JP4126415B2 - Method for removing and fixing arsenic present in iron sulfate solution - Google Patents

Method for removing and fixing arsenic present in iron sulfate solution Download PDF

Info

Publication number
JP4126415B2
JP4126415B2 JP12521198A JP12521198A JP4126415B2 JP 4126415 B2 JP4126415 B2 JP 4126415B2 JP 12521198 A JP12521198 A JP 12521198A JP 12521198 A JP12521198 A JP 12521198A JP 4126415 B2 JP4126415 B2 JP 4126415B2
Authority
JP
Japan
Prior art keywords
arsenic
iron
sulfate solution
copper
iron sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12521198A
Other languages
Japanese (ja)
Other versions
JPH11277075A (en
Inventor
豊 芝地
健作 福田
薫 猿田
良一 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP12521198A priority Critical patent/JP4126415B2/en
Publication of JPH11277075A publication Critical patent/JPH11277075A/en
Application granted granted Critical
Publication of JP4126415B2 publication Critical patent/JP4126415B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、硫酸鉄溶液中に存在する砒素の除去及び固定方法に関するものである。
【0002】
【従来の技術】
従来から、硫酸鉄溶液中に存在する砒素の除去法としては、多くの技術が提案され、実施されているものもある。その主な方法としては、
(1)硫酸鉄あるいは水酸化鉄との共沈及び/又は吸着法。
(2)銅イオンを共存させ電解もしくは置換による砒化銅沈殿法。
(3)硫化水素,硫化ソーダ等の硫化剤を用いた硫化物沈殿法、などがある。
【0003】
上記(1)の方法は、更に次の2つの方法に大別される。
(イ)砒素を含む硫酸鉄溶液に消石灰等の中和剤を添加し、大気圧下で砒素鉄化合物沈殿を生成させる方法。
【0004】
(ロ)砒素を含む溶液または固形分と、鉄を含む溶液または固形分とをオートクレーブに投入し、200℃程度まで昇温して結晶性の鉄砒素化合物を沈殿させると同時に、亜鉛や銅等の元素を液中に浸出させる熱力学的な沈殿方法。
【0005】
上記(イ)の方法は極めて一般的であり、砒素を含む硫酸鉄溶液に中和剤を添加しpHを4以上とし、砒酸鉄あるいは水酸化鉄との共沈及び/又は吸着により除去している。このとき、砒素が五価でなく、及び/又は鉄が二価の場合は、空気,酸素及び/又は酸化剤を用いて酸化処理を行う。
【0006】
この方法によれば、砒素は有効に除去されるが、中和剤の使用に伴い最終殿物量が膨大になっていしまうという問題がある。また、この方法で生成された殿物処理に膨大な費用がかかる。
【0007】
次に、上記(ロ)は装置をよりコンパクトにするための方法で、砒素の固定と有価金属の回収を同時にかつ簡単なプロセスで行うことができる方法である。
【0008】
しかしながら、実際の硫酸鉄溶液、例えば特に湿式亜鉛製錬の亜鉛浸出残渣のSO還元あるいは高温高酸浸出から得られる硫酸鉄溶液の場合は、含有される砒素に対して圧倒的に多量の鉄を含んでいるのが常で、直接該方法を用いて砒素を分離固定することはできなかった。
【0009】
上記(2)の方法は、酸性溶液中に存在する砒素と共存する銅イオンを還元によって砒化銅として沈殿除去するものであるが、本反応で得られる最終沈殿物の砒化銅は内部に多量の銅は勿論、インジウムやガリウム等の有価金属も同時に沈殿させてしまう。
【0010】
上記(3)の方法もまた、上記(2)と同様である。この方法の場合、最終殿物の廃棄に際して特公昭56−69627号公報記載の砒素の溶出を防止する技術が提案されているが、有価金属損失の問題は解消されていない。
【0011】
近年、いわゆる環境問題への関心の高まりから、上記のような技術の提案がなされているが、脱砒素及び砒素の固定技術が実操業に取り入れられた例は知られていない。
上記の各プロセスにはそれぞれ各所定条件下では優れた技術であるが、それらを工業的に実施することは、初期条件の相違あるいは経済的な問題から極めて困難である。
【0012】
【発明が解決しようとする課題】
本発明は、上記のような従来技術に鑑みてなされたものであり、硫酸鉄溶液,例えば特に湿式亜鉛製錬の亜鉛浸出残渣のSO還元あるいは高温高酸浸出から得られる硫酸鉄溶液中に存在する砒素をインジウム,ガリウム等の有価金属を損失することなく系内から除去すると共に濃縮し、更には鉄との安定な結晶性化合物として固定する方法を確立し、実際の湿式亜鉛製錬プロセスへ適応させることができる技術を提案するものである。
【0013】
【課題を解決するための手段】
第1の発明は、硫酸鉄溶液中に存在する砒素を鉄との安定な結晶性でかつ不溶出性の鉄・砒素化合物として除去し、固定することを特徴とする硫酸鉄溶液中に存在する砒素の除去及び固定方法である。
【0014】
第2の発明は、砒素含有硫酸鉄溶液に脱砒素剤を添加し砒素を除去する第1工程と、第1工程で得られた砒素濃縮パルプのFe/As比,温度及び酸素分圧を所定条件に調整することにより結晶性の安定な鉄・砒素化合物として砒素を固定する第2の工程と、からなることを特徴とする硫酸鉄溶液中に存在する砒素の除去及び固定方法を提供するものである。
【0015】
上記発明において、脱砒素剤は亜鉛末,鉄粉等の金属粉、あるいは水硫化ソーダ,硫化水素等の硫化剤であり、第1工程での金属粉を添加し脱砒素反応時の液温度が40〜100℃で、酸化還元電位が−150mVに調整することが好ましく、硫化剤の場合は液の酸化還元電位が150mV程度であることが好ましいのである。
【0016】
上記発明において、必要に応じて使用する銅源は砒素を固定する第2工程から得られる溶液中に浸出された銅を用いることが好ましく、第2工程でのFe/As比が1〜3又は10以上であり、使用する鉄源は湿式亜鉛製錬の亜鉛浸出残渣のSO還元浸出から得られる硫酸鉄溶液が好ましいのである。
【0017】
上記発明における第2工程での反応温度は150〜200℃、酸素分圧は酸素を加え全圧で1.8〜2.0MPa(メガパスカル)が好ましく、上記硫酸鉄溶液は湿式亜鉛製錬の亜鉛浸出残渣のSO還元浸出から得られる砒素を含む溶液であることが好ましいのである。
【0018】
【作用】
以下、本発明を更に詳細に説明する。
本発明は次の2工程から構成され、図1は本発明に係る基本的なフローを示す概念図、図2は本発明に係る脱砒試薬として金属粉末還元剤を使用した場合の概念図、図3は本発明をSO還元あるいは高温高酸浸出及びヘマタイト法による亜鉛浸出残渣処理法に応用した場合のフロー図である。
【0019】
第1工程:砒素除去及び濃縮工程
本工程には2つの方式があり、いずれの方式を用いても差し支えない。生成残渣は2法とも沈降濾過性に優れているため、シックナー等で容易に濃縮分離が可能である。
【0020】
(A)脱砒素のために、還元剤すなわち亜鉛末や鉄粉等の金属粉末を使用する。脱砒素のみが目的の場合には特に必要ないが、この工程において、インジウム,ガリウム等の有価金属類を沈殿させたくない場合には、砒化銅の生成に必要な硫酸銅がモル比(銅/砒素)で2以上、好ましくは3以上存在していた方がよい。
【0021】
砒素は基本的には鉄と砒化鉄及び/又は単体砒素の形で沈殿し、銅存在下では砒化銅として優先的に沈殿する。
反応のpHは、還元剤の使用量の増大をいとわなければ、pH3以下のいかなる低pHでもよく、また温度は常温でも反応は進行するが、40℃以下では反応速度が極めて遅くなるので、好ましくは40〜100℃である。
【0022】
反応は酸化還元電位を調整しながら進行させる方がよく、飽和塩化銀電極で−150mV以下、好ましくは−200〜−210mVがよい。
【0023】
(B)砒素の濃縮には金属粉還元剤の代わりに硫化水素ガスのような硫化物を用いてもよい。このとき、砒素は硫化砒素の形で沈殿する。また、硫化剤使用の際は、飽和塩化銀電極で150mV程度の電位で反応を進行させるのがよい。
【0024】
第2工程:砒素固定及び銅浸出工程
第2工程は、第1工程の2法に対して共通である。すなわち、鉄源として2価あるいは3価の鉄を加え、鉄と砒素とのモル比(以下、Fe/Asあるいは砒鉄比という)が1以上となるように混合する。しかし、鉄と砒素の化合物は3<Fe/As<10の領域では沈殿形成の速度が遅くなるので、充分な砒素沈殿率を得るためには、好ましくは1<Fe/As<3あるいはFe/As>10となるように混合する。
【0025】
さらに、温度を150〜200℃程度、好ましくは200℃まで上げ、酸素を加え、全圧が概ね1.8〜2.0MPa(メガパスカル)となるように調整する。酸素の供給は鉄及び砒素の酸化に用いるもので、両者がFe(III)かつAs(V)のときには必要がない。この反応によって、砒素は鉄と結晶性の安定な化合物を作り、容易に濾過分離が可能となる。
【0026】
同時に、亜鉛や銅等の砒素あるいは鉄以外の元素は液中に浸出される。また、例えば特に湿式亜鉛製錬の亜鉛浸出残渣のSO還元あるいは高温高酸浸出から得られる硫酸鉄溶液中のように、連続的に脱砒素のための銅源を供給することが容易な場合には、この砒素固定後の液から銅を回収することは容易であるし、回収を行わずに脱砒素工程の銅源として繰り返し使用してもよい。
【0027】
銅源を繰り返し使用する場合のフローは、図2(金属粉末還元剤使用の概念図)に明示している。次に、本発明の実施の形態を実施例と図面により説明する。
【0028】
【発明の実施の形態】
実施例1
本実施例は、脱砒素試薬として亜鉛粉末を用いた実施例である。特に液中の銅濃度の調整は行っておらず、本発明の基本的な流れの実施例である。
砒素を含む硫酸鉄溶液(湿式亜鉛残渣のSO還元浸出とヘタマイト法による鉄処理の工程内における1段中和後液)を定量ポンプでオーバーフロー管付きの2lガラスビーカーに連続給液し、攪拌しながら溶液の酸化還元電位が飽和塩化銀電極で−210mVに一定になるように亜鉛粉末を添加して、連続的に脱砒試験を行った。また、液温度は60℃で、pHは2.7の条件で試験を行った。
本試験の条件では、溶液中の銅と砒素とのモル比は1.84で、砒素を砒化銅として沈殿させるには銅量は充分ではない条件であった。試験は、液のビーカー内滞留時間が1時間になるように給液量を調整し、液が最終ビーカーからオーバーフローし始めてから2時間後にサンプリングした。分析はオーバーフローパルプを瀘別分離して、濾液に対して行った。試験結果を表1に示す。溶液からの充分な砒素除去がなされた。一方で、インジウムの沈殿率が高く、こうしたレアメタルの回収を行う工程への適応は問題となる可能性がある。
【0029】
【表1】

Figure 0004126415
【0030】
上記反応を繰り返し行うことで得た脱砒素殿物パルプを適量回収した後に、鉄源として硫酸鉄溶液(湿式亜鉛残渣のSO還元浸出とヘタマイト法による鉄処理の工程内における1段中和後液)を加え、砒鉄比が概ね4となるように充分に混合した。混合後のパルプを定量ポンプで20lオートクレーブに連続給液し、攪拌しながら3Kg/cmで加圧し200℃まで加熱し、連続的に脱砒素試験を行った。オートクレーブの滞留時間を1.5時間とし、連続排出を開始してから3時間後に排出液をサンプリングし、反応後のパルプを濾別分離し濾液の分析を行った。その結果を表2に示す。鉄及び砒素を反応によって充分に沈殿させ、同時に有価金属である銅を液中に浸出させることができた。
【0031】
【表2】
Figure 0004126415
【0032】
実施例2
本実施例は、脱砒素試薬として亜鉛粉末を用い、かつ充分な量の銅を存在させた場合の実施例である。
砒素を含む硫酸鉄溶液(湿式亜鉛残渣のSO還元浸出とヘタマイト法による鉄処理の工程内における1段中和後液)を当工程内のシックナーオーバーフローからタンクに定量的に流し込み、タンク内の液滞留時間が1時間となるように調整した。また、銅源として硫酸銅溶液を反応元液銅濃度が概ね3.0g/lとなるように定量ポンプを用いて連続的に添加した。これは、SO還元あるいは高温高酸浸出においては、単体硫黄あるいは亜鉛精鉱の添加を行わないことで液中に意図的に銅を残すことができ、この際の銅濃度は2.5〜3.0g/l程度になることが確認されているからである。溶液は攪拌しながら酸化還元電位が飽和塩化銀電極で−210mVに一定になるように亜鉛粉末を添加して、連続的に脱砒試験を行った。
【0033】
試験源液は添加時点で70℃あり、反応を通じて加温の必要はなかった。本反応ではpH2.0でほぼ一定に保たれ、特に調整は必要なかった。また、本試験の場合元液の銅と砒素の比は3.6であり、砒素を砒化銅として沈殿させるのに充分な銅量が確認されていた。試験結果を表3に示す。溶液からの充分な砒素除去がなされた。また、同時にインジウムの沈殿率を充分に抑えることができた。これは、液中に砒化銅生成のための充分な銅が確保されているためであり、こうした場合は亜鉛末近傍における局部的な電位低下によるインジウムの沈殿物の生成を防ぐことができるからである。従って、インジウム等のレアメタル回収を伴う工程においては、本実施例のように元液中に充分な銅が存在していた方がよい。
【0034】
【表3】
Figure 0004126415
【0035】
上記脱砒素殿物に硫酸鉄溶液(湿式亜鉛残渣のSO還元浸出とヘタマイト法による鉄処理の工程内おける2段中和後液)を砒鉄比が概ね1.3となるように加え、混合後のパルプ3.5lを5lオートクレーブに送入し、攪拌しながら200℃まで加熱後、酸素分圧5Kg/cmで一定となるように酸素を加えながら3時間反応させた。反応後のパルプは濾別分離して濾液の分析を行った。その結果を表4に示す。鉄及び砒素を本反応によって充分に沈殿させ、同時に有価金属である銅を液中に浸出させることができた。また、反応後の液は高濃度の硫酸銅溶液であり、この溶液を再び砒素除去工程において銅源として用いても経済的に充分成り立つことが分る。
【0036】
【表4】
Figure 0004126415
【0037】
実施例3
本実施例は、脱砒素試薬として硫化剤を用いることもできることを示した実施例である。
砒素を含む硫酸鉄溶液(湿式亜鉛残渣のSO還元浸出とヘタマイト法による鉄処理の工程内における1段中和後液)1lをガラスビーカーに採取し、攪拌しながら溶液の酸化還元電位が飽和塩化銀電極で150mVに一定になるように硫化水素ガスをガラス製ボールフィルターで吹き込み、脱砒試験を行った。上記ビーカーで1時間反応後にサンプリングした。分析は反応後パルプを濾別分離して、濾液に対して行った。液温度は60℃で、pHは2.7の条件で試験を行った。試験結果を表5に示す。
【0038】
【表5】
Figure 0004126415
【0039】
上記試験を繰り返し行い、得られた適量の脱砒素殿物に硫酸鉄溶液(湿式亜鉛残渣のSO還元浸出とヘタマイト法による鉄処理の工程内における1段中和後液)を加え、砒鉄比が概ね4.5となるように調整混合し、混合後のパルプ3.5リットルを5lオートクレーブに送入し、攪拌しながら200℃まで加熱後、酸素分圧9Kg/cmで一定となるように酸素を加えながら1.5時間反応させた。反応後のパルプは濾別分離し濾液の分析を行った。その結果を表6に示す。鉄及び砒素を本反応によって充分に沈殿させ、同時に有価金属である銅を液中に浸出させることができた。本例のように、脱砒素(砒素濃縮)試薬として硫化剤を用いた場合でも、本発明は適用できる。
【0040】
【表6】
Figure 0004126415
【0041】
実施例4
実施例1〜3で得られた砒素と鉄を含有する不溶性結晶固体の環境安全性を確保するために、国で定めている埋め立て処分に関わる判定基準に準じて溶出試験を行った。
砒素と鉄を含有する不溶性の結晶固体と純水とを重量体積比10%の割合で混合し、その混合液が500ml以上となるようにしたものを試料液とし、常温(概ね20℃)常圧(概ね1気圧)で、予め振とう機を用いて6時間振とうした。試験後、分析はICP−MASS(誘導結合ブラズマ質量分析装置)で行った。その結果、砒素溶出値Tr〜0.07mg/1で規格値の0.15mg/1を満足した。
【0042】
【発明の効果】
数ある砒素除去及び固定方法の中で、この分野に応用される可能性をもち、特にコスト面で割りに合う方法が報告あるいは実施された例はない。しかしながら、湿式亜鉛製錬工程における亜鉛浸出残渣処理液中のように、そのままの脱砒素及び固定が困難な溶液に対し、本発明により開発された脱砒素技術を砒素の濃縮技術としても位置付ければ、コスト面でも折り合いのつくプロセスとして確立できる。例えば、湿式亜鉛残渣のSO還元あるいは高温高酸浸出とヘタマイト法による鉄処理の工程内においても、図3に示すように簡単にプロセスの中に組み込むことが出来る。
【図面の簡単な説明】
【図1】本発明に係る処理工程図の基本的概念図である。
【図2】本発明に係る処理工程図において脱砒素に際して金属粉末還元剤を用いた場合の概念図である。
【図3】本発明法をヘマタイト法に応用した実施例を示すフロー図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for removing and fixing arsenic present in an iron sulfate solution.
[0002]
[Prior art]
Conventionally, many techniques have been proposed and implemented as a method for removing arsenic present in an iron sulfate solution. As its main method,
(1) Coprecipitation and / or adsorption method with iron sulfate or iron hydroxide.
(2) Copper arsenide precipitation by electrolysis or substitution in the presence of copper ions.
(3) There is a sulfide precipitation method using a sulfurizing agent such as hydrogen sulfide and sodium sulfide.
[0003]
The method (1) is further roughly divided into the following two methods.
(A) A method in which a neutralizing agent such as slaked lime is added to an iron sulfate solution containing arsenic to produce an arsenic iron compound precipitate under atmospheric pressure.
[0004]
(B) A solution or solid content containing arsenic and a solution or solid content containing iron are put into an autoclave and heated to about 200 ° C. to precipitate a crystalline iron arsenic compound, and at the same time zinc, copper, etc. A thermodynamic precipitation method that leaches the elements in the liquid.
[0005]
The above method (a) is very general. A neutralizing agent is added to an iron sulfate solution containing arsenic so that the pH is 4 or more, and it is removed by coprecipitation and / or adsorption with iron arsenate or iron hydroxide. Yes. At this time, when arsenic is not pentavalent and / or iron is divalent, oxidation treatment is performed using air, oxygen, and / or an oxidizing agent.
[0006]
According to this method, arsenic is effectively removed, but there is a problem that the amount of final deposits becomes enormous with the use of a neutralizing agent. Moreover, enormous costs are required for processing the temples generated by this method.
[0007]
Next, the above (b) is a method for making the apparatus more compact, and is a method capable of simultaneously fixing arsenic and recovering valuable metals by a simple process.
[0008]
However, in the case of an actual iron sulfate solution, for example, an iron sulfate solution obtained from SO 2 reduction or high temperature high acid leaching of a zinc leaching residue, especially in wet zinc smelting, an overwhelmingly large amount of iron is contained in the arsenic contained. In general, arsenic could not be separated and fixed directly using this method.
[0009]
In the method (2), copper ions coexisting with arsenic present in the acidic solution are precipitated and removed as copper arsenide by reduction. However, the final precipitate copper arsenide obtained in this reaction contains a large amount of copper arsenide inside. Not only copper but also valuable metals such as indium and gallium are precipitated at the same time.
[0010]
The method (3) is the same as (2). In the case of this method, a technique for preventing arsenic elution described in Japanese Patent Publication No. 56-69627 has been proposed at the time of disposal of the final temple, but the problem of valuable metal loss has not been solved.
[0011]
In recent years, due to increasing interest in so-called environmental problems, the above-described techniques have been proposed. However, examples in which dearsenic and arsenic fixing techniques have been incorporated into actual operations are not known.
Each of the above processes is an excellent technique under each predetermined condition, but it is extremely difficult to implement them industrially due to differences in initial conditions or economic problems.
[0012]
[Problems to be solved by the invention]
The present invention has been made in view of the prior art as described above. In an iron sulfate solution, for example, an iron sulfate solution obtained from SO 2 reduction or high-temperature high acid leaching of a zinc leaching residue, particularly, wet zinc smelting. Establishing a method to remove and concentrate existing arsenic from the system without losing valuable metals such as indium and gallium, and to fix it as a stable crystalline compound with iron. It proposes a technology that can be adapted to.
[0013]
[Means for Solving the Problems]
A first invention exists in an iron sulfate solution characterized by removing and fixing arsenic present in an iron sulfate solution as a stable crystalline and non-eluting iron / arsenic compound with iron. This is a method for removing and fixing arsenic.
[0014]
In the second invention, the first step of removing arsenic by adding a dearsenic agent to the arsenic-containing iron sulfate solution, and the Fe / As ratio, temperature and oxygen partial pressure of the arsenic concentrated pulp obtained in the first step are predetermined. A second step of fixing arsenic as a stable crystalline iron / arsenic compound by adjusting to conditions, and a method for removing and fixing arsenic present in an iron sulfate solution, characterized by comprising: It is.
[0015]
In the above invention, the dearsenic agent is a metal powder such as zinc powder or iron powder, or a sulfurizing agent such as sodium hydrosulfide or hydrogen sulfide, and the liquid temperature during the dearsenic reaction is increased by adding the metal powder in the first step. It is preferable to adjust the redox potential to −150 mV at 40 to 100 ° C., and in the case of a sulfiding agent, the redox potential of the liquid is preferably about 150 mV.
[0016]
In the above invention, it is preferable to use copper leached in the solution obtained from the second step of fixing arsenic as the copper source used as necessary, and the Fe / As ratio in the second step is 1 to 3 or The iron source used is preferably an iron sulfate solution obtained from SO 2 reductive leaching of zinc leaching residue of wet zinc smelting.
[0017]
The reaction temperature in the second step in the above invention is preferably 150 to 200 ° C., and the oxygen partial pressure is preferably 1.8 to 2.0 MPa (megapascal) in total pressure with addition of oxygen. A solution containing arsenic obtained from SO 2 reductive leaching of the zinc leaching residue is preferred.
[0018]
[Action]
Hereinafter, the present invention will be described in more detail.
The present invention is composed of the following two steps, FIG. 1 is a conceptual diagram showing a basic flow according to the present invention, FIG. 2 is a conceptual diagram when a metal powder reducing agent is used as a dearsenation reagent according to the present invention, FIG. 3 is a flow chart when the present invention is applied to a zinc leaching residue treatment method by SO 2 reduction or high temperature high acid leaching and hematite method.
[0019]
First Step: Arsenic Removal and Concentration Step There are two methods in this step, and either method can be used. Since both of the produced residues are excellent in sedimentation filterability, they can be easily concentrated and separated with a thickener or the like.
[0020]
(A) For dearsenation, a reducing agent, that is, metal powder such as zinc powder or iron powder is used. Although it is not particularly necessary when only arsenic removal is intended, in this step, if it is not desired to precipitate valuable metals such as indium and gallium, the copper sulfate necessary for producing copper arsenide is in a molar ratio (copper / Arsenic) should be 2 or more, preferably 3 or more.
[0021]
Arsenic basically precipitates in the form of iron and iron arsenide and / or simple arsenic, and preferentially precipitates as copper arsenide in the presence of copper.
The pH of the reaction may be any low pH of 3 or less as long as the amount of reducing agent used is not increased, and the reaction proceeds even at room temperature, but the reaction rate is extremely slow at 40 ° C. or less, which is preferable. Is 40-100 ° C.
[0022]
The reaction is preferably allowed to proceed while adjusting the redox potential, and is −150 mV or less, preferably −200 to −210 mV with a saturated silver chloride electrode.
[0023]
(B) For the concentration of arsenic, a sulfide such as hydrogen sulfide gas may be used instead of the metal powder reducing agent. At this time, arsenic precipitates in the form of arsenic sulfide. When using a sulfiding agent, the reaction is preferably allowed to proceed at a potential of about 150 mV with a saturated silver chloride electrode.
[0024]
Second step: Arsenic fixation and copper leaching step The second step is common to the two methods of the first step. That is, divalent or trivalent iron is added as an iron source and mixed so that the molar ratio of iron to arsenic (hereinafter referred to as Fe / As or arsenic iron ratio) is 1 or more. However, since the compound of iron and arsenic has a slower rate of precipitation in the region of 3 <Fe / As <10, in order to obtain a sufficient arsenic precipitation rate, preferably 1 <Fe / As <3 or Fe / Mix so that As> 10.
[0025]
Furthermore, the temperature is raised to about 150 to 200 ° C., preferably 200 ° C., oxygen is added, and the total pressure is adjusted to be approximately 1.8 to 2.0 MPa (megapascal). The supply of oxygen is used for the oxidation of iron and arsenic, and is not necessary when both are Fe (III) and As (V). By this reaction, arsenic forms a stable crystalline compound with iron, and can be easily separated by filtration.
[0026]
At the same time, elements other than arsenic or iron such as zinc and copper are leached into the liquid. In addition, when it is easy to continuously supply a copper source for dearsenic, for example, in an iron sulfate solution obtained from SO 2 reduction or high temperature high acid leaching of a zinc leaching residue particularly in wet zinc smelting In this case, it is easy to recover copper from the arsenic-fixed solution, and it may be used repeatedly as a copper source for the arsenic removal step without performing recovery.
[0027]
The flow in the case of repeatedly using a copper source is clearly shown in FIG. 2 (conceptual diagram of using metal powder reducing agent). Next, embodiments of the present invention will be described with reference to examples and drawings.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Example 1
In this example, zinc powder was used as a dearsenic reagent. In particular, the copper concentration in the liquid is not adjusted, and this is an example of the basic flow of the present invention.
Arsenic-containing iron sulfate solution (SO 2 reductive leaching of wet zinc residue and the solution after neutralization in the iron treatment process by the hetamite method) is continuously fed into a 2 liter glass beaker with an overflow pipe with a metering pump and stirred. Then, zinc powder was added so that the oxidation-reduction potential of the solution was kept constant at −210 mV with a saturated silver chloride electrode, and a dearsenic test was continuously performed. The test was conducted under the conditions of a liquid temperature of 60 ° C. and a pH of 2.7.
Under the conditions of this test, the molar ratio of copper to arsenic in the solution was 1.84, and the amount of copper was not sufficient to precipitate arsenic as copper arsenide. In the test, the liquid supply amount was adjusted so that the residence time of the liquid in the beaker was 1 hour, and sampling was performed 2 hours after the liquid began to overflow from the final beaker. The analysis was carried out on the filtrate after separating and separating the overflow pulp. The test results are shown in Table 1. Sufficient arsenic removal from the solution was achieved. On the other hand, the precipitation rate of indium is high, and adaptation to the process of recovering such rare metals may be a problem.
[0029]
[Table 1]
Figure 0004126415
[0030]
After recovering an appropriate amount of dearsenic pulp obtained by repeating the above reaction, iron sulfate solution (after SO 2 reduction leaching of wet zinc residue and iron treatment by hemite method after one-step neutralization as iron source) Solution) and mixed well so that the arsenic ratio is about 4. The mixed pulp was continuously fed into a 20 l autoclave with a metering pump, pressurized with 3 Kg / cm 2 with stirring and heated to 200 ° C., and continuously subjected to a dearsenic test. The residence time of the autoclave was 1.5 hours, and after 3 hours from the start of continuous discharge, the discharged liquid was sampled, the reacted pulp was separated by filtration, and the filtrate was analyzed. The results are shown in Table 2. Iron and arsenic were sufficiently precipitated by the reaction, and at the same time, the valuable metal copper could be leached into the liquid.
[0031]
[Table 2]
Figure 0004126415
[0032]
Example 2
In this example, zinc powder is used as a dearsenic reagent and a sufficient amount of copper is present.
Arsenic-containing iron sulfate solution (SO 2 reductive leaching of wet zinc residue and 1st stage post-neutralization solution in the iron treatment process by the hetamite method) is quantitatively poured from the thickener overflow in this process into the tank, The liquid residence time was adjusted to 1 hour. Further, a copper sulfate solution was continuously added as a copper source using a metering pump so that the concentration of the reaction source liquid copper was approximately 3.0 g / l. In SO 2 reduction or high temperature high acid leaching, copper can be intentionally left in the liquid by not adding elemental sulfur or zinc concentrate, and the copper concentration at this time is 2.5 to This is because it has been confirmed that it is about 3.0 g / l. While stirring the solution, zinc powder was added so that the oxidation-reduction potential was kept constant at -210 mV with a saturated silver chloride electrode, and a dearsenic test was continuously performed.
[0033]
The test source solution was 70 ° C. at the time of addition, and there was no need for warming throughout the reaction. In this reaction, the pH was kept almost constant at pH 2.0, and no particular adjustment was required. In this test, the ratio of copper to arsenic in the original solution was 3.6, and a sufficient amount of copper was confirmed to precipitate arsenic as copper arsenide. The test results are shown in Table 3. Sufficient arsenic removal from the solution was achieved. At the same time, the precipitation rate of indium was sufficiently suppressed. This is because sufficient copper for copper arsenide formation is secured in the liquid, and in such a case, it is possible to prevent the formation of indium precipitates due to a local potential drop in the vicinity of the zinc powder. is there. Therefore, in a process involving recovery of a rare metal such as indium, it is preferable that sufficient copper be present in the original solution as in this embodiment.
[0034]
[Table 3]
Figure 0004126415
[0035]
Add the iron sulfate solution (the solution after the two-step neutralization in the iron treatment process by SO 2 reduction leaching of the wet zinc residue and the hemite process) to the dearsenic deposit so that the arsenic ratio is approximately 1.3, After mixing, 3.5 l of pulp was fed into a 5 l autoclave, heated to 200 ° C. with stirring, and reacted for 3 hours while adding oxygen so that the oxygen partial pressure was kept constant at 5 kg / cm 2 . The pulp after the reaction was separated by filtration and the filtrate was analyzed. The results are shown in Table 4. Iron and arsenic were sufficiently precipitated by this reaction, and at the same time, the valuable metal copper could be leached into the liquid. The solution after the reaction is a high-concentration copper sulfate solution, and it can be seen that even if this solution is used again as a copper source in the arsenic removal step, it is economically sufficient.
[0036]
[Table 4]
Figure 0004126415
[0037]
Example 3
This example is an example showing that a sulfurizing agent can also be used as a dearsenic reagent.
1 liter of iron sulfate solution containing arsenic (solution after the 1st step neutralization in the process of SO 2 reduction leaching of wet zinc residue and iron treatment by the hetamite method) is collected in a glass beaker and the redox potential of the solution is saturated while stirring Hydrogen sulfide gas was blown through a glass ball filter so as to be kept constant at 150 mV with a silver chloride electrode, and an arsenic removal test was conducted. Sampling was performed after 1 hour reaction in the above beaker. The analysis was performed on the filtrate by separating the pulp after the reaction. The test was conducted under the conditions of a liquid temperature of 60 ° C. and a pH of 2.7. The test results are shown in Table 5.
[0038]
[Table 5]
Figure 0004126415
[0039]
Repeat the above test, and add an appropriate amount of the dearsenic acid obtained, and then add an iron sulfate solution (the solution after the one-step neutralization in the process of SO 2 reduction leaching of wet zinc residue and iron treatment by the hetamite method). The mixture is adjusted and mixed so that the ratio is approximately 4.5, and 3.5 liters of the mixed pulp is fed into a 5 liter autoclave, heated to 200 ° C. with stirring, and becomes constant at an oxygen partial pressure of 9 kg / cm 2. The reaction was carried out for 1.5 hours while adding oxygen. The pulp after the reaction was separated by filtration and the filtrate was analyzed. The results are shown in Table 6. Iron and arsenic were sufficiently precipitated by this reaction, and at the same time, the valuable metal copper could be leached into the liquid. The present invention can be applied even when a sulfiding agent is used as a dearsenic (arsenic enrichment) reagent as in this example.
[0040]
[Table 6]
Figure 0004126415
[0041]
Example 4
In order to ensure the environmental safety of the insoluble crystalline solid containing arsenic and iron obtained in Examples 1 to 3, an elution test was conducted according to the criteria for landfill disposal established in the country.
An insoluble crystalline solid containing arsenic and iron and pure water are mixed at a ratio of 10% by weight, and the mixture is 500 ml or more. The sample was shaken for 6 hours at a pressure (approximately 1 atm) in advance using a shaker. After the test, the analysis was performed with ICP-MASS (inductively coupled plasma mass spectrometer). As a result, the arsenic elution value Tr to 0.07 mg / 1 satisfied the standard value of 0.15 mg / 1.
[0042]
【The invention's effect】
Among a number of arsenic removal and fixation methods, there is a possibility that they can be applied in this field, and there is no example in which a method that is particularly reasonable in terms of cost has not been reported or implemented. However, if the dearsenic technology developed according to the present invention is positioned as an arsenic concentration technology for a solution that is difficult to remove and fix as it is, such as in the zinc leaching residue treatment solution in the wet zinc smelting process, In terms of cost, it can be established as a conclusive process. For example, it can be easily incorporated into the process as shown in FIG. 3 even in the steps of SO 2 reduction of wet zinc residue or high-temperature high-acid leaching and iron treatment by the hetamite method.
[Brief description of the drawings]
FIG. 1 is a basic conceptual diagram of a process chart according to the present invention.
FIG. 2 is a conceptual diagram in the case where a metal powder reducing agent is used for dearsenication in the process diagram according to the present invention.
FIG. 3 is a flow diagram showing an embodiment in which the method of the present invention is applied to a hematite method.

Claims (4)

銅源が存在する砒素含有硫酸鉄溶液に脱砒素剤として金属粉を添加し、反応時の液温度を40〜100℃に、酸化還元電位を飽和塩化銀電極で−150mV以下に調整し、砒素を除去及び濃縮する第1工程と、第1工程で得られた砒素濃縮パルプのFe/As比を1以上、温度を150〜200℃、及び加圧調整することにより結晶性の安定な鉄砒素化合物として砒素を固定する第2工程とからなることを特徴とする硫酸鉄溶液中に存在する砒素の除去及び固定方法。  Metal powder is added as an arsenic-removing agent to an arsenic-containing iron sulfate solution containing a copper source, the liquid temperature during the reaction is adjusted to 40 to 100 ° C., and the oxidation-reduction potential is adjusted to −150 mV or less with a saturated silver chloride electrode. The first step of removing and concentrating iron, and the Fe / As ratio of the arsenic-concentrated pulp obtained in the first step is 1 or more and the temperature is 150 to 200 ° C. A method for removing and fixing arsenic present in an iron sulfate solution, comprising a second step of fixing arsenic as a compound. 前記硫酸鉄溶液が湿式亜鉛製錬の亜鉛浸出残渣のSO2還元あるいは高温高酸浸出から得られる砒素を含む溶液である請求項1記載の硫酸鉄溶液中に存在する砒素の除去及び固定方法。  2. The method for removing and fixing arsenic present in an iron sulfate solution according to claim 1, wherein the iron sulfate solution is a solution containing arsenic obtained from SO2 reduction or high temperature high acid leaching of a zinc leaching residue of wet zinc smelting. 前記第1工程で使用する銅源を、湿式亜鉛製錬における亜鉛浸出残渣のSO2還元あるいは高温高酸浸出時に脱銅を行わないことにより得る請求項1又は2記載の硫酸鉄溶液中に存在する砒素の除去及び固定方法。  The copper source used in said 1st process exists in the iron sulfate solution of Claim 1 or 2 obtained by not performing copper removal at the time of SO2 reduction | restoration of the zinc leaching residue in high temperature zinc smelting, or high temperature high acid leaching. Arsenic removal and fixation method. 前記第1工程で使用する銅源は、砒素を固定する第2工程から得られる溶液中に浸出された銅を用いる請求項1又は2記載の硫酸鉄溶液中に存在する砒素の除去及び固定方法。  The method for removing and fixing arsenic present in an iron sulfate solution according to claim 1 or 2, wherein the copper source used in the first step uses copper leached in the solution obtained from the second step of fixing arsenic. .
JP12521198A 1998-03-31 1998-03-31 Method for removing and fixing arsenic present in iron sulfate solution Expired - Fee Related JP4126415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12521198A JP4126415B2 (en) 1998-03-31 1998-03-31 Method for removing and fixing arsenic present in iron sulfate solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12521198A JP4126415B2 (en) 1998-03-31 1998-03-31 Method for removing and fixing arsenic present in iron sulfate solution

Publications (2)

Publication Number Publication Date
JPH11277075A JPH11277075A (en) 1999-10-12
JP4126415B2 true JP4126415B2 (en) 2008-07-30

Family

ID=14904638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12521198A Expired - Fee Related JP4126415B2 (en) 1998-03-31 1998-03-31 Method for removing and fixing arsenic present in iron sulfate solution

Country Status (1)

Country Link
JP (1) JP4126415B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4567303B2 (en) * 2003-07-23 2010-10-20 前澤工業株式会社 Method for treating arsenic-containing sulfuric acid
JP4411057B2 (en) * 2003-11-28 2010-02-10 三井金属鉱業株式会社 Arsenic removal method from smoke ash
CN1321910C (en) * 2004-10-25 2007-06-20 郭胜 Method for treating copper-containing waste acid water
CN1321200C (en) * 2005-12-23 2007-06-13 朱永文 Method for separating copper, arsenic and zinc from copper-smelting high-arsenic flue dust sulphuric acid leach liquor
JP4597107B2 (en) * 2006-03-02 2010-12-15 三井金属鉱業株式会社 Arsenic removing method and arsenic removing apparatus from arsenic containing body
JP3999805B1 (en) 2006-04-28 2007-10-31 Dowaメタルマイン株式会社 Arsenic-containing solution processing method
JP4615561B2 (en) * 2006-04-28 2011-01-19 Dowaメタルマイン株式会社 Arsenic-containing solution processing method
KR20090051034A (en) 2006-07-27 2009-05-20 도와 메탈스 앤드 마이닝 가부시끼가이샤 Iron arsenate powder
JP5070525B2 (en) * 2006-08-01 2012-11-14 Dowaメタルマイン株式会社 Thallium-containing iron and arsenic compound, process for producing the same, and method for treating arsenic and thallium-containing aqueous solution
JP5107637B2 (en) * 2007-08-24 2012-12-26 Dowaメタルマイン株式会社 Iron arsenate powder
JP4538481B2 (en) 2007-09-25 2010-09-08 日鉱金属株式会社 Method for producing scorodite and method for recycling liquid after synthesis of scorodite
JP4717917B2 (en) * 2008-10-06 2011-07-06 Jx日鉱日石金属株式会社 Manufacturing method and cleaning method of scorodite
JP2010202443A (en) * 2009-03-03 2010-09-16 Dowa Metals & Mining Co Ltd Iron arsenate powder and method for producing the same
CN106621167B (en) * 2016-12-25 2019-04-09 中南林业科技大学 A kind of technique and system of electric field synergistic stabilization processes multivalent state arsenic-containing waste residue
CN113443690A (en) * 2021-07-05 2021-09-28 上海交通大学 Method for enhancing sulfuration treatment of arsenic-containing wastewater by using sulfur dioxide
CN113912168A (en) * 2021-10-25 2022-01-11 昆明理工大学 Arsenic precipitation agent for removing arsenic from arsenic-containing waste liquid in nonferrous smelting plant
CN115385477A (en) * 2022-08-23 2022-11-25 长春黄金研究院有限公司 Method for removing arsenic in contaminated acid

Also Published As

Publication number Publication date
JPH11277075A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
JP4126415B2 (en) Method for removing and fixing arsenic present in iron sulfate solution
JP3756687B2 (en) Method for removing and fixing arsenic from arsenic-containing solutions
KR101021454B1 (en) Method for recovering rare metals in a zinc leaching process
JPH11506167A (en) Method for hydrometallurgical extraction of nickel and cobalt from sulfide ores assisted by chloride
US20080274026A1 (en) Selective precipitation of metal sulfides
JP2003512160A (en) Method for reducing the concentration of dissolved metal and metalloid in aqueous solution
US5078786A (en) Process for recovering metal values from jarosite solids
FI74046B (en) TILLVARATAGANDE AV ZINK UR ZINK INNEHAOLLANDE SULFIDMATERIAL.
MXPA00006115A (en) Method for recovering the valuable metal content of a sulphuric acid leaching solution.
JP3254501B2 (en) Method for removing arsenic from acidic solution containing arsenic and iron
JP3052535B2 (en) Treatment of smelting intermediates
EP3395968B1 (en) Method for removing sulfurizing agent
JP3411320B2 (en) Zinc smelting method
JPH09315819A (en) Method for recovering arsenic from sulfide containing arsenic and production of calcium arsenate
JPH07286221A (en) Method for recovering rhenium from nonferrous metal refining process
JP3955934B2 (en) Wet treatment of zinc leaching residue
RU2744291C1 (en) Method of extraction of copper (i) oxide cu2o from multicomponent sulfate solutions of heavy non-ferrous metals
CA2278834A1 (en) Improved tellurium extraction from copper electrorefining slimes
CN114058847A (en) Iron removal method for chlorine leachate of nickel concentrate
NO161328B (en) PROGRAM FOR THE RECOVERY OF METALS FROM NICKEL, COBAL AND IRON MATERIAL BY A COMBINATION OF OXYGEN AND CHLORINE CLEANING.
JP3215066B2 (en) Treatment method for wastewater containing selenium
JPS6345130A (en) Removal of zinc from aqueous solution acidified with sulfuric acid
JPS6056031A (en) Method for recovering ge, ga and in from substance containing trace of ge, ga and in
WO1988003912A1 (en) Process for recovering metal values from ferrite wastes
JPH09137236A (en) Method for recovering cadmium and sponge cadmium.

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees