot, charged electricity disposed in the transfer robot such that the arm and the relative positional relationship between the soft X-ray irradiator for discharge neutralized by air ions is always constant to the charging member, wherein With the charged body placed on the support convex part of the arm, a conductive member positioned below the charged body and controlled to a predetermined potential is opposed to the charged body in a vertical direction at a predetermined distance. A neutralizing method during transport, wherein the soft X-ray irradiator is irradiated with soft X-rays with an irradiation center axis of the soft X-ray irradiator positioned between the lower surface of the charged body and the conductive member.
JP2007120828A 2007-05-01 2007-05-01 Static elimination transport apparatus and static elimination method during conveyance Active JP4412675B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007120828A JP4412675B2 (en) 2007-05-01 2007-05-01 Static elimination transport apparatus and static elimination method during conveyance
TW097110372A TW200847853A (en) 2007-05-01 2008-03-24 Electric static eliminating and carrying device and electric static eliminating method in carrying
CNA200810095707XA CN101299899A (en) 2007-05-01 2008-04-24 Charge eliminating and conveying apparatus and charge eliminating method when conveying
KR1020080040283A KR100980280B1 (en) 2007-05-01 2008-04-30 When carrier method for neutralization and neutralization carrier device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007120828A JP4412675B2 (en) 2007-05-01 2007-05-01 Static elimination transport apparatus and static elimination method during conveyance

Publications (2)

Publication Number Publication Date
JP2008277181A JP2008277181A (en) 2008-11-13
JP4412675B2 true JP4412675B2 (en) 2010-02-10

Family

ID=40054891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007120828A Active JP4412675B2 (en) 2007-05-01 2007-05-01 Static elimination transport apparatus and static elimination method during conveyance

Country Status (4)

Country Link
JP (1) JP4412675B2 (en)
KR (1) KR100980280B1 (en)
CN (1) CN101299899A (en)
TW (1) TW200847853A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010262777A (en) * 2009-04-30 2010-11-18 Takenaka Hiroo Method of eliminating static electricity, and static eliminator
US9064920B2 (en) * 2012-07-22 2015-06-23 Varian Semiconductor Equipment Associates, Inc. Electrostatic charge removal for solar cell grippers
CN102869179B (en) * 2012-09-20 2016-10-05 深圳市华星光电技术有限公司 A kind of piler and the static eraser for piler
CN104176431A (en) * 2013-05-28 2014-12-03 北京中电科电子装备有限公司 Workpiece transmission device with electrostatic elimination function
JP6268384B2 (en) * 2014-03-28 2018-01-31 東京エレクトロン株式会社 Substrate processing equipment
US9839106B2 (en) * 2014-07-23 2017-12-05 Moxtek, Inc. Flat-panel-display, bottom-side, electrostatic-dissipation
US10524341B2 (en) 2015-05-08 2019-12-31 Moxtek, Inc. Flowing-fluid X-ray induced ionic electrostatic dissipation
CN107636820B (en) * 2015-06-04 2022-01-07 应用材料公司 Transparent electrostatic carrier
CN105873343B (en) * 2016-01-29 2019-01-11 福建省依新汽车用品有限公司 Mobile object is discharged without fretting wear over the ground eliminates electrostatic method
CN106507572B (en) * 2016-10-31 2018-06-08 京东方科技集团股份有限公司 A kind of baseplate carrier and base plate processing device
KR102204959B1 (en) * 2017-11-30 2021-01-19 세메스 주식회사 Transferring Apparatus for Fabricating Integrated circuit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3260683B2 (en) * 1998-02-23 2002-02-25 鹿児島日本電気株式会社 Substrate transfer device
JP2002270668A (en) * 2001-03-13 2002-09-20 Nikon Corp Substrate transfer apparatus and aligner

Also Published As

Publication number Publication date
KR20080097347A (en) 2008-11-05
CN101299899A (en) 2008-11-05
TW200847853A (en) 2008-12-01
KR100980280B1 (en) 2010-09-06
JP2008277181A (en) 2008-11-13

Similar Documents

Publication Publication Date Title
JP4412675B2 (en) Static elimination transport apparatus and static elimination method during conveyance
JP4208870B2 (en) Surface treatment equipment for long objects such as films
KR102087124B1 (en) Apparatus And Method For Separating Plates
JP2004299814A (en) Method and apparatus for manufacturing static-eliminated insulating substrate
JP4273270B2 (en) Electrostatic levitation transfer device and robot with electrostatic levitation transfer device
JP2006248627A (en) Method and device for conveying substrate
JP7208733B2 (en) Conveyor system
JP2000025948A5 (en) Electrostatic levitation transfer device and robot with electrostatic levitation transfer device
US10766713B2 (en) Substrate carrier apparatus and liquid crystal display manufacturing device
JP4444846B2 (en) Manufacturing equipment for controlling capacitance
KR101124035B1 (en) Atmosphere cleaning device
JP5572522B2 (en) Static elimination dust removal equipment
JP6022933B2 (en) Substrate processing apparatus and substrate processing method
JP6808395B2 (en) Board processing equipment
JP3880439B2 (en) Substrate transfer device
CN109755154B (en) Substrate processing apparatus and film forming apparatus
JP4421597B2 (en) Substrate transfer device
JP2012195362A (en) Substrate transfer device
WO2023041653A1 (en) A method of handling a vacuum insulated glass unit assembly
KR20140124617A (en) Ion implantation apparatus and ion implantation method
KR20100059354A (en) Apparatus and method for treating substrate
JP4701756B2 (en) Manufacturing method of liquid crystal display device
JP4133861B2 (en) Static elimination device for blasting
JP2004211123A (en) Device for irradiating charged particle
JP2008078268A (en) Apparatus and method for processing substrate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4412675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4