JP2011253788A - Membrane-electrode structure for polymer electrolyte fuel cell - Google Patents

Membrane-electrode structure for polymer electrolyte fuel cell Download PDF

Info

Publication number
JP2011253788A
JP2011253788A JP2010128790A JP2010128790A JP2011253788A JP 2011253788 A JP2011253788 A JP 2011253788A JP 2010128790 A JP2010128790 A JP 2010128790A JP 2010128790 A JP2010128790 A JP 2010128790A JP 2011253788 A JP2011253788 A JP 2011253788A
Authority
JP
Japan
Prior art keywords
membrane
polymer
electrode
fuel cell
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010128790A
Other languages
Japanese (ja)
Other versions
JP5535773B2 (en
Inventor
Kagehisa Hamazaki
景久 浜崎
Takanori Suzuki
貴紀 鈴木
Shigeo Nakagawa
薫生 中川
Masashi Sugishita
昌史 杉下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010128790A priority Critical patent/JP5535773B2/en
Publication of JP2011253788A publication Critical patent/JP2011253788A/en
Application granted granted Critical
Publication of JP5535773B2 publication Critical patent/JP5535773B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a membrane-electrode structure for a polymer electrolyte fuel cell, capable of improving power generation characteristics by suppressing an increase with time in a particle size of a catalyst metal.SOLUTION: In the membrane-electrode structure for a polymer electrolyte fuel cell, a solid polymer electrolyte membrane 1 is held by a pair of electrode catalyst layers 2, 2 containing catalyst particles 23. In the catalyst particles 23, a catalyst metal 22 is supported by a particulate proton electrolyte polymer 21. The particulate proton electrolyte polymer 21 has an average particle size of 100 nm or less, or has an ion exchange capacity of 0-0.7 meq/g.

Description

本発明は、固体高分子型燃料電池用膜−電極構造体に関するものである。   The present invention relates to a membrane-electrode structure for a polymer electrolyte fuel cell.

従来、固体高分子電解質膜を、触媒粒子と電極電解質とを含む1対の電極触媒層で挟持した固体高分子型燃料電池用膜−電極構造体が知られている。前記触媒粒子は、カーボンブラック等の炭素質粒子からなる担体に、白金又は白金を含む合金等からなる貴金属触媒を担持させたものが一般的である。前記固体高分子型燃料電池用膜−電極構造体は、さらに前記各電極触媒層の上にガス拡散層を積層すると共に、各ガス拡散層の上にガスの流路となる溝が形成されたセパレータを積層することにより、固体高分子型燃料電池を形成することができる。   2. Description of the Related Art Conventionally, a polymer electrolyte fuel cell membrane-electrode structure in which a solid polymer electrolyte membrane is sandwiched between a pair of electrode catalyst layers containing catalyst particles and an electrode electrolyte is known. The catalyst particles are generally obtained by supporting a noble metal catalyst made of platinum or an alloy containing platinum on a carrier made of carbonaceous particles such as carbon black. In the membrane-electrode structure for a polymer electrolyte fuel cell, a gas diffusion layer is further laminated on each electrode catalyst layer, and a groove serving as a gas flow path is formed on each gas diffusion layer. By laminating separators, a polymer electrolyte fuel cell can be formed.

前記固体高分子型燃料電池は、一方の電極触媒層を燃料極(アノード)として前記ガス拡散層を介して、水素、メタノール等の還元性ガスを供給すると共に、他方の電極触媒層を酸素極(カソード)として空気、酸素等の酸化性ガスを導入する。このようにすると、燃料極側では、前記電極触媒層に含まれる触媒の作用により、前記還元性ガスからプロトン及び電子が生成し、前記プロトンは前記固体高分子電解質膜を介して、前記酸素極側の電極触媒層に移動する。そして、前記プロトンは、前記酸素極側の電極触媒層で、前記電極触媒層に含まれる触媒の作用により、該酸素極に導入される前記酸化性ガス及び電子と反応して水を生成する。従って、前記燃料極と酸素極とを導線により接続することにより、前記燃料極で生成した電子を前記酸素極に送る回路が形成され、電流を取り出すことができる。   The polymer electrolyte fuel cell uses one electrode catalyst layer as a fuel electrode (anode) to supply a reducing gas such as hydrogen or methanol through the gas diffusion layer, and the other electrode catalyst layer as an oxygen electrode. An oxidizing gas such as air or oxygen is introduced as the (cathode). In this way, on the fuel electrode side, protons and electrons are generated from the reducing gas by the action of the catalyst contained in the electrode catalyst layer, and the protons pass through the solid polymer electrolyte membrane and the oxygen electrode. It moves to the electrode catalyst layer on the side. The protons react with the oxidizing gas and electrons introduced into the oxygen electrode by the action of the catalyst contained in the electrode catalyst layer in the electrode catalyst layer on the oxygen electrode side to generate water. Therefore, by connecting the fuel electrode and the oxygen electrode with a conducting wire, a circuit for sending electrons generated at the fuel electrode to the oxygen electrode is formed, and a current can be taken out.

ところが、前記固体高分子型燃料電池を前記のようにして運転したときに、起動停止又は長時間の停止等により、前記酸素極が高電位に曝されると、前記電極触媒層において前記炭素質粒子の腐食が生じ、触媒作用が劣化して電池性能が低下するという問題がある。そこで、前記電極触媒層において触媒担体として前記炭素質粒子を用いない膜−電極構造体が検討されている。   However, when the polymer electrolyte fuel cell is operated as described above, if the oxygen electrode is exposed to a high potential due to start-up or stop for a long time or the like, the carbonaceous material in the electrode catalyst layer There is a problem that the corrosion of the particles occurs, the catalytic action is deteriorated, and the battery performance is lowered. Therefore, a membrane-electrode structure that does not use the carbonaceous particles as a catalyst carrier in the electrode catalyst layer has been studied.

触媒担体として前記炭素質粒子を用いない膜−電極構造体として、例えば、高分子電解質の微粉末により形成された多孔質構造の表層部分に触媒を担持させた電極触媒層を備える膜−電極構造体が知られている。前記構造では、前記多孔質構造の表層部分に担持された触媒と、電子電動体微粒子とが電気的に接触してネットワークを構成している(特許文献1参照)。   As a membrane-electrode structure not using the carbonaceous particles as a catalyst carrier, for example, a membrane-electrode structure comprising an electrode catalyst layer in which a catalyst is supported on a surface layer portion of a porous structure formed of fine powder of a polymer electrolyte The body is known. In the structure, the catalyst supported on the surface layer portion of the porous structure and the electric motor fine particles are in electrical contact to form a network (see Patent Document 1).

