JP4409555B2 - Vehicle torque control device - Google Patents

Vehicle torque control device Download PDF

Info

Publication number
JP4409555B2
JP4409555B2 JP2006276316A JP2006276316A JP4409555B2 JP 4409555 B2 JP4409555 B2 JP 4409555B2 JP 2006276316 A JP2006276316 A JP 2006276316A JP 2006276316 A JP2006276316 A JP 2006276316A JP 4409555 B2 JP4409555 B2 JP 4409555B2
Authority
JP
Japan
Prior art keywords
torque
generator
motor
engine
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006276316A
Other languages
Japanese (ja)
Other versions
JP2008094182A (en
Inventor
大介 堤
裕 玉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006276316A priority Critical patent/JP4409555B2/en
Publication of JP2008094182A publication Critical patent/JP2008094182A/en
Application granted granted Critical
Publication of JP4409555B2 publication Critical patent/JP4409555B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/16DC brushless machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

この発明は、エンジンとジェネレータ・モータを備えた車両のトルク制御装置に関するものである。   The present invention relates to a torque control device for a vehicle including an engine and a generator / motor.

所謂ハイブリッド車両として、エンジンの出力軸にジェネレータ・モータが連結され、エンジンの出力軸の駆動回転によってジェネレータ・モータで発電を行うものが知られている(例えば、特許文献1参照)。
特開2003−111206号公報
A so-called hybrid vehicle is known in which a generator / motor is connected to an output shaft of an engine and power is generated by the generator / motor by driving rotation of the output shaft of the engine (see, for example, Patent Document 1).
JP 2003-111206 A

ところで、上記の車両に用いられるジェネレータ・モータは、回転子の界磁特性等で決まる誘起電圧定数が常に一定であるため、使用可能な最大発電トルクや許容回転速度が固定されており、車両の幅広い運転要求に柔軟に対応することがむずかしい。   By the way, the generator / motor used in the above-mentioned vehicle has a constant induced voltage constant determined by the field characteristics of the rotor, etc., so that the maximum usable power generation torque and allowable rotational speed are fixed. It is difficult to respond flexibly to a wide range of driving requirements.

このため、本出願人は、回転子上の永久磁石の磁力を任意に変更できるようにし、車両の運転要求に応じて誘起電圧定数を変更し得るジェネレータ・モータの開発を進めている。   For this reason, the present applicant is developing a generator / motor that can arbitrarily change the magnetic force of the permanent magnet on the rotor and can change the induced voltage constant in accordance with the driving demand of the vehicle.

しかし、このように誘起電圧定数を自由に変更し得るジェネレータ・モータを上記の車両に適用する場合には、誘起電圧定数の変更によってエンジンの出力トルクとジェネレータ・モータの発電トルクのバランスが崩れ、エンジンの不要な吹き上がりやエンジン・ストールを招くことが懸念される。   However, when the generator / motor that can freely change the induced voltage constant is applied to the above vehicle, the balance between the output torque of the engine and the generated torque of the generator / motor is lost due to the change of the induced voltage constant. There is concern about unnecessary engine blow-up and engine stall.

つまり、ジェネレータ・モータの最大発電トルクは誘起電圧定数によって決定されるため、誘起電圧定数の変更によってジェネレータ・モータの発電トルクが前記最大発電トルクによる制限を受けることがあり、例えば、誘起電圧定数を減少させるときに、実際に出力される発電トルクが最大発電トルクで制限を受け、発電トルクの絶対値がエンジンの出力トルクに対して相対的に低下したり、逆に、誘起電圧定数を増大させるときに、最大発電トルクの引き上げにより実際に出力される発電トルクの絶対値がエンジンの出力トルクに対して相対的に上昇する場合が考えられる。そして、発電トルクの絶対値が出力トルクに対して相対的に低下した場合には、ジェネレータ・モータがエンジンによって容易に振り回されエンジンの不要な吹き上がりが発生し易くなり、逆に、発電トルクの絶対値が出力トルクに対して相対的に上昇した場合には、エンジンに作用する負荷が相対的に大きくなってエンジンストールが発生し易くなる。   In other words, since the maximum power generation torque of the generator motor is determined by the induced voltage constant, the power generation torque of the generator motor may be limited by the maximum power generation torque due to the change of the induced voltage constant. When the power generation torque is decreased, the actual power generation torque is limited by the maximum power generation torque, and the absolute value of the power generation torque decreases relative to the engine output torque or conversely increases the induced voltage constant. In some cases, the absolute value of the power generation torque that is actually output due to the increase in the maximum power generation torque increases relative to the engine output torque. When the absolute value of the power generation torque decreases relative to the output torque, the generator / motor is easily swung by the engine, and it is easy for the engine to blow up unnecessarily. When the absolute value rises relative to the output torque, the load acting on the engine becomes relatively large and engine stall is likely to occur.

そこでこの発明は、エンジン側の出力トルクとジェネレータ・モータ側の発電トルクのアンバランスを招くことなく、誘起電圧定数を任意に変更し得るジェネレータ・モータを適用できるようにして、車両の幅広い運転要求に柔軟に対応することが可能な車両のトルク制御装置を提供しようとするものである。   Accordingly, the present invention can apply a generator / motor that can arbitrarily change the induced voltage constant without causing an imbalance between the output torque on the engine side and the power generation torque on the generator / motor side. It is an object of the present invention to provide a vehicle torque control device that can flexibly cope with the above.

上記の課題を解決する請求項1に記載の発明は、エンジン(例えば、後述の実施形態におけるエンジン30)と、このエンジンの出力軸に連結されて発電機として機能するジェネレータ・モータ(例えば、後述の実施形態におけるジェネレータ・モータ1)を備えた車両において、前記エンジンの出力トルクと前記ジェネレータ・モータの発電トルクを車両の運転状況に応じて制御するトルク制御装置であって、前記ジェネレータ・モータに、車両の運転状況に応じて誘起電圧定数を変更する特性変更手段が設けられるとともに、前記ジェネレータ・モータの誘起電圧定数によって決まるジェネレータ・モータの最大発電トルクを算出する最大発電トルク算出手段(例えば、後述の実施形態における最大発電トルク算出手段44)と、前記エンジンに出力するエンジン駆動目標トルクを、前記最大発電トルク算出手段の算出結果に応じて補正するエンジン駆動トルク補正手段(例えば、後述の実施形態におけるエンジン駆動トルク補正手段45)と、を備えていることを特徴とする。
これにより、ジェネレータ・モータの誘起電圧定数が特性変更手段で変更されると、最大発電トルク算出手段によってジェネレータ・モータの最大発電トルクが算出され、その算出結果に応じてエンジン駆動トルク補正手段がエンジンに出力するエンジン駆動目標トルクを補正するようになる。
The invention according to claim 1, which solves the above problem, includes an engine (for example, an engine 30 in an embodiment described later) and a generator motor (for example, described later) that is connected to an output shaft of the engine and functions as a generator. In the vehicle equipped with the generator / motor 1) according to the embodiment, the torque control device controls the output torque of the engine and the power generation torque of the generator / motor according to the driving condition of the vehicle. In addition, characteristic changing means for changing the induced voltage constant according to the driving situation of the vehicle is provided, and maximum generated torque calculating means for calculating the maximum generated torque of the generator motor determined by the induced voltage constant of the generator motor (for example, Maximum power generation torque calculating means 44) in the embodiment described later, Engine drive torque correction means (for example, engine drive torque correction means 45 in an embodiment described later) for correcting the engine drive target torque output to the gin according to the calculation result of the maximum power generation torque calculation means. It is characterized by that.
Thus, when the induced voltage constant of the generator / motor is changed by the characteristic changing means, the maximum power generation torque of the generator / motor is calculated by the maximum power generation torque calculation means, and the engine drive torque correction means is changed to the engine according to the calculation result. The engine drive target torque to be output to is corrected.

また、請求項2に記載の発明は、請求項1に記載の車両のトルク制御装置において、前記ジェネレータ・モータは、円周方向に沿うように複数の永久磁石(例えば、後述の実施形態における永久磁石9B)が配設された内周側回転子(例えば、後述の実施形態における内周側回転子6)と、この内周側回転子の外周側に同軸にかつ相対回動可能に配設されるとともに、円周方向に沿うように複数の永久磁石(例えば、後述の実施形態における永久磁石9A)が配設された外周側回転子(例えば、後述の実施形態における外周側回転子5)と、前記内周側回転子と外周側回転子を相対回動させて両者の相対位相を変更する回動操作機構(例えば、後述の実施形態における回動操作機構11)と、を備え、前記内周側回転子、外周側回転子、および、回動操作機構によって前記特性変更手段が構成されていることを特徴とする。
これにより、回動操作機構が内周側回転子と外周側回転子を相対回動させると、両回転子の永久磁石が異磁極同士で対向配置される強め界磁の状態から両回転子の永久磁石が同極同士で対向配置される弱め界磁の状態に変更され、或いは、逆に前記弱め界磁の状態から強め界磁の状態に変更される。
The invention according to claim 2 is the vehicle torque control device according to claim 1, wherein the generator motor is provided with a plurality of permanent magnets (for example, permanent in the embodiments described later) along the circumferential direction. An inner circumferential rotor (for example, an inner circumferential rotor 6 in an embodiment described later) on which a magnet 9B) is disposed, and coaxially and relatively rotatably disposed on the outer circumferential side of the inner circumferential rotor. In addition, an outer circumferential rotor (for example, an outer circumferential rotor 5 in an embodiment described later) in which a plurality of permanent magnets (for example, a permanent magnet 9A in an embodiment described later) is arranged along the circumferential direction. And a rotation operation mechanism (for example, a rotation operation mechanism 11 in an embodiment described later) that relatively rotates the inner circumferential rotor and the outer circumferential rotor to change the relative phase of both. Inner rotor, outer rotor, and , Wherein the characteristic changing means by rotation operation mechanism is constituted.
As a result, when the rotation operation mechanism relatively rotates the inner rotor and the outer rotor, the permanent magnets of both rotors are moved from the strong field state where the opposite magnetic poles are opposed to each other. The field is changed to a field weakening state in which the permanent magnets are arranged opposite to each other with the same polarity, or conversely, the field weakening state is changed to the field strongening state.

また、請求項3に記載の発明は、発電目標トルクがジェネレータ・モータの現在の誘起電圧定数によって決まる最大発電トルクを超える場合に、前記特性変更手段で誘起電圧定数を変更してジェネレータ・モータの最大発電トルクを増大させる請求項1または2に記載の車両のトルク制御装置において、前記特性変更手段は、前記エンジンの応答速度と同等の速度で誘起電圧定数を変更する(例えば、後述の実施形態におけるステップS116)ことを特徴とする。
これにより、発電目標トルクが現在の最大発電トルクを超える場合には、特性変更手段によるジェネレータ・モータの誘起電圧定数の変更と、エンジン駆動トルク補正手段によるエンジン出力トルクの補正が同等の速度で行われるようになる。したがって、特性変更手段の操作中にジェネレータ・モータ側の発電トルクとエンジン側の出力トルクが大きく乖離することがなくなる。
According to a third aspect of the present invention, when the power generation target torque exceeds the maximum power generation torque determined by the current induced voltage constant of the generator motor, the induced voltage constant is changed by the characteristic changing means. 3. The vehicle torque control device according to claim 1, wherein the maximum power generation torque is increased. The characteristic changing unit changes an induced voltage constant at a speed equivalent to a response speed of the engine (for example, an embodiment described later). Step S116).
As a result, when the power generation target torque exceeds the current maximum power generation torque, the change in the induced voltage constant of the generator / motor by the characteristic change means and the correction of the engine output torque by the engine drive torque correction means are performed at the same speed. Will come to be. Accordingly, the generator / motor side power generation torque and the engine side output torque do not greatly deviate during the operation of the characteristic changing means.

請求項1に記載の発明によれば、特性変更手段によってジェネレータ・モータの誘起電圧定数を車両の運転状況に応じて任意に変更することができるうえ、特性変更手段で変更されるジェネレータ・モータの最大発電トルクに応じてエンジン駆動目標トルクを補正することで、エンジン側の出力トルクとジェネレータ・モータ側の発電トルクをバランスさせ、エンジンの不要な吹き上がりやストールを未然に防止することができる。   According to the first aspect of the present invention, the induced voltage constant of the generator / motor can be arbitrarily changed according to the driving situation of the vehicle by the characteristic changing means, and the generator / motor of the generator / motor changed by the characteristic changing means can be changed. By correcting the engine drive target torque in accordance with the maximum power generation torque, it is possible to balance the output torque on the engine side and the power generation torque on the generator / motor side, thereby preventing unnecessary blow-up and stalling of the engine.

請求項2に記載の発明によれば、夫々永久磁石を備えた内周側回転子および外周側回転子と、これらを相対回動させる回動操作機構によって特性変更手段が構成されるため、簡単な構造でありながらジェネレータ・モータの誘起電圧定数を容易かつ確実に変更することができる。   According to the second aspect of the present invention, the characteristic changing means is constituted by the inner and outer rotors each having a permanent magnet, and the rotation operation mechanism for relatively rotating the rotors. The induced voltage constant of the generator / motor can be easily and reliably changed with a simple structure.

請求項3に記載の発明によれば、発電目標トルクが現在の最大発電トルクを超える場合に、ジェネレータ・モータの特性変更手段がエンジンの応答速度と同等の速度で誘起電圧定数を変更するため、特性変更手段による誘起電圧定数の変更中に発電トルクとエンジンの出力トルクが大きく乖離することがなくなり、エンジンの不要な吹き上がりやストロールをさらに確実に防止することが可能になる。   According to the third aspect of the present invention, when the power generation target torque exceeds the current maximum power generation torque, the generator / motor characteristic changing means changes the induced voltage constant at a speed equivalent to the engine response speed. During the change of the induced voltage constant by the characteristic changing means, the generated torque and the output torque of the engine do not greatly deviate, and it is possible to more reliably prevent unnecessary engine blow-up and strobing.

以下、この発明の一実施形態を図面に基づいて説明する。
図1は、この発明にかかるトルク制御装置100を適用したハイブリッド車両の動力系の概略構成を示すものである。このハイブリッド車は、エンジン30の出力軸31に、発電機として機能するジェネレータ・モータ1が結合されるとともに、駆動用モータ32が伝達ギヤユニット33を介して駆動輪側のディファレンシャル装置34に連係され、伝達ギヤユニット33にジェネレータ・モータ1の回転軸4がクラッチ35を介して断切可能とされている。このハイブリッド車両の場合、クラッチ35の接続時には、エンジン30とジェネレータ・モータ1の少なくとも一方の動力を、伝達ギヤユニット33とディファレンシャル装置34を介して駆動輪に伝達し、クラッチ35の遮断時には、エンジン30の動力によるジェネレータ・モータ1の発電が可能とされる。なお、図1中36は、エンジン30とジェネレータ・モータ1の間に介装された捩りダンパである。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a schematic configuration of a power system of a hybrid vehicle to which a torque control device 100 according to the present invention is applied. In this hybrid vehicle, the generator / motor 1 functioning as a generator is coupled to the output shaft 31 of the engine 30, and the drive motor 32 is linked to the drive wheel side differential device 34 via the transmission gear unit 33. The rotation shaft 4 of the generator / motor 1 can be disconnected from the transmission gear unit 33 via the clutch 35. In this hybrid vehicle, when the clutch 35 is connected, the power of at least one of the engine 30 and the generator / motor 1 is transmitted to the drive wheels via the transmission gear unit 33 and the differential device 34, and when the clutch 35 is disconnected, the engine The generator / motor 1 can generate power with 30 powers. In FIG. 1, reference numeral 36 denotes a torsion damper interposed between the engine 30 and the generator / motor 1.

また、このハイブリッド車両では、アクセルペダル開度や車速等の車両運転情報を基にしてコントローラ37が駆動モータ32、エンジン30、ジェネレータ・モータ1に適宜出力指令を発し、これらの出力指令に基づいて選択された動力源から駆動輪に動力が伝達されるようになっている。駆動モータ32は、コントローラ37から出力指令を受けたPDU38(パワー・ドライブ・ユニット)が図示しないバッテリから出力指令に応じた電流を供給し、エンジン30は、コントローラ37から出力指令を受けた出力制御部39(燃料噴射制御部や点火時期制御部)が出力指令に応じてエンジン出力を制御する。また、ジェネレータ・モータ1は、コントローラ37から出力指令を受けたPDU40(パワー・ドライブ・ユニット)が出力指令に応じた電流をバッテリ41から供給する。   In this hybrid vehicle, the controller 37 appropriately issues output commands to the drive motor 32, the engine 30, and the generator / motor 1 based on the vehicle operation information such as the accelerator pedal opening and the vehicle speed, and based on these output commands. Power is transmitted from the selected power source to the drive wheels. The drive motor 32 supplies a current corresponding to the output command from a battery (not shown) from a PDU 38 (power drive unit) that receives the output command from the controller 37, and the engine 30 performs output control that receives the output command from the controller 37. A unit 39 (fuel injection control unit or ignition timing control unit) controls the engine output in response to the output command. In the generator motor 1, the PDU 40 (power drive unit) that receives the output command from the controller 37 supplies a current corresponding to the output command from the battery 41.

一方、クラッチ35を遮断してジェネレータ・モータ1で発電を行う場合には、バッテリ41のSOC(残容量)等の発電要求を基にしてコントローラ37がジェネレータモータ1のPDU40に発電指令を出力する。このとき、ジェネレータモータ1では、コントローラ37から発電指令を受けたPDU40が発電電力をバッテリ41に充電する。なお、クラッチ35の断切は図示しない液圧回路を介してコントローラ37によって制御される。   On the other hand, when power is generated by the generator / motor 1 with the clutch 35 disconnected, the controller 37 outputs a power generation command to the PDU 40 of the generator motor 1 based on a power generation request such as the SOC (remaining capacity) of the battery 41. . At this time, in the generator motor 1, the PDU 40 that has received the power generation command from the controller 37 charges the battery 41 with the generated power. The disconnection of the clutch 35 is controlled by the controller 37 via a hydraulic circuit (not shown).

ここで、ジェネレータ・モータ1の具体的な構造について、図2〜図5を参照して説明する。
ジェネレータ・モータ1は、円環状の固定子2(図2参照)の内周側に回転子ユニット3が配置されたインナロータ型のブラシレスモータである。固定子2は複数相の固定子巻線2aを有し、回転子ユニット3は軸芯部に回転軸4を有している。この回転軸4はエンジン30の出力軸31とクラッチ35に連結されている。
Here, a specific structure of the generator / motor 1 will be described with reference to FIGS.
The generator motor 1 is an inner rotor type brushless motor in which a rotor unit 3 is disposed on the inner peripheral side of an annular stator 2 (see FIG. 2). The stator 2 has a multi-phase stator winding 2a, and the rotor unit 3 has a rotating shaft 4 at the shaft core. The rotating shaft 4 is connected to an output shaft 31 of the engine 30 and a clutch 35.

回転子ユニット3は、円環状の外周側回転子5と、この外周側回転子5の内側に同軸に配置される円環状の内周側回転子6を備え、外周側回転子5と内周側回転子6が設定角度の範囲で回動可能とされている。   The rotor unit 3 includes an annular outer circumferential rotor 5 and an annular inner circumferential rotor 6 disposed coaxially inside the outer circumferential rotor 5, and includes the outer circumferential rotor 5 and the inner circumferential surface. The side rotor 6 is rotatable within a set angle range.

外周側回転子5と内周側回転子6は、回転子本体である円環状のロータ鉄心7,8が例えば焼結金属によって形成され、その各ロータ鉄心7,8の外周側に偏寄した位置に、複数の磁石装着スロット7a,8aが円周方向等間隔に形成されている。各磁石装着スロット7a,8aには、厚み方向に磁化された2つの平板状の永久磁石9A,9Aおよび9B,9Bが夫々並列に並んで装着されている。同じ磁石装着スロット7a,8a内に装着される2つの永久磁石9A,9Aまたは9B,9Bは夫々同方向に磁化され、各隣接する磁石装着スロット7a,7aまたは8a,8aに装着される永久磁石9Aまたは9Bの対同士は磁極の向きが逆向きになるように設定されている。即ち、各回転子5,6においては、外周側がN極とされた永久磁石9A,9Aの対または9B,9Bの対と、S極とされた永久磁石9A,9Aの対または9B,9Bの対が円周方向に交互に並んで配置されている。なお、各回転子5,6の外周面の隣接する磁石装着スロット7a,7a、および、8a,8aの各間には、永久磁石9Aまたは9Bの磁束の流れを制御するための切欠き部10が回転子5,6の軸方向に沿って形成されている。   The outer rotor 5 and the inner rotor 6 are formed by, for example, sintered rotor cores 7 and 8 made of sintered metal, and are biased toward the outer periphery of the rotor cores 7 and 8. A plurality of magnet mounting slots 7a, 8a are formed at equal intervals in the circumferential direction. Two flat permanent magnets 9A, 9A and 9B, 9B magnetized in the thickness direction are mounted in parallel in the magnet mounting slots 7a, 8a, respectively. The two permanent magnets 9A, 9A or 9B, 9B mounted in the same magnet mounting slot 7a, 8a are magnetized in the same direction, and the permanent magnet mounted in each adjacent magnet mounting slot 7a, 7a or 8a, 8a. The pair of 9A or 9B is set so that the direction of the magnetic poles is reversed. That is, in each of the rotors 5 and 6, a pair of permanent magnets 9A and 9A or a pair of 9B and 9B whose outer peripheral side is an N pole, and a pair of permanent magnets 9A and 9A or a pair of 9B and 9B which are S poles. Pairs are arranged alternately in the circumferential direction. A notch 10 for controlling the flow of magnetic flux of the permanent magnet 9A or 9B is provided between the adjacent magnet mounting slots 7a, 7a and 8a, 8a on the outer peripheral surfaces of the rotors 5, 6. Is formed along the axial direction of the rotors 5 and 6.

外周側回転子5と内周側回転子6の磁石装着スロット7a,8aは夫々同数設けられ、両回転子5,6の永久磁石9A…,9B…が夫々1対1で対応するようになっている。したがって、外周側回転子5と内周側回転子6の各磁石装着スロット7a,8a内の永久磁石9A,9Aの対および9B,9Bの対を互いに同極同士で対向させる(異極配置にする)ことにより、回転子ユニット3全体の界磁が最も弱められる弱め界磁の状態(図5(b)参照)を得ることができるとともに、外周側回転子5と内周側回転子6の各磁石装着スロット7a,8a内の永久磁石9A,9Aの対および9B,9Bの対を互いに異極同士で対向させる(同極配置にする)ことにより、回転子ユニット3全体の界磁が最も強められる強め界磁の状態(図5(a)参照)を得ることができる。   The same number of magnet mounting slots 7a, 8a of the outer rotor 5 and inner rotor 6 are provided, and the permanent magnets 9A, 9B of the rotors 5, 6 correspond to each other on a one-to-one basis. ing. Therefore, the pair of permanent magnets 9A, 9A and the pair of 9B, 9B in the magnet mounting slots 7a, 8a of the outer circumferential rotor 5 and the inner circumferential rotor 6 are opposed to each other with the same polarity (in a different polarity arrangement). By doing so, it is possible to obtain a field weakening state (see FIG. 5B) in which the field of the entire rotor unit 3 is weakened most, and the outer rotor 5 and the inner rotor 6 By making the pair of permanent magnets 9A, 9A and the pair of 9B, 9B in the magnet mounting slots 7a, 8a face each other with different polarities (the same pole arrangement), the field of the entire rotor unit 3 is the most. A strengthened field state (see FIG. 5A) can be obtained.

また、回転子ユニット3は、外周側回転子5と内周側回転子6が回動操作機構11によって相対的に回動操作されるようになっている。回動操作機構11は、この発明における特性変更手段を構成し、液圧制御回路42による作動液の給排によって操作されるようになっている。なお、液圧制御回路42による作動液の給排はコントローラ37によって制御される。   In the rotor unit 3, the outer peripheral side rotor 5 and the inner peripheral side rotor 6 are relatively rotated by a rotation operation mechanism 11. The rotation operation mechanism 11 constitutes characteristic changing means in the present invention, and is operated by supplying and discharging hydraulic fluid by the hydraulic pressure control circuit 42. The supply and discharge of the hydraulic fluid by the hydraulic pressure control circuit 42 is controlled by the controller 37.

回動操作機構11は、図2〜図4に示すように回転軸4の外周に一体回転可能にスプライン嵌合されるベーンロータ14と、ベーンロータ14の外周側に相対回動可能に配置される環状ハウジング15(ハウジング)とを備え、この環状ハウジング15が内周側回転子6の内周面に一体に嵌合固定されるとともに、ベーンロータ14が、環状ハウジング15と内周側回転子6の軸方向両側の側端部を跨ぐ円板状の一対のドライブプレート16,16(端面板)を介して外周側回転子5に一体に結合されている。したがって、ベーンロータ14は回転軸4と外周側回転子5に一体化され、環状ハウジング15は内周側回転子6に一体化されている。   As shown in FIGS. 2 to 4, the rotation operation mechanism 11 includes a vane rotor 14 that is spline-fitted to the outer periphery of the rotating shaft 4 and an annular shape that is rotatably disposed on the outer periphery side of the vane rotor 14. A housing 15 (housing), the annular housing 15 is integrally fitted and fixed to the inner peripheral surface of the inner circumferential rotor 6, and the vane rotor 14 is connected to the shaft of the annular housing 15 and the inner circumferential rotor 6. It is integrally coupled to the outer peripheral rotor 5 via a pair of disk-shaped drive plates 16 and 16 (end face plates) straddling the side end portions on both sides in the direction. Therefore, the vane rotor 14 is integrated with the rotary shaft 4 and the outer peripheral rotor 5, and the annular housing 15 is integrated with the inner peripheral rotor 6.

ベーンロータ14は、回転軸4にスプライン嵌合される円筒状のボス部17の外周に、径方向外側に突出する複数のベーン18が円周方向等間隔に設けられている。一方、環状ハウジング15は、内周面に円周方向等間隔に複数の凹部19が設けられ、この各凹部19にベーンロータ14の対応するベーン18が収容配置されるようになっている。各凹部19は、ベーン18の先端部の回転軌道にほぼ合致する円弧面を有する底壁20と、隣接する凹部19,19同士を隔成する略三角形状の仕切壁21によって構成され、ベーンロータ14と環状ハウジング15の相対回動時に、ベーン18が一方の仕切壁21と他方の仕切壁21の間を変位し得るようになっている。この実施形態の場合、仕切壁21はベーン18と当接することにより、ベーンロータ14と環状ハウジング15の相対回動を規制するストッパとしても機能する。なお、各ベーン18の先端部と仕切壁21の先端部には、軸方向に沿うようにシール部材22が設けられ、これらのシール部材22によってベーン18と凹部19の底壁20、仕切壁21とボス部17の外周面の各間が液密にシールされている。   In the vane rotor 14, a plurality of vanes 18 projecting radially outward are provided at equal intervals in the circumferential direction on the outer periphery of a cylindrical boss portion 17 that is spline-fitted to the rotary shaft 4. On the other hand, the annular housing 15 is provided with a plurality of concave portions 19 on the inner peripheral surface at equal intervals in the circumferential direction, and the corresponding vanes 18 of the vane rotor 14 are accommodated in the concave portions 19. Each recess 19 is constituted by a bottom wall 20 having an arc surface that substantially matches the rotation trajectory of the tip of the vane 18 and a substantially triangular partition wall 21 that separates the adjacent recesses 19, 19. The vane 18 can be displaced between the one partition wall 21 and the other partition wall 21 during relative rotation of the annular housing 15. In the case of this embodiment, the partition wall 21 also functions as a stopper that restricts the relative rotation of the vane rotor 14 and the annular housing 15 by contacting the vane 18. A seal member 22 is provided along the axial direction at the tip of each vane 18 and the tip of the partition wall 21, and the vane 18, the bottom wall 20 of the recess 19, and the partition wall 21 are provided by these seal members 22. And the outer peripheral surface of the boss portion 17 are liquid-tightly sealed.

また、内周側回転子6に固定される環状ハウジング15のベース部15aは一定厚みの円筒状に形成されるとともに、図2に示すように内周側回転子6や仕切壁21に対して軸方向外側に突出している。このベース部15aの外側に突出した各端部は、ドライブプレート16に形成された環状のガイド溝16aに摺動自在に保持され、環状ハウジング15と内周側回転子6が、外周側回転子5や回転軸4にフローティング状態で支持されるようになっている。   Further, the base portion 15a of the annular housing 15 fixed to the inner peripheral rotor 6 is formed in a cylindrical shape having a constant thickness, and is also provided with respect to the inner peripheral rotor 6 and the partition wall 21 as shown in FIG. Projects outward in the axial direction. Each end projecting outward of the base portion 15a is slidably held in an annular guide groove 16a formed in the drive plate 16, and the annular housing 15 and the inner peripheral rotor 6 are connected to the outer peripheral rotor. 5 and the rotating shaft 4 are supported in a floating state.

外周側回転子5とベーンロータ14を連結する両側のドライブプレート16,16は、環状ハウジング15の両側面(軸方向の両端面)に摺動自在に密接し、環状ハウジング15の各凹部19の側方を夫々閉塞する。したがって、各凹部19は、ベーンロータ14のボス部17と両側のドライブプレート16,16によって夫々独立した空間部を形成し、この空間部は、作動液が導入される導入空間23となっている。各導入空間23内は、ベーンロータ14の対応する各ベーン18によって夫々2室に隔成され、一方の部屋が進角側作動室24、他方の部屋が遅角側作動室25とされている。進角側作動室24は、内部に導入されたオイルの圧力によって内周側回転子6を外周側回転子5に対して進角方向に相対回動させ、遅角側作動室25は、内部に導入されたオイルの圧力によって内周側回転子6を外周側回転子5に対して遅角方向に相対回動させる。この場合、「進角」とは、内周側回転子6を外周側回転子5に対して、図3中の矢印Rで示すジェネレータ・モータ1の回転方向に進めることを言い、「遅角」とは、内周側回転子6を外周側回転子5に対して、ジェネレータ・モータ1の回転方向Rと逆側に進めることを言うものとする。   The drive plates 16 and 16 on both sides connecting the outer rotor 5 and the vane rotor 14 are slidably in close contact with both side surfaces (both end surfaces in the axial direction) of the annular housing 15, and the side of each recess 19 of the annular housing 15. Respectively. Therefore, each recessed part 19 forms the independent space part by the boss | hub part 17 of the vane rotor 14, and the drive plates 16 and 16 of both sides, and this space part is the introduction space 23 into which a hydraulic fluid is introduce | transduced. Each introduction space 23 is divided into two chambers by the corresponding vanes 18 of the vane rotor 14, and one room is an advance side working chamber 24 and the other room is a retard side working chamber 25. The advance side working chamber 24 rotates the inner circumferential side rotor 6 relative to the outer circumferential side rotor 5 in the advance direction by the pressure of the oil introduced therein. The inner rotor 6 is rotated relative to the outer rotor 5 in the retarding direction by the pressure of the oil introduced into the outer periphery. In this case, “advance angle” means that the inner rotor 6 is advanced in the rotational direction of the generator motor 1 indicated by the arrow R in FIG. "Means that the inner circumferential rotor 6 is advanced to the opposite side of the rotation direction R of the generator motor 1 with respect to the outer circumferential rotor 5.

また、各進角側作動室24と遅角側作動室25に対するオイルの給排は回転軸4を通して行われるようになっている。具体的には、進角側作動室24は、液圧制御回路42の進角側給排通路26に接続され、遅角側作動室25は液圧制御回路42の遅角側給排通路27に接続されているが、進角側給排通路26と遅角側給排通路27の一部は、図2に示すように、夫々回転軸4に軸方向に沿って形成された通路孔26a,27aによって構成されている。そして、各通路孔26a,27aの端部は、回転軸4の外周面の軸方向にオフセットした位置に形成された環状溝26b,27bに接続され、その各環状溝26b,27bは、ベーンロータ14のボス部17に略半径方向に沿って形成された複数の導通孔26c…,27c…に接続されている。進角側給排通路26の各導通孔26cは環状溝26bと各進角側作動室24とを接続し、遅角側給排通路27の各導通孔27cは環状溝27bと各遅角側作動室25とを接続している。   In addition, oil is supplied to and discharged from each of the advance side working chambers 24 and the retard side working chambers 25 through the rotary shaft 4. Specifically, the advance side working chamber 24 is connected to the advance side supply / discharge passage 26 of the fluid pressure control circuit 42, and the retard side operation chamber 25 is connected to the retard side supply / discharge passage 27 of the fluid pressure control circuit 42. However, as shown in FIG. 2, a part of the advance side supply / discharge passage 26 and the retard side supply / exhaust passage 27 are respectively formed into passage holes 26a formed along the axial direction of the rotary shaft 4. 27a. The end portions of the passage holes 26a and 27a are connected to annular grooves 26b and 27b formed at positions offset in the axial direction of the outer peripheral surface of the rotary shaft 4, and the annular grooves 26b and 27b are connected to the vane rotor 14. Are connected to a plurality of conduction holes 26c,..., 27c. Each conduction hole 26c of the advance side supply / discharge passage 26 connects the annular groove 26b and each advance side working chamber 24, and each conduction hole 27c of the retard side supply / exhaust passage 27 connects to the annular groove 27b and each retard side. The working chamber 25 is connected.

ここで、この実施形態のジェネレータ・モータ1の場合、内周側回転子6が外周側回転子5に対して最遅角位置にあるときに、外周側回転子5と内周側回転子6の永久磁石9が異極同士で対向して強め界磁の状態(図5(a)参照)になり、内周側回転子6が外周側回転子5に対して最進角位置にあるときに、外周側回転子5と内周側回転子6の永久磁石9が同極同士で対向して弱め界磁の状態(図5(b)参照)になるように設定されている。   Here, in the case of the generator motor 1 of this embodiment, when the inner circumferential rotor 6 is at the most retarded position with respect to the outer circumferential rotor 5, the outer circumferential rotor 5 and the inner circumferential rotor 6. When the permanent magnets 9 are opposed to each other with different poles and are in a strong field state (see FIG. 5A), the inner circumferential rotor 6 is at the most advanced angle position with respect to the outer circumferential rotor 5. In addition, the permanent magnets 9 of the outer circumferential rotor 5 and the inner circumferential rotor 6 are set so as to face each other with the same poles and to have a field weakening state (see FIG. 5B).

なお、このジェネレータ・モータ1は、進角側作動室24と遅角側作動室25に対する作動液の給排制御によって、強め界磁の状態と弱め界磁の状態を任意に変更し得るものであるが、こうして界磁の強さが変更されると、それに伴って誘起電圧定数が変化し、その結果、ジェネレータ・モータ1の特性が変更される。即ち、強め界磁によって誘起電圧定数が大きくなると、図6中の(a)の特性のようにジェネレータ・モータ1として運転可能な許容回転速度は低下するものの、出力可能な最大トルクは増大し、逆に、弱め界磁によって誘起電圧定数が小さくなると、図6中の(b)の特性のようにジェネレータ・モータ1の出力可能な最大トルクは減少するものの、運転可能な許容回転速度は上昇する。   The generator / motor 1 can arbitrarily change the state of the strong field and the state of the weak field by controlling the supply and discharge of the hydraulic fluid to and from the advance side working chamber 24 and the retard side working chamber 25. However, if the field strength is changed in this way, the induced voltage constant changes accordingly, and as a result, the characteristics of the generator motor 1 are changed. That is, when the induced voltage constant increases due to the strong field, the allowable rotational speed at which the generator / motor 1 can be operated decreases as shown in FIG. On the other hand, when the induced voltage constant is reduced by the field weakening, the maximum torque that can be output from the generator / motor 1 decreases as in the characteristic (b) of FIG. .

ところで、コントローラ37には、車両運転情報として車速信号やアクセル開度信号等が入力されるとともに、発電要求情報としてバッテリ41のSOC(残容量)を示す信号等が入力され、さらに、ジェネレータ・モータ1の誘起電圧特性情報として回動操作機構11の位相差信号(内周側回転子6と外周側回転子5の位相差を示す信号)やモータ回転数信号等が入力されるようになっている。コントローラ37は、前述のように車両運転情報に応じてエンジン30とジェネレータモータ1と駆動用モータ32に夫々出力指令を発し、発電要求情報が入力されると、クラッチ35を遮断状態にしてジェネレータ・モータ1に発電指令を発する。
なお、ここでは車両の駆動時におけるエンジン30、ジェネレータ・モータ1、駆動用モータ32に対する具体的なトルク配分制御については説明を省略するものとする。
Incidentally, a vehicle speed signal, an accelerator opening signal, and the like are input to the controller 37 as vehicle driving information, and a signal indicating the SOC (remaining capacity) of the battery 41 is input as power generation request information. As the induced voltage characteristic information of 1, a phase difference signal (a signal indicating a phase difference between the inner rotor 6 and the outer rotor 5) of the rotation operation mechanism 11, a motor rotation number signal, and the like are input. Yes. As described above, the controller 37 issues output commands to the engine 30, the generator motor 1 and the drive motor 32 in accordance with the vehicle operation information, and when the power generation request information is input, the clutch 35 is disengaged and the generator A power generation command is issued to the motor 1.
It should be noted that description of specific torque distribution control for the engine 30, the generator / motor 1, and the drive motor 32 during driving of the vehicle is omitted here.

コントローラ37は、SOC等の発電要求情報を基にして発電目標とするトルクを算出する発電目標トルク算出手段43と、ジェネレータ・モータ1の誘起電圧定数によって決まる最大発電トルクAを算出する最大発電トルク算出手段44と、最大発電トルクAに応じてエンジン30の駆動トルクを制限するエンジン駆動トルク補正手段45を備えている。   The controller 37 includes a power generation target torque calculation means 43 that calculates a torque to be a power generation target based on power generation request information such as SOC, and a maximum power generation torque that calculates a maximum power generation torque A determined by an induced voltage constant of the generator / motor 1. Calculation means 44 and engine drive torque correction means 45 for limiting the drive torque of engine 30 according to maximum power generation torque A are provided.

コントローラ37では、発電目標トルク算出手段43で算出した発電目標トルクが得られるようにジェネレータ・モータ1のPDU40と回動操作機構11の液圧制御回路42に指令信号を出力するとともに、発電目標トルク算出手段43で算出した発電目標トルクと絶対値の等しいエンジン出力を得るべく指令信号をエンジン30の出力制御部39に出力するようになっている。ただし、回動操作機構11の操作によってジェネレータ・モータ1の誘起電圧定数が変更される場合には、その誘起電圧定数によって決まる最大発電トルクAが変更されるため、図8(A),(B)に示すように、ジェネレータ・モータ1の発電目標トルクによっては変更中の最大発電トルクAによって発電トルクが制限される。そこで、コントローラ37には、回転子5,6の位相差信号とモータ回転数信号を受けて最大発電トルクAを算出する最大発電トルク算出手段44と、この最大発電トルク算出手段44の算出結果に応じてエンジン30の駆動目標トルクを補正するエンジン駆動トルク補正手段45が設けられ、ジェネレータ・モータ1の発電トルクとエンジン30の駆動トルクが常にバランスされるようになっている。   The controller 37 outputs a command signal to the PDU 40 of the generator / motor 1 and the hydraulic pressure control circuit 42 of the rotation operation mechanism 11 so that the power generation target torque calculated by the power generation target torque calculation means 43 can be obtained. A command signal is output to the output control unit 39 of the engine 30 in order to obtain an engine output whose absolute value is equal to the power generation target torque calculated by the calculation means 43. However, when the induced voltage constant of the generator / motor 1 is changed by the operation of the turning operation mechanism 11, the maximum power generation torque A determined by the induced voltage constant is changed, so that FIGS. ), The power generation torque is limited by the maximum power generation torque A being changed depending on the power generation target torque of the generator motor 1. Therefore, the controller 37 receives the phase difference signal of the rotors 5 and 6 and the motor rotational speed signal, calculates the maximum power generation torque A by calculating the maximum power generation torque A, and the calculation result of the maximum power generation torque calculation means 44. Accordingly, engine drive torque correction means 45 for correcting the drive target torque of the engine 30 is provided so that the power generation torque of the generator / motor 1 and the drive torque of the engine 30 are always balanced.

次に、ジェネレータ・モータ1とエンジン30の発電時におけるトルク制御を、図7のフローチャートに沿って説明する。
まず、ステップS100において、回転子5,6の位相変更処理(位相変更の必要がある場合には位相の変更を行い、位相の変更の必要がない場合には何も行わない処理。)を行い、その後に、ステップS101において位相の変更が行われたかどうか判断し、位相の変更が行われた場合にはステップS102に進み、位相の変更が行わなかった場合にはそのまま以下の処理を抜ける。
ステップS102においては、SOC等の発電要求情報の読み込みを行い、次のステップS103において、発電要求に応じた発電目標トルク(エンジン駆動目標トルクとは向きが逆で絶対値が等しい)を算出する。
次に、ステップS104において、回転子5,6の位相差信号やジェネレータ・モータ1の回転数信号等のトルク特性情報を読み込み、ステップS105において、ジェネレータ・モータ1の誘起電圧定数を算出するとともに、ステップS106において、誘起電圧定数によって決まる最大発電トルクAを算出する。
この後、ステップS107に進み、エンジン駆動目標トルク(=発電目標トルク)の絶対値が最大発電トルクAの絶対値(以下、「|A|」と記す)よりも大きいかどうかを判断し、|A|よりも大きい場合にはステップS108に進み、|A|以下の場合にはステップS109に進む。
ステップS108では、|A|を、実際にエンジン30に出力するトルクの指示値とし、ステップS109では、エンジン駆動目標トルクの値を、実際にエンジン30に出力するトルクの指示値とする。したがって、この処理により、エンジン30には最大発電トルクAの絶対値によって制限された指示値が出力されることになる。
Next, torque control during power generation by the generator / motor 1 and the engine 30 will be described with reference to the flowchart of FIG.
First, in step S100, a phase change process of the rotors 5 and 6 is performed (a process in which the phase is changed when the phase change is necessary, and nothing is performed when the phase change is not necessary). Thereafter, it is determined whether or not the phase has been changed in step S101. If the phase has been changed, the process proceeds to step S102. If the phase has not been changed, the following process is directly exited.
In step S102, power generation request information such as SOC is read, and in next step S103, a power generation target torque corresponding to the power generation request (the direction opposite to the engine drive target torque is equal in absolute value) is calculated.
Next, in step S104, torque characteristic information such as the phase difference signals of the rotors 5 and 6 and the rotational speed signal of the generator / motor 1 is read. In step S105, an induced voltage constant of the generator / motor 1 is calculated, and In step S106, the maximum power generation torque A determined by the induced voltage constant is calculated.
Thereafter, the process proceeds to step S107, where it is determined whether or not the absolute value of the engine drive target torque (= power generation target torque) is larger than the absolute value of the maximum power generation torque A (hereinafter referred to as “| A |”). If greater than A |, the process proceeds to step S108, and if not greater than | A |, the process proceeds to step S109.
In step S108, | A | is the instruction value of the torque actually output to the engine 30, and in step S109, the value of the engine drive target torque is the instruction value of the torque actually output to the engine 30. Therefore, by this process, an instruction value limited by the absolute value of the maximum power generation torque A is output to the engine 30.

具体的には、例えば、ジェネレータ・モータ1が強め界磁状態から弱め界磁状態に変更され、図8(A)に示すようにジェネレータ・モータ1の特性が低速特性(高トルク特性)から高速特性(低トルク特性)に変更される場合には、ジェネレータ・モータ1の最大発電トルクAが低下して発電目標トルクと交差した時点から実際の発電トルクが最大発電トルクAで制限されて低下するとともに、エンジン30の出力トルクが発電トルクの低下に連動して低下するようになる。したがって、これによりジェネレータ・モータ1の相対位相の変更時やその後には、エンジン30の出力トルクの絶対値が発電トルクを大幅に上回ることがなくなり、エンジン30が必要外に吹き上がる不具合は生じなくなる。この結果、車両の運転性能と商品性が向上するとともに、車両燃費も向上する。   Specifically, for example, the generator / motor 1 is changed from a strong field state to a weak field state, and the characteristics of the generator / motor 1 are changed from a low speed characteristic (high torque characteristic) to a high speed as shown in FIG. When the characteristic (low torque characteristic) is changed, the actual power generation torque is limited by the maximum power generation torque A and decreases from the time when the maximum power generation torque A of the generator / motor 1 decreases and intersects the power generation target torque. At the same time, the output torque of the engine 30 decreases in conjunction with the decrease in power generation torque. Accordingly, when the relative phase of the generator / motor 1 is changed or thereafter, the absolute value of the output torque of the engine 30 does not greatly exceed the power generation torque, and there is no problem that the engine 30 blows out beyond necessity. . As a result, the driving performance and merchantability of the vehicle are improved and the vehicle fuel consumption is also improved.

また、上記とは逆にジェネレータ・モータ1が弱め界磁状態から強め界磁状態に変更され、図8(B)に示すようにジェネレータ・モータ1の特性が高速特性(低トルク特性)から低速特性(高トルク特性)に変更される場合には、例えば、高速特性時に最大発電トルクAとほぼ同値の発電目標トルクとなるようにジェネレータ・モータ1とエンジン30が運転されているとき等に、ジェネレータ・モータ1の実際の発電トルクが最大発電トルクAによって制限されることがある。この場合、ジェネレータ・モータ1の特性が高速特性から低速特性に変更されるようになると、その特性の変更に応じてジェネレータ・モータ1の実際の出力トルクが図中右上がりに変化する最大発電トルクAによって制限されるようになるとともに、エンジン30の出力トルクが発電トルクに連動して制限されるようになる。したがって、これによりジェネレータ・モータ1の相対位相の変更時やその直後に、エンジン30の出力トルクの絶対値が発電トルクを大幅に下回ることがなくなり、出力トルクと発電トルクのバランスの悪化によってエンジン30がストールする不具合が未然に防止される。この結果、車両の運転性能と商品性が向上する。   Contrary to the above, the generator / motor 1 is changed from the weak field state to the strong field state, and as shown in FIG. 8B, the characteristics of the generator / motor 1 are changed from high speed characteristics (low torque characteristics) to low speed. When the characteristic (high torque characteristic) is changed, for example, when the generator / motor 1 and the engine 30 are operated so that the power generation target torque is substantially the same as the maximum power generation torque A in the high speed characteristic, etc. The actual power generation torque of the generator motor 1 may be limited by the maximum power generation torque A. In this case, when the characteristic of the generator / motor 1 is changed from the high-speed characteristic to the low-speed characteristic, the maximum power generation torque in which the actual output torque of the generator / motor 1 changes to the right in the figure in accordance with the change of the characteristic. In addition to being limited by A, the output torque of the engine 30 is limited in conjunction with the power generation torque. Therefore, when the relative phase of the generator / motor 1 is changed or immediately after that, the absolute value of the output torque of the engine 30 is not significantly lower than the generated torque, and the balance between the output torque and the generated torque is deteriorated. The problem of stalling is prevented in advance. As a result, the driving performance and merchantability of the vehicle are improved.

ところで、前記のステップS100における位相処理は、例えば、ジェネレータ・モータ1を高速特性から低速特性に変更する場合に、図9のフローチャートに示すような処理を行うようにしても良い。
以下、図9のフローチャートの処理について説明する。
Incidentally, the phase processing in step S100 described above may be performed as shown in the flowchart of FIG. 9 when the generator / motor 1 is changed from the high speed characteristic to the low speed characteristic, for example.
Hereinafter, the process of the flowchart of FIG. 9 will be described.

ステップS110においては、SOC等の発電要求情報の読み込みを行い、次のステップS111において、発電要求に応じた発電目標トルク(=エンジン駆動目標トルク)を算出する。
この後、ステップS112において、回転子5,6の位相差信号やジェネレータ・モータ1の回転数信号等のトルク特性情報を読み込み、ステップS113において、ジェネレータ・モータ1の誘起電圧定数を算出するとともに、ステップS114において、誘起電圧定数によって決まる最大発電トルクAを算出する。
In step S110, power generation request information such as SOC is read, and in next step S111, a power generation target torque (= engine drive target torque) corresponding to the power generation request is calculated.
Thereafter, in step S112, the torque characteristic information such as the phase difference signals of the rotors 5 and 6 and the rotational speed signal of the generator / motor 1 is read. In step S113, the induced voltage constant of the generator / motor 1 is calculated. In step S114, the maximum power generation torque A determined by the induced voltage constant is calculated.

次に、ステップS115において、発電目標トルクの絶対値が最大発電トルクAの絶対値A(|A|)よりも大きいかどうかを判断し、|A|よりも大きい場合にはステップS116を経た後にステップS117に進み、|A|以下の場合にはそのままステップS117へと進む。
ステップS116においては、ジェネレータ・モータ1の誘起電圧定数を高めて最大発電トルクAを引き上げるための位相変更量(誘起電圧定数の変更量)を算出する。この位相変更量の算出にあたっては、位相変更速度がエンジン30の応答速度と同等の速度になるような値が算出される。
ステップS117においては、フィルター処理を行い、ステップS118において、液圧制御回路42に位相指令を出力して位相処理を終了する。
Next, in step S115, it is determined whether or not the absolute value of the power generation target torque is greater than the absolute value A (| A |) of the maximum power generation torque A. If greater than | A | The process proceeds to step S117. If | A | or less, the process proceeds to step S117 as it is.
In step S116, a phase change amount (a change amount of the induced voltage constant) for raising the maximum power generation torque A by increasing the induced voltage constant of the generator / motor 1 is calculated. In calculating the phase change amount, a value is calculated such that the phase change speed is equivalent to the response speed of the engine 30.
In step S117, filter processing is performed. In step S118, a phase command is output to the hydraulic pressure control circuit 42, and the phase processing is terminated.

このフローチャートの処理によれば、発電目標トルクの絶対値が現在の最大発電トルクAの絶対値よりも大きい場合には、ステップS116において、位相変更速度とエンジン30の応答速度が同等になる位相変更値が算出され、その位相変更値がステップS118で液圧制御回路42に出力されるため、ジェネレータ・モータ1の誘起電圧定数は、エンジン出力(トルク)が同期して調整され得る速度で調整されるようになる。   According to the process of this flowchart, when the absolute value of the power generation target torque is larger than the absolute value of the current maximum power generation torque A, the phase change in which the phase change speed is equal to the response speed of the engine 30 in step S116. Since the value is calculated and the phase change value is output to the hydraulic pressure control circuit 42 in step S118, the induced voltage constant of the generator motor 1 is adjusted at a speed at which the engine output (torque) can be adjusted in synchronization. Become so.

具体的には、例えば、図10に示すように発電要求(要求出力)があり、それに応じてジェネレータ・モータ1の発電トルクとエンジン30の出力トルクが増加する場合、ジェネレータ・モータ1の発電目標トルクが高速特性(低トルク特性)での最大発電トルクAを超えた時点で、低速特性(高トルク特性)に変更すべく回転子5,6の位相変更が開始されることになるが、このとき、回転子5,6の位相変更は、発電トルクとエンジン30の出力トルクがほぼ連動するように行われ、図10の破線(イ)で示すように、エンジン30の出力トルクが発電トルクの増加に追いつかなくなる程、ジェネレータ・モータ1の発電トルクが急増することがなくなる。なお、図10中の破線(ロ)は、破線(イ)のように発電トルクが急増する場合の回転子5,6の位相変化を示す。   Specifically, for example, when there is a power generation request (requested output) as shown in FIG. 10 and the power generation torque of the generator / motor 1 and the output torque of the engine 30 increase accordingly, the power generation target of the generator / motor 1 is increased. When the torque exceeds the maximum power generation torque A in the high speed characteristic (low torque characteristic), the phase change of the rotors 5 and 6 is started to change to the low speed characteristic (high torque characteristic). At this time, the phase of the rotors 5 and 6 is changed so that the power generation torque and the output torque of the engine 30 are substantially interlocked. The power generation torque of the generator / motor 1 does not increase so rapidly that it cannot keep up with the increase. In addition, the broken line (b) in FIG. 10 shows the phase change of the rotors 5 and 6 when the power generation torque increases rapidly as shown by the broken line (a).

したがって、図10中の破線(イ)のように発電トルクが急増する場合には、その発電トルクの増大にエンジン30の出力トルクが追いつけなくなり、同図中の破線(ハ)のようにエンジン回転数の落ち込みが生じ易くなるが、この実施形態のトルク制御装置100においては、発電トルクとエンジン30の出力トルクが連動し得る速度で回転子5,6の位相変更が行われるため、位相変更の間もエンジン30の回転数はほぼ一定に維持されることになる。よって、このトルク制御装置100を採用した場合、回転子5,6の位相変更中に、発電トルクと出力トルクが大きく乖離することがないことから、エンジン30のストールをより確実に防止することが可能である。   Therefore, when the power generation torque rapidly increases as indicated by the broken line (A) in FIG. 10, the output torque of the engine 30 cannot catch up with the increase in the power generation torque, and the engine rotation as indicated by the broken line (C) in FIG. In the torque control device 100 of this embodiment, the phase change of the rotors 5 and 6 is performed at a speed at which the power generation torque and the output torque of the engine 30 can be interlocked. In the meantime, the rotational speed of the engine 30 is maintained substantially constant. Therefore, when this torque control device 100 is employed, the power generation torque and the output torque do not greatly deviate during the phase change of the rotors 5 and 6, so that the engine 30 can be more reliably prevented from stalling. Is possible.

なお、この発明は上記の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の設計変更が可能である。   In addition, this invention is not limited to said embodiment, A various design change is possible in the range which does not deviate from the summary.

この発明の一実施形態を示す車両の動力系の概略構成図。1 is a schematic configuration diagram of a power system of a vehicle showing an embodiment of the present invention. 同実施形態のジェネレータ・モータの要部断面図。Sectional drawing of the principal part of the generator motor of the embodiment. 同実施形態の回転子ユニットの一部部品を省略した側面図。The side view which abbreviate | omitted some components of the rotor unit of the embodiment. 同実施形態の回転子ユニットの分解斜視図。The disassembled perspective view of the rotor unit of the embodiment. 同実施形態の内周側回転子の永久磁石と外周側回転子の永久磁石が同極配置された強め界磁状態を模式的に示す図(a)と、同実施形態の内周側回転子の永久磁石と外周側回転子の永久磁石が異極配置された弱め界磁状態を模式的に示す図(b)を併せて記載した図。The figure (a) which shows typically the strong magnetic field state by which the permanent magnet of the inner peripheral side rotor of the same embodiment and the permanent magnet of the outer peripheral side rotor are arrange | positioned with the same polarity, and the inner peripheral side rotor of the same embodiment The figure which combined and showed the figure (b) which shows typically the field-weakening state in which the permanent magnet of the outer peripheral side rotor and the permanent magnet of an outer peripheral side rotor are arrange | positioned differently. 同実施形態のジェネレータ・モータの強め界磁時(a)と弱め界磁時(b)のトルク−回転数特性図。FIG. 5 is a torque-rotational speed characteristic diagram of the generator motor according to the embodiment during strong field (a) and weak field (b). 同実施形態のトルク制御の一例を示すフローチャート。The flowchart which shows an example of the torque control of the embodiment. 同実施形態の誘起電圧特性変更時におけるジェネレータ・モータおよびエンジンのトルクと、回転子の位相の変化の様子を示す特性図。The characteristic view which shows the mode of the change of the torque of a generator motor and an engine at the time of the induced voltage characteristic change of the embodiment, and a rotor. 同実施形態の位相処理の一例を示すフローチャート。6 is a flowchart illustrating an example of phase processing according to the embodiment. 同実施形態の要求トルクの増大時におけるエンジンおよびジェネータ・モータのトルクと、回転子の位相、エンジン回転数の変化の様子を示す特性図。The characteristic view which shows the mode of the change of the torque of an engine and a generator motor at the time of increase of the request torque of the embodiment, a phase of a rotor, and an engine speed.

符号の説明Explanation of symbols

1…ジェネレータ・モータ
5…外周側回転子
6…内周側回転子
9A,9B…永久磁石
11…回動操作機構(特性変更手段)
30…エンジン
31…出力軸
44…最大発電トルク算出手段
45…エンジン駆動トルク補正手段
DESCRIPTION OF SYMBOLS 1 ... Generator motor 5 ... Outer peripheral side rotor 6 ... Inner peripheral side rotor 9A, 9B ... Permanent magnet 11 ... Turning operation mechanism (characteristic change means)
DESCRIPTION OF SYMBOLS 30 ... Engine 31 ... Output shaft 44 ... Maximum power generation torque calculation means 45 ... Engine drive torque correction means

Claims (3)

エンジンと、このエンジンの出力軸に連結されて発電機として機能するジェネレータ・モータを備えた車両において、前記エンジンの出力トルクと前記ジェネレータ・モータの発電トルクを車両の運転状況に応じて制御するトルク制御装置であって、
前記ジェネレータ・モータに、車両の運転状況に応じて誘起電圧定数を変更する特性変更手段が設けられるとともに、
前記ジェネレータ・モータの誘起電圧定数によって決まるジェネレータ・モータの最大発電トルクを算出する最大発電トルク算出手段と、
前記エンジンに出力するエンジン駆動目標トルクを、前記最大発電トルク算出手段の算出結果に応じて補正するエンジン駆動トルク補正手段と、
を備えていることを特徴とする車両のトルク制御装置。
Torque for controlling an engine output torque and a generator / motor generated torque according to a driving situation of the engine in a vehicle including an engine and a generator / motor connected to an output shaft of the engine and functioning as a generator A control device,
The generator / motor is provided with characteristic changing means for changing the induced voltage constant according to the driving situation of the vehicle,
Maximum power generation torque calculating means for calculating the maximum power generation torque of the generator motor determined by the induced voltage constant of the generator motor;
Engine drive torque correction means for correcting engine drive target torque to be output to the engine according to a calculation result of the maximum power generation torque calculation means;
A torque control apparatus for a vehicle, comprising:
前記ジェネレータ・モータは、
円周方向に沿うように複数の永久磁石が配設された内周側回転子と、
この内周側回転子の外周側に同軸にかつ相対回動可能に配設されるとともに、円周方向に沿うように複数の永久磁石が配設された外周側回転子と、
前記内周側回転子と外周側回転子を相対回動させて両者の相対位相を変更する回動操作機構と、を備え、
前記内周側回転子、外周側回転子、および、回動操作機構によって前記特性変更手段が構成されていることを特徴とする請求項1に記載の車両のトルク制御装置。
The generator motor is
An inner rotor on which a plurality of permanent magnets are arranged along the circumferential direction;
An outer peripheral side rotor arranged coaxially and relatively rotatably on the outer peripheral side of the inner peripheral side rotor, and a plurality of permanent magnets arranged along the circumferential direction;
A rotation operation mechanism for changing the relative phase of the inner and outer rotors by relatively rotating the inner and outer rotors;
2. The vehicle torque control device according to claim 1, wherein the characteristic changing unit includes the inner circumferential rotor, the outer circumferential rotor, and a rotation operation mechanism.
発電目標トルクがジェネレータ・モータの現在の誘起電圧定数によって決まる最大発電トルクを超える場合に、前記特性変更手段で誘起電圧定数を変更してジェネレータ・モータの最大発電トルクを増大させる請求項1または2に記載の車両のトルク制御装置において、
前記特性変更手段は、前記エンジンの応答速度と同等の速度で誘起電圧定数を変更することを特徴とする車両のトルク制御装置。
3. When the power generation target torque exceeds the maximum power generation torque determined by the current induced voltage constant of the generator / motor, the maximum voltage generation torque of the generator / motor is increased by changing the induced voltage constant by the characteristic changing means. In the torque control apparatus for a vehicle according to claim 1,
The vehicle torque control apparatus characterized in that the characteristic changing means changes an induced voltage constant at a speed equivalent to a response speed of the engine.
JP2006276316A 2006-10-10 2006-10-10 Vehicle torque control device Expired - Fee Related JP4409555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006276316A JP4409555B2 (en) 2006-10-10 2006-10-10 Vehicle torque control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006276316A JP4409555B2 (en) 2006-10-10 2006-10-10 Vehicle torque control device

Publications (2)

Publication Number Publication Date
JP2008094182A JP2008094182A (en) 2008-04-24
JP4409555B2 true JP4409555B2 (en) 2010-02-03

Family

ID=39377512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006276316A Expired - Fee Related JP4409555B2 (en) 2006-10-10 2006-10-10 Vehicle torque control device

Country Status (1)

Country Link
JP (1) JP4409555B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5902417B2 (en) * 2011-08-22 2016-04-13 Gknドライブラインジャパン株式会社 Vehicle drive system
JP2017154736A (en) * 2017-03-29 2017-09-07 三菱自動車工業株式会社 Transaxle device of vehicle
CN111731110B (en) * 2019-03-25 2021-11-26 长城汽车股份有限公司 Motor system efficiency correction method and device of electric automobile

Also Published As

Publication number Publication date
JP2008094182A (en) 2008-04-24

Similar Documents

Publication Publication Date Title
JP4184392B2 (en) Electric motor
JP2008141862A (en) Motor control method and motor controller
US7548005B2 (en) Electric motor having improved relative phase control
JP2010273521A (en) Device for control of electric motor
JP4971039B2 (en) Motor control device
JP4409555B2 (en) Vehicle torque control device
JP5037083B2 (en) Electric motor
JP2008230281A (en) Hybrid vehicle
JP5124336B2 (en) Control device for electric vehicle
WO2015045924A1 (en) Rotary electric machine
JP2009268269A (en) Electric motor
JP5031351B2 (en) Electric motor
JP4732281B2 (en) Vehicle oil supply device
JP4223526B2 (en) Electric motor
JP2010259256A (en) Controller of motor
JP4932418B2 (en) Electric motor
JP2007244060A (en) Vehicle comprising motor
JP2009166652A (en) Controller for hybrid vehicle
JP2008067577A (en) Motor
JP4828392B2 (en) Variable motor characteristics system
JP4864686B2 (en) Motor control device
JP4499052B2 (en) Electric motor
JP2009240012A (en) Electric motor
JP2009240013A (en) Electric motor
JP5037063B2 (en) Electric motor for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees