JP4411057B2 - Arsenic removal method from smoke ash - Google Patents

Arsenic removal method from smoke ash Download PDF

Info

Publication number
JP4411057B2
JP4411057B2 JP2003400224A JP2003400224A JP4411057B2 JP 4411057 B2 JP4411057 B2 JP 4411057B2 JP 2003400224 A JP2003400224 A JP 2003400224A JP 2003400224 A JP2003400224 A JP 2003400224A JP 4411057 B2 JP4411057 B2 JP 4411057B2
Authority
JP
Japan
Prior art keywords
arsenic
smoke ash
iron
solution
iron arsenate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003400224A
Other languages
Japanese (ja)
Other versions
JP2005161123A (en
Inventor
博 宮川
宏則 立岩
義治 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2003400224A priority Critical patent/JP4411057B2/en
Publication of JP2005161123A publication Critical patent/JP2005161123A/en
Application granted granted Critical
Publication of JP4411057B2 publication Critical patent/JP4411057B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、煙灰からの砒素除去方法に関するものである。   The present invention relates to a method for removing arsenic from smoke ash.

従来、製錬所、例えば、銅製錬所においては、煤煙等による環境汚染が問題となっており、排出される亜硫酸ガス,粉塵,砒素等の削減が強化されている。このような亜硫酸ガスの排出規制に伴い、新たに砒素を含む大量の煙灰が発生し、この煙灰の処理が問題となっている。煙灰中の砒素を除去する方法として、煙灰から砒素を酸浸出し、この浸出液を鉄イオンを含む酸性水溶液と混合し、90℃に加温して沈殿させ、砒酸鉄の結晶として取り出すことで、煙灰から砒素を除去する方法が知られている(例えば、非特許文献1参照)。   Conventionally, in a smelter, for example, a copper smelter, environmental pollution due to smoke or the like has been a problem, and reduction of sulfurous acid gas, dust, arsenic, and the like emitted has been strengthened. Along with the emission regulation of sulfurous acid gas, a large amount of smoke ash containing arsenic is newly generated, and the treatment of this smoke ash has become a problem. As a method of removing arsenic in the smoke ash, acid leaching of arsenic from the smoke ash, mixing this leaching solution with an acidic aqueous solution containing iron ions, precipitating by heating to 90 ° C., and taking it out as iron arsenate crystals, A method for removing arsenic from smoke ash is known (for example, see Non-Patent Document 1).

D. Filippou, P. Demopoulos著 "Arsenic Immobilization by Controlled Scorodite Precipitation" JOM Dec., 1997, p. 52-55D. Filippou, P. Demopoulos "Arsenic Immobilization by Controlled Scorodite Precipitation" JOM Dec., 1997, p. 52-55

ところで、非特許文献1の方法は、砒酸鉄を結晶として取り出す際に、pH4以下の範囲で、砒素の浸出液に鉄イオンを含む酸性水溶液を複数回に分けて少しずつ添加することによりpHが段階的に僅かずつ上がるように制御する必要があった。このとき、鉄イオンを含む酸性水溶液やアルカリ水溶液を添加してpH調整を行うが、pHが急速に上がると、不安定で安全に投棄することが難しい非晶質の砒酸鉄が沈殿してしまう。このため、上記方法は、結晶化のためのpH管理が不可欠で非常に煩雑な手間が掛かるという問題があった。   By the way, in the method of Non-Patent Document 1, when iron arsenate is taken out as a crystal, the pH is adjusted by adding an acidic aqueous solution containing iron ions to the arsenic leachate in a plurality of times in a range of pH 4 or less. Therefore, it was necessary to control so that it gradually increased. At this time, the pH is adjusted by adding an acidic aqueous solution or an alkaline aqueous solution containing iron ions, but if the pH rises rapidly, amorphous iron arsenate that is unstable and difficult to dispose of safely precipitates. . For this reason, the above-mentioned method has a problem that pH control for crystallization is indispensable and takes a very complicated time.

本発明は、上記に鑑みてなされたものであって、非晶質の砒酸鉄を結晶化させるためのpH管理が不要で、煙灰から安定した砒素を極めて簡単に除去することが可能な煙灰からの砒素除去方法を提供することを目的とする。   The present invention has been made in view of the above, and does not require pH control for crystallizing amorphous iron arsenate, and from smoke ash capable of removing stable arsenic from smoke ash very easily An object of the present invention is to provide a method for removing arsenic.

上記の目的を達成するために、本発明の請求項1に係る煙灰からの砒素除去方法は、砒素を含む煙灰から酸溶液により砒素を浸出する浸出工程と、浸出した浸出液に鉄イオンを含む酸性水溶液を混合して非晶質の砒酸鉄を沈殿させる沈殿反応工程と、該混合液を加温して前記非晶質の砒酸鉄を結晶化する結晶化工程と、を備え、前記混合液を濾過して前記結晶化された砒酸鉄を除去することを特徴とする。   To achieve the above object, a method for removing arsenic from smoke ash according to claim 1 of the present invention includes a leaching step of leaching arsenic from ash containing arsenic with an acid solution, and an acid containing iron ions in the leached leachate. A precipitation reaction step in which an aqueous solution is mixed to precipitate amorphous iron arsenate; and a crystallization step in which the mixed solution is heated to crystallize the amorphous iron arsenate. The crystallized iron arsenate is removed by filtration.

請求項1の発明によれば、浸出液に鉄イオンを含む酸性水溶液を混合した後は、pH調整等、特別の処理が不要であるので、煙灰から砒素を極めて簡単に除去することができる。   According to the first aspect of the present invention, after the acidic aqueous solution containing iron ions is mixed with the leachate, arsenic can be removed very easily from the smoke ash because no special treatment such as pH adjustment is required.

また、請求項2に係る煙灰からの砒素除去方法は、上記の発明において、前記結晶化工程は、鉄と砒素のモル比を1〜1.5、砒素濃度を0.1g/L以上の条件で開始し、80〜95℃に加温した加温状態で所定時間放置することを特徴とする。   According to a second aspect of the present invention, there is provided a method for removing arsenic from smoke ash. In the above invention, the crystallization step is performed under such conditions that the molar ratio of iron to arsenic is 1 to 1.5 and the arsenic concentration is 0.1 g / L or more. It is characterized in that it is left for a predetermined time in a heated state heated to 80 to 95 ° C.

請求項2の発明によれば、浸出液に鉄イオンを含む酸性水溶液を混合した後は、混合液を加温状態で所定時間放置するだけでよいので非常に手間を省略することができる。   According to the second aspect of the present invention, after the acidic aqueous solution containing iron ions is mixed with the leachate, it is only necessary to leave the mixture in a heated state for a predetermined time, so that labor can be saved greatly.

また、請求項3に係る煙灰からの砒素除去方法は、上記の発明において、前記酸溶液は硫酸であり、前記鉄イオンを含む酸性水溶液は、硫酸第二鉄の水溶液であることを特徴とする。   The method for removing arsenic from smoke ash according to claim 3 is characterized in that, in the above invention, the acid solution is sulfuric acid, and the acidic aqueous solution containing iron ions is an aqueous solution of ferric sulfate. .

請求項3の発明によれば、安価な酸を利用して煙灰から砒素を浸出することができる。   According to the invention of claim 3, arsenic can be leached from the smoke ash using an inexpensive acid.

また、請求項4に係る煙灰からの砒素除去方法は、上記の発明において、前記結晶化工程は、種結晶を添加することを特徴とする。   The arsenic removal method from smoke ash according to claim 4 is characterized in that, in the above invention, the crystallization step adds a seed crystal.

請求項4の発明によれば、種結晶を添加することによって前記砒酸鉄の結晶化に要する時間を調整できるので、処理コストと処理時間とを考慮して煙灰中における砒素を除去することができる。   According to the invention of claim 4, since the time required for crystallization of the iron arsenate can be adjusted by adding a seed crystal, arsenic in the smoke ash can be removed in consideration of processing cost and processing time. .

本発明にかかる煙灰からの砒素除去方法は、非晶質の砒酸鉄を結晶化させるためのpH管理が不要で、煙灰から極めて簡単に砒素を除去することができるという効果を奏する。   The method for removing arsenic from smoke ash according to the present invention does not require pH control for crystallizing amorphous iron arsenate, and has the effect of being able to remove arsenic from smoke ash very easily.

以下に添付図面を参照して、本発明に係る煙灰からの砒素除去方法の好適な実施の形態を詳細に説明する。   Exemplary embodiments of a method for removing arsenic from smoke ash according to the present invention will be described below in detail with reference to the accompanying drawings.

(実施の形態)
図1は、本発明の煙灰からの砒素除去方法を示すフローチャートである。本発明方法においては、先ず、硫酸溶液(濃度0.2mol/L)を用いて煙灰から砒素を浸出する(ステップS10)。次に、浸出した酸性の浸出液をろ過し、固液分離する(ステップS12)。得られた残渣は、浮選処理により尾鉱(鉛)と精鉱(銅)とに選別され、尾鉱からは鉛が、精鉱からは銅が、夫々回収される。
(Embodiment)
FIG. 1 is a flowchart showing a method for removing arsenic from smoke ash according to the present invention. In the method of the present invention, first, arsenic is leached from the smoke ash using a sulfuric acid solution (concentration 0.2 mol / L) (step S10). Next, the leached acidic leachate is filtered and separated into solid and liquid (step S12). The obtained residue is sorted into tailings (lead) and concentrates (copper) by flotation, and lead is recovered from the tailings and copper is recovered from the concentrates.

一方、ろ過された砒素を含む浸出液は、硫酸第二鉄水溶液(鉄イオン(Fe3+)濃度80〜90g/L)を用いて沈殿反応によって砒酸鉄を沈殿させる(ステップS14)。この沈殿反応工程は、pH1.0〜1.5の硫酸第二鉄(Fe2(SO4)3)水溶液を、鉄と砒素のモル比が1〜1.5となるようにpH1.0〜1.5の浸出液に添加し、砒素濃度が0.1g/L以上の条件で開始する。このとき、図2に模式的に示すように、固定された砒酸鉄(FeAsO4・2H2O)は、当初は混合液Lm中に非晶質Amとして沈殿する。 On the other hand, the filtered leachate containing arsenic precipitates iron arsenate by a precipitation reaction using an aqueous ferric sulfate solution (iron ion (Fe 3+ ) concentration of 80 to 90 g / L) (step S14). In this precipitation reaction step, a ferric sulfate (Fe 2 (SO 4) 3) aqueous solution having a pH of 1.0 to 1.5 is adjusted to a pH of 1.0 to 1 so that the molar ratio of iron to arsenic is 1 to 1.5. No. 5 is added to the leachate, and the process is started under the condition that the arsenic concentration is 0.1 g / L or more. At this time, as schematically shown in FIG. 2, the fixed iron arsenate (FeAsO 4 .2H 2 O) initially precipitates as amorphous Am in the mixed solution Lm.

そして、砒素を含む浸出液と硫酸第二鉄水溶液の混合液を80〜95℃に加温し、沈殿した砒酸鉄を結晶化する(ステップS16)。このとき、この加温状態において、固定された非晶質Amの砒酸鉄(FeAsO4・2H2O)が、混合液Lm中において経時的に酸に溶け難く安定した結晶Crに改質され、図3に模式的に示す結晶Crの沈殿となる。   Then, the mixture of the leaching solution containing arsenic and the aqueous ferric sulfate solution is heated to 80 to 95 ° C. to crystallize the precipitated iron arsenate (step S16). At this time, in this heated state, the fixed amorphous Am iron arsenate (FeAsO4 · 2H2O) is modified into a stable crystal Cr which hardly dissolves in acid with time in the mixed solution Lm, and is shown in FIG. This is a precipitation of the crystalline Cr schematically shown.

この結晶化工程においては、鉄酸化菌によって鉄スクラップを酸化して作った水酸化第二鉄を硫酸処理して得られる硫酸第二鉄を用いると、硫酸第二鉄を工業的に非常に安価に入手することができる。また、結晶化工程は、種結晶(FeAsO4・2H2O)を混合液Lm中に添加すると、砒酸鉄の結晶化に要する時間を調整することができるので好ましい。種結晶の添加量としては、50〜150g/L程度が好ましい。   In this crystallization process, ferric sulfate obtained by oxidizing ferric hydroxide produced by oxidizing iron scrap with iron-oxidizing bacteria is used, and ferric sulfate is industrially very inexpensive. Can be obtained. In the crystallization step, it is preferable to add seed crystals (FeAsO4 · 2H2O) to the mixed solution Lm because the time required for crystallization of iron arsenate can be adjusted. The amount of seed crystals added is preferably about 50 to 150 g / L.

このようにして結晶化処理が終了したら、混合液Lmをろ過する(ステップS18)。そして、酸に溶け難く安定した砒酸鉄(FeAsO4・2H2O)結晶を回収することにより、煙灰に含まれていた砒素が除去される。このとき、砒酸鉄(FeAsO4・2H2O)の結晶は、酸に溶け難く安定していることからろ過性が良いので、効率良く混合液Lmから分離することができる。   When the crystallization process is thus completed, the mixed solution Lm is filtered (step S18). Then, by recovering stable iron arsenate (FeAsO4 · 2H2O) crystals which are hardly dissolved in acid, arsenic contained in the smoke ash is removed. At this time, the crystals of iron arsenate (FeAsO4 · 2H2O) are hardly soluble in acid and stable, and thus have good filterability, and therefore can be efficiently separated from the mixed solution Lm.

一方、砒酸鉄(FeAsO4・2H2O)の結晶をろ過して得られる脱砒液は、溶媒抽出によって銅溶液と粗亜鉛液とに分離され、銅溶液は電解工程によって銅が回収される。粗亜鉛液は、一次中和処理された後、固液分離されて残液と非晶質の砒素を含む鉄・砒素沈殿物とに分けられ、残液は所定の処理が施される。そして、非晶質の砒素を含む鉄・砒素沈殿物は、再度、浸出液に加えられ、ステップS14の結晶化処理が施される。   On the other hand, the dearsenic solution obtained by filtering the crystals of iron arsenate (FeAsO4 · 2H2O) is separated into a copper solution and a crude zinc solution by solvent extraction, and copper is recovered from the copper solution by an electrolysis process. The crude zinc solution is subjected to a primary neutralization treatment and then solid-liquid separation to divide the residue into an iron / arsenic precipitate containing amorphous arsenic, and the residue is subjected to a predetermined treatment. Then, the iron / arsenic precipitate containing amorphous arsenic is added again to the leaching solution, and the crystallization process in step S14 is performed.

以上のように、本発明方法によれば、煙灰から砒素を酸浸出した浸出液に硫酸第二鉄水溶液を添加した後は、pH調整を行うことなく加温状態にするだけで、非晶質の砒酸鉄が、酸に溶け難く安定した結晶の砒酸鉄に改質されるので、煙灰から安定した砒素を非常に簡単、かつ、安価に回収することができる。   As described above, according to the method of the present invention, after the aqueous ferric sulfate solution is added to the leachate obtained by acid leaching of arsenic from the smoke ash, the amorphous state can be obtained simply by heating to a heated state without adjusting the pH. Since iron arsenate is reformed into stable crystalline iron arsenate that is hardly soluble in acid, stable arsenic can be recovered from smoke ash very easily and inexpensively.

硫酸溶液を用いて煙灰から砒素を浸出し、ろ過して得たpH1.0の浸出液に、pH1.0の硫酸第二鉄水溶液(鉄イオン(Fe3+)濃度80g/L)を、鉄と砒素のモル比が1〜1.5となるように添加し、砒素濃度が10g/L以上の条件下で、混合液を95℃に加温して非晶質の砒酸鉄を結晶化した。このとき、混合後、3,9,12,22時間後の各時点で混合液中の沈殿をサンプリングし、X線結晶回折装置により回折角と回折強度(ピーク比)との関係を測定した。その結果を図4−1〜図4−4に示す。 Leaching arsenic from smoke ash using a sulfuric acid solution, and adding the pH 1.0 leachate obtained by filtration to a ferric sulfate aqueous solution (iron ion (Fe 3+ ) concentration 80 g / L) Arsenic was added so that the molar ratio was 1 to 1.5, and the mixture was heated to 95 ° C. under the condition that the arsenic concentration was 10 g / L or more to crystallize amorphous iron arsenate. At this time, after mixing, the precipitate in the mixed solution was sampled at each time point after 3, 9, 12, and 22 hours, and the relationship between the diffraction angle and the diffraction intensity (peak ratio) was measured by an X-ray crystal diffractometer. The results are shown in FIGS.

図4−1に示す結果から明らかなように、混合後3時間の場合には、沈殿が非晶質の砒酸鉄からなることを示すように、回折強度の分布が緩やかで、結晶に起因したピークが見られない。これに対し、混合後9時間経過すると、図4−2に示すように、回折角が15°〜30°に亘る範囲に回折強度が突出し、砒酸鉄の結晶の存在を示すピークが発生し始める。そして、混合後12時間以上経過すると、図4−2及び図4−4に示すように、回折角を測定した全範囲に亘って回折強度が突出し、特に回折角が15°〜30°に亘る範囲においては、砒酸鉄の結晶の存在を示す急峻なピークが出現する。これにより、混合液においては、非晶質からなる砒酸鉄(FeAsO4・2H2O)の沈殿が、混合液中において、経時的に酸に溶け難く安定した結晶の沈殿に改質されることが分かった。   As is apparent from the results shown in FIG. 4-1, in the case of 3 hours after mixing, the distribution of diffraction intensity was gentle and was attributed to crystals, indicating that the precipitate was composed of amorphous iron arsenate. There is no peak. On the other hand, when 9 hours have elapsed after mixing, as shown in FIG. 4B, the diffraction intensity protrudes in a range where the diffraction angle ranges from 15 ° to 30 °, and a peak indicating the presence of iron arsenate crystals starts to appear. . And when 12 hours or more pass after mixing, as shown to FIGS. 4-2 and 4-4, diffraction intensity protrudes over the whole range which measured the diffraction angle, and especially a diffraction angle covers 15 degrees-30 degrees. In the range, a steep peak indicating the presence of iron arsenate crystals appears. As a result, it was found that in the mixed solution, the precipitate of amorphous iron arsenate (FeAsO4 · 2H2O) was modified into a stable crystalline precipitate that hardly dissolves in acid over time in the mixed solution. .

ここで、本発明方法においては、煙灰から砒素を酸浸出した浸出液に硫酸第二鉄水溶液を添加した混合液に種結晶を添加すると、砒酸鉄の結晶化に要する時間が加速される。このため、本発明方法においては、種結晶を使用することにより、砒酸鉄の結晶化に要する時間を調整することができる。図5−1〜図5−3は、種結晶を種々の量添加した場合における、反応時間(hr)と混合液中における砒素濃度(mg/L)との関係を、混合液の初期pHが1.0,1.25,1.5の場合について測定した図である。   Here, in the method of the present invention, when a seed crystal is added to a mixture obtained by adding ferric sulfate aqueous solution to a leachate obtained by leaching arsenic from smoke ash, the time required for crystallization of iron arsenate is accelerated. For this reason, in the method of the present invention, the time required for crystallization of iron arsenate can be adjusted by using a seed crystal. 5-1 to 5-3 show the relationship between the reaction time (hr) and the arsenic concentration (mg / L) in the mixed solution when various amounts of seed crystals are added. It is the figure measured about the case of 1.0, 1.25, 1.5.

図5−1〜図5−3に示す結果から明らかなように、種結晶が多くなる程、非晶質からなる砒酸鉄の沈殿が、早く結晶化することが分かる。従って、本発明方法においては、煙灰から砒素を酸浸出した浸出液に硫酸第二鉄水溶液を添加した混合液に種結晶を添加することによって、非晶質からなる砒酸鉄の結晶化に要する時間を調整することができる。このとき、pH値が小さい程、種結晶を添加することの効果は大きいが、pH値を小さくする程、後述するように砒酸鉄結晶除去後における溶液のpH調整のための費用が嵩んでしまう。   As is apparent from the results shown in FIGS. 5-1 to 5-3, it can be seen that the more seed crystals, the faster the precipitation of amorphous iron arsenate crystallizes. Therefore, in the method of the present invention, the time required for crystallization of amorphous iron arsenate is obtained by adding seed crystals to a mixture obtained by adding ferric sulfate aqueous solution to a leachate obtained by acid leaching of arsenic from smoke ash. Can be adjusted. At this time, the smaller the pH value, the greater the effect of adding the seed crystal, but the lower the pH value, the higher the cost for adjusting the pH of the solution after removing the iron arsenate crystals, as will be described later. .

ここで、本発明方法によって結晶化された砒酸鉄(FeAsO4・2H2O)に関する混合液からの除去率と安定性について調べ、その結果を表1に示した。用いた試験溶液(浸出液)は、表1に示すように、初期pHが0.5,1.0,1.5の3種類を用い、種結晶を45〜190g/L添加すると共に、鉄と砒素のモル比が1.3〜1.5となるように硫酸第二鉄水溶液を添加し、砒素濃度が15g/Lの条件下で、混合液を95℃に加温して非晶質の砒酸鉄を結晶化した。このとき、除去率は、混合溶液中の砒素の何%が砒酸鉄結晶として沈殿除去された割合(%)を示す。また、安定性は、前記非特許文献に開示されたように、結晶化された砒酸鉄に関し、常温、pH約5.0における砒素の浸出量(mg/L)がインデックスとして与えられる。   Here, the removal rate and stability of the iron arsenate (FeAsO4 · 2H2O) crystallized by the method of the present invention were examined, and the results are shown in Table 1. As shown in Table 1, the test solutions used (leachate) were three types having an initial pH of 0.5, 1.0, and 1.5, and 45 to 190 g / L of seed crystals were added. An aqueous ferric sulfate solution was added so that the molar ratio of arsenic was 1.3 to 1.5, and the mixture was heated to 95 ° C. under the condition that the arsenic concentration was 15 g / L. Iron arsenate was crystallized. At this time, the removal rate indicates the percentage (%) at which% of arsenic in the mixed solution is precipitated and removed as iron arsenate crystals. As disclosed in the above non-patent document, the stability is given as an index of the leaching amount of arsenic (mg / L) at room temperature and pH of 5.0 with respect to crystallized iron arsenate.

Figure 0004411057
Figure 0004411057

表1に示す結果から明らかなように、種結晶を添加する場合、初期pHが1.0であると、前記混合液における砒素の除去率(%)並びに砒素の浸出量(mg/L)の点で優れた効果が得られることが分かる。   As is apparent from the results shown in Table 1, when seed crystals are added, if the initial pH is 1.0, the arsenic removal rate (%) and the arsenic leaching amount (mg / L) in the mixed solution It turns out that the outstanding effect is acquired at a point.

以上のようにして非晶質の砒酸鉄を結晶化した混合液は、前述のように溶媒抽出によって銅溶液と粗亜鉛液とに分離されるが、溶媒抽出の際に酸化カルシウム(CaO)によってpH2に調整される。このため、煙灰1tの処理する際に要するpH調整剤(酸化カルシウム)の量(kg)を初期pHとの関係で求めたところ表2に示す結果が得られた。このとき、表2には、非晶質の砒酸鉄を結晶化した後における混合液の最終pH値を併せて示してある。   The mixed liquid obtained by crystallizing amorphous iron arsenate as described above is separated into a copper solution and a crude zinc liquid by solvent extraction as described above, but by the calcium oxide (CaO) during solvent extraction. pH 2 is adjusted. For this reason, when the amount (kg) of the pH adjuster (calcium oxide) required for treating the smoke ash 1t was determined in relation to the initial pH, the results shown in Table 2 were obtained. At this time, Table 2 also shows the final pH value of the mixed solution after crystallizing amorphous iron arsenate.

Figure 0004411057
Figure 0004411057

ここで、本発明方法においては、上述のように種結晶を添加するときには、初期pHが1.0であると、前記混合液における砒素の除去率(%)並びに砒素の浸出量(mg/L)の点で優れた効果が得られることが分かった。しかし、表2に示す結果から明らかなように、pH値を小さくすると、その分脱砒液のpH調整に要するpH調整剤(酸化カルシウム)の量が増え、pH調整のための費用が嵩んでしまう。このため、初期pHは、処理コストとの関係を考慮して決めることが望ましい。   Here, in the method of the present invention, when the seed crystal is added as described above, if the initial pH is 1.0, the arsenic removal rate (%) and the arsenic leaching amount (mg / L) in the mixed solution It was found that an excellent effect was obtained in terms of However, as is clear from the results shown in Table 2, when the pH value is reduced, the amount of the pH adjusting agent (calcium oxide) required for adjusting the pH of the dearsenic solution increases accordingly, and the cost for adjusting the pH increases. End up. For this reason, it is desirable to determine the initial pH in consideration of the relationship with the processing cost.

以上のように、本発明にかかる煙灰からの砒素除去方法は、砒素の除去に有用であり、特に、製錬所等において排出される煙灰から安定した砒素をpH調整等の特別な管理をすることなく容易に除去するのに適している。   As described above, the method for removing arsenic from smoke ash according to the present invention is useful for removing arsenic, and in particular, performs special management such as pH adjustment of stable arsenic from smoke ash discharged from a smelter or the like. Suitable for easy removal without.

本発明の煙灰からの砒素除去方法を示すフローチャートである。It is a flowchart which shows the arsenic removal method from the smoke ash of this invention. 浸出液と硫酸第二鉄水溶液との混合液に生ずる非晶質の砒酸鉄沈殿を模式的に示す図である。It is a figure which shows typically the amorphous iron arsenate precipitation which arises in the liquid mixture of a leaching solution and ferric sulfate aqueous solution. 浸出液と硫酸第二鉄水溶液との混合液に生ずる砒酸鉄結晶の沈殿を模式的に示す図である。It is a figure which shows typically the precipitation of the iron arsenate crystal | crystallization produced in the liquid mixture of a leaching solution and ferric sulfate aqueous solution. 浸出液と硫酸第二鉄水溶液とを混合後、3時間後の各時点で混合液中の沈殿をサンプリングし、X線結晶回折装置により回折角と回折強度(ピーク比)との関係を測定した図である。The figure which sampled the precipitation in a liquid mixture at each time after 3 hours after mixing a leachate and ferric sulfate aqueous solution, and measured the relationship between a diffraction angle and diffraction intensity (peak ratio) with the X-ray crystal diffractometer. It is. 同じく、9時間後における回折角と回折強度(ピーク比)との関係を測定した図である。Similarly, it is the figure which measured the relationship between the diffraction angle and diffraction intensity (peak ratio) after 9 hours. 同じく、12時間後における回折角と回折強度(ピーク比)との関係を測定した図である。Similarly, it is the figure which measured the relationship between the diffraction angle 12 hours later, and diffraction intensity (peak ratio). 同じく、22時間後における回折角と回折強度(ピーク比)との関係を測定した図である。Similarly, it is the figure which measured the relationship between the diffraction angle and diffraction intensity (peak ratio) after 22 hours. 種結晶を種々の量添加した場合における、反応時間(hr)と混合液中における砒素濃度(mg/L)との関係を、混合液の初期pHが1.0の場合について測定した図である。It is the figure which measured the relationship between reaction time (hr) and the arsenic density | concentration (mg / L) in a liquid mixture when the amount of seed crystals was added about the case where the initial pH of a liquid mixture is 1.0. . 同じく、混合液の初期pHが1.25の場合について測定した図である。Similarly, it is the figure measured about the case where the initial pH of a liquid mixture is 1.25. 同じく、混合液の初期pHが,1.5の場合について測定した図である。Similarly, it is the figure measured about the case where the initial pH of a liquid mixture is 1.5.

符号の説明Explanation of symbols

Am 非晶質
Cr 結晶
Lm 混合液
Am Amorphous Cr Crystal Lm Mixture

Claims (4)

砒素を含む煙灰から酸溶液により砒素を浸出する浸出工程と、
浸出した浸出液に鉄イオンを含む酸性水溶液を混合して非晶質の砒酸鉄を沈殿させる沈殿反応工程と、
該混合液を常圧下で加温して前記非晶質の砒酸鉄を結晶化する結晶化工程と、
を備え、前記混合液を濾過して前記結晶化された砒酸鉄を除去することを特徴とする煙灰からの砒素除去方法。
A leaching step of leaching arsenic from ash containing arsenic with an acid solution;
A precipitation reaction step in which an acidic aqueous solution containing iron ions is mixed with the leached leachate to precipitate amorphous iron arsenate;
A crystallization step of heating the mixture under normal pressure to crystallize the amorphous iron arsenate;
And removing the crystallized iron arsenate by filtering the mixed solution.
前記沈殿反応工程は、鉄と砒素のモル比が1〜1.5、砒素濃度が0.1g/L以上の条件で開始し、
前記結晶化工程は、前記混合液を80〜95℃に加温した加温状態で所定時間放置することを特徴とする請求項1に記載の煙灰からの砒素除去方法。
The precipitation reaction step is started under conditions where the molar ratio of iron to arsenic is 1 to 1.5 and the arsenic concentration is 0.1 g / L or more.
2. The method for removing arsenic from smoke ash according to claim 1, wherein in the crystallization step, the mixed solution is allowed to stand for a predetermined time in a heated state in which the mixture is heated to 80 to 95 ° C. 3.
前記酸溶液は硫酸であり、前記鉄イオンを含む酸性水溶液は、硫酸第二鉄の水溶液であることを特徴とする請求項2に記載の煙灰からの砒素除去方法。   The method for removing arsenic from smoke ash according to claim 2, wherein the acid solution is sulfuric acid, and the acidic aqueous solution containing iron ions is an aqueous solution of ferric sulfate. 前記結晶化工程は、種結晶を添加することを特徴とする請求項1または2に記載の煙灰からの砒素除去方法。   The method for removing arsenic from smoke ash according to claim 1 or 2, wherein the crystallization step includes adding a seed crystal.
JP2003400224A 2003-11-28 2003-11-28 Arsenic removal method from smoke ash Expired - Lifetime JP4411057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003400224A JP4411057B2 (en) 2003-11-28 2003-11-28 Arsenic removal method from smoke ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003400224A JP4411057B2 (en) 2003-11-28 2003-11-28 Arsenic removal method from smoke ash

Publications (2)

Publication Number Publication Date
JP2005161123A JP2005161123A (en) 2005-06-23
JP4411057B2 true JP4411057B2 (en) 2010-02-10

Family

ID=34724556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003400224A Expired - Lifetime JP4411057B2 (en) 2003-11-28 2003-11-28 Arsenic removal method from smoke ash

Country Status (1)

Country Link
JP (1) JP4411057B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108034830A (en) * 2017-12-24 2018-05-15 江西理工大学 A kind of method of valuable metal in Recovering Copper smelting ash

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4597107B2 (en) * 2006-03-02 2010-12-15 三井金属鉱業株式会社 Arsenic removing method and arsenic removing apparatus from arsenic containing body
JP3999805B1 (en) 2006-04-28 2007-10-31 Dowaメタルマイン株式会社 Arsenic-containing solution processing method
JP2008260683A (en) * 2006-04-28 2008-10-30 Dowa Metals & Mining Co Ltd Iron arsenate powder
KR20090051034A (en) * 2006-07-27 2009-05-20 도와 메탈스 앤드 마이닝 가부시끼가이샤 Iron arsenate powder
JP4185541B2 (en) * 2006-09-27 2008-11-26 Dowaメタルマイン株式会社 Manufacturing method of iron arsenic compound with good crystallinity
JP5156224B2 (en) * 2006-12-11 2013-03-06 Dowaメタルマイン株式会社 Manufacturing method of iron arsenic compounds
JP5102519B2 (en) * 2007-03-15 2012-12-19 Dowaメタルマイン株式会社 Arsenic-containing solid and its production method
JP4268196B2 (en) 2007-03-19 2009-05-27 日鉱金属株式会社 Method for producing scorodite
JP2009242223A (en) 2007-07-13 2009-10-22 Dowa Metals & Mining Co Ltd Method of treating diarsenic trioxide
WO2009011076A1 (en) * 2007-07-13 2009-01-22 Dowa Metals & Mining Co., Ltd. Method of treating nonferrous smelting intermediate product containing arsenic
JP5188296B2 (en) 2007-07-13 2013-04-24 Dowaメタルマイン株式会社 Method for treating copper arsenic compound
JP5188297B2 (en) * 2007-07-13 2013-04-24 Dowaメタルマイン株式会社 Method for processing non-ferrous smelting intermediates containing arsenic
JP4822445B2 (en) * 2007-07-13 2011-11-24 Dowaメタルマイン株式会社 Arsenic treatment method with seed crystals added
JP2009242935A (en) 2007-07-13 2009-10-22 Dowa Metals & Mining Co Ltd Method for alkali-treating substance containing arsenic
WO2009011073A1 (en) * 2007-07-13 2009-01-22 Dowa Metals & Mining Co., Ltd. Method of treating diarsenic trioxide
JP5188298B2 (en) 2007-08-09 2013-04-24 Dowaメタルマイン株式会社 Method for processing non-ferrous smelting intermediates containing arsenic
JP5107637B2 (en) 2007-08-24 2012-12-26 Dowaメタルマイン株式会社 Iron arsenate powder
JP4538481B2 (en) 2007-09-25 2010-09-08 日鉱金属株式会社 Method for producing scorodite and method for recycling liquid after synthesis of scorodite
JP4971933B2 (en) * 2007-10-02 2012-07-11 Dowaメタルマイン株式会社 Method for producing iron arsenic compound
JP4620100B2 (en) * 2007-10-23 2011-01-26 Jx日鉱日石金属株式会社 Manufacturing method and cleaning method of scorodite
JP4717917B2 (en) * 2008-10-06 2011-07-06 Jx日鉱日石金属株式会社 Manufacturing method and cleaning method of scorodite
JP2010202443A (en) * 2009-03-03 2010-09-16 Dowa Metals & Mining Co Ltd Iron arsenate powder and method for producing the same
JP2010285322A (en) * 2009-06-12 2010-12-24 Dowa Metals & Mining Co Ltd Method for obtaining crystalline scorodite from solution containing arsenic
JP5059081B2 (en) * 2009-10-26 2012-10-24 Jx日鉱日石金属株式会社 Method for producing scorodite and method for recycling liquid after synthesis of scorodite
JP2011168467A (en) * 2010-02-22 2011-09-01 Dowa Metals & Mining Co Ltd Method for producing crystalline scorodite
JP5645457B2 (en) * 2010-04-23 2014-12-24 Dowaメタルマイン株式会社 Method for producing crystalline iron arsenate raw material liquid from smoke ash
JP5578730B2 (en) * 2011-02-17 2014-08-27 国立大学法人九州大学 Arsenic treatment method
JP5848584B2 (en) * 2011-11-02 2016-01-27 Dowaメタルマイン株式会社 Arsenic leaching recovery method from non-ferrous smelting ash
JP5840920B2 (en) * 2011-11-02 2016-01-06 Dowaメタルマイン株式会社 Recovery method of arsenic from non-ferrous smelting ash
CN102642974B (en) * 2012-05-07 2014-05-07 昆明理工大学 Method for treating high-acid high-chlorine waste water
JP5699988B2 (en) * 2012-06-12 2015-04-15 住友金属鉱山株式会社 Recovery method of rare earth elements
JP6193603B2 (en) * 2013-04-10 2017-09-06 Dowaメタルマイン株式会社 Method for producing scorodite from non-ferrous smelting ash
JP6102590B2 (en) * 2013-07-10 2017-03-29 住友金属鉱山株式会社 Method for producing scorodite
CN108358969A (en) * 2017-12-28 2018-08-03 红河砷业有限责任公司 A method of synthesizing benzyl arsenic acid with arsenic-containing smoke dust is smelted
CN108201676B (en) * 2018-01-23 2020-09-01 中南大学 Method for stabilizing ferric arsenate slag
CN109607872B (en) * 2019-01-07 2021-11-19 紫金矿业集团股份有限公司 Comprehensive utilization of arsenic-containing waste acid and safe arsenic disposal method
CN109574319B (en) * 2019-01-07 2021-11-19 紫金矿业集团股份有限公司 Arsenic fixing process for high-arsenic waste acid in non-ferrous metal smelting
CN113426805B (en) * 2021-06-22 2022-10-14 扬州杰嘉工业固废处置有限公司 Harmless treatment method for alkaline arsenate waste residues

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57201577A (en) * 1981-06-03 1982-12-10 Sumitomo Metal Mining Co Ltd Treatment of smelter smoke ash containing copper
ZA928157B (en) * 1991-10-25 1993-06-09 Sasox Processing Pty Ltd Extraction or recovery of metal values.
JP3213045B2 (en) * 1992-03-03 2001-09-25 三井鉱山株式会社 Removal method of arsenic contained in underground hot water
JPH08309310A (en) * 1995-05-18 1996-11-26 Jgc Corp Treatment method for incinerated fly ash containing heavy metal
JPH10128396A (en) * 1996-10-29 1998-05-19 Mitsubishi Heavy Ind Ltd Treatment of arsenic-containing sludge
JP4126415B2 (en) * 1998-03-31 2008-07-30 Dowaホールディングス株式会社 Method for removing and fixing arsenic present in iron sulfate solution
JP3756687B2 (en) * 1999-01-29 2006-03-15 同和鉱業株式会社 Method for removing and fixing arsenic from arsenic-containing solutions
JP2002316173A (en) * 2001-04-18 2002-10-29 Sony Corp Method for treating wastewater containing arsenic and hydrogen peroxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108034830A (en) * 2017-12-24 2018-05-15 江西理工大学 A kind of method of valuable metal in Recovering Copper smelting ash

Also Published As

Publication number Publication date
JP2005161123A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
JP4411057B2 (en) Arsenic removal method from smoke ash
JP5739350B2 (en) How to remove arsenic as scorodite
TW201739097A (en) Processing method for lithium ion battery scrap
TW201739923A (en) Processing method for lithium ion battery scrap
JP4268196B2 (en) Method for producing scorodite
AU2007216890B2 (en) Process for treating electrolytically precipitated copper
JP2010209384A (en) Method for recovering manganese
JP5867710B2 (en) Method for producing high-purity nickel sulfate and method for removing impurity element from solution containing nickel
JP6139990B2 (en) Arsenic solution treatment method
JP3052535B2 (en) Treatment of smelting intermediates
JPS59164639A (en) Separation of arsenic
JP5062111B2 (en) Method for producing high-purity arsenous acid aqueous solution from copper-free slime
JP2002121624A (en) Method for separating and removing zinc from solution of nickel sulfate
JP2009203082A (en) Method for producing high-purity nickel sulfate solution
JP2011132562A (en) METHOD FOR RECOVERING Co COMPOUND
JP2018177547A (en) Iron removal method of crude nickel sulfate solution
JP5028742B2 (en) Dust disposal method
JP7284596B2 (en) Method for producing gypsum dihydrate
JP3823307B2 (en) Method for producing high purity cobalt solution
JP3466040B2 (en) Method for collecting valuables from dust discharged from high-temperature processing furnace
JP2009167442A (en) Method for separating arsenic and antimony in arsenic acid aqueous solution
JP3914814B2 (en) Method for treating fly ash containing calcium
JP2005288413A (en) Method for treating flying-ash leachate
JP3208746B2 (en) Arsenic removal method for nickel electrolyte
JP6828400B2 (en) Manufacturing method of scrodite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091116

R150 Certificate of patent or registration of utility model

Ref document number: 4411057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term