JP4410127B2 - Electrochemical element and method for producing the same - Google Patents

Electrochemical element and method for producing the same Download PDF

Info

Publication number
JP4410127B2
JP4410127B2 JP2005047244A JP2005047244A JP4410127B2 JP 4410127 B2 JP4410127 B2 JP 4410127B2 JP 2005047244 A JP2005047244 A JP 2005047244A JP 2005047244 A JP2005047244 A JP 2005047244A JP 4410127 B2 JP4410127 B2 JP 4410127B2
Authority
JP
Japan
Prior art keywords
solid polymer
polymer electrolyte
anode
cathode
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005047244A
Other languages
Japanese (ja)
Other versions
JP2006233249A (en
Inventor
憲朗 光田
四郎 山内
浩幸 對馬
憲一 安田
且則 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005047244A priority Critical patent/JP4410127B2/en
Publication of JP2006233249A publication Critical patent/JP2006233249A/en
Application granted granted Critical
Publication of JP4410127B2 publication Critical patent/JP4410127B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、水の電気分解による電気化学的な反応を利用して、除湿または加湿を行ったり、酸素濃度を高めたり、酸素濃度を低くするために用いられる電気化学素子およびその製造方法に関するものである。   The present invention relates to an electrochemical device used for dehumidification or humidification, increasing oxygen concentration, or lowering oxygen concentration by utilizing an electrochemical reaction by electrolysis of water, and a method for manufacturing the same. It is.

従来から湿度や酸素濃度を調整する電気化学素子として、水を電解して酸素を発生する陽極と水を発生して酸素を消費する陰極と上記陽極および上記陰極により挟持された固体高分子電解質膜とからなり、上記陽極での水の消費を用いて除湿を行う電気化学的除湿素子であって、上記陽極および上記陰極は触媒層と多孔質な基材とを備え
、上記基材が上記固体高分子電解質膜に食い込んでいると共にこの食い込み部に上記触媒層が形成されていることを特徴とする固体高分子電解質膜を用いた除湿素子が後記特許文献1から公知である。
Conventionally, as an electrochemical element for adjusting humidity and oxygen concentration, an anode that electrolyzes water to generate oxygen, a cathode that generates water and consumes oxygen, and a solid polymer electrolyte membrane sandwiched between the anode and the cathode An electrochemical dehumidification element that performs dehumidification using consumption of water at the anode, wherein the anode and the cathode include a catalyst layer and a porous substrate, and the substrate is the solid A dehumidifying element using a solid polymer electrolyte membrane is known from Patent Document 1 to be described later, characterized in that the catalyst layer is formed in the encroaching portion as well as encroaching on the polymer electrolyte membrane.

また、水を電解して酸素を発生する陽極と水を発生して酸素を消費する陰極と上記陽極および上記陰極により挟持された固体高分子電解質膜とからなり、上記陽極での酸素発生または上記陰極での酸素消費を用いて酸素の濃度を調整する電気化学的酸素濃度調整器であって、陽極と陰極との最短距離が50μm以下であることを特徴とする固体高分子電解質膜を用いた電気化学的酸素濃度調整器が後記特許文献2から公知である。これらの技術の場合、集電は陽極や陰極から直接ではなく、多孔質基材を介して集電板から行われる。
特開平06−063343号公報 特開平05−254803号公報
Further, it comprises an anode that electrolyzes water to generate oxygen, a cathode that generates water and consumes oxygen, and the anode and a solid polymer electrolyte membrane sandwiched between the cathodes. An electrochemical oxygen concentration controller that adjusts the oxygen concentration by using oxygen consumption at the cathode, and uses a solid polymer electrolyte membrane characterized in that the shortest distance between the anode and the cathode is 50 μm or less An electrochemical oxygen concentration regulator is known from US Pat. In these techniques, current collection is performed directly from the current collector plate via a porous substrate, not directly from the anode or cathode.
Japanese Patent Application Laid-Open No. 06-063343 JP 05-254803 A

ところで、多孔質基材は、固体高分子電解質膜に食い込むため、電極基材の繊維が固体高分子電解質膜を貫いて電気的に短絡する不具合を起こしやすかった。また、動作時と動作していない時で固体高分子電解質膜の膨張収縮を繰り返すために、陽極や陰極の中央付近などで電極基材が外れ、性能が低下するなどの不具合があった。   By the way, since the porous base material bites into the solid polymer electrolyte membrane, it is easy to cause a problem that the fiber of the electrode base material penetrates the solid polymer electrolyte membrane and is electrically short-circuited. In addition, since the solid polymer electrolyte membrane repeatedly expands and contracts during operation and when it does not operate, there has been a problem that the electrode base material is detached near the center of the anode or cathode and the performance is deteriorated.

上記の電極基材を取り除いて直接集電板を陽極や陰極に密着させた場合においては
、電極基材の繊維が固体高分子電解質膜を貫いて電気的に短絡し、陽極や陰極の中央付近などで電極基材が外れ、性能が低下するなどの不具合は起こらないが、集電板を密着させている部分(水電解をさせない部分)で電流が流れ、水を移動させたり(除湿、加湿)、酸素濃度を変化させたり(酸素貧化、酸素富化)する電流効率が大きく低下するという不具合があった。電流効率の低下は、水電解をさせる部分の面積に比べて、水電解をさせない部分の面積(集電板を密着させている面積の比率が大きい場合に顕著で、流す電流密度が小さい場合に特に顕著であって、電流効率が半分以下に下がる場合もあり、一次電池や二次電池などを用いた電気化学素子の利用分野での大きな妨げになっていた。なお、電流効率が低下する理由については、そのメカニズムがこれまで良く分からず対策も見つかっていなかった。
When the above electrode base material is removed and the current collector is directly attached to the anode or cathode, the fibers of the electrode base material are electrically short-circuited through the solid polymer electrolyte membrane, and the vicinity of the center of the anode or cathode However, there is no problem that the electrode substrate is detached and the performance deteriorates, etc., but current flows through the part where the current collector plate is in close contact (the part where water electrolysis is not performed) and water is moved (dehumidification, humidification) ), The current efficiency of changing the oxygen concentration (oxygen poor, oxygen enrichment) is greatly reduced. The decrease in current efficiency is remarkable when the ratio of the area where water electrolysis is not performed is large compared to the area where water electrolysis is performed (when the ratio of the area where the current collector plate is in close contact is large, and when the current density is low) This is particularly noticeable, and the current efficiency may be reduced to half or less, which has been a major obstacle in the field of use of electrochemical devices using primary batteries, secondary batteries, etc. The reason why current efficiency decreases As for, the mechanism has not been well understood so far and no countermeasures have been found.

本発明は、上記のような問題点を解決することを課題とするものであって、電極基材を使用せずに、電流効率を高く保って陽極や陰極から直接集電できる電気化学素子を得ることを目的とするものである。また、電極基材を用いない電気化学素子を効率よく製造することのできる製造方法を得ることを目的とするものである。   An object of the present invention is to solve the above-described problems, and an electrochemical device capable of collecting current directly from an anode or a cathode while maintaining high current efficiency without using an electrode substrate. It is intended to obtain. Moreover, it aims at obtaining the manufacturing method which can manufacture the electrochemical element which does not use an electrode base material efficiently.

本発明に係る電気化学素子は、水を電気分解して酸素を発生する陽極、水素を発生して酸素を消費する陰極、上記陽極側に配置されて上記陽極が被除湿空間と接することを可能にする第一開口部を有する陽極集電体、上記陰極側に配置されて上記陰極が水放出空間と接することを可能にする第二開口部を有する陰極集電体、上記第一開口部と上記第二開口部とが対向する電気分解領域において水素イオン交換の作用をなす固体高分子電解質、および上記陽極集電体と上記陰極集電体とが対向する非電気分解領域の電気抵抗を高める電気絶縁体、を含むことを特徴とするものである。   The electrochemical device according to the present invention is capable of contacting a dehumidified space with an anode that generates oxygen by electrolyzing water, a cathode that generates hydrogen and consumes oxygen, and is disposed on the anode side. An anode current collector having a first opening, a cathode current collector having a second opening disposed on the cathode side to allow the cathode to contact a water discharge space, and the first opening Increasing the electric resistance of the solid polymer electrolyte that performs hydrogen ion exchange in the electrolysis region facing the second opening, and the non-electrolysis region facing the anode current collector and the cathode current collector An electrical insulator is included.

本発明に係る電気化学素子の製造方法は、水を電気分解して酸素を発生する陽極、水素を発生して酸素を消費する陰極、上記陽極側に配置されて上記陽極が被除湿空間と接することを可能にする第一開口部を有する陽極集電体、上記陰極側に配置されて上記陰極が水放出空間と接することを可能にする第二開口部を有する陰極集電体、上記第一開口部と上記第二開口部とが対向する電気分解領域において水素イオン交換の作用をなすと共に上記陽極集電体と上記陰極集電体とが対向する非電気分解領域に設けられた固体高分子電解質延在部を含む固体高分子電解質の上記固体高分子電解質延在部における上記陽極集電体と上記陰極集電体との間の電気抵抗を高める電気絶縁性フィルムを含む電気化学素子の製造において、上記固体高分子電解質を形成するための2枚の固体高分子電解質膜の間に、上記電気分解領域にあたる開口部用孔を一定間隔を置いて複数有する電気絶縁性フィルムが位置する積層体を得る第一工程、上記積層体をプレスして電気絶縁性フィルムを両側の上記固体高分子電解質膜と融着または密着させる第二工程、上記第二工程で得られた積層体の両面にそれぞれ陽極形成用塗布剤および陰極形成用塗布剤を塗布し、乾燥して陽極および陰極を形成する第三工程、および上記第三工程で得られた積層体を切断して一個の上記開口部用孔を含む複数の積層体片を得る第四工程を含むことを特徴とするものである。   The method for producing an electrochemical device according to the present invention includes an anode that electrolyzes water to generate oxygen, a cathode that generates hydrogen and consumes oxygen, and is disposed on the anode side so that the anode contacts the dehumidified space. An anode current collector having a first opening that enables the cathode current collector to be disposed on the cathode side and having a second opening that allows the cathode to contact the water discharge space, Solid polymer provided in a non-electrolytic region where the anode current collector and the cathode current collector are opposed to each other, while performing an action of hydrogen ion exchange in the electrolysis region where the opening and the second opening are opposed to each other Manufacture of an electrochemical device including an electrically insulating film for increasing an electric resistance between the anode current collector and the cathode current collector in the solid polymer electrolyte extension of the solid polymer electrolyte including the electrolyte extension In the above solid polymer electrolysis A first step of obtaining a laminate in which an electrically insulating film having a plurality of opening holes corresponding to the electrolysis region is provided between two solid polymer electrolyte membranes for forming A second step in which the laminate is pressed to fuse or adhere the electrically insulating film to the solid polymer electrolyte membrane on both sides, and an anode-forming coating agent and a cathode on both sides of the laminate obtained in the second step, respectively. A third step of applying a forming coating agent and drying to form an anode and a cathode; and a plurality of laminate pieces including one opening hole by cutting the laminate obtained in the third step It is characterized by including the 4th process of obtaining.

本発明の電気化学素子によれば、非電気分解領域を流れる電流が前記電気絶縁性フィルムなどの電気絶縁体によって低減あるいは遮断されるので、電極基材が無くとも高い電流効率を維持することができる。これによって、電極基材による電気的短絡や電極基材が外れるといった不具合の心配を無くすことができる。   According to the electrochemical device of the present invention, since the current flowing through the non-electrolytic region is reduced or interrupted by the electrical insulator such as the electrical insulating film, high current efficiency can be maintained even without an electrode substrate. it can. As a result, it is possible to eliminate the fear of problems such as an electrical short circuit caused by the electrode base material and the electrode base material coming off.

固体高分子電解質の形成に用いられる固体高分子電解質膜は、高価なものであって、電気化学素子のコストアップの一因となっているが、本発明の電気化学素子の製造方法によれば、当該固体高分子電解質膜を無駄なく使用することができ、電気化学素子の低コスト化が実現される。   The solid polymer electrolyte membrane used for forming the solid polymer electrolyte is expensive and contributes to an increase in the cost of the electrochemical device. According to the method of manufacturing an electrochemical device of the present invention, The solid polymer electrolyte membrane can be used without waste, and the cost of the electrochemical device can be reduced.

さらに、本発明の電気化学素子によれば、電気分解領域において水素イオン交換の作用をなす固体高分子電解質の電気抵抗値を低下させる保水性非導電体あるいは導電体粒子を採用するよってその電流効率を高めることができる。また保水性非導電体は、それを2枚の固体高分子電解質膜の間に施与する場合には密着性を高める効果があり、それを陽極の外面や陰極の外面に施与する場合には、陽極や陰極に悪影響を与える空気浮遊物の直接の付着を防止する効果がある。   Furthermore, according to the electrochemical device of the present invention, by adopting a water-retaining non-conductor or conductor particles that reduce the electrical resistance value of the solid polymer electrolyte that acts as a hydrogen ion exchange in the electrolysis region, the current efficiency is improved. Can be increased. In addition, the water-retaining non-conductor has an effect of improving the adhesion when applied between two solid polymer electrolyte membranes, and when applied to the outer surface of the anode or the outer surface of the cathode. Has the effect of preventing the direct attachment of airborne substances that adversely affect the anode and cathode.

以下、この発明の各実施の形態について説明するが、各図において、同一または相当部材、部分については同一符号を付して説明する。   Hereinafter, embodiments of the present invention will be described. In the drawings, the same or corresponding members and portions will be described with the same reference numerals.

実施の形態1.
図1〜図4は、本発明の実施の形態1による電気化学素子を説明するものであって、図1は、電気化学素子1の平面図、図2は図1のA−A線に沿った断面図、図3は図2の一部拡大図、図4は実施の形態1の効果を説明するための参考例の断面図である。図1〜図3において、電気化学素子1は、陽極2、陰極3、固体高分子電解質4、電気絶縁体5、陽極集電板8、陰極集電板9、2枚の絶縁押え板14、電流端子ネジ15a、電流端子ネジ15b,バネワッシャー16、ワッシャー17、絶縁ワッシャー18、およびナット25を含む。
Embodiment 1 FIG.
1 to 4 illustrate an electrochemical element according to Embodiment 1 of the present invention. FIG. 1 is a plan view of the electrochemical element 1, and FIG. 2 is taken along line AA in FIG. 3 is a partially enlarged view of FIG. 2, and FIG. 4 is a sectional view of a reference example for explaining the effect of the first embodiment. 1 to 3, the electrochemical element 1 includes an anode 2, a cathode 3, a solid polymer electrolyte 4, an electrical insulator 5, an anode current collector plate 8, a cathode current collector plate 9, two insulating press plates 14, A current terminal screw 15a, a current terminal screw 15b, a spring washer 16, a washer 17, an insulating washer 18, and a nut 25 are included.

固体高分子電解質4は、陽極2と陰極3とに挟まれた状態で図3に示すように、第一開口部11aと第二開口部11bとが対向する個所(以下、固体高分子電解質4の本体部40)のみならず、陽極集電板8と陰極集電板9とが対向する個所(以下、固体高分子電解質4の延在部41)にも延在しており、本体部40が電気分解領域7であり、延在部41が非電気分解領域6となっている。陽極集電板8と陰極集電板とは
、いずれも図1に点線で示すように、両端が半円形を呈する細長形状を有する。上記固体高分子電解質4は、実施の形態1では図1において点線で示すように角型を呈し
、その両側の各面上に形成された角型の陽極2と陰極3と共に2枚の絶縁押え板14に挟まれた状態で電流端子ネジ15a、15b等により機械的に固定されている。両絶縁押え板14は、共に固体高分子電解質4を機械的に固定可能な機械的強度を有する電気絶縁材料、例えばアクリル樹脂、繊維補強されたエポキシ樹脂からなるものであって、それぞれ第一開口部11aと第二開口部11bが存在する個所にそれらと略同じ大きさの孔と電流端子ネジ15aあるいは電流端子ネジ15bを挿通する孔とを有し、図2に示すようにバネワッシャー16、ワッシャー17、および絶縁ワッシャー18を介在した状態で電流端子ネジ15a、15bとナット25との螺着により互いに圧迫されて固体高分子電解質4を固定している。その際、電流端子ネジ15aおよび電流端子ネジ15bは、図2に示すようにそれぞれ陽極集電板8および陰極集電板9と電気的に接触していて、それぞれ陽極端子および陰極端子としても機能する。なお、符号10は外部電源、符号12は陽極端子孔、符号13は陰極端子孔である。
As shown in FIG. 3, the solid polymer electrolyte 4 is sandwiched between the anode 2 and the cathode 3, where the first opening 11 a and the second opening 11 b face each other (hereinafter referred to as the solid polymer electrolyte 4). The main body portion 40) extends not only to the anode current collector plate 8 and the cathode current collector plate 9 (hereinafter, the extended portion 41 of the solid polymer electrolyte 4). Is the electrolysis region 7, and the extending portion 41 is the non-electrolysis region 6. Each of the anode current collector plate 8 and the cathode current collector plate has an elongated shape in which both ends have a semicircular shape, as indicated by a dotted line in FIG. In the first embodiment, the solid polymer electrolyte 4 has a square shape as shown by a dotted line in FIG. 1, and two insulating pressers are formed together with the square anode 2 and the cathode 3 formed on each surface on both sides. It is mechanically fixed by current terminal screws 15a, 15b and the like while being sandwiched between the plates 14. Both insulating pressing plates 14 are made of an electrical insulating material having mechanical strength capable of mechanically fixing the solid polymer electrolyte 4, for example, acrylic resin, fiber-reinforced epoxy resin, and each has a first opening. A portion having a portion 11a and a second opening portion 11b, and a hole having approximately the same size as that of the portion 11a and the second terminal portion 11b, and a hole through which the current terminal screw 15a or the current terminal screw 15b is inserted, as shown in FIG. With the washer 17 and the insulating washer 18 interposed, the solid polymer electrolyte 4 is fixed by being pressed against each other by screwing the current terminal screws 15 a and 15 b and the nut 25. At that time, the current terminal screw 15a and the current terminal screw 15b are in electrical contact with the anode current collector plate 8 and the cathode current collector plate 9, respectively, as shown in FIG. 2, and also function as an anode terminal and a cathode terminal, respectively. To do. Reference numeral 10 denotes an external power source, reference numeral 12 denotes an anode terminal hole, and reference numeral 13 denotes a cathode terminal hole.

固体高分子電解質4、陽極2、陰極3、陽極集電板8、および陰極集電板9は、各形成材料において、いずれも斯界で公知あるいは周知のものでよい。それらに就き若干例を示すと、固体高分子電解質4は、ポリテトラフルオロエチレンの骨格を主鎖に持ち、スルフォン酸基を側鎖に有するプロトン交換膜、例えばデュポン社(米国)の
商品名ナフィオン117(厚さ180μm程度)、旭化成社の商品名アシプレックス
、旭硝子社の商品名フレミオン、などの炭化水素系の固体高分子電解質膜で形成される。陽極2は、白金黒の微粒子(10nm程度)や白金との混合微粒子、もしくは合金微粒子を、固体高分子電解質4を形成する材料と同じ材料を水とアルコールの混合溶媒に溶かして液状にした液で結着させ乾燥したものである。陰極3は、アセチレンブラックやファーネスブラックなどの高表面積の担持カーボンに白金微粒子(3nm程度)を担持したものを上記と同様の方法で結着させ乾燥したものである。
The solid polymer electrolyte 4, the anode 2, the cathode 3, the anode current collector plate 8, and the cathode current collector plate 9 may all be known or well known in the field in each forming material. For example, the solid polymer electrolyte 4 is a proton exchange membrane having a polytetrafluoroethylene skeleton in the main chain and a sulfonic acid group in the side chain, for example, Nafion, trade name of DuPont (USA). 117 (thickness of about 180 μm), Asahi Kasei's trade name Aciplex, Asahi Glass's trade name Flemion, and the like, are formed of a hydrocarbon-based solid polymer electrolyte membrane. The anode 2 is a liquid obtained by dissolving platinum black fine particles (about 10 nm), mixed fine particles with platinum, or fine alloy particles with the same material as that for forming the solid polymer electrolyte 4 in a mixed solvent of water and alcohol. It is bound and dried with. The cathode 3 is formed by attaching platinum fine particles (about 3 nm) supported carbon having a high surface area, such as acetylene black and furnace black, in the same manner as described above and drying.

なお陽極集電板8は、陽極2側に配置されて陽極2が被除湿空間S1と接することを可能にする第一開口部11aを有し、陰極集電板9は陰極3側に配置されて陰極3が水放出空間S2と接することを可能にする第二開口部11bを有する。陽極集電板8は、例えばチタンに白金メッキを施したものなどが用いられ、陰極集電板9としては、例えばステンレスに金メッキを施したものなどが用いられる。   The anode current collector plate 8 is disposed on the anode 2 side and has a first opening 11a that allows the anode 2 to contact the dehumidified space S1, and the cathode current collector plate 9 is disposed on the cathode 3 side. The cathode 3 has a second opening 11b that allows the water discharge space S2 to be in contact. The anode current collector plate 8 is, for example, a plate of titanium plated with platinum, and the cathode current collector plate 9 is, for example, a plate of stainless steel plated with gold.

固体高分子電解質4は、その延在部41即ち非電気分解領域6の電気抵抗を高めるための電気絶縁体の一例としての電気絶縁フィルム5を含んでいる。なお固体高分子電解質4は、図3に示すように2枚の固体高分子電解質膜から構成されていて、電気絶縁フィルム5は当該2枚の固体高分子電解質膜の間に挟まれた状態で両固体高分子電解質膜に融着あるいは密着されている。電気絶縁フィルム5は、非電気分解領域6を流れる電流を遮断あるいは少なくとも低減するので、前記した従来技術で使用の電極基材が無くとも電気分解領域7において高い電流効率を維持することができる。なお実施の形態1においては、電気絶縁フィルム5は、その先端部が図1〜図3に示すように電気分解領域7の一部内に入り込むフィルム幅を有している。全非電気分解領域6内のみならず、電気分解領域7の一部内に電気絶縁フィルム5を設けることにより、上記の電流遮断の効果が一層向上する。   The solid polymer electrolyte 4 includes an electric insulating film 5 as an example of an electric insulator for increasing the electric resistance of the extended portion 41, that is, the non-electrolytic region 6. The solid polymer electrolyte 4 is composed of two solid polymer electrolyte membranes as shown in FIG. 3, and the electric insulating film 5 is sandwiched between the two solid polymer electrolyte membranes. It is fused or adhered to both solid polymer electrolyte membranes. Since the electric insulating film 5 cuts off or at least reduces the current flowing through the non-electrolytic region 6, high current efficiency can be maintained in the electrolytic region 7 even without the electrode base material used in the above-described conventional technology. In the first embodiment, the electrical insulating film 5 has a film width whose leading end enters into a part of the electrolysis region 7 as shown in FIGS. By providing the electric insulating film 5 not only in the entire non-electrolysis region 6 but also in a part of the electrolysis region 7, the effect of the current interruption is further improved.

本発明において、電気絶縁フィルム5などの電気絶縁体としては、非電気分解領域6を流れる電流を電気分解領域7内を流れる電流の少なくとも10%以下に、好ましくは2%以下に低減可能なものであればよい。かかる電気絶縁体としては、電気絶縁の分野においてよく知られた熱可塑性有機高分子類、熱硬化した有機高分子類、架橋あるいは加硫したゴム類などが挙げられる。   In the present invention, the electrical insulator such as the electrical insulation film 5 can reduce the current flowing through the non-electrolysis region 6 to at least 10% or less, preferably 2% or less of the current flowing through the electrolysis region 7. If it is. Examples of such an electrical insulator include thermoplastic organic polymers well known in the field of electrical insulation, thermoset organic polymers, and crosslinked or vulcanized rubbers.

熱可塑性有機高分子類としては、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリブテン、ポリ4メチルペンテンなどのポリオレフィン、ポリスチレン、ナイロン、熱可塑性ポリエステル、アクリル樹脂などの従来から良く知られた熱可塑性樹脂類、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレンなどのフッ素樹脂類、シリコン樹脂類、エチレン−酢酸ビニル共重合体、アクリルニトリル−スチレン共重合体、アクリルニトリル−ブタジエン共重合体などの共重合体類、ポリスチレン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマーなどの熱可塑性エラストマー類、液晶ポリマー、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリフェニレンオキサイドなどのエンジニアリングプラスチック類、などが例示される。
熱硬化性有機高分子類としては、エポキシ樹脂、メラミン樹脂、フェノール樹脂、などが例示される。架橋あるいは加硫したゴム類としては、エチレン−プロピレン共重合ゴム、エチレン−プロピレン−ジエン共重合ゴム、アクリロニトリル−ブタジエンゴム、クロロプレンゴム、エピクロロヒドリンゴム、シリコンゴム、などの電気絶縁性ゴム類などが例示される。
Conventionally known thermoplastic organic polymers include polyolefins such as low density polyethylene, medium density polyethylene, high density polyethylene, polypropylene, polybutene, and poly-4-methylpentene, polystyrene, nylon, thermoplastic polyester, acrylic resin, and the like. Thermoplastic resins, fluorine resins such as polytetrafluoroethylene and polychlorotrifluoroethylene, silicon resins, ethylene-vinyl acetate copolymer, acrylonitrile-styrene copolymer, acrylonitrile-butadiene copolymer, etc. Copolymers, polystyrene-based thermoplastic elastomers, polyolefin-based thermoplastic elastomers, polyamide-based thermoplastic elastomers and other thermoplastic elastomers, liquid crystal polymers, polycarbonates, polysulfones, polyethers Sulfone, engineering plastics such as polyphenylene oxide, and the like are exemplified.
Examples of thermosetting organic polymers include epoxy resins, melamine resins, phenol resins, and the like. Examples of crosslinked or vulcanized rubber include ethylene-propylene copolymer rubber, ethylene-propylene-diene copolymer rubber, acrylonitrile-butadiene rubber, chloroprene rubber, epichlorohydrin rubber, silicon rubber, and the like. Is exemplified.

電気化学素子1の大きさは、例えば20mm×8mm程度であり、固体高分子電解質4は4mm角程度である。その場合、電気絶縁フィルム5としては、厚さ50μm程度のものが例示される。陽極2では外部電源により水が電気分解されて下式(1)の反応が生じて陽極2側の空間S1の湿度が低下すると共に酸素濃度が高められる。このとき発生するプロトン(H+)は、水と共に水素イオン交換膜となる2枚の固体高分子電解質膜からなる固体高分子電解質4の本体部40を通り、電子(e-)は外部回路を通って陰極3に達し、下式(2)の反応により酸素を消費して水を発生する。
2H2O→O2+4H++4e- (1)
2+4H++4e-→2H2O (2)
さらに上記プロトン(H+)とともに平均3分子程度の水が陽極2から陰極3へ移動する。したがって陰極3では、式(2)の反応により生成する水とともに、さらに余分の水が陽極2から移動し陰極3の空間S2の湿度を増加させると共に酸素濃度が低められる。陽極2側の空間S1を密閉空間とした場合には、湿度が低く保たれると共に、酸素濃度が高められる。一方、陰極3の空間S2を密閉空間とした場合には、湿度が高く保たれると共に、酸素濃度を低められる。
The size of the electrochemical element 1 is, for example, about 20 mm × 8 mm, and the solid polymer electrolyte 4 is about 4 mm square. In that case, the electrical insulating film 5 is exemplified by a thickness of about 50 μm. In the anode 2, water is electrolyzed by an external power source and a reaction of the following formula (1) occurs to reduce the humidity in the space S 1 on the anode 2 side and increase the oxygen concentration. Protons (H + ) generated at this time pass through the main body 40 of the solid polymer electrolyte 4 composed of two solid polymer electrolyte membranes that form a hydrogen ion exchange membrane together with water, and electrons (e ) pass through an external circuit. It passes through the cathode 3 and consumes oxygen by the reaction of the following formula (2) to generate water.
2H 2 O → O 2 + 4H + + 4e (1)
O 2 + 4H + + 4e → 2H 2 O (2)
Further, water having an average of about 3 molecules moves from the anode 2 to the cathode 3 together with the protons (H + ). Therefore, in the cathode 3, together with the water generated by the reaction of the formula (2), extra water moves from the anode 2 to increase the humidity in the space S2 of the cathode 3 and reduce the oxygen concentration. When the space S1 on the anode 2 side is a sealed space, the humidity is kept low and the oxygen concentration is increased. On the other hand, when the space S2 of the cathode 3 is a sealed space, the humidity is kept high and the oxygen concentration can be lowered.

図4は、従来の電気化学素子の前記図3に対応する断面図であって、電気分解領域7に対して非電気分解領域6の面積を変化させて比較検討した。その結果、非電気分解領域6の面積を増やせば増やすほど、電流効率が低下し、同じ電流を流しても湿度調整能力や酸素濃度調整能力が低下することが分かった。このことから、陽極2や陰極3に集電板を直接接触させた領域でも電流が流れ、この電流が水分や酸素濃度の変化を引き起こさない、即ち湿度調整能力や酸素濃度調整能力に貢献しないことが推定された。非電気分解領域6で生じている最も可能性の高い反応として、陽極2において下式(3)の反応が、陰極3において下式(4)の反応がそれぞれ考えられ、固体高分子電解質膜自身や密閉空間の隙間を水素が拡散して陽極2に戻って、循環型の電流が流れていると推定された。非電気分解領域6は、密閉された空間に近いので、空気の拡散も少なく、水分も一定に保たれて逃げていかないため、このような循環型の電流が流れるものと考えられる。このような電流は、水素の陽極への拡散が律速となっていて、それほど大きくないものの、電気分解領域7に流す電流が小さくなると、相対的に無視できなくなり、電流効率を大きく低下させてしまうと考えられる。これに対して、実施の形態1は、検証試験の結果、電流効率が倍増し、非電気分解領域6の面積比率依存性も無くなったことから、効果が極めて高いことが判明した。
2→2H++2e- (3)
2H++2e-→H2 (4)
FIG. 4 is a cross-sectional view of the conventional electrochemical device corresponding to FIG. 3, and a comparison was made by changing the area of the non-electrolysis region 6 relative to the electrolysis region 7. As a result, it was found that as the area of the non-electrolysis region 6 is increased, the current efficiency is lowered, and the humidity adjustment capability and the oxygen concentration adjustment capability are reduced even when the same current is supplied. Therefore, a current flows even in a region where the current collector plate is in direct contact with the anode 2 or the cathode 3, and this current does not cause a change in moisture or oxygen concentration, that is, does not contribute to humidity adjustment capability or oxygen concentration adjustment capability. Was estimated. As the most likely reaction occurring in the non-electrolysis region 6, the reaction of the following formula (3) is considered at the anode 2, and the reaction of the following formula (4) is considered at the cathode 3, respectively, and the solid polymer electrolyte membrane itself It was estimated that hydrogen diffused through the gap in the sealed space and returned to the anode 2 so that a circulating current was flowing. Since the non-electrolytic region 6 is close to a sealed space, air diffusion is small, moisture is kept constant and does not escape, and it is considered that such a circulating current flows. Such a current is not so large because diffusion of hydrogen to the anode is limited, but if the current flowing through the electrolysis region 7 becomes small, it cannot be relatively ignored and the current efficiency is greatly reduced. it is conceivable that. On the other hand, since the current efficiency doubled and the area ratio dependency of the non-electrolysis region 6 disappeared as a result of the verification test, the first embodiment was found to be extremely effective.
H 2 → 2H + + 2e (3)
2H + + 2e → H 2 (4)

実施の形態2.
図5は、本発明の実施の形態2における、前記図3に対応する一部拡大断面図であって、陽極集電体8と固体高分子電解質4の延在部41との間および陰極集電体9と当該延在部41との間に、第二の電気絶縁層22が設けられており、実施の形態2は前記実施の形態1とは電気絶縁フィルム5に加えて電気絶縁層22が設けられている点において異なり、その他の構成は同じである。また電気絶縁層22の形成材料としては、電気絶縁フィルム5用として前記したものなど、例えば厚さ0.1mmのポリプロピレンシートが用いられる。実施の形態2では、電気絶縁フィルム5と電気絶縁層22との両方で非電気分解領域6を絶縁するので、非電気分解領域6での電気抵抗は一層高められており、実施の形態1の場合以上の電流効率(図2の場合の約2倍の電流効率)を実現することができる。なお電気絶縁層22を設け場合は、電気絶縁フィルム5を省略しても従来技術より大きい電流効率を実現することができる。
Embodiment 2. FIG.
FIG. 5 is a partially enlarged cross-sectional view corresponding to FIG. 3 in Embodiment 2 of the present invention, between the anode current collector 8 and the extended portion 41 of the solid polymer electrolyte 4, and the cathode current collector. A second electrical insulating layer 22 is provided between the electric body 9 and the extending portion 41. In the second embodiment, the electrical insulating layer 22 is added to the first embodiment in addition to the electrical insulating film 5. The other configurations are the same. Moreover, as a forming material of the electrical insulating layer 22, for example, a polypropylene sheet having a thickness of 0.1 mm, such as those described above for the electrical insulating film 5, is used. In the second embodiment, since the non-electrolytic region 6 is insulated by both the electric insulating film 5 and the electric insulating layer 22, the electric resistance in the non-electrolytic region 6 is further increased. More current efficiency than the case (current efficiency about twice that in the case of FIG. 2) can be realized. In the case where the electrical insulating layer 22 is provided, even if the electrical insulating film 5 is omitted, the current efficiency higher than that of the prior art can be realized.

実施の形態3.
図6は、本発明の実施の形態3における、前記図3に対応する一部拡大断面図であって、固体高分子電解質4は1枚の固体高分子電解質膜で形成されており、その延在部41と陽極2との間および延在部41と陰極3との間に、第三の電気絶縁体としてアルミナ被膜26が設けられており、その他の構成は実施の形態1と同じである。アルミナ被膜26は、厚みが1〜10μm程度でよく、通常のスパッタ法にて延在部41の固体高分子電解質上に直接形成することができる。実施の形態3では、アルミナ被膜26にて非電気分解領域6が絶縁されて、実施の形態1の場合と同等電流効率を実現することができる。
Embodiment 3 FIG.
FIG. 6 is a partially enlarged cross-sectional view corresponding to FIG. 3 in Embodiment 3 of the present invention. The solid polymer electrolyte 4 is formed of a single solid polymer electrolyte membrane, and its extension is shown in FIG. An alumina coating 26 is provided as a third electrical insulator between the existing portion 41 and the anode 2 and between the extended portion 41 and the cathode 3, and other configurations are the same as those in the first embodiment. . The alumina coating 26 may have a thickness of about 1 to 10 μm and can be directly formed on the solid polymer electrolyte of the extending portion 41 by a normal sputtering method. In the third embodiment, the non-electrolytic region 6 is insulated by the alumina coating 26, and the current efficiency equivalent to that in the first embodiment can be realized.

本発明において、非電気分解領域6の電気抵抗を高める電気絶縁体の態様は、前記した実施の形態1〜実施の形態3に限定されるものではなく、本発明の課題並びにその解決手段に則った種々の変形形態をも包含する。例えば実施の形態1では、電気絶縁体として電気絶縁フィルムが使用されたが、当該フィルムに代えて電気絶縁体の粒子を上記延在部41中に分散させて延在部41の電気抵抗を高めるようにしてもよく、また延在部41の全体を前記した電気絶縁性樹脂、例えばポリエチレンにて形成してもよい。   In the present invention, the aspect of the electrical insulator that increases the electrical resistance of the non-electrolytic region 6 is not limited to the above-described first to third embodiments, and is in accordance with the problems of the present invention and the solution thereof. Various modifications are also included. For example, in Embodiment 1, an electrical insulating film is used as the electrical insulator, but instead of the film, particles of the electrical insulator are dispersed in the extending portion 41 to increase the electrical resistance of the extending portion 41. Alternatively, the entire extending portion 41 may be formed of the above-described electrically insulating resin, for example, polyethylene.

実施の形態4.
図7は、本発明の実施の形態4における製造方法を説明するものであって、下記の第三工程で得られた積層体の平面図である。本発明の電気化学素子の製造方法の第一工程おいては、固体高分子電解質4を形成するための2枚の固体高分子電解質膜の間に、電気分解領域7(前記図2、図3など参照)にあたる開口部用孔19を一定間隔を置いて複数有する電気絶縁体フィルム5(図7では図示せず)が位置する積層体を得る。第二工程では、第一工程で得られた上記積層体をホットプレスして電気絶縁体フィルム5を両側の上記固体高分子電解質膜と融着または密着させて一体化する。第三工程では、第二工程で得られた積層体の両面にそれぞれ陽極形成用ペーストおよび陰極形成用ペーストを塗布し、乾燥して陽極および陰極を形成する。上記ペーストとしては、定着液の他に水やアルコールなどの溶媒に上記した陽極や陰極を形成するための触媒微粒子を分散させたものが使用され、そのために固体高分子電解質膜が多少膨張することがあるが、電気絶縁体フィルム5としてプリプロピレンフィルムなどの室温における誘電率(周波数;60C/S)が2.5以下、好ましくは2.4以下の低極性有機高分子製のフィルムを使用すると、それらは膨張しないので位置は固定され、乾燥して収縮した後でも形状が保たれる利点がある。図7の符号20は、切断線を示し、次の第四工程では、第三工程で得られた積層体を切断線20に沿って切断して一個の上記開口部用孔を含む複数の積層体片を得る。その際、電気絶縁体フィルム5として上記の低極性有機高分子製のフィルムが使用されていると積層体の形状が保たれて第四工程での切断線20での切断が容易になる。
Embodiment 4 FIG.
FIG. 7 explains the manufacturing method according to the fourth embodiment of the present invention, and is a plan view of the laminate obtained in the following third step. In the first step of the method for producing an electrochemical device of the present invention, an electrolysis region 7 (see FIGS. 2 and 3) is formed between two solid polymer electrolyte membranes for forming the solid polymer electrolyte 4. To obtain a laminate on which an electrical insulator film 5 (not shown in FIG. 7) having a plurality of opening holes 19 at regular intervals is located. In the second step, the laminate obtained in the first step is hot-pressed and the electric insulator film 5 is integrated with the solid polymer electrolyte membrane on both sides by fusion or intimate contact. In the third step, the anode forming paste and the cathode forming paste are applied to both surfaces of the laminate obtained in the second step, respectively, and dried to form the anode and the cathode. As the paste, a paste in which catalyst fine particles for forming the anode and cathode described above are dispersed in a solvent such as water or alcohol in addition to the fixing solution is used. Therefore, the solid polymer electrolyte membrane slightly expands. However, when a film made of a low polar organic polymer having a dielectric constant (frequency: 60 C / S) at room temperature of 2.5 or less, preferably 2.4 or less, such as a propylene film, is used as the electrical insulator film 5 Since they do not expand, the position is fixed, and there is an advantage that the shape is maintained even after drying and shrinking. Reference numeral 20 in FIG. 7 indicates a cutting line, and in the next fourth step, the laminated body obtained in the third step is cut along the cutting line 20 to include a plurality of stacked layers including one opening hole. Get a body piece. At this time, if the above-described low-polar organic polymer film is used as the electrical insulator film 5, the shape of the laminate is maintained, and the cutting at the cutting line 20 in the fourth step is facilitated.

固体高分子電解質膜4は、モノマーの合成に多くのプロセスを経るために高価であり、しかも固体高分子電解質膜は、吸収した水分の量によって膨張収縮し、また上記したように陽極形成用ペーストおよび陰極形成用ペーストの塗布によって多少膨張するので、化学素子の製造プロセスにおいて取り扱いや位置合わせが難しく、特にmm角オーダーの大きさの固体高分子電解質膜4は取り扱いが困難であった。しかし、実施の形態4のような方法を採用することにより、固体高分子電解質膜を固定するために余分な面積がなく、切断して廃棄する部分が無く固体高分子電解質膜4の全てを有効に使うことができる。しかも寸法精度の良好な電気化学素子を従来より安価に製造できる。例えば寸法などの一例を図7で示すと、厚さ180μmの2枚の固体高分子電解質膜4(ナフィオン117:デュポン社)の間に厚さ50μmのポリプロピレンフィルム製の電気絶縁体フィルム5を挟んでホットプレスした状態の図7の平面図における寸法は、16mm×16mmであり、電気絶縁体フィルム5には、一定間隔で直径2mmの孔が設けられものである。これを切断して、4個の4mm角の積層体片を得る。   The solid polymer electrolyte membrane 4 is expensive because it undergoes many processes for monomer synthesis, and the solid polymer electrolyte membrane expands and contracts depending on the amount of absorbed moisture, and as described above, the anode forming paste. In addition, since it expands somewhat due to the application of the paste for forming a cathode, it is difficult to handle and align in the manufacturing process of the chemical element, and in particular, the solid polymer electrolyte membrane 4 having a size on the order of mm square is difficult to handle. However, by adopting the method as in Embodiment 4, there is no extra area for fixing the solid polymer electrolyte membrane, and there is no part to cut and discard, so that all of the solid polymer electrolyte membrane 4 is effective. Can be used for In addition, an electrochemical element with good dimensional accuracy can be manufactured at a lower cost than before. For example, when an example of dimensions is shown in FIG. 7, an electric insulator film 5 made of a polypropylene film having a thickness of 50 μm is sandwiched between two solid polymer electrolyte membranes 4 (Nafion 117: DuPont) having a thickness of 180 μm. The dimension in the plan view of FIG. 7 in the state hot-pressed in FIG. 7 is 16 mm × 16 mm, and the electrical insulator film 5 is provided with holes having a diameter of 2 mm at regular intervals. This is cut to obtain four 4 mm square laminate pieces.

実施の形態5.
図8は、本発明の実施の形態5における製造方法を説明するものであって、本発明の第三工程で得られた積層体の平面図である。実施の形態5は、前記実施の形態4とは、電子イオン絶縁フィルム5に開口部用孔19の1個毎にその周囲に4個の保持孔24が設けられている点において異なり、その他の構成は同じである。保持孔24が設けられることにより、ホットプレスする際に表裏2枚の固体高分子電解質膜が保持孔24を介して密着するので、形状保持性が一層改善される。
Embodiment 5 FIG.
FIG. 8 explains the manufacturing method according to the fifth embodiment of the present invention, and is a plan view of the laminate obtained in the third step of the present invention. The fifth embodiment is different from the fourth embodiment in that four holding holes 24 are provided in the periphery of each of the opening holes 19 in the electron ion insulating film 5. The configuration is the same. By providing the holding hole 24, the two solid polymer electrolyte membranes on the front and back sides are brought into close contact with each other through the holding hole 24 during hot pressing, so that the shape holding property is further improved.

実施の形態6.
図9は、本発明の実施の形態6における、前記図3に対応する一部拡大断面図であって、固体高分子電解質4の電気分解領域7たる本体部40は、前記した保水性非導電体の一例としての保水体層21を有し、実施の形態6は、前記実施の形態1とはその電気絶縁フィルム5を省略し、且つ保水体層21が設けられている点において異なり、その他の構成は同じである。
Embodiment 6 FIG.
FIG. 9 is a partially enlarged cross-sectional view corresponding to FIG. 3 in Embodiment 6 of the present invention, in which the main body portion 40 which is the electrolysis region 7 of the solid polymer electrolyte 4 has the above-described water retention non-conductive property. The sixth embodiment is different from the first embodiment in that the electrical insulating film 5 is omitted and the water retaining body layer 21 is provided. The configuration of is the same.

本発明において、上記保水性非導電体としては、その保水性に基づいて大気などの気相中の水分を吸着して保水するもの、特に水に対する常温における接触角が90°以下の化学的に安定な固形材料が用いられ、吸着水分が本体部40の電気抵抗値を低下させる作用をなす。かかる保水性非導電体としては、上記の電気抵抗値低下の作用を示す種々の材料が使用可能であるが、代表例は固体の無機酸化物類や固体の有機体類である。無機酸化物類としては、一酸化チタン、二酸化チタン、三二酸化チタン、ペルオキシチタン酸、三四酸化チタン、三五酸化チタンなどの酸化チタン類、シリカ、シリカゲル、天然石英、合成石英、珪酸塩ガラスなどのシリカを含むガラス、珪藻土などの珪素酸化物類、方沸石、魚眼石、菱沸石、ソーダ沸石、輝沸石、束沸石、濁沸石などのゼオライト類、ジルコニア、あるいはその他の金属酸化物類が例示される。有機体類では、木綿、絹、麻、木材、竹、ナイロン、ポリエステル、などの室温、60C/Sにおける誘電率が少なくとも3.0の高極性有機高分子の繊維類、織布類、不織布類、紙類、などである。就中、上記の酸化チタン類、珪素酸化物類、ゼオライト類、およびジルコニアの、平均粒子径が1μm以下の微粒子が特に好ましい。当該保水性非導電体の使用量は、一般的には、電気分解領域7の全体積中での体積比率にして1%以上〜50%未満、好ましくは2%〜40%である。   In the present invention, the water-retaining non-conductor is a material that retains water by adsorbing moisture in the gas phase such as the atmosphere based on its water retention, particularly a chemical having a contact angle with water of 90 ° or less at room temperature. A stable solid material is used, and the adsorbed moisture acts to lower the electrical resistance value of the main body 40. As such a water-retaining non-conductor, various materials exhibiting the above-described effect of lowering the electric resistance value can be used. Typical examples are solid inorganic oxides and solid organic substances. Inorganic oxides include titanium oxides such as titanium monoxide, titanium dioxide, titanium trioxide, peroxytitanic acid, titanium tetroxide, and titanium pentoxide, silica, silica gel, natural quartz, synthetic quartz, and silicate glass. Glass containing silica, such as silicon oxides such as diatomaceous earth, zeolites such as calcite, fisheye stone, chabazite, sodalite, pyroxenite, zeolitite, zeolithite, zirconia, or other metal oxides Is exemplified. Organic materials include cotton, silk, hemp, wood, bamboo, nylon, polyester, etc., highly polar organic polymer fibers, woven fabrics, and nonwoven fabrics having a dielectric constant of at least 3.0 at 60 C / S at room temperature. , Paper, etc. In particular, fine particles having an average particle diameter of 1 μm or less of the above-described titanium oxides, silicon oxides, zeolites, and zirconia are particularly preferable. The amount of the water-retaining non-conductor is generally 1% or more and less than 50%, preferably 2% to 40% in terms of volume ratio in the total volume of the electrolysis region 7.

実施の形態6では.固体高分子電解質4は、電気分解領域7の本体部40と非電気分解領域6の延在部41からなり、それらはいずれも2枚の固体高分子電解質膜から構成されている。その際、1枚の固体高分子電解質膜の本体部40となる個所の表面に保水性非導電体の粒子を層状に直接施与しておき、その上に残る1枚を重ねてホットプレスし、かくして保水体層21を内蔵する固体高分子電解質4が形成される。保水体層21は、保水性非導電体の粒子を層状に直接にではなく、固体高分子電解質4を形成する樹脂を溶解する有機溶媒、例えばイソプロピルアルコールとブタノールと水との混合溶媒などに当該樹脂を溶解した樹脂溶液を定着液として用い、それに保水性非導電体の粒子を分散させた保水体塗料を塗布し乾燥して形成してもよい。   In the sixth embodiment. The solid polymer electrolyte 4 includes a main body portion 40 of the electrolysis region 7 and an extension portion 41 of the non-electrolysis region 6, both of which are composed of two solid polymer electrolyte membranes. At that time, water-retaining non-conductive particles are directly applied in a layered manner to the surface of the portion to be the main body portion 40 of one solid polymer electrolyte membrane, and the remaining one is stacked and hot pressed. Thus, the solid polymer electrolyte 4 containing the water retention layer 21 is formed. The water retentive layer 21 is not directly layered with water retentive non-conductive particles, but in an organic solvent that dissolves the resin that forms the solid polymer electrolyte 4, such as a mixed solvent of isopropyl alcohol, butanol, and water. A resin solution in which a resin is dissolved may be used as a fixing solution, and a water-retaining paint in which water-retaining non-conductive particles are dispersed may be applied and dried.

以下に保水性非導電体を使用することの効果を明らかにする若干の実験例を紹介する。これらの実験例では、保水性非導電体として二酸化チタンを主成分とする酸化チタン、シリカ、ゼオライト、およびジルコニア(いずれも平均粒子径が0.1μm程度の微粒子)を使用して、上記のホットプレス法で本体部40のみに保水体層21を内蔵する固体高分子電解質4を作成した。各保水体層21を形成する保水性非導電体の本体部40に占める量は、体積比率にして約10%とした。それらを用いて図9に示す電気化学素子を作成した。また比較のために、保水体層21を内蔵しない固体高分子電解質を用いてコントロール電気化学素子を作成した。各電気化学素子の電流効率を測定した結果、実験例の各電気化学素子のそれらは、コントロール電気化学素子のそれの約2倍であった。   The following introduces some experimental examples that clarify the effects of using a water-retaining non-conductor. In these experimental examples, titanium oxide mainly composed of titanium dioxide, silica, zeolite, and zirconia (all fine particles having an average particle diameter of about 0.1 μm) are used as the water-retaining non-conductor. The solid polymer electrolyte 4 in which the water retaining body layer 21 was incorporated only in the main body portion 40 was produced by a pressing method. The amount of the water-retaining non-conductor forming each water-retaining body layer 21 in the main body 40 was about 10% in volume ratio. The electrochemical element shown in FIG. 9 was created using them. For comparison, a control electrochemical device was prepared using a solid polymer electrolyte that does not incorporate the water retaining layer 21. As a result of measuring the current efficiency of each electrochemical element, those of each electrochemical element of the experimental example were about twice that of the control electrochemical element.

実施の形態6の電気化学素子は、固体高分子電解質4を形成するための2枚の固体高分子電解質膜の間に保水性非導電体21含む積層体を得る本発明の製造方法の第五工程、上記積層体をホットプレスして2枚の固体高分子電解質膜を融着または密着させる第六工程を経て、かくして得られた積層体の両面にそれぞれ陽極形成用塗布剤および陰極形成用塗布剤を塗布し、乾燥して陽極2および陰極3を形成する第七工程、かくして得られた積層体を前記図7、8の場合と同様に切断して複数の積層体片を得る第八工程により製造することができる。   The electrochemical device of Embodiment 6 is the fifth of the production methods of the present invention for obtaining a laminate including a water-retaining non-conductor 21 between two solid polymer electrolyte membranes for forming the solid polymer electrolyte 4. Step, through the sixth step of hot pressing the laminate and fusing or adhering the two solid polymer electrolyte membranes, the anode forming coating agent and the cathode forming coating are respectively applied to both sides of the laminate thus obtained. A seventh step of applying an agent and drying to form the anode 2 and the cathode 3, and an eighth step of obtaining a plurality of laminate pieces by cutting the laminate thus obtained in the same manner as in FIGS. Can be manufactured.

実施の形態7.
図10は、本発明の実施の形態7における、前記図3に対応する一部拡大断面図であって、固体高分子電解質4は、本体部40に保水体層21を有し、且つ延在部41に前記実施の形態1において採用されたものと同じ電気絶縁フィルム5を有する。しかして実施の形態5は.前記実施の形態3とは電気絶縁フィルム5を有する点において異なり、その他の構成は同じであって、保水体層21と電気絶縁フィルム5による前記の各効果を合わせ有する。
Embodiment 7 FIG.
FIG. 10 is a partially enlarged cross-sectional view corresponding to FIG. 3 in Embodiment 7 of the present invention, in which the solid polymer electrolyte 4 has a water retention layer 21 in the main body 40 and extends. The part 41 has the same electrical insulating film 5 as that employed in the first embodiment. Therefore, the fifth embodiment is as follows. The third embodiment is different from the third embodiment in that it includes the electrical insulating film 5, and the other configurations are the same, and the above-described effects of the water retaining layer 21 and the electrical insulating film 5 are combined.

実施の形態8.
図11は、本発明の実施の形態8における、前記図3に対応する一部拡大断面図であって、固体高分子電解質4は、その本体部40の両表面に保水体層23を有し、且つその延在部41に前記実施の形態2において採用されたものと同じ電気絶縁体22を有する。しかして実施の形態8は.前記実施の形態2の電気絶縁体22と保水体層23との各効果を合わせ有する。実施の形態8は、本発明の第十工程において前記実施の形態4で詳述した保水性非導電体の粒子を分散させた保水体塗料を塗布し乾燥して保水体層23を形成し、上記第十工程で得られた積層体を切断して複数の積層体片を得る第十一工程を経て製造される。保水体層23における保水体の使用量は、実施の形態4の保水体層21における保水性非導電体の使用量と同じである。
Embodiment 8 FIG.
FIG. 11 is a partially enlarged cross-sectional view corresponding to FIG. 3 in the eighth embodiment of the present invention. The solid polymer electrolyte 4 has a water retaining layer 23 on both surfaces of the main body portion 40. In addition, the extending portion 41 has the same electrical insulator 22 as that employed in the second embodiment. Therefore, the eighth embodiment is as follows. The effects of the electrical insulator 22 and the water retaining layer 23 of the second embodiment are combined. In the tenth step of the present invention, the eighth embodiment of the present invention applies the water-retaining body paint in which the water-retaining non-conductive particles detailed in the fourth embodiment are dispersed and dried to form the water-retaining body layer 23. The laminate obtained in the tenth step is cut through the eleventh step to obtain a plurality of laminate pieces. The amount of water retaining material used in the water retaining layer 23 is the same as the amount of water retaining non-conductive material used in the water retaining layer 21 of the fourth embodiment.

実施の形態9.
図12は、本発明の実施の形態9における、前記図3に対応する一部拡大断面図である。実施の形態9は、前記実施の形態3とは固体高分子電解質4として導電体粒子27を分散状態で含むものが用いられた点において異なり、その他の構成は同じである。
Embodiment 9 FIG.
FIG. 12 is a partially enlarged sectional view corresponding to FIG. 3 in the ninth embodiment of the present invention. The ninth embodiment is different from the third embodiment in that the solid polymer electrolyte 4 containing the conductive particles 27 in a dispersed state is used, and the other configurations are the same.

本発明において導電体粒子27としては、金、白金、等の周期律表第III族の貴金属粒子類、グラファイト粒子、カーボンブラックなどの導電性炭素粒子体類などが例示される。それらは、大気などの気相中の水分を吸着して保水し、吸着水分が本体部40の電気抵抗値を低下させる機能をなす。導電体粒子27としては、平均粒子径が10μm以下の微粒子が特に好ましく、導電体粒子27の使用量は、一般的には電気分解領域7の全体積中での体積比率にして0.1%以上、20%未満、好ましくは0.2%以上、10%未満である。なお導電体粒子27は、導電体であるので陽極2と陰極3との間で電気的短絡路を形成することがないように、しかも吸着水分による電気抵抗値低下作用を奏するように良好に分散させることが好ましい。   In the present invention, examples of the conductive particles 27 include noble metal particles of Group III of the periodic table such as gold and platinum, conductive carbon particles such as graphite particles and carbon black. They adsorb and retain moisture in the gas phase such as the atmosphere, and the adsorbed moisture functions to lower the electrical resistance value of the main body 40. The conductive particles 27 are particularly preferably fine particles having an average particle diameter of 10 μm or less, and the amount of the conductive particles 27 used is generally 0.1% in terms of the volume ratio in the entire volume of the electrolysis region 7. Or more, less than 20%, preferably 0.2% or more and less than 10%. Since the conductor particles 27 are conductors, they are well dispersed so as not to form an electrical short circuit between the anode 2 and the cathode 3 and to have an effect of lowering the electric resistance value due to adsorbed moisture. It is preferable to make it.

実施の形態10.
図13は、本発明の実施の形態10における、前記図3に対応する一部拡大断面図である。実施の形態10では図示するように、固体高分子電解質4の延在部41に位置する陽極2および陰極3の一部が削除されて、代わって、スパッタ法で形成された電気絶縁性のアルミナ被膜26が形成されている。また固体高分子電解質4は、2枚の固体高分子電解質膜4a、4bにて形成されており、陽極2側の固体高分子電解質膜4aは、前記実施の形態6において説明した保水性非導電体、例えば酸化チタン微粒と前記実施の形態9において説明した導電体粒子27との混合物を分散状態で含み、陰極3側の固体高分子電解質膜4bは、導電体粒子27を含まないものである。2枚の固体電解質膜4a、4bの厚みの総和は、少なくとも300μmの厚みとなっている。
Embodiment 10 FIG.
FIG. 13 is a partially enlarged sectional view corresponding to FIG. 3 in the tenth embodiment of the present invention. In the tenth embodiment, as shown in the drawing, a part of the anode 2 and the cathode 3 located in the extending portion 41 of the solid polymer electrolyte 4 is deleted, and instead, an electrically insulating alumina formed by sputtering. A coating 26 is formed. The solid polymer electrolyte 4 is formed by two solid polymer electrolyte membranes 4a and 4b. The solid polymer electrolyte membrane 4a on the anode 2 side is a water-retentive nonconductive material described in the sixth embodiment. The solid polymer electrolyte membrane 4b on the cathode 3 side does not include the conductive particles 27. For example, the solid polymer electrolyte membrane 4b on the cathode 3 side includes the mixture of the conductive particles 27 described in the ninth embodiment. . The total thickness of the two solid electrolyte membranes 4a and 4b is at least 300 μm.

実施の形態10の電気化学素子の除湿素子としての性能を前記図4に示す従来の電気化学素子と比較したところ、除湿性能が1割ほど向上した。これは、陽極2の固体電解質膜中の保水性が高まって通電時に陽極2側の含有水分の減少程度が抑制され、固体電解質膜中の陰極3から陽極2側への水分の拡散が、膜厚を増大させたことにより抑制され、除湿の効率が向上したと推定される。また、前記図4の電気化学素子と比較して、陽極2及び陰極3の一部部分を減少することができるため、材料削減により経済性が向上する効果もある。   When the performance of the electrochemical device of the tenth embodiment as a dehumidifying device was compared with the conventional electrochemical device shown in FIG. 4, the dehumidifying performance was improved by about 10%. This is because the water retention in the solid electrolyte membrane of the anode 2 is increased and the decrease in the water content on the anode 2 side during energization is suppressed, and the diffusion of moisture from the cathode 3 to the anode 2 side in the solid electrolyte membrane It is presumed that the efficiency of dehumidification was improved by suppressing the thickness. Further, compared with the electrochemical device of FIG. 4, a part of the anode 2 and the cathode 3 can be reduced, so that there is an effect of improving the economy by reducing the material.

本発明の電気化学素子は、電気電子機器内などの所望の空間の除湿または加湿を行ったり、酸素濃度を高めたり、酸素濃度を低くするために用いられる可能性が高い。 The electrochemical device of the present invention, or subjected to dehumidification or humidification of a desired space, such as in electrical and electronic equipment, and increasing the oxygen concentration, is not high possibility to be used in order to lower the oxygen concentration.

実施の形態1の電気化学素子の平面図である。1 is a plan view of an electrochemical element according to a first embodiment. 図1のA−A線に沿った断面図である。It is sectional drawing along the AA line of FIG. 図2の一部拡大図である。FIG. 3 is a partially enlarged view of FIG. 2. 実施の形態1の電気化学素子の効果を説明する参考例の断面図である。It is sectional drawing of the reference example explaining the effect of the electrochemical element of Embodiment 1. FIG. 実施の形態2における図3に対応する一部拡大断面図である。FIG. 4 is a partially enlarged cross-sectional view corresponding to FIG. 3 in the second embodiment. 実施の形態3における図3に対応する一部拡大断面図である。FIG. 4 is a partially enlarged cross-sectional view corresponding to FIG. 3 in the third embodiment. 実施の形態4における図3に対応する一部拡大断面図である。FIG. 10 is a partially enlarged cross-sectional view corresponding to FIG. 3 in the fourth embodiment. 実施の形態5における図3に対応する一部拡大断面図である。FIG. 10 is a partially enlarged cross-sectional view corresponding to FIG. 3 in the fifth embodiment. 実施の形態6における図3に対応する一部拡大断面図である。FIG. 10 is a partially enlarged cross-sectional view corresponding to FIG. 3 in the sixth embodiment. 実施の形態7における図3に対応する一部拡大断面図である。FIG. 10 is a partially enlarged cross-sectional view corresponding to FIG. 3 in the seventh embodiment. 実施の形態8における図3に対応する一部拡大断面図である。FIG. 10 is a partially enlarged cross-sectional view corresponding to FIG. 3 in an eighth embodiment. 実施の形態9における図3に対応する一部拡大断面図である。FIG. 20 is a partially enlarged cross-sectional view corresponding to FIG. 3 in the ninth embodiment. 実施の形態10における図3に対応する一部拡大断面図である。FIG. 32 is a partially enlarged cross-sectional view corresponding to FIG. 3 in the tenth embodiment.

1 電気化学素子、2 陽極、3 陰極、4 固体高分子電解質、40 本体部、41 延在部、5 電気絶縁フィルム、6 非電気分解領域、7 電気分解領域、8 陽極集電板、9 陰極集電板、10 外部電源、11a 第一開口部、11b 第二開口部、12 陽極端子孔、13 陰極端子孔、14 絶縁押え板、15a 電流端子ネジ、15b 電流端子ネジ、16 バネワッシャー、17 ワッシャー、18 絶縁ワッシャー、19 開口部用孔、20 切断線、21 保水体層、22 電気絶縁層、23 保水体層、24 保持孔、25 ナット、26 アルミナ被膜、27 導電体粒子。   DESCRIPTION OF SYMBOLS 1 Electrochemical element, 2 Anode, 3 Cathode, 4 Solid polymer electrolyte, 40 Main body part, 41 Extension part, 5 Electrical insulation film, 6 Nonelectrolysis area | region, 7 Electrolysis area | region, 8 Anode current collecting plate, 9 Cathode Current collector plate, 10 External power source, 11a First opening, 11b Second opening, 12 Anode terminal hole, 13 Cathode terminal hole, 14 Insulating retainer plate, 15a Current terminal screw, 15b Current terminal screw, 16 Spring washer, 17 Washer, 18 insulating washer, 19 opening hole, 20 cutting line, 21 water retaining layer, 22 electrical insulating layer, 23 water retaining layer, 24 retaining hole, 25 nut, 26 alumina coating, 27 conductor particles.

Claims (7)

水を電気分解して酸素を発生する陽極、水素を発生して酸素を消費する陰極、上記陽極側に配置されて上記陽極が被除湿空間と接することを可能にする第一開口部を有する陽極集電体、上記陰極側に配置されて上記陰極が水放出空間と接することを可能にする第二開口部を有する陰極集電体、上記第一開口部と上記第二開口部とが対向する電気分解領域において水素イオン交換の作用をなす固体高分子電解質、および上記陽極集電体と上記陰極集電体とが対向する非電気分解領域の電気抵抗を高める電気絶縁体、を含むことを特徴とする電気化学素子。   An anode that electrolyzes water to generate oxygen, a cathode that generates hydrogen and consumes oxygen, and an anode that is disposed on the anode side and that allows the anode to contact the dehumidified space A current collector, a cathode current collector disposed on the cathode side and having a second opening that allows the cathode to contact the water discharge space, the first opening and the second opening face each other A solid polymer electrolyte that performs hydrogen ion exchange in the electrolysis region, and an electrical insulator that increases the electrical resistance of the non-electrolysis region where the anode current collector and the cathode current collector face each other. An electrochemical element. 上記固体高分子電解質は、上記非電気分解領域にまで延在する固体高分子電解質延在部を有し、上記電気絶縁体は、上記固体高分子電解質延在部中、上記陽極集電体と上記固体高分子電解質延在部との間の一部、および上記陰極集電体と上記固体高分子電解質延在部との間の一部のうちのいずれかに、またはそれらの全部に設けられることを特徴とする請求項1記載の電気化学素子。   The solid polymer electrolyte has a solid polymer electrolyte extension that extends to the non-electrolysis region, and the electrical insulator includes the anode current collector and the anode current collector in the solid polymer electrolyte extension. Provided in any or all of a part between the solid polymer electrolyte extension part and a part between the cathode current collector and the solid polymer electrolyte extension part. The electrochemical element according to claim 1. 上記固体高分子電解質延在部における上記陽極集電体と上記陰極集電体との間の電気抵抗を高める電気絶縁体、上記固体高分子電解質の電気抵抗値を低下させる保水性非導電体と上記固体高分子電解質中に分散状態で存在する導電体粒子のいずれか一方または両方を含むことを特徴とする請求項2記載の電気化学素子。 An electrical insulator that increases electrical resistance between the anode current collector and the cathode current collector in the solid polymer electrolyte extension, a water retention non-conductor that decreases the electrical resistance value of the solid polymer electrolyte, and the electrochemical element according to claim 2 Symbol mounting, characterized in that it comprises either or both of the conductive particles present in a dispersed state in the solid polymer electrolyte. 上記固体高分子電解質は、2枚の固体高分子電解質膜から構成されており、且つ上記2枚の合計厚みは少なくとも300μmであることを特徴とする請求項1記載の電気化学素子。 The solid polymer electrolyte, two polymer are composed of an electrolyte membrane, and claim 1 Symbol placement of the electrochemical device above two total thickness may be equal to at least 300 [mu] m. 上記電気絶縁体は、電気絶縁性樹脂のフィルムで形成されていることを特徴とする請求項1または請求項記載の電気化学素子。 The electrical insulator according to claim 1 or claim 3 electrochemical device wherein it is formed with a film of electrically insulating resin. 上記保水性非導電体は、酸化チタン、シリカ、ゼオライト、ジルコニアからなる群から選ばれた一種または二種以上で形成され、上記導電体粒子は、貴金属粒子、グラファイト粒子、カーボンブラックからなる群から選ばれた一種または二種以上で形成されたことを特徴とする請求項記載の電気化学素子。 The water-retaining non-conductor is formed of one or more selected from the group consisting of titanium oxide, silica, zeolite, and zirconia, and the conductor particles are selected from the group consisting of noble metal particles, graphite particles, and carbon black. electrochemical element Motomeko 3 wherein you characterized in that it is formed with selected one or two or more kinds. 水を電気分解して酸素を発生する陽極、水素を発生して酸素を消費する陰極、上記陽極側に配置されて上記陽極が被除湿空間と接することを可能にする第一開口部を有する陽極集電体、上記陰極側に配置されて上記陰極が水放出空間と接することを可能にする第二開口部を有する陰極集電体、上記第一開口部と上記第二開口部とが対向する電気分解領域において水素イオン交換の作用をなすと共に上記陽極集電体と上記陰極集電体とが対向する非電気分解領域に設けられた固体高分子電解質延在部を含む固体高分子電解質の上記固体高分子電解質延在部における上記陽極集電体と上記陰極集電体との間の電気抵抗を高める電気絶縁性フィルムを含む電気化学素子の製造において、上記固体高分子電解質を形成するための2枚の固体高分子電解質膜の間に、上記電気分解領域にあたる開口部用孔を一定間隔を置いて複数有する電気絶縁性フィルムが位置する積層体を得る第一工程、上記積層体をプレスして電気絶縁性フィルムを両側の上記固体高分子電解質膜と融着または密着させる第二工程、上記第二工程で得られた積層体の両面にそれぞれ陽極形成用塗布剤および陰極形成用塗布剤を塗布し、乾燥して陽極および陰極を形成する第三工程、および上記第三工程で得られた積層体を切断して一個の上記開口部用孔を含む複数の積層体片を得る第四工程を含むことを特徴とする電気化学素子の製造方法。   An anode that electrolyzes water to generate oxygen, a cathode that generates hydrogen and consumes oxygen, and an anode that is disposed on the anode side and that allows the anode to contact the dehumidified space A current collector, a cathode current collector disposed on the cathode side and having a second opening that allows the cathode to contact the water discharge space, the first opening and the second opening face each other The solid polymer electrolyte including the solid polymer electrolyte extending portion provided in the non-electrolysis region that functions as hydrogen ion exchange in the electrolysis region and is opposed to the anode current collector and the cathode current collector. In the manufacture of an electrochemical device including an electrical insulating film that increases the electrical resistance between the anode current collector and the cathode current collector in the solid polymer electrolyte extension, for forming the solid polymer electrolyte Two pieces of solid polymer electrolysis A first step of obtaining a laminate in which an electrical insulating film having a plurality of openings for an opening corresponding to the electrolysis region is provided between the membranes at regular intervals, the laminate is pressed to form both sides of the electrical insulating film The anode forming coating agent and the cathode forming coating agent are respectively applied to both surfaces of the laminate obtained in the second step of fusing or adhering to the solid polymer electrolyte membrane and the second step, and dried to form an anode. And a third step of forming a cathode, and a fourth step of cutting the laminate obtained in the third step to obtain a plurality of laminate pieces including one opening hole. A method for producing an electrochemical element.
JP2005047244A 2005-02-23 2005-02-23 Electrochemical element and method for producing the same Expired - Fee Related JP4410127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005047244A JP4410127B2 (en) 2005-02-23 2005-02-23 Electrochemical element and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005047244A JP4410127B2 (en) 2005-02-23 2005-02-23 Electrochemical element and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006233249A JP2006233249A (en) 2006-09-07
JP4410127B2 true JP4410127B2 (en) 2010-02-03

Family

ID=37041240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005047244A Expired - Fee Related JP4410127B2 (en) 2005-02-23 2005-02-23 Electrochemical element and method for producing the same

Country Status (1)

Country Link
JP (1) JP4410127B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090152106A1 (en) * 2007-06-15 2009-06-18 Kabushiki Kaisha Toshiba High temperature steam electrolyzing device
JP5332355B2 (en) 2007-07-11 2013-11-06 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP6203006B2 (en) * 2013-11-14 2017-09-27 東芝ライフスタイル株式会社 Oxygen reduction device and refrigerator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0952019A (en) * 1995-08-18 1997-02-25 Opt D D Melco Lab:Kk Dehumidifier
JPH09157876A (en) * 1995-12-11 1997-06-17 Opt D D Melco Lab:Kk Electrochemical element
JPH1131514A (en) * 1997-07-10 1999-02-02 Mitsubishi Electric Corp Hydrogen processing short-circuit type electrode and its manufacture, and electrochemical element equipped with the electrode
JP3787460B2 (en) * 1999-05-25 2006-06-21 三菱電機株式会社 Humidity control container
JP2001240990A (en) * 1999-12-21 2001-09-04 Mitsubishi Electric Corp Electrochemical element using solid high-polymer electrolytic membrane and method for manufacturing the same as well as air conditioner and refrigerator having the same
CN1401016A (en) * 2000-12-20 2003-03-05 索尼公司 Apparatus for producing hydrogen, electrochemical device, method for producing hydrogen and method for generating electrochemical energy

Also Published As

Publication number Publication date
JP2006233249A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
JP4871295B2 (en) Design, method and process for unitizing MEA
JP5150895B2 (en) Membrane electrode assembly, method for producing membrane electrode assembly, and polymer electrolyte fuel cell
TWI276242B (en) Gas diffusive electrode body, method of manufacturing the electrode body, and electrochemical device
JP5069059B2 (en) Local inactivation of the membrane
CA2489154A1 (en) Low-humidification and durable fuel cell membrane
JP5214602B2 (en) Fuel cell, membrane-electrode assembly, and membrane-catalyst layer assembly
EP1323205A2 (en) Improved membrane electrode assemblies using ionic composite membranes
US7700211B2 (en) Fuel cell, fuel cell electrode and method for fabricating the same
KR100714359B1 (en) Electrode for fuel cell, preparing method thereof, and fuel cell using the same
JP4410127B2 (en) Electrochemical element and method for producing the same
JP2005078975A (en) Polymer electrolyte membrane-electrode junction and polymer electrolyte fuel cell using this
JP2004152684A (en) Fuel cell stack
JP2006190606A (en) Electrode for fuel cell, fuel cell, and method of manufacturing electrode for fuel cell
KR100879873B1 (en) Air breathing fuel cell stack
JP4400212B2 (en) Manufacturing method of membrane / electrode assembly for fuel cell
CA2719612A1 (en) Membrane electrode assembly and fuel cell
JP2006100266A (en) Solid polymer electrolyte membrane electrode junction body and solid polymer fuel cell
KR100625970B1 (en) Proton conducting composite membrane
JP2018085169A (en) Electrolyte membrane-electrode assembly and fuel cell
JP2011253788A (en) Membrane-electrode structure for polymer electrolyte fuel cell
JP2007109417A (en) Fuel cell and its manufacturing method
JP2006252910A (en) Fuel cell
JP2000133279A (en) Manufacture of electrode for fuel cell and fuel cell
JP2004152635A (en) Fuel cell
JP2003109603A (en) High molecular electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091112

R151 Written notification of patent or utility model registration

Ref document number: 4410127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees