JP5578730B2 - Arsenic treatment method - Google Patents

Arsenic treatment method Download PDF

Info

Publication number
JP5578730B2
JP5578730B2 JP2011032398A JP2011032398A JP5578730B2 JP 5578730 B2 JP5578730 B2 JP 5578730B2 JP 2011032398 A JP2011032398 A JP 2011032398A JP 2011032398 A JP2011032398 A JP 2011032398A JP 5578730 B2 JP5578730 B2 JP 5578730B2
Authority
JP
Japan
Prior art keywords
iron
arsenic
trivalent
oxidizing bacteria
oxidizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011032398A
Other languages
Japanese (ja)
Other versions
JP2012170838A (en
Inventor
圭子 笹木
伸一 平郡
聡 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Kyushu University NUC
Original Assignee
Sumitomo Metal Mining Co Ltd
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Kyushu University NUC filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2011032398A priority Critical patent/JP5578730B2/en
Publication of JP2012170838A publication Critical patent/JP2012170838A/en
Application granted granted Critical
Publication of JP5578730B2 publication Critical patent/JP5578730B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)
  • Removal Of Specific Substances (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は、溶液又は土壌に含まれる砒素の処理方法に関し、詳細には、溶液又は土壌に含まれる砒素を、鉄酸化菌を利用して安定な形態で固定する砒素の処理方法に関する。   The present invention relates to a method for treating arsenic contained in a solution or soil, and more particularly, to a method for treating arsenic in which arsenic contained in a solution or soil is fixed in a stable form using iron-oxidizing bacteria.

溶液又は土壌に含まれる砒素を処理する手段として、砒酸塩を形成させて安定化する方法が広く知られている。溶液中の砒素を安定した形態で固定する方法としては、特許文献1に開示されているように砒酸鉄として沈殿析出させる方法や、特許文献2に開示されているような鉄の複合塩等の吸着剤に砒素を吸着させる方法がある。   As means for treating arsenic contained in a solution or soil, a method of stabilizing by forming arsenate is widely known. As a method of fixing arsenic in a solution in a stable form, a method of precipitation as iron arsenate as disclosed in Patent Document 1, a complex salt of iron as disclosed in Patent Document 2, etc. There is a method of adsorbing arsenic on the adsorbent.

また、土壌中の砒素を安定した形態で固定する方法としては、特許文献3に開示されているような砒酸鉄として固定化する方法がある。これらは、いずれの方法も鉄化合物として安定化している。その他、安定性が良く、溶出性の低い砒素の化合物としては、例えば、砒酸カルシウム、砒酸アルミニウム等がある。砒酸カルシウムとして安定化させる方法については、特許文献4,5に開示されている。   Moreover, as a method for fixing arsenic in soil in a stable form, there is a method for fixing it as iron arsenate as disclosed in Patent Document 3. Any of these methods is stabilized as an iron compound. Other examples of arsenic compounds with good stability and low elution are calcium arsenate and aluminum arsenate. Patent Documents 4 and 5 disclose methods for stabilizing calcium arsenate.

しかしながら、特許文献1,3に開示されている方法は、コストパフォーマンスが低く、経済的な処理方法とはいえない。また、特許文献2に開示されている方法は、吸着剤の合成という煩雑な作業を必要とし、やはり経済的ではない。さらに、特許文献4,5に開示されている方法は、熱処理が必要であるためエネルギー消費が多く、また、長期安定性や形成の容易さを考慮すると、砒酸カルシウムよりも砒酸鉄による安定化が好ましい。   However, the methods disclosed in Patent Documents 1 and 3 have low cost performance and cannot be said to be economical. Moreover, the method disclosed in Patent Document 2 requires a complicated operation of synthesizing the adsorbent, and is also not economical. Furthermore, the methods disclosed in Patent Documents 4 and 5 consume much energy because heat treatment is necessary, and in view of long-term stability and ease of formation, stabilization with iron arsenate is more effective than calcium arsenate. preferable.

そして、上記特許文献1〜5に開示されているいずれの方法も、五価砒素については容易に安定化できるものの、三価砒素の除去には薬剤の添加による酸化を必要とするか、或いは除去自体が困難であった。   Although any of the methods disclosed in Patent Documents 1 to 5 can be easily stabilized for pentavalent arsenic, the removal of trivalent arsenic requires oxidation by addition of a chemical agent or is removed. It was difficult.

特開2009−18978号公報JP 2009-18978 A 特開2005−87834号公報JP 2005-87834 A 特許第3802264号公報Japanese Patent No. 3802264 特表平8−501249号公報Japanese National Patent Publication No. 8-501249 特開2007−83183号公報JP 2007-83183 A

本発明は、上記事情に鑑みてなされたものであって、その目的とするところは、溶液又は土壌に含まれる砒素を、効率的に且つ経済的に、再溶出し難い安定な形態で固定することができる、砒素の処理方法を提供することである。   The present invention has been made in view of the above circumstances, and an object thereof is to fix arsenic contained in a solution or soil efficiently and economically in a stable form that is difficult to re-elute. It is possible to provide a method for treating arsenic.

本発明者らは、上記課題を解決するために鋭意研究を重ねたところ、鉄酸化菌による鉄の酸化反応を利用して、三価砒素を五価砒素に酸化し、該五価砒素を安定な結晶性砒酸鉄として固定化することで、上記課題が解決できることを見出し、本発明を完成するに至った。   The inventors of the present invention have made extensive studies in order to solve the above-mentioned problems. As a result, the trivalent arsenic is oxidized to pentavalent arsenic by utilizing iron oxidation reaction by iron-oxidizing bacteria, and the pentavalent arsenic is stabilized. The present inventors have found that the above-mentioned problems can be solved by fixing as crystalline iron arsenate, and have completed the present invention.

具体的には、以下のようなものを提供する。   Specifically, the following are provided.

(1)溶液又は土壌に含まれる砒素の処理方法であって、鉄酸化菌により鉄を酸化させる鉄酸化工程と、上記鉄酸化工程で生成する三価鉄により、上記溶液又は土壌に含まれる三価砒素を五価砒素に酸化させる砒素酸化工程と、上記五価砒素を結晶性砒酸鉄として固定化する砒素固定化工程と、を有することを特徴とする砒素の処理方法。   (1) A method for treating arsenic contained in a solution or soil, comprising an iron oxidation step in which iron is oxidized by iron-oxidizing bacteria and trivalent iron produced in the iron oxidation step. An arsenic treatment method comprising: an arsenic oxidation step of oxidizing valent arsenic to pentavalent arsenic; and an arsenic immobilization step of immobilizing the pentavalent arsenic as crystalline iron arsenate.

(2)上記鉄酸化菌は、好熱性の古細菌である(1)に記載の砒素の処理方法。   (2) The arsenic treatment method according to (1), wherein the iron-oxidizing bacterium is a thermophilic archaea.

(3)上記鉄酸化工程では、pH0〜2.2の条件下で鉄酸化菌により鉄を酸化させる(1)又は(2)に記載の砒素の処理方法。   (3) The arsenic treatment method according to (1) or (2), wherein in the iron oxidation step, iron is oxidized by iron-oxidizing bacteria under a pH of 0 to 2.2.

(4)上記鉄酸化工程では、鉄酸化菌に対して菌数の保持が可能な量の二価鉄を供給する(1)〜(3)いずれかに記載の砒素の処理方法。   (4) The arsenic treatment method according to any one of (1) to (3), wherein in the iron oxidation step, an amount of divalent iron capable of maintaining the number of bacteria is supplied to the iron-oxidizing bacteria.

(5)上記二価鉄の供給源は、硫化鉄鉱物である(4)に記載の砒素の処理方法。   (5) The arsenic treatment method according to (4), wherein the source of divalent iron is iron sulfide mineral.

(6)上記硫化鉄鉱物は、黄鉄鉱及び/又は磁硫鉄鉱である(5)に記載の砒素の処理方法。   (6) The arsenic treatment method according to (5), wherein the iron sulfide mineral is pyrite and / or pyrrhotite.

本発明によれば、溶液又は土壌に含まれる砒素を、効率的に且つ経済的に、再溶出し難い安定な形態で固定することができる。   According to the present invention, arsenic contained in a solution or soil can be efficiently and economically fixed in a stable form that is difficult to re-elute.

実施例1における好熱性鉄酸化菌の菌数の経時変化を示すグラフである。2 is a graph showing changes over time in the number of thermophilic iron-oxidizing bacteria in Example 1. FIG.

以下、本発明の具体的な実施形態について詳細に説明するが、本発明は以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。   Hereinafter, specific embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and may be implemented with appropriate modifications within the scope of the object of the present invention. Can do.

本発明は、溶液又は土壌に含まれる砒素の処理方法であり、鉄酸化菌により鉄を酸化させる鉄酸化工程と、上記鉄酸化工程で生成する三価鉄により、上記溶液又は土壌に含まれる三価砒素を五価砒素に酸化させる砒素酸化工程と、上記五価砒素を結晶性砒酸鉄として固定化する砒素固定化工程と、を有することを特徴とする。本発明の方法では、砒素に汚染された水又は土壌を無害化するために、溶液又は土壌に含まれる砒素を、再溶出し難い安定な結晶性の砒酸鉄(FeAsO)の形態で固定化する。このように、砒素を砒酸鉄の形態とすることは、長期安定性に優れるという観点から望ましいが、溶液又は土壌における砒素の存在形態が三価砒素の場合、五価砒素に酸化しなければ、安定な砒酸鉄を形成することはできない。本発明では、この三価砒素から五価砒素へ酸化するに際し、鉄酸化菌による鉄の酸化反応を利用することで、効率的且つ経済的な砒素の安定化を実現した点に意義がある。本発明によれば、鉄酸化菌の特性を利用することで、従来、三価砒素の酸化に必要であった高価な薬剤や、三価砒素の除去に必要であった煩雑な作業が不要となる。 The present invention is a method for treating arsenic contained in a solution or soil, and includes an iron oxidation step in which iron is oxidized by iron-oxidizing bacteria, and trivalent iron produced in the iron oxidation step. It has an arsenic oxidation process for oxidizing valent arsenic to pentavalent arsenic and an arsenic immobilization process for immobilizing the pentavalent arsenic as crystalline iron arsenate. In the method of the present invention, arsenic contained in a solution or soil is immobilized in the form of stable crystalline iron arsenate (FeAsO 4 ) that is difficult to re-elute in order to detoxify water or soil contaminated with arsenic. To do. Thus, arsenic in the form of iron arsenate is desirable from the viewpoint of excellent long-term stability, but when the arsenic presence form in solution or soil is trivalent arsenic, it must be oxidized to pentavalent arsenic, Stable iron arsenate cannot be formed. The present invention is significant in that efficient and economical stabilization of arsenic is realized by utilizing an iron oxidation reaction by iron-oxidizing bacteria when oxidizing from trivalent arsenic to pentavalent arsenic. According to the present invention, the use of the characteristics of iron-oxidizing bacteria eliminates the need for expensive chemicals conventionally required for oxidation of trivalent arsenic and the complicated work required for removal of trivalent arsenic. Become.

[鉄酸化工程]
鉄酸化工程は、鉄酸化菌により鉄を酸化させる工程である。鉄酸化菌は、二価鉄イオンを三価鉄イオンに酸化し、その際に発生するエネルギーを利用して増殖する。本発明では、この鉄酸化菌の特性を利用し、従来、その除去が困難であった砒素汚染水や砒素汚染土壌中の三価砒素を酸化し、安定化しやすい五価砒素とした。鉄酸化菌による鉄の酸化反応は、下記式(1)のように進行する。
4Fe2++O+4H=4Fe3++2HO ・・・(1)
[Iron oxidation process]
The iron oxidation step is a step of oxidizing iron by iron oxidizing bacteria. Iron-oxidizing bacteria oxidize divalent iron ions to trivalent iron ions and grow using the energy generated at that time. In the present invention, the characteristics of this iron-oxidizing bacterium are used to oxidize trivalent arsenic in arsenic-contaminated water and arsenic-contaminated soil, which has been difficult to remove in the past, to form pentavalent arsenic that is easy to stabilize. The iron oxidation reaction by iron-oxidizing bacteria proceeds as shown in the following formula (1).
4Fe 2+ + O 2 + 4H + = 4Fe 3+ + 2H 2 O (1)

鉄酸化菌は、鉄鉱山の採鉱場やそこで発生した廃水、鉄分を多く含む地下水や湖沼の深層水等、自然界に広く分布している。本発明で用いられる鉄酸化菌は、特に限定されるものではないが、好ましくは好熱性の古細菌である。好熱性の古細菌は、常温菌に比べて鉄酸化速度が格段に速いからである。好熱性の古細菌である鉄酸化菌としては、例えば、Acidianus brierleyi、Acidianus infernus等のAcidianus(アシディアヌス)属、Sulfobacillus thermosulfidooxidans、Sulfobacillus acidophillus等のSulfobacillus(スルフォバチルス)属、Acidimicrobium ferrooxidans等のAcidimicrobium(アシジミクロビウム)属、Sulfolobus acidocaldarius、Sulfolobus solfataricus、Sulfolobus mirabilis等のSulfolobus(スルフォロブス)属、Desulfolobus ambivalens等のDesulfolobus(デスルフォロブス)属等が挙げられる。これらの鉄酸化菌は、公的な菌保存機関から入手可能である。   Iron-oxidizing bacteria are widely distributed in nature, such as mines in iron mines, wastewater generated there, groundwater containing a lot of iron, and deep water in lakes. The iron-oxidizing bacterium used in the present invention is not particularly limited, but is preferably a thermophilic archaea. This is because thermophilic archaea have a much faster iron oxidation rate than room temperature bacteria. The iron-oxidizing bacteria are archaebacteria thermophilic, for example, Acidianus brierleyi, Acidianus infernus etc. Acidianus (Ashidianusu) genus, Sulfobacillus thermosulfidooxidans, Sulfobacillus (sulfonium Bacillus) such Sulfobacillus acidophillus genus, such Acidimicrobium ferrooxidans Acidimicrobium (Assisi Microbium), Sulfolobus acidocaldarius, Sulfolobus solfalicus, Sulfolobus mirabilis, etc., Sulfolobus, Sulfolobus ambus Desulfolobus (Desuruforobusu) species such as valens and the like. These iron-oxidizing bacteria can be obtained from public bacteria storage organizations.

鉄酸化菌による鉄の酸化反応を効率良く進行させるためには、使用する鉄酸化菌が良好に生育する至適生育pHに環境設定することが好ましい。鉄酸化菌の多くは好酸性であり、強酸性領域で良好に生育する。また、鉄酸化菌は、細胞内外のpH勾配を利用してエネルギーを獲得しているため、基質である二価鉄イオンが溶存しやすい強酸性領域に環境設定することは、鉄酸化菌を良好に生育させ、鉄の酸化反応を効率良く進行させることができるので好ましい。具体的には、pH0〜2.2の条件下で鉄酸化菌により鉄を酸化させることが好ましい。なお、温度環境は、使用する鉄酸化菌が良好に生育する至適生育温度に設定することが好ましい。   In order to efficiently advance the iron oxidation reaction by the iron-oxidizing bacteria, it is preferable to set the environment to an optimum growth pH at which the iron-oxidizing bacteria to be used grow well. Many iron-oxidizing bacteria are acidophilic and grow well in strongly acidic regions. In addition, since iron-oxidizing bacteria acquire energy using a pH gradient inside and outside the cell, setting the environment in a strongly acidic region where divalent iron ions as substrates are easily dissolved is good for iron-oxidizing bacteria. It is preferable that the iron oxidation reaction can proceed efficiently. Specifically, it is preferable to oxidize iron with iron-oxidizing bacteria under the condition of pH 0 to 2.2. The temperature environment is preferably set to an optimum growth temperature at which the iron-oxidizing bacteria used grows well.

鉄酸化工程に用いられる鉄源は、0価鉄であっても二価鉄であってもよいが、鉄酸化菌が直接利用できる二価鉄であることが好ましい。鉄源としては、例えば、硫酸第一鉄(FeSO)、二硫化鉄(FeS)等の二価鉄化合物、黄鉄鉱、磁硫鉄鉱等の二価鉄を含む硫化鉄鉱物等が挙げられ、これらを1種又は2種以上の組み合わせて用いることができる。ただし、二価鉄化合物の1つである塩化第一鉄(FeCl)については、鉄酸化菌が塩素イオンにより生育阻害を受けやすいため、その使用は好ましいとはいえない。なお、好ましくは少なくとも二価鉄を含む硫化鉄鉱物を鉄源として用い、より好ましくは少なくとも黄鉄鉱及び/又は磁硫鉄鉱を用いる。二価鉄を含む硫化鉄鉱物の存在は、単に二価鉄化合物のみを存在させる以上に、次の砒素固定化工程における三価砒素の五価砒素への酸化を促進させるからである。これは、鉄酸化菌は、その種類によっては鉄だけでなく、硫黄も基質として利用することができ、また、硫化鉄鉱物には砒素を吸着する作用があり、硫化鉄鉱物の表面では、特に活発に酸化反応が進行するからではないかと推測される。さらに、硫化鉄鉱物は、天然に存在し、安価に入手可能である点においても、その使用が好ましい。なお、黄鉄鉱は、水、特に酸性領域の水に対して非常に安定であり、ほとんど溶解しないが、鉄酸化菌による鉄の酸化反応が起こり、三価鉄が生成すると、この三価鉄が黄鉄鉱の酸化剤として作用し、黄鉄鉱の溶解が促進される。 The iron source used in the iron oxidation step may be zero-valent iron or divalent iron, but is preferably divalent iron that can be directly used by iron-oxidizing bacteria. Examples of the iron source include divalent iron compounds such as ferrous sulfate (FeSO 4 ) and iron disulfide (FeS 2 ), and iron sulfide minerals containing divalent iron such as pyrite and pyrrhotite. Can be used alone or in combination of two or more. However, it is not preferable to use ferrous chloride (FeCl 2 ), which is one of divalent iron compounds, because iron-oxidizing bacteria are susceptible to growth inhibition by chloride ions. Preferably, an iron sulfide mineral containing at least divalent iron is used as the iron source, and more preferably at least pyrite and / or pyrrhotite is used. This is because the presence of iron sulfide minerals containing divalent iron promotes the oxidation of trivalent arsenic to pentavalent arsenic in the next arsenic immobilization process, rather than merely the presence of a divalent iron compound. This is because, depending on the type of iron-oxidizing bacteria, not only iron but also sulfur can be used as a substrate, and the iron sulfide mineral has an action of adsorbing arsenic. It is presumed that the oxidation reaction proceeds actively. Furthermore, the use of iron sulfide mineral is also preferable in that it exists in nature and is available at a low cost. Pyrite is very stable in water, especially in the acidic region, and hardly dissolves. However, when iron oxidation occurs by iron-oxidizing bacteria and trivalent iron is produced, this trivalent iron is converted into pyrite. It acts as an oxidant for the pyrite and promotes the dissolution of pyrite.

鉄酸化工程では、鉄酸化菌に対して菌数の保持が可能な量の二価鉄を供給することが好ましい。二価鉄が全て消費されると鉄酸化菌の増殖は停止し、その後死滅する。また、死滅に至らない場合であっても、一旦、鉄酸化菌の増殖が停止すると、鉄酸化能力の回復に時間を要し、効率性が低下するからである。二価鉄は、鉄酸化工程中、連続的に供給してもよいし、あらかじめ飽和量を供給しておいてもよいが、全鉄イオンの濃度が高くなりすぎると、鉄酸化菌の生育が阻害されるため、菌数や酸化反応の状況を確認しながら、必要に応じて添加することが好ましい。   In the iron oxidation step, it is preferable to supply an amount of divalent iron capable of maintaining the number of bacteria with respect to iron-oxidizing bacteria. When all of the divalent iron is consumed, the iron-oxidizing bacteria stop growing and then die. Moreover, even if it does not lead to death, once the growth of iron-oxidizing bacteria is stopped, it takes time to recover the iron-oxidizing ability, and the efficiency decreases. Bivalent iron may be supplied continuously during the iron oxidation process, or a saturated amount may be supplied in advance, but if the concentration of total iron ions becomes too high, the growth of iron-oxidizing bacteria Since it is inhibited, it is preferable to add as needed while confirming the number of bacteria and the state of the oxidation reaction.

[砒素酸化工程]
砒素酸化工程は、上記鉄酸化工程で生成する三価鉄により、砒素汚染水又は砒素汚染土壌に含まれる三価砒素を五価砒素に酸化させる工程である。砒素酸化工程では、例えば、下記式(2)のように、上記鉄酸化工程で生成した上記式(1)の三価鉄により、三価砒素である亜砒酸(HAsO)を五価砒素である砒酸(HAsO)に酸化させる。
2Fe3++HAsO+H0=2Fe2++HAsO+2H ・・・(2)
[Arsenic oxidation process]
The arsenic oxidation process is a process in which trivalent arsenic contained in arsenic-contaminated water or arsenic-contaminated soil is oxidized to pentavalent arsenic by trivalent iron generated in the iron oxidation process. In the arsenic oxidation step, for example, trivalent arsenic acid (H 3 AsO 3 ) is converted to pentavalent arsenic by the trivalent iron of the formula (1) generated in the iron oxidation step as shown in the following formula (2). To arsenic acid (H 3 AsO 4 ).
2Fe 3+ + H 3 AsO 3 + H 2 0 = 2Fe 2+ + H 3 AsO 4 + 2H + (2)

[砒素固定化工程]
砒素固定化工程は、上記砒素酸化工程で生成する五価砒素を再溶出し難い安定な結晶性の砒酸鉄の形態で固定化する工程である。砒素固定化工程では、例えば、下記式(3)のように、上記砒素酸化工程で生成した五価砒素が、結晶性の砒酸鉄の形態で固定化される。
Fe3++HAsO+2HO=FeAsO・2H0+3H ・・・(3)
[Arsenic immobilization process]
The arsenic immobilization step is a step of immobilizing pentavalent arsenic produced in the arsenic oxidation step in the form of stable crystalline iron arsenate that is difficult to elute again. In the arsenic immobilization step, for example, pentavalent arsenic generated in the arsenic oxidation step is immobilized in the form of crystalline iron arsenate as shown in the following formula (3).
Fe 3+ + H 3 AsO 4 + 2H 2 O = FeAsO 4 .2H 2 0 + 3H + (3)

砒酸鉄は、非晶状態では安定せず、結晶状態となることで安定し、再溶出し難くなる。なお、砒素を安定な結晶性の砒酸鉄の形態で固定化するためには、例えば、常圧下で鉄酸化菌により二価鉄を三価鉄に酸化させながら砒素と反応させるとよい。   Iron arsenate is not stable in the amorphous state, but is stable when it is in the crystalline state, and it is difficult to re-elute. In order to immobilize arsenic in the form of stable crystalline iron arsenate, for example, it may be reacted with arsenic while oxidizing divalent iron to trivalent iron by an iron-oxidizing bacterium under normal pressure.

以下、実施例により、本発明をさらに詳細に説明するが、本発明はこれらの記載に何ら制限を受けるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention does not receive a restriction | limiting at all in these description.

[実施例1]
表1に示す組成の硫酸第一鉄を除いた9K培地200mLに、35.81mmol/Lの硫酸鉄(FeSO)と、0.659mmol/Lの亜砒酸カリウム(KAsO)とを加え、希硫酸でpH1.5に調整した後、黄鉄鉱(純度:98%)1.0質量%を加えた。これに、好熱性鉄酸化菌であるAcidianus brierleyi(保存機関:Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH German Collection of Microorganisms and Cell Cultures,保存番号:1651)を1.0×10cell/mLとなるように接種し、70℃の恒温槽にて回転数100rpmの振盪条件で撹拌した。そして、15日後に、生成した沈殿物と、上澄み液とを固液分離し、上澄み液中のFe(II)濃度をオルトフェナントロリン法により定量し、As濃度をICP−AES法により定量した。また、沈殿物については、構成元素の価数をX線光電子分光法(XPS法)により分析した。さらに、好熱性鉄酸化菌の菌数を、顕微鏡による直接計数法により測定した。菌数の経時変化を図1に示す。
[Example 1]
35.81 mmol / L iron sulfate (FeSO 4 ) and 0.659 mmol / L potassium arsenite (KAsO 2 ) were added to 200 mL of 9K medium excluding ferrous sulfate having the composition shown in Table 1, and diluted sulfuric acid. After adjusting the pH to 1.5, 1.0% by mass of pyrite (purity: 98%) was added. This, Acidianus brierleyi a thermophilic iron-oxidizing bacteria (storage engine: Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH German Collection of Microorganisms and Cell Cultures, stored ID NO: 1651) so as to have a 1.0 × 10 8 cell / mL The seed was inoculated and stirred in a constant temperature bath at 70 ° C. under shaking conditions at a rotation speed of 100 rpm. After 15 days, the produced precipitate and the supernatant were separated into solid and liquid, the Fe (II) concentration in the supernatant was quantified by the orthophenanthroline method, and the As concentration was quantified by the ICP-AES method. Moreover, about the deposit, the valence of the constituent element was analyzed by X-ray photoelectron spectroscopy (XPS method). Furthermore, the number of thermophilic iron-oxidizing bacteria was measured by a direct counting method using a microscope. The time course of the number of bacteria is shown in FIG.

Figure 0005578730
Figure 0005578730

その結果、上澄み液中の全Fe濃度は37.28mmol/L(Fe(II)濃度:9.20mmol/L)であり、As濃度は0.366mmol/Lであった。また、沈殿物の砒素の価数は、五価であった。さらに、試験期間中は、好熱性鉄酸化菌の菌数が保持されていた(図1)。これらの結果から、好熱性鉄酸化菌の鉄酸化反応により二価鉄が三価鉄に酸化され、該三価鉄により液中の三価砒素が五価砒素に酸化されることで、該五価砒素が結晶性の砒酸鉄となり、沈殿したものと考えられる。   As a result, the total Fe concentration in the supernatant was 37.28 mmol / L (Fe (II) concentration: 9.20 mmol / L), and the As concentration was 0.366 mmol / L. The arsenic valence of the precipitate was pentavalent. Furthermore, during the test period, the number of thermophilic iron-oxidizing bacteria was retained (FIG. 1). From these results, divalent iron is oxidized to trivalent iron by the iron oxidation reaction of the thermophilic iron-oxidizing bacteria, and trivalent arsenic in the liquid is oxidized to pentavalent arsenic by the trivalent iron. It is considered that the valent arsenic became crystalline iron arsenate and precipitated.

[比較例1]
好熱性鉄酸化菌を接種しなかった以外は、全て同様の方法にて試験を行った。その結果、15日後のAs濃度及び全Fe濃度は、初期値と比べて変化が見られなかった。
[Comparative Example 1]
All tests were carried out in the same manner except that no thermophilic iron-oxidizing bacteria were inoculated. As a result, the As concentration and the total Fe concentration after 15 days did not change compared to the initial values.

Claims (6)

溶液又は土壌に含まれる砒素の処理方法であって、
Acidianus属、Sulfobacillus属、Acidimicrobium属、Sulfolobus属及びDesulfolobus属から選択される1種以上の好熱性の古細菌を含む鉄酸化菌により、硫化鉄鉱物を含む二価鉄を三価鉄に酸化させる鉄酸化工程と、
前記鉄酸化工程で生成する三価鉄により、前記溶液又は土壌に含まれる三価砒素を五価砒素に酸化させる砒素酸化工程と、
前記五価砒素を結晶性砒酸鉄として固定化する砒素固定化工程と、を有することを特徴とする砒素の処理方法。
A method for treating arsenic contained in a solution or soil,
Iron that oxidizes divalent iron containing iron sulfide minerals to trivalent iron by one or more thermophilic archaebacteria selected from the genera Acidianus, Sulfobacillus, Acidimicrobium, Sulfolobus, and Desulfobus An oxidation process;
An arsenic oxidation step in which trivalent arsenic contained in the solution or soil is oxidized to pentavalent arsenic by trivalent iron produced in the iron oxidation step;
And an arsenic immobilization step of immobilizing the pentavalent arsenic as crystalline iron arsenate.
前記二価鉄は、前記硫化鉄鉱物と硫酸第一鉄とを含む、請求項1に記載の砒素の処理方法。The arsenic treatment method according to claim 1, wherein the divalent iron includes the iron sulfide mineral and ferrous sulfate. 前記鉄酸化菌がAcidianus属の古細菌を含む、請求項2に記載の砒素の処理方法。The method for treating arsenic according to claim 2, wherein the iron-oxidizing bacterium includes an archaea of the genus Acidianus. 前記鉄酸化工程では、pH0〜2.2の条件下で鉄酸化菌により鉄を酸化させる請求項1〜3いずれかに記載の砒素の処理方法。 The method for treating arsenic according to any one of claims 1 to 3 , wherein in the iron oxidation step, iron is oxidized by an iron-oxidizing bacterium under a pH of 0 to 2.2. 前記鉄酸化工程では、鉄酸化菌に対して菌数の保持が可能な量の二価鉄を供給する請求項1〜いずれかに記載の砒素の処理方法。 The method for treating arsenic according to any one of claims 1 to 4, wherein in the iron oxidation step, an amount of divalent iron capable of maintaining the number of bacteria is supplied to iron-oxidizing bacteria. 前記硫化鉄鉱物は、黄鉄鉱及び/又は磁硫鉄鉱である請求項1〜4いずれかに記載の砒素の処理方法。 The method for treating arsenic according to any one of claims 1 to 4 , wherein the iron sulfide mineral is pyrite and / or pyrrhotite.
JP2011032398A 2011-02-17 2011-02-17 Arsenic treatment method Active JP5578730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011032398A JP5578730B2 (en) 2011-02-17 2011-02-17 Arsenic treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011032398A JP5578730B2 (en) 2011-02-17 2011-02-17 Arsenic treatment method

Publications (2)

Publication Number Publication Date
JP2012170838A JP2012170838A (en) 2012-09-10
JP5578730B2 true JP5578730B2 (en) 2014-08-27

Family

ID=46974261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011032398A Active JP5578730B2 (en) 2011-02-17 2011-02-17 Arsenic treatment method

Country Status (1)

Country Link
JP (1) JP5578730B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6012402B2 (en) * 2012-10-30 2016-10-25 株式会社奥村組 Apparatus and method for treating wastewater containing heavy metals
KR101616174B1 (en) * 2014-01-23 2016-04-28 한국해양대학교 산학협력단 Method for the remediation of heavy metals polluted soil using recyclable leaching agent
JP7081758B2 (en) * 2017-06-01 2022-06-07 国立大学法人九州大学 As recovery method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952583A (en) * 1982-09-18 1984-03-27 Dowa Mining Co Ltd Treatment of aqueous solution containing arsenic and iron using iron-oxidizing bacteria
JPH0228391B2 (en) * 1987-05-12 1990-06-22 Dowa Koei Kk KOJOHAIEKITONODATSUHISHORIHO
FR2728143A1 (en) * 1994-12-16 1996-06-21 Sodifra AQUEOUS COMPOSITION BASED ON H2O2, ACIDS AND AG, PROCESS FOR PREPARATION AND USE IN THE FIELD OF DISINFECTION AND / OR HYGIENE
JP4411057B2 (en) * 2003-11-28 2010-02-10 三井金属鉱業株式会社 Arsenic removal method from smoke ash

Also Published As

Publication number Publication date
JP2012170838A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
Nie et al. Highly efficient adsorption and catalytic degradation of ciprofloxacin by a novel heterogeneous Fenton catalyst of hexapod-like pyrite nanosheets mineral clusters
Mejia et al. Influence of oxygen and nitrate on Fe (hydr) oxide mineral transformation and soil microbial communities during redox cycling
Gan et al. The enhanced effect of Acidithiobacillus ferrooxidans on pyrite based Cr (VI) reduction
Singh et al. Iron oxidizing bacteria: insights on diversity, mechanism of iron oxidation and role in management of metal pollution
Vega-Hernandez et al. Immobilization of arsenic as scorodite by a thermoacidophilic mixed culture via As (III)-catalyzed oxidation with activated carbon
Fischer Microbiological reactions of iron in soils
JP5571416B2 (en) Copper sulfide ore leaching method
Okibe et al. Simultaneous oxidation and immobilization of arsenite from refinery waste water by thermoacidophilic iron-oxidizing archaeon, Acidianus brierleyi
JP5734225B2 (en) Arsenic treatment method
JP5578730B2 (en) Arsenic treatment method
Brierley Molybdenite-leaching: use of a high-temperature microbe
Tian et al. Phosphorus recovery from wastewater prominently through a Fe (II)–P oxidizing pathway in the autotrophic iron-dependent denitrification process
Zhao et al. Promotion of microbial oxidation of structural Fe (II) in nontronite by oxalate and NTA
MXPA01013311A (en) Process for immobilising arsenic waste.
Briones-Gallardo et al. Removing arsenic and hydrogen sulfide production using arsenic-tolerant sulfate-reducing bacteria
JP6133561B2 (en) Arsenic treatment method
Pat‐Espadas et al. Microbial recovery of metallic nanoparticles from industrial wastes and their environmental applications
JP4570069B2 (en) Method for removing ammonia nitrogen from wastewater
Okibe et al. Bioremediation of highly toxic arsenic via carbon-fiber-assisted indirect As (III) oxidation by moderately-thermophilic, acidophilic Fe-oxidizing bacteria
US8859249B2 (en) Process of treatment for oxidizing an acidic solution containing an iodide ion and an iron (II) ion
Yu et al. Facilitated Fe (II) oxidation but inhibited denitrification by reduced graphene oxide during nitrate-dependent Fe (II) Oxidation
Rajab Beiki et al. Effect of metal nanoparticles on biological denitrification process: a review
JP2012017513A (en) Method of leaching copper
CN113748091B (en) Method for removing trivalent arsenic and pentavalent arsenic in acidic arsenic-containing wastewater
Willis et al. Heavy Metal Bioprecipitation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140707

R150 Certificate of patent or registration of utility model

Ref document number: 5578730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250