また、イオン交換樹脂に触媒金属イオンを吸着させ、該触媒金属イオンを還元することにより、イオン交換樹脂中に該触媒金属の微粒子を分散させた電極触媒層を備える膜−電極構造体が知られている。この電極触媒層では、イオン交換樹脂の塊の内外表面に多数の触媒金属微粒子が付着している(特許文献2参照)。   Also known is a membrane-electrode structure comprising an electrode catalyst layer in which fine particles of the catalytic metal are dispersed in the ion exchange resin by adsorbing the catalytic metal ion to the ion exchange resin and reducing the catalytic metal ion. ing. In this electrode catalyst layer, a large number of catalyst metal fine particles are attached to the inner and outer surfaces of the lump of ion exchange resin (see Patent Document 2).

特開2000−260435号公報JP 2000-260435 A 特開2009−189118号公報JP 2009-189118 A

しかしながら、本発明らの検討によれば、触媒担体として前記炭素質粒子を用いない前記従来の膜−電極構造体は、前述のようにして運転したときに、経時的に触媒金属の粒子径が増大して表面積が低減し、発電特性が低下するという不都合がある。   However, according to the study of the present invention, the conventional membrane-electrode structure that does not use the carbonaceous particles as a catalyst carrier has a catalyst metal particle size that increases over time when operated as described above. There is an inconvenience that the surface area is reduced and the power generation characteristics are lowered.

本発明は、かかる不都合を解消して、触媒金属の粒子径の経時的増大を抑制して、発電特性の向上を図ることができる固体高分子型燃料電池用膜−電極構造体を提供することを目的とする。   The present invention provides a membrane-electrode structure for a polymer electrolyte fuel cell that can eliminate such inconvenience, suppress an increase in the particle size of the catalyst metal over time, and improve power generation characteristics. With the goal.

かかる目的を達成するために、本発明の固体高分子型燃料電池用膜−電極構造体の第1の態様は、固体高分子電解質膜を、触媒粒子を含む1対の電極触媒層で挟持した固体高分子型燃料電池用膜−電極構造体において、該触媒粒子は、粒子状プロトン電解質ポリマーに触媒金属が担持されてなり、該粒子状プロトン電解質ポリマーは100nm以下の平均粒子径を備えることを特徴とする。   In order to achieve such an object, according to the first aspect of the membrane-electrode structure for a polymer electrolyte fuel cell of the present invention, the polymer electrolyte membrane is sandwiched between a pair of electrode catalyst layers containing catalyst particles. In the membrane electrode assembly for a polymer electrolyte fuel cell, the catalyst particles are formed by supporting a catalyst metal on a particulate proton electrolyte polymer, and the particulate proton electrolyte polymer has an average particle diameter of 100 nm or less. Features.

本発明の第1の態様の固体高分子型燃料電池用膜−電極構造体によれば、前記粒子状プロトン電解質ポリマーの平均粒子径が100nm以下と著しく小さいので、触媒金属粒子の周囲を取り囲む粒子状プロトン電解質ポリマーとの接点が多くなり、該ポリマーとの接点を介して該触媒金属粒子を確実に保持することができる。この結果、前記触媒金属粒子の移動が抑えられ経時的な粒子径増大を抑制することができ、優れた発電特性を得ることができる。   According to the membrane-electrode structure for a polymer electrolyte fuel cell of the first aspect of the present invention, since the average particle diameter of the particulate proton electrolyte polymer is as extremely small as 100 nm or less, the particles surrounding the catalyst metal particles The number of contact points with the polymer electrolyte electrolyte increases, and the catalytic metal particles can be reliably held through the contact points with the polymer. As a result, the movement of the catalyst metal particles can be suppressed, the increase in the particle diameter with time can be suppressed, and excellent power generation characteristics can be obtained.

また、前記粒子状プロトン電解質ポリマーの平均粒子径が100nm以下であることにより、前記電極触媒層が緻密に形成されるため製造時に該電極触媒層の機械的強度を確保することができ、歩留まりを向上させることができる。   In addition, since the electrode catalyst layer is densely formed because the average particle diameter of the particulate proton electrolyte polymer is 100 nm or less, the mechanical strength of the electrode catalyst layer can be ensured during production, and the yield can be increased. Can be improved.

本発明の第1の態様の固体高分子型燃料電池用膜−電極構造体において、前記粒子状プロトン電解質ポリマーは5nm以上の平均粒子径を備えることが好ましい。前記粒子状プロトン電解質ポリマーの平均粒子径が5nm以上であることにより、前記電極触媒層が過度に密になることを抑制して、該電極触媒層に形成される細孔容積を確保することができる。   In the membrane-electrode structure for a polymer electrolyte fuel cell according to the first aspect of the present invention, the particulate proton electrolyte polymer preferably has an average particle diameter of 5 nm or more. When the average particle diameter of the particulate proton electrolyte polymer is 5 nm or more, the electrode catalyst layer can be prevented from becoming excessively dense, and the pore volume formed in the electrode catalyst layer can be ensured. it can.

この結果、前記電極触媒層における反応ガスの導入、又は生成水の排出を円滑に行うことができると共に、反応ガスの欠乏による副反応を抑制することができる。従って、膜−電極構造体において、優れた耐久性と、さらに優れた発電特性とを得ることができる。   As a result, the reaction gas can be smoothly introduced into the electrode catalyst layer or the generated water can be discharged smoothly, and a side reaction due to the lack of the reaction gas can be suppressed. Therefore, in the membrane-electrode structure, excellent durability and further excellent power generation characteristics can be obtained.

本発明の固体高分子型燃料電池用膜−電極構造体の第2の態様は、固体高分子電解質膜を、触媒粒子を含む1対の電極触媒層で挟持した固体高分子型燃料電池用膜−電極構造体において、該触媒粒子は、粒子状プロトン電解質ポリマーに触媒金属が担持されてなり、該粒子状プロトン電解質ポリマーは0〜0.7meq/gの範囲のイオン交換容量を備えることを特徴とする。   According to a second aspect of the membrane-electrode structure for a polymer electrolyte fuel cell of the present invention, a membrane for a polymer electrolyte fuel cell in which a polymer electrolyte membrane is sandwiched between a pair of electrode catalyst layers containing catalyst particles. -In the electrode structure, the catalyst particles comprise a catalyst metal supported on a particulate proton electrolyte polymer, and the particulate proton electrolyte polymer has an ion exchange capacity in the range of 0 to 0.7 meq / g. And

本発明の第2の態様の固体高分子型燃料電池用膜−電極構造体によれば、前記粒子状プロトン電解質ポリマーのイオン交換容量が前記範囲にあるので、前記電極触媒層の酸性度を低く維持し、前記触媒金属のイオン化、析出による電気化学反応を低減することができる。この結果、前記触媒金属粒子の経時的な粒子径増大を抑制することができ、優れた発電特性を得ることができる。   According to the membrane-electrode structure for a polymer electrolyte fuel cell of the second aspect of the present invention, since the ion exchange capacity of the particulate proton electrolyte polymer is in the above range, the acidity of the electrode catalyst layer is lowered. The electrochemical reaction due to ionization and deposition of the catalyst metal can be reduced. As a result, an increase in the particle diameter of the catalyst metal particles over time can be suppressed, and excellent power generation characteristics can be obtained.

また、本発明の第1の態様の固体高分子型燃料電池用膜−電極構造体において、前記粒子状プロトン電解質ポリマーは5〜100nmの範囲の平均粒子径を備えることが好ましい。本発明の第2の態様の固体高分子型燃料電池用膜−電極構造体では、前記粒子状プロトン電解質ポリマーの平均粒子径が100nm以下であることにより、前記電極触媒層の製造時に該電極触媒層の機械的強度を確保することができ、歩留まりを向上させることができる。また、前記粒子状プロトン電解質ポリマーの平均粒子径が5nm以上であることにより、前記電極触媒層が過度に密になることを抑制して、該電極触媒層に形成される細孔容積を確保することができる。   In the membrane-electrode structure for a polymer electrolyte fuel cell according to the first aspect of the present invention, the particulate proton electrolyte polymer preferably has an average particle diameter in the range of 5 to 100 nm. In the membrane-electrode structure for a polymer electrolyte fuel cell according to the second aspect of the present invention, when the average particle diameter of the particulate proton electrolyte polymer is 100 nm or less, the electrode catalyst is produced during the production of the electrode catalyst layer. The mechanical strength of the layer can be ensured and the yield can be improved. In addition, when the average particle diameter of the particulate proton electrolyte polymer is 5 nm or more, the electrode catalyst layer is prevented from becoming excessively dense, and the pore volume formed in the electrode catalyst layer is ensured. be able to.

この結果、前記電極触媒層における反応ガスの導入、又は生成水の排出を円滑に行うことができると共に、反応ガスの欠乏による副反応を抑制することができる。従って、膜−電極構造体において、優れた耐久性と、さらに優れた発電特性とを得ることができる。   As a result, the reaction gas can be smoothly introduced into the electrode catalyst layer or the generated water can be discharged smoothly, and a side reaction due to the lack of the reaction gas can be suppressed. Therefore, in the membrane-electrode structure, excellent durability and further excellent power generation characteristics can be obtained.

本発明の膜−電極構造体の一構成例を示す説明的断面図。Explanatory sectional drawing which shows the example of 1 structure of the membrane-electrode structure of this invention. 本発明の膜−電極構造体における電極触媒層の構成を拡大して示す説明的断面図。Explanatory sectional drawing which expands and shows the structure of the electrode catalyst layer in the membrane-electrode structure of this invention. 粒子状プロトン電解質ポリマーの平均粒子径と、500時間運転後の触媒金属の粒子径との関係を示すグラフ。The graph which shows the relationship between the average particle diameter of a particulate proton electrolyte polymer, and the particle diameter of the catalyst metal after a 500-hour driving | operation. 粒子状プロトン電解質ポリマーのイオン交換容量と、500時間運転後の触媒金属の粒子径との関係を示すグラフ。The graph which shows the relationship between the ion exchange capacity of a particulate proton electrolyte polymer, and the particle diameter of the catalyst metal after a 500-hour driving | operation.

次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。   Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.

図1に示すように、本実施形態の第1の態様の固体高分子型燃料電池用膜−電極構造体(MEA)は、固体高分子電解質膜1と、固体高分子電解質膜1を表裏両面から挟持する1対の電極触媒層2,2とを備えている。また、電極触媒層2,2の外側には、それぞれガス拡散層3を備え、電極触媒層2とガス拡散層3との間には中間層4が配設されている。   As shown in FIG. 1, the membrane-electrode assembly (MEA) for a solid polymer type fuel cell according to the first aspect of the present embodiment has a solid polymer electrolyte membrane 1 and a solid polymer electrolyte membrane 1 on both sides. And a pair of electrode catalyst layers 2 and 2 sandwiched from each other. Further, gas diffusion layers 3 are provided outside the electrode catalyst layers 2 and 2, and an intermediate layer 4 is disposed between the electrode catalyst layers 2 and the gas diffusion layers 3.

固体高分子電解質膜1は、デュポン社製のナフィオン(登録商標)に代表されるパーフルオロアルキルスルホン酸ポリマー等のフッ素含有樹脂またはスルホン化ポリフェニレン等の炭化水素系樹脂からなる陽イオン交換樹脂を用いることができる。尚、本発明の膜−電極構造体は、固体高分子型燃料電池に限定されず、液体燃料を用いた燃料電池、例えばダイレクトメタノール型燃料電池にも適用することができる。   The solid polymer electrolyte membrane 1 uses a cation exchange resin made of a fluorine-containing resin such as a perfluoroalkylsulfonic acid polymer represented by Nafion (registered trademark) manufactured by DuPont or a hydrocarbon-based resin such as sulfonated polyphenylene. be able to. The membrane-electrode structure of the present invention is not limited to a polymer electrolyte fuel cell, and can be applied to a fuel cell using liquid fuel, for example, a direct methanol fuel cell.

電極触媒層2は、図2に示すように、粒子状プロトン電解質ポリマー21に触媒金属微粒子22が担持されている触媒粒子23により構成されている。粒子状プロトン電解質ポリマー21は、平均粒子径が5〜100nmの範囲であればよく、粒子状プロトン電解質ポリマー21を形成する樹脂に特に限定はない。粒子状プロトン電解質ポリマー21の粒子径が従来の炭素質粒子からなる担体に比べて著しく小さいため、電極触媒層の厚みを非常に小さくすることができる。   As shown in FIG. 2, the electrode catalyst layer 2 is composed of catalyst particles 23 in which catalytic metal fine particles 22 are supported on a particulate proton electrolyte polymer 21. The particulate proton electrolyte polymer 21 may have an average particle diameter in the range of 5 to 100 nm, and the resin forming the particulate proton electrolyte polymer 21 is not particularly limited. Since the particle diameter of the particulate proton electrolyte polymer 21 is significantly smaller than that of a conventional carrier made of carbonaceous particles, the thickness of the electrode catalyst layer can be made very small.

電極触媒層2の厚みは、10μm以下、より好ましくは5μm以下に設定される。厚みが10μm以下と非常に薄いので、反応ガスが拡散して触媒金属微粒子22の三相界面に容易に到達することができ、発電特性に優れている。また、電極触媒層2の厚み方向の電気抵抗が小さくなり、膜−電極構造体の内部抵抗を下げることができる。更に車両用の燃料電池スタックとして数百枚の膜−電極構造体とセパレータを積層した場合、燃料電池スタックの積層長を従来と比べて小さくすることができる。   The thickness of the electrode catalyst layer 2 is set to 10 μm or less, more preferably 5 μm or less. Since the thickness is as very thin as 10 μm or less, the reaction gas diffuses and can easily reach the three-phase interface of the catalytic metal fine particles 22 and is excellent in power generation characteristics. Further, the electric resistance in the thickness direction of the electrode catalyst layer 2 is reduced, and the internal resistance of the membrane-electrode structure can be lowered. Furthermore, when several hundred membrane-electrode structures and separators are stacked as a fuel cell stack for a vehicle, the stack length of the fuel cell stack can be reduced as compared with the conventional one.

電極触媒層の厚みを薄くすると、イオン導電性を確保するために必要なイオン交換容量が小さくて済む。これにより、触媒金属微粒子22の移動が抑制され、触媒金属微粒子22の粒子径が経時的に増大することを抑制することができるという効果を有する。また、電極触媒層の厚みを薄くすると、必要な触媒金属粒子22の量が少なくて済み、触媒金属粒子22が有効に利用され、触媒利用率が向上する。   When the thickness of the electrode catalyst layer is reduced, the ion exchange capacity necessary for ensuring ionic conductivity can be reduced. Thereby, the movement of the catalyst metal fine particles 22 is suppressed, and the increase in the particle diameter of the catalyst metal fine particles 22 over time can be suppressed. Further, when the thickness of the electrode catalyst layer is reduced, the amount of the required catalyst metal particles 22 can be reduced, the catalyst metal particles 22 are effectively used, and the catalyst utilization rate is improved.

図2に示すように、隣接する触媒粒子23は、相互に接触しながら粒子状プロトン電解質ポリマー21の全面を覆っているため、電極触媒層に炭素質粒子等の導電性の粒子を添加しなくても、触媒粒子23の連続的なつながりによって電子の導電通路が形成される。粒子状プロトン電解質ポリマー21自体は導電性を有していないが、触媒粒子23の相互接触により、導電通路が確保され、良好な発電特性が得られる。また導電性の粒子自体が添加されていないため、電極触媒層の厚みを小さくすることができる。   As shown in FIG. 2, the adjacent catalyst particles 23 cover the entire surface of the particulate proton electrolyte polymer 21 while being in contact with each other, so that conductive particles such as carbonaceous particles are not added to the electrode catalyst layer. However, the conductive path of electrons is formed by the continuous connection of the catalyst particles 23. Although the particulate proton electrolyte polymer 21 itself does not have conductivity, a conductive path is secured by mutual contact of the catalyst particles 23, and good power generation characteristics are obtained. Moreover, since the electroconductive particle itself is not added, the thickness of an electrode catalyst layer can be made small.

本発明の電極触媒層22は、アノード電極触媒層およびカソード電極触媒層のいずれにも適用することができる。固体高分子型燃料電池のアノード電極では反応の活性が高く、カソード電極と比べて必要な触媒金属の量が少なくて済むので、アノード側電極触媒層は、カソード側電極触媒層よりも薄くすることが好ましい。   The electrode catalyst layer 22 of the present invention can be applied to both an anode electrode catalyst layer and a cathode electrode catalyst layer. The anode electrode of the polymer electrolyte fuel cell has high reaction activity and requires a smaller amount of catalyst metal than the cathode electrode. Therefore, the anode side electrode catalyst layer should be thinner than the cathode side electrode catalyst layer. Is preferred.

粒子状プロトン電解質ポリマー21を形成する樹脂としては、例えば、通常の電極電解質となる電解質樹脂を用いることができる。前記電解質樹脂として、パーフルオロアルキルスルホン酸ポリマー(デュポン社製ナフィオン(登録商標)、旭硝子株式会社製フレミオン(登録商標)、旭化成株式会社製アシプレックス(登録商標)等)、ポリテトラフルオロエチレン等のフッ素含有樹脂、公知の炭化水素系樹脂、例えばエンジニアリングプラスチックであるポリアリレーン樹脂等を挙げることができる。   As the resin that forms the particulate proton electrolyte polymer 21, for example, an electrolyte resin that becomes a normal electrode electrolyte can be used. Examples of the electrolyte resin include perfluoroalkyl sulfonic acid polymers (Nafion (registered trademark) manufactured by DuPont, Flemion (registered trademark) manufactured by Asahi Glass Co., Ltd., Aciplex (registered trademark) manufactured by Asahi Kasei Co., Ltd.), and polytetrafluoroethylene. Fluorine-containing resins, known hydrocarbon resins, for example, polyarylene resins that are engineering plastics can be used.

ただし、固体高分子電解質膜1と電極触媒層2との間で良好な接合性を得るために、粒子状プロトン電解質ポリマー21を形成する樹脂は、固体高分子電解質膜1と同系統の樹脂を用いることが好ましい。このようにすることにより、膜−電極構造体の製造工程における歩留まりを向上させることができるとともに、該膜−電極構造体を燃料電池に用いたときに安定した発電性能を得ることができる。   However, in order to obtain good bondability between the solid polymer electrolyte membrane 1 and the electrode catalyst layer 2, the resin forming the particulate proton electrolyte polymer 21 is a resin of the same type as that of the solid polymer electrolyte membrane 1. It is preferable to use it. By doing so, the yield in the manufacturing process of the membrane-electrode structure can be improved, and stable power generation performance can be obtained when the membrane-electrode structure is used in a fuel cell.

前記樹脂の粒子径は、合成時の固形分濃度を小さくすることによって微小化することができる。また、前記電解質樹脂の粒子径は、合成時の溶媒組成、分散剤の種類及び量を適宜調整することによっても微小化することができる。さらに、前記電解質樹脂の粒子径は、合成された樹脂粒子分散溶液をジェットミルなどにより粉砕することによって、微小化することもできる。   The particle diameter of the resin can be reduced by reducing the solid content concentration during synthesis. The particle diameter of the electrolyte resin can also be reduced by appropriately adjusting the solvent composition at the time of synthesis and the type and amount of the dispersant. Furthermore, the particle diameter of the electrolyte resin can be reduced by pulverizing the synthesized resin particle dispersion with a jet mill or the like.

前記いずれかの手法により、前記範囲の平均粒子径を備える粒子状プロトン電解質ポリマー21を形成することができる。粒子状プロトン電解質ポリマー21は、平均粒子径が5〜100nmと、従来と比べて非常に小さいので、触媒金属微粒子22との接点数が増大し、粒子状プロトン電解質ポリマー21による触媒金属微粒子22の保持能力が増大する。この結果、電極触媒層2において、優れた構造保持耐久性を得ることができる。また、粒子状プロトン電解質ポリマー21は、平均粒子径が5nm以上であることにより電極触媒層2が過度に密になることを抑制して、電極触媒層2に形成される細孔容積を、反応ガスの導入、又は生成水の排出を円滑に行うことができる範囲とすることができる。   The particulate proton electrolyte polymer 21 having an average particle diameter in the above range can be formed by any one of the above methods. Since the particulate proton electrolyte polymer 21 has an average particle diameter of 5 to 100 nm, which is much smaller than the conventional one, the number of contacts with the catalyst metal fine particles 22 is increased. Holding capacity increases. As a result, in the electrode catalyst layer 2, excellent structure retention durability can be obtained. Further, the particulate proton electrolyte polymer 21 suppresses the electrode catalyst layer 2 from becoming excessively dense due to the average particle diameter being 5 nm or more, and reacts the pore volume formed in the electrode catalyst layer 2 with a reaction. It can be set as the range which can introduce | transduce gas or discharge | emit generated water smoothly.

触媒金属微粒子22を形成する貴金属系の触媒金属としては、白金触媒又は白金を含む合金触媒を挙げることができる。前記白金を含む合金としては、例えば、PtCo、PtIr等を挙げることができる。触媒金属微粒子22は、比表面積を増大させ、膜−電極構造体を燃料電池に用いたときに優れた発電性能を得るために、粒子状プロトン電解質ポリマー21よりも小さく、更にできるだけ微細であることが好ましい。具体的には例えば0.5〜100nm以下、より好ましくは、0.5〜30nmである。触媒微粒子22は粒子径を前記範囲のようにすることにより、表面積が大きくなり、発電性能の向上を図ることができる。   Examples of the noble metal-based catalyst metal that forms the catalyst metal fine particles 22 include a platinum catalyst or an alloy catalyst containing platinum. Examples of the alloy containing platinum include PtCo and PtIr. In order to increase the specific surface area and obtain excellent power generation performance when the membrane-electrode structure is used in a fuel cell, the catalytic metal fine particles 22 are smaller than the particulate proton electrolyte polymer 21 and as fine as possible. Is preferred. Specifically, it is 0.5-100 nm or less, for example, More preferably, it is 0.5-30 nm. By setting the particle size of the catalyst fine particles 22 within the above range, the surface area is increased, and the power generation performance can be improved.

ガス拡散層3は、例えば、カーボンペーパー又はカーボンクロス等の導電性多孔質基材により形成することができる。反応ガス流路から供給される反応ガスは、ガス拡散層3の内部で拡散することにより、電極触媒層へ均一に供給される。   The gas diffusion layer 3 can be formed of, for example, a conductive porous substrate such as carbon paper or carbon cloth. The reaction gas supplied from the reaction gas channel is uniformly supplied to the electrode catalyst layer by diffusing inside the gas diffusion layer 3.

中間層4は、例えば、炭素ウィスカー、炭素粒子、電解質ポリマー、バインダの少なくとも1つまたは2つ以上の混合物により形成することができる。中間層4は、例えば電極触媒層2とガス拡散層3との接合を強固にする作用や、電極触媒層2で発生した生成水をガス拡散層側に逃がす作用や、電極触媒層2が乾燥した際に水分を供給する作用を有する。上記の作用を発揮するために、中間層4は0.5〜10μmの範囲の厚さを備えることが好ましい。   The intermediate layer 4 can be formed of, for example, at least one of carbon whiskers, carbon particles, an electrolyte polymer, or a binder, or a mixture of two or more. The intermediate layer 4 is, for example, an action that strengthens the bonding between the electrode catalyst layer 2 and the gas diffusion layer 3, an action that releases the generated water generated in the electrode catalyst layer 2 to the gas diffusion layer side, and the electrode catalyst layer 2 is dried. It has the effect | action which supplies a water | moisture content when doing. In order to exert the above action, the intermediate layer 4 preferably has a thickness in the range of 0.5 to 10 μm.

前記構成を備える第1の態様の膜−電極構造体では、粒子状プロトン電解質ポリマー21により触媒金属微粒子22を保持することができるので、該膜−電極構造体を燃料電池に用いたときに、触媒金属微粒子22の粒子径が経時的に増大することを抑制することができ、優れた発電特性を得ることができる。   In the membrane-electrode structure of the first aspect having the above-described configuration, the catalytic metal fine particles 22 can be held by the particulate proton electrolyte polymer 21, so that when the membrane-electrode structure is used for a fuel cell, An increase in the particle diameter of the catalytic metal fine particles 22 over time can be suppressed, and excellent power generation characteristics can be obtained.

次に、本実施形態の第2の態様の固体高分子型燃料電池用膜−電極構造体(MEA)は、粒子状プロトン電解質ポリマー21のイオン交換容量を0.7meq/g以下としたことを除いて、図1に示す第1の態様の膜−電極構造体と全く同一の構成を備えている。   Next, the membrane-electrode structure (MEA) for a polymer electrolyte fuel cell according to the second aspect of the present embodiment is such that the ion exchange capacity of the particulate proton electrolyte polymer 21 is 0.7 meq / g or less. Except for this, the membrane-electrode structure of the first embodiment shown in FIG.

本態様の膜−電極構造体において、粒子状プロトン電解質ポリマー21は、前記範囲のイオン交換容量を備えるために、例えば、パーフルオロアルキルスルホン酸ポリマー(例えばデュポン社製ナフィオン(登録商標))や公知の電解質樹脂を合成する際に、プロトン置換基を含むモノマーの割合を調整して重合反応行うことにより得ることができる。   In the membrane-electrode structure of this embodiment, the particulate proton electrolyte polymer 21 has, for example, a perfluoroalkyl sulfonic acid polymer (for example, Nafion (registered trademark) manufactured by DuPont) or the like in order to have an ion exchange capacity in the above range. When the electrolyte resin is synthesized, it can be obtained by adjusting the proportion of the monomer containing a proton substituent and performing a polymerization reaction.

ただし、固体高分子電解質膜1と電極触媒層2との間で良好な接合性を得るために、粒子状プロトン電解質ポリマー21を形成する樹脂は、固体高分子電解質膜1と同系統の樹脂で、イオン交換基を備えない樹脂を用いることが好ましい。このようにすることにより、膜−電極構造体の製造工程における歩留まりを向上させることができるとともに、該膜−電極構造体を燃料電池に用いたときに安定した発電性能を得ることができる。   However, in order to obtain good bondability between the solid polymer electrolyte membrane 1 and the electrode catalyst layer 2, the resin forming the particulate proton electrolyte polymer 21 is a resin of the same system as the solid polymer electrolyte membrane 1. It is preferable to use a resin that does not have an ion exchange group. By doing so, the yield in the manufacturing process of the membrane-electrode structure can be improved, and stable power generation performance can be obtained when the membrane-electrode structure is used in a fuel cell.

前記構成を備える第2の態様の膜−電極構造体では、粒子状プロトン電解質ポリマー21により電極触媒層2の酸性度を低く維持し、前記触媒金属のイオン化、析出による電気化学反応を低減することができる。この結果、第2の態様の膜−電極構造体を燃料電池に用いたときに、触媒金属微粒子23の粒子径が経時的に増大することを抑制することができ、優れた発電特性を得ることができる。   In the membrane-electrode structure of the second aspect having the above-described configuration, the acidity of the electrode catalyst layer 2 is kept low by the particulate proton electrolyte polymer 21, and the electrochemical reaction due to ionization and deposition of the catalyst metal is reduced. Can do. As a result, when the membrane-electrode structure of the second aspect is used in a fuel cell, it is possible to suppress the particle diameter of the catalytic metal fine particles 23 from increasing with time and to obtain excellent power generation characteristics. Can do.

尚、本実施形態の固体高分子型燃料電池用膜−電極構造体では、ガス拡散層3及び中間層4を省略してもよい。   In the membrane-electrode structure for a polymer electrolyte fuel cell of this embodiment, the gas diffusion layer 3 and the intermediate layer 4 may be omitted.

次に、本発明の実施例を示す。   Next, examples of the present invention will be described.

本実施例では、まず、電解質樹脂としてのパーフルオロアルキルスルホン酸ポリマー(デュポン社製ナフィオン(登録商標))と、触媒金属としての白金微粉末(BASF社製、結晶径10nm)と、溶媒とを混合して触媒インクを調製した。前記溶媒としては、水とノルマルプロピルアルコールとを1:3の質量比で混合したものを用いた。また、前記触媒インクにおける固形分濃度は、白金微粒子及び樹脂の合計として、該触媒インクに全体に対して13質量%とした。   In this example, first, a perfluoroalkylsulfonic acid polymer (Nafion (registered trademark) manufactured by DuPont) as an electrolyte resin, platinum fine powder (BASF, crystal diameter: 10 nm) as a catalyst metal, and a solvent are used. A catalyst ink was prepared by mixing. As the solvent, a mixture of water and normal propyl alcohol at a mass ratio of 1: 3 was used. The solid content concentration in the catalyst ink was 13% by mass with respect to the total amount of the platinum ink and the resin as a total.

次に、前記触媒インクを、ポリテトラフルオロエチレンからなる基材上に、バーコーターを用いて塗工し、電極触媒層2を形成した。   Next, the catalyst ink was applied onto a substrate made of polytetrafluoroethylene using a bar coater to form an electrode catalyst layer 2.

ここで、前記電解質樹脂の粒子径は、合成時の固形分濃度を小さくすることによって微小化することができる。また、前記電解質樹脂の粒子径は、合成時の溶媒組成、分散剤の種類及び量を適宜調整することによっても微小化することができる。さらに、前記電解質樹脂の粒子径は、合成された樹脂粒子分散溶液をジェットミルなどにより粉砕することによって、微小化することもできる。このようにすることにより、前記電解質樹脂は、5〜100nmの範囲の平均粒子径を備えるものとされている。   Here, the particle diameter of the electrolyte resin can be reduced by decreasing the solid content concentration during synthesis. The particle diameter of the electrolyte resin can also be reduced by appropriately adjusting the solvent composition at the time of synthesis and the type and amount of the dispersant. Furthermore, the particle diameter of the electrolyte resin can be reduced by pulverizing the synthesized resin particle dispersion with a jet mill or the like. By doing in this way, the said electrolyte resin shall be provided with the average particle diameter of the range of 5-100 nm.

次に、本実施例で得られた電極触媒層2を、パーフルオロアルキルスルホン酸ポリマー(デュポン社製ナフィオン(登録商標))からなる高分子電解質膜1の両面に、ホットプレスを用いて転写し、最終的に電極触媒層2の厚みが3μmの膜−電極構造体を形成した。   Next, the electrode catalyst layer 2 obtained in this example was transferred onto both surfaces of the polymer electrolyte membrane 1 made of a perfluoroalkyl sulfonic acid polymer (Nafion (registered trademark) manufactured by DuPont) using a hot press. Finally, a membrane-electrode structure in which the thickness of the electrode catalyst layer 2 was 3 μm was formed.

尚、本実施例では前記触媒インクの溶媒として、水とノルマルプロピルアルコールとの混合物を用いているが、通常の触媒インクの溶媒に用いられるエチルアルコール、水等を用いてもよい。また、本実施例ではポリテトラフルオロエチレンからなる基材上形成した、電極触媒層2をホットプレスにより高分子電解質膜1に転写しているが、高分子電解質膜1に前記触媒インクを直接塗工して電極触媒層2を形成するようにしてもよく、該触媒インクの溶媒をスクリーン印刷またはグラビア印刷により塗布してもよい。また、前記触媒インクをスプレー塗布してもよい。   In this embodiment, a mixture of water and normal propyl alcohol is used as the solvent for the catalyst ink. However, ethyl alcohol, water, or the like used as a solvent for a normal catalyst ink may be used. In this embodiment, the electrode catalyst layer 2 formed on a base material made of polytetrafluoroethylene is transferred to the polymer electrolyte membrane 1 by hot pressing, but the catalyst ink is directly applied to the polymer electrolyte membrane 1. The electrode catalyst layer 2 may be formed by coating, or the solvent of the catalyst ink may be applied by screen printing or gravure printing. The catalyst ink may be applied by spraying.

次に、電極触媒層2を形成する粒子状プロトン電解質ポリマー21の粒子径を、5〜1000nmの範囲で変化させて、5種類の膜−電極構造体を形成した。そして、各膜−電極構造体を実際の発電環境に模した温度80℃、湿度80%Rhの環境下に500時間保持したときの白金微粉末(触媒金属微粒子22)の粒子径の経時変化を測定した。   Next, the particle diameter of the particulate proton electrolyte polymer 21 forming the electrode catalyst layer 2 was changed within a range of 5 to 1000 nm to form five types of membrane-electrode structures. The change over time in the particle diameter of the platinum fine powder (catalyst metal fine particles 22) when each membrane-electrode structure is held in an environment of temperature 80 ° C. and humidity 80% Rh imitating an actual power generation environment for 500 hours. It was measured.

白金微粉末の粒子径の経時変化は、X線回折により評価し、それ自体公知の手法により平均粒子径を算出した。結果を図3に示す。   The change with time in the particle diameter of the platinum fine powder was evaluated by X-ray diffraction, and the average particle diameter was calculated by a method known per se. The results are shown in FIG.

図3から、粒子状プロトン電解質ポリマー21の粒子径が5〜100nmの範囲であることにより、白金微粉末(触媒金属微粒子22)の粒子径の経時的増大を抑制することができることが明らかである。   From FIG. 3, it is clear that when the particle diameter of the particulate proton electrolyte polymer 21 is in the range of 5 to 100 nm, the increase in the particle diameter of the platinum fine powder (catalyst metal fine particles 22) over time can be suppressed. .

本実施例では、電解質樹脂を合成する際に、プロトン置換基を含むモノマーの割合を調整して重合反応行うことにより該電解質樹脂のイオン交換容量を0〜0.07meq/gとしたこと以外は、実施例1と全く同一にして、膜−電極構造体を形成した。   In this example, when synthesizing the electrolyte resin, the ion exchange capacity of the electrolyte resin was changed to 0 to 0.07 meq / g by adjusting the proportion of the monomer containing a proton substituent and performing a polymerization reaction. A membrane-electrode structure was formed in exactly the same manner as in Example 1.

次に、電極触媒層2を形成する粒子状プロトン電解質ポリマー21のイオン交換容量を、0〜1.5meq/gの範囲で変化させて、5種類の膜−電極構造体を形成した。そして、各膜−電極構造体を実際の発電環境に模した温度80℃、湿度80%Rhの環境下に500時間保持したときの白金微粉末(触媒金属微粒子22)の粒子径の経時変化を測定した。   Next, the ion exchange capacity of the particulate proton electrolyte polymer 21 forming the electrode catalyst layer 2 was changed in the range of 0 to 1.5 meq / g to form five types of membrane-electrode structures. The change over time in the particle diameter of the platinum fine powder (catalyst metal fine particles 22) when each membrane-electrode structure is held in an environment of temperature 80 ° C. and humidity 80% Rh imitating an actual power generation environment for 500 hours. It was measured.

白金微粉末の粒子径の経時変化は、X線回折により評価し、それ自体公知の手法により平均粒子径を算出した。結果を図4に示す。   The change with time in the particle diameter of the platinum fine powder was evaluated by X-ray diffraction, and the average particle diameter was calculated by a method known per se. The results are shown in FIG.

図4から、粒子状プロトン電解質ポリマー21のイオン交換容量が0〜0.7meq/gの範囲であることにより、白金微粉末(触媒金属微粒子22)の粒子径の経時的増大を抑制することができることが明らかである。   From FIG. 4, the ion exchange capacity of the particulate proton electrolyte polymer 21 is in the range of 0 to 0.7 meq / g, thereby suppressing the increase in the particle diameter of the platinum fine powder (catalyst metal fine particles 22) with time. Obviously you can.

1…高分子電解質膜、 2…電極触媒層、 21…粒子状プロトン電解質ポリマー、 22…触媒金属微粒子、 23…触媒粒子。   DESCRIPTION OF SYMBOLS 1 ... Polymer electrolyte membrane, 2 ... Electrode catalyst layer, 21 ... Particulate proton electrolyte polymer, 22 ... Catalyst metal microparticle, 23 ... Catalyst particle | grains.

Claims (4)

固体高分子電解質膜を、触媒粒子を含む1対の電極触媒層で挟持した固体高分子型燃料電池用膜−電極構造体において、
該触媒粒子は、粒子状プロトン電解質ポリマーに触媒金属が担持されてなり、該粒子状プロトン電解質ポリマーは100nm以下の平均粒子径を備えることを特徴とする固体高分子型燃料電池用膜−電極構造体。
In a polymer electrolyte fuel cell membrane-electrode structure in which a polymer electrolyte membrane is sandwiched between a pair of electrode catalyst layers containing catalyst particles,
The catalyst particle is formed by supporting a catalyst metal on a particulate proton electrolyte polymer, and the particulate proton electrolyte polymer has an average particle diameter of 100 nm or less, and a membrane-electrode structure for a polymer electrolyte fuel cell, body.
請求項1記載の固体高分子型燃料電池用膜−電極構造体において、前記粒子状プロトン電解質ポリマーは5nm以上の平均粒子径を備えることを特徴とする固体高分子型燃料電池用膜−電極構造体。   2. The membrane-electrode structure for a polymer electrolyte fuel cell according to claim 1, wherein the particulate proton electrolyte polymer has an average particle diameter of 5 nm or more. body. 固体高分子電解質膜を、触媒粒子を含む1対の電極触媒層で挟持した固体高分子型燃料電池用膜−電極構造体において、
該触媒粒子は、粒子状プロトン電解質ポリマーに触媒金属が担持されてなり、該粒子状プロトン電解質ポリマーは0〜0.7meq/gの範囲のイオン交換容量を備えることを特徴とする固体高分子型燃料電池用膜−電極構造体。
In a polymer electrolyte fuel cell membrane-electrode structure in which a polymer electrolyte membrane is sandwiched between a pair of electrode catalyst layers containing catalyst particles,
The catalyst particles are formed by supporting a catalyst metal on a particulate proton electrolyte polymer, and the particulate proton electrolyte polymer has an ion exchange capacity in the range of 0 to 0.7 meq / g. A membrane-electrode structure for a fuel cell.
請求項3記載の固体高分子型燃料電池用膜−電極構造体において、前記粒子状プロトン電解質ポリマーは5〜100nmの範囲の平均粒子径を備えることを特徴とする固体高分子型燃料電池用膜−電極構造体。   4. The membrane for a polymer electrolyte fuel cell according to claim 3, wherein the particulate proton electrolyte polymer has an average particle diameter in the range of 5 to 100 nm. An electrode structure.
JP2010128790A 2010-06-04 2010-06-04 Membrane-electrode structure for polymer electrolyte fuel cell Expired - Fee Related JP5535773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010128790A JP5535773B2 (en) 2010-06-04 2010-06-04 Membrane-electrode structure for polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010128790A JP5535773B2 (en) 2010-06-04 2010-06-04 Membrane-electrode structure for polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2011253788A true JP2011253788A (en) 2011-12-15
JP5535773B2 JP5535773B2 (en) 2014-07-02

Family

ID=45417550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010128790A Expired - Fee Related JP5535773B2 (en) 2010-06-04 2010-06-04 Membrane-electrode structure for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP5535773B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026014A (en) * 2011-07-21 2013-02-04 Honda Motor Co Ltd Catalyst for fuel cell and manufacturing method of catalyst for fuel cell
US20180131026A1 (en) * 2015-07-08 2018-05-10 Asahi Glass Company, Limited Liquid composition, method for producing it, and method for producing membrane/electrode assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260435A (en) * 1999-03-08 2000-09-22 Fuji Electric Co Ltd Catalyst electrode layer for fuel cell and its manufacture
JP2005026005A (en) * 2003-06-30 2005-01-27 Sekisui Chem Co Ltd Electrode for fuel cell, manufacturing method thereof, and fuel cell using the same
JP2009170243A (en) * 2008-01-16 2009-07-30 Toyota Motor Corp Membrane electrode assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260435A (en) * 1999-03-08 2000-09-22 Fuji Electric Co Ltd Catalyst electrode layer for fuel cell and its manufacture
JP2005026005A (en) * 2003-06-30 2005-01-27 Sekisui Chem Co Ltd Electrode for fuel cell, manufacturing method thereof, and fuel cell using the same
JP2009170243A (en) * 2008-01-16 2009-07-30 Toyota Motor Corp Membrane electrode assembly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026014A (en) * 2011-07-21 2013-02-04 Honda Motor Co Ltd Catalyst for fuel cell and manufacturing method of catalyst for fuel cell
US20180131026A1 (en) * 2015-07-08 2018-05-10 Asahi Glass Company, Limited Liquid composition, method for producing it, and method for producing membrane/electrode assembly
US11575140B2 (en) * 2015-07-08 2023-02-07 AGC Inc. Liquid composition, method for producing it, and method for producing membrane/electrode assembly

Also Published As

Publication number Publication date
JP5535773B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
US10923752B2 (en) Membrane-electrode assembly, method for manufacturing same, and fuel cell comprising same
US7413683B2 (en) Sulfonated conducting polymer-grafted carbon material for fuel cell applications
US8617770B2 (en) Electrodes containing oxygen evolution reaction catalysts
US8512915B2 (en) Catalyst composite material fuel cell, method for preparing the same, membrane-electrode assembly comprising the same, and fuel cell system comprising the same
US20160064744A1 (en) Catalyst and electrode catalyst layer for fuel cell having the catalyst
KR20090026254A (en) Compositions of nanometal particles containing a metal or alloy and platinum particles for use in fuel cells
JP2006260909A (en) Membrane electrode assembly and polymer electrolyte fuel cell using the same
JP2006253136A (en) Membrane-electrode assembly, its manufacturing method and fuel cell system
US8309269B2 (en) Fuel cell, membrane-electrode assembly, and membrane-catalyst layer assembly
JP5079457B2 (en) Fuel cell substrate with overcoat
KR20220057565A (en) membrane electrode assembly
JP2009187848A (en) Fuel cell
JP4987857B2 (en) Polymer dispersion and electrocatalyst ink
JP4823583B2 (en) Polymer membrane / electrode assembly for fuel cell and fuel cell including the same
WO2011096355A1 (en) Membrane electrode structure for solid polymer fuel cell, and solid polymer fuel cell
JP2006134752A (en) Solid polymer fuel cell and vehicle
JP5535773B2 (en) Membrane-electrode structure for polymer electrolyte fuel cell
JP2007128665A (en) Electrode catalyst layer for fuel cell, and manufacturing method of membrane-electrode assembly using it
JP2001076742A (en) Solid polymer fuel cell
JP2009187803A (en) Membrane electrode composite and fuel cell
JP2005317238A (en) Solid polymer fuel cell, hybrid membrane, and membrane-electrode junction
JP5204382B2 (en) Cathode catalyst layer, membrane catalyst assembly, cathode gas diffusion electrode, membrane electrode assembly and polymer electrolyte fuel cell using the same
JP2007103175A (en) Electrode for polymeric fuel cell and polymeric fuel cell using the same
JP2006286478A (en) Membrane electrode assembly
JP2006079840A (en) Electrode catalyst for fuel cell, and mea for fuel cell using this

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140423

R150 Certificate of patent or registration of utility model

Ref document number: 5535773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees