JP4409474B2 - Sintered oil-impregnated bearing - Google Patents

Sintered oil-impregnated bearing Download PDF

Info

Publication number
JP4409474B2
JP4409474B2 JP2005124494A JP2005124494A JP4409474B2 JP 4409474 B2 JP4409474 B2 JP 4409474B2 JP 2005124494 A JP2005124494 A JP 2005124494A JP 2005124494 A JP2005124494 A JP 2005124494A JP 4409474 B2 JP4409474 B2 JP 4409474B2
Authority
JP
Japan
Prior art keywords
mass
bearing
zinc
alloy
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005124494A
Other languages
Japanese (ja)
Other versions
JP2006300246A (en
Inventor
剛 柳瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2005124494A priority Critical patent/JP4409474B2/en
Publication of JP2006300246A publication Critical patent/JP2006300246A/en
Application granted granted Critical
Publication of JP4409474B2 publication Critical patent/JP4409474B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Lubricants (AREA)
  • Powder Metallurgy (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Description

この発明は、各種用途のモータ、電子機器や電源設備等の冷却に用いられる軸流ファンモータの軸受として好適な、温度が高い環境下でも低い摩擦係数が長期にわたり維持される焼結含油軸受に関する。   The present invention relates to a sintered oil-impregnated bearing suitable as a bearing for an axial fan motor used for cooling motors for various applications, electronic devices, power supply facilities, etc., and having a low friction coefficient maintained for a long time even in a high temperature environment. .

電子機器等の冷却に用いられる軸流ファンモータは、枠形のケーシングの中央部にモータが固定されており、そのロータに回転翼(ファン)を取り付けた構造を有する。モータの駆動回路に通電するとロータが回転し、ケーシングとモータの間隙に一定方向の空気流を発生させる。軸流ファンモータは電子機器等の外枠などに設置され、枠内に外気を導入または枠内の空気を排出して電子機器等を冷却する。特に枠内の空気を排出する用途では、軸流ファンモータの温度環境が80〜100℃程度になることがあり、また、運転時間が長いので、その温度環境で耐久性がよい軸受が求められる。   An axial fan motor used for cooling electronic devices or the like has a structure in which a motor is fixed to a central portion of a frame-shaped casing, and a rotor blade (fan) is attached to the rotor. When the motor drive circuit is energized, the rotor rotates and an air flow in a certain direction is generated in the gap between the casing and the motor. The axial fan motor is installed in an outer frame of an electronic device or the like, and cools the electronic device or the like by introducing outside air into the frame or discharging air in the frame. Especially in applications where the air in the frame is exhausted, the temperature environment of the axial fan motor may be about 80 to 100 ° C., and since the operation time is long, a bearing having good durability in that temperature environment is required. .

前記軸流ファンモータの軸受には焼結含油軸受を用いているものがある(例えば特許文献1)。この種のモーターの軸受は、青銅または鉄・青銅系の多孔質焼結合金からなり、その気孔内に炭化水素系の合成油あるいは炭化水素系合成油に増稠剤として金属石けんを混合した合成潤滑油を含浸したものである。しかし前記のような高い温度環境で長期間使用される場合、潤滑性が低下し、金属接触の増大、摩擦力の増大、軸受部の発熱に伴うオイルの劣化、酸化摩耗などが起こり易くなるという現象が認められていた。
特開平10−164794号公報
Some bearings of the axial fan motor use a sintered oil-impregnated bearing (for example, Patent Document 1). This type of motor bearing is made of bronze or iron / bronze based porous sintered alloy, and its synthetic pores are mixed with hydrocarbon-based synthetic oil or hydrocarbon-based synthetic oil with metal soap as a thickener. It is impregnated with lubricating oil. However, when used in a high temperature environment as described above for a long period of time, the lubricity is reduced, and the metal contact increases, the frictional force increases, the oil deteriorates due to heat generation of the bearing portion, and the oxidation wear easily occurs. The phenomenon was recognized.
Japanese Patent Laid-Open No. 10-164794

ファンモータは長寿命であるとともに消費電力がより低いことが求められている。換言すると使用される軸受の長寿命化と低摩擦化が必要なことであり、高い温度環境下においても摩擦係数が低く長期的に安定するととともに、焼付きや摩耗が発生しないような焼結軸受の材質と、気孔に含浸される潤滑組成物との組み合わせを探索することが課題となっていた。   Fan motors are required to have a long life and lower power consumption. In other words, it is necessary to extend the service life and reduce the friction of the bearing used, and it is a sintered bearing that has a low coefficient of friction and is stable for a long time even in a high temperature environment, and does not cause seizure or wear. It has been a challenge to search for a combination of the material and the lubricating composition impregnated in the pores.

この発明は、軸流ファンモータに使用される軸受として好適な焼結含油軸受に関するもので、軸受材料の組成が鉄20〜60質量%、銅26〜74質量%、錫1〜8質量%および亜鉛2〜20質量%で、前記組成のうち銅・錫・亜鉛系合金成分の組成が錫2〜10質量%、亜鉛5〜25質量%および銅残部であって、合金組織が鉄相と銅合金相とが斑に分散している多孔質焼結合金からなり、前記多孔質焼結合金からなる軸受の気孔内にポリ−α−オレフィンを基油とし、少なくともジエステル2〜15質量%および極圧添加剤0.5〜3質量%を含有する潤滑油が含浸されていることを特徴とする。   The present invention relates to a sintered oil-impregnated bearing suitable as a bearing used for an axial fan motor. The composition of the bearing material is 20 to 60% by mass of iron, 26 to 74% by mass of copper, 1 to 8% by mass of tin, and The composition of the copper / tin / zinc-based alloy component is 2 to 10% by mass of tin, 5 to 25% by mass of zinc, and the balance of copper, and the alloy structure is an iron phase and copper. It is made of a porous sintered alloy in which the alloy phase is dispersed in spots, poly-α-olefin is used as the base oil in the pores of the bearing made of the porous sintered alloy, and at least 2 to 15% by mass of diester and pole It is impregnated with a lubricating oil containing 0.5 to 3% by weight of a pressure additive.

このように、軸受を鉄相と亜鉛および錫を含む銅合金相との斑な金属組織である多孔質焼結合金に、少なくともジエステルおよび極圧添加剤を含有するポリ−α−オレフィンを基油の合成潤滑油を含浸した軸受材料と潤滑剤との組み合わせとした。これにより高い温度環境でも摩擦係数が低く、摩耗量が少ない軸受要素が提供することができ、特に、軸流ファンモータ用に好適なものであり、軸流ファンモータに使用すればモータの耐久性の向上、信頼性の向上に寄与することができる。   In this way, the bearing is made of a porous sintered alloy having a flawed metal structure of an iron phase and a copper alloy phase containing zinc and tin, and a poly-α-olefin containing at least a diester and an extreme pressure additive as a base oil. A combination of a bearing material impregnated with a synthetic lubricant and a lubricant. This makes it possible to provide a bearing element that has a low coefficient of friction and a low amount of wear even in a high temperature environment, and is particularly suitable for an axial fan motor. When used in an axial fan motor, the durability of the motor It is possible to contribute to improvement of reliability and reliability.

以下、本発明の好適な実施の形態を説明する。
1.軸受用焼結合金
多孔質焼結合金は、組織が鉄相と銅合金相との斑な金属組織をしており、鉄相と銅合金相とは面積比でおおよそ20:80〜65:35の割合が好適である。比較的硬く、耐摩耗性で、安価であるなどの特徴をもつ鉄相と、滑り特性、なじみ性、放熱性がよいなどの特徴をもつ銅合金とが適量に混合分散した合金組織により、摺動特性と耐久性に優れたものになる。
前記鉄相は鉄のフェライト組織が主で、鉄相の周囲は銅合金成分が僅かに拡散した合金相を含んでいる。
銅合金相は銅、錫、亜鉛からなる。銅合金相が銅錫合金(青銅)では高温環境下における摩擦熱により酸化して摩耗が起き易く、また硬さが高く回転軸とのなじみ面が形成され難いことより摩擦係数が比較的高くなる。一方、錫と亜鉛を含む銅合金にすると、亜鉛の添加によって高温における耐酸化性が青銅よりも良好になるとともに、銅合金部分の延性が高く、容易になじみ面が形成され摩擦係数が小さいものとなる。また、含浸される潤滑油中の添加剤に起因する腐食が起こり難くなり、銅錫合金よりも優れている。
Hereinafter, preferred embodiments of the present invention will be described.
1. Sintered alloy for bearings The porous sintered alloy has a flawed metal structure of an iron phase and a copper alloy phase, and the area ratio of the iron phase and the copper alloy phase is approximately 20:80 to 65:35. Is preferred. Sliding is achieved by an alloy structure in which an iron phase, which is relatively hard, wear-resistant, and inexpensive, and a copper alloy, which has characteristics such as sliding properties, conformability, and good heat dissipation, are mixed and dispersed in an appropriate amount. Excellent dynamic characteristics and durability.
The iron phase mainly includes an iron ferrite structure, and the periphery of the iron phase includes an alloy phase in which a copper alloy component is slightly diffused.
The copper alloy phase consists of copper, tin, and zinc. If the copper alloy phase is copper-tin alloy (bronze), it will be oxidized due to frictional heat in high temperature environment and will be easily worn, and the friction coefficient will be relatively high due to its high hardness and difficulty in forming a familiar surface with the rotating shaft. . On the other hand, when a copper alloy containing tin and zinc is used, the addition of zinc makes the oxidation resistance at high temperatures better than bronze, the ductility of the copper alloy part is high, the familiar surface is easily formed, and the friction coefficient is small It becomes. Further, corrosion due to the additive in the impregnated lubricating oil is less likely to occur, which is superior to the copper tin alloy.

焼結合金の組成は、前記の斑な金属組織の好ましい形態と整合しており、鉄が20〜60質量%、銅合金が80〜40質量%である。より好ましくは、鉄が40質量%前後、銅合金が60質量%前後である。
合金中の鉄の含有量が、20質量%未満であると銅系焼結合金で作られた軸受の耐摩耗性と比べて向上の程度が少なく、60質量%超えると回転軸とのなじみ性が低下し、摩擦係数が高くなるので20〜60質量%の範囲内とする。
銅合金相の錫は、合金基地の硬さを上げて耐摩耗性の向上を目的としている。銅・錫・亜鉛系合金成分中の錫含有量が2質量%未満では耐摩耗性が不足し、10質量%を超える場合は銅合金基地が硬くなりすぎて相手軸を傷付け易く摩耗の原因になるので2〜10質量%とする。亜鉛は、銅と合金化することにより銅合金摺動面の酸化を防止し摩耗を少なくする効果がある。亜鉛含有量が銅・錫・亜鉛系合金成分全体に対して5質量%未満であるとその効果が少なく、25質量%を超えて添加しても酸化摩耗の低減が認められないことから5〜25質量%の範囲内とする。
The composition of the sintered alloy is consistent with the preferred form of the rough metal structure, with iron being 20-60% by weight and copper alloy being 80-40% by weight. More preferably, iron is about 40% by mass and the copper alloy is about 60% by mass.
When the iron content in the alloy is less than 20% by mass, the degree of improvement is small compared to the wear resistance of the bearing made of the copper-based sintered alloy, and when it exceeds 60% by mass, the compatibility with the rotating shaft is achieved. In the range of 20 to 60% by mass.
The tin of the copper alloy phase is intended to increase the hardness of the alloy base and improve the wear resistance. If the tin content in the copper / tin / zinc alloy component is less than 2% by mass, the wear resistance will be insufficient. If it exceeds 10% by mass, the copper alloy base will be too hard and the mating shaft will be easily damaged. Therefore, it is set to 2 to 10% by mass. Zinc has the effect of preventing wear by preventing oxidation of the sliding surface of the copper alloy by alloying with copper. If the zinc content is less than 5% by mass with respect to the total copper / tin / zinc alloy component, the effect is small, and even if it is added in excess of 25% by mass, no reduction in oxidation wear is observed. It shall be in the range of 25% by mass.

上記のように、鉄が20〜60質量%で、銅合金が80〜40質量%であって、前記銅合金部分の組成が銅・錫・亜鉛を100%として錫2〜10質量%、亜鉛5〜25質量%、残部銅である合金は、全体組成に換算すると、鉄が20〜60質量%、銅26〜74質量%、錫1〜8質量%および亜鉛2〜20質量%である。なお、多孔質焼結合金の有効多孔率は、従来の焼結含油軸受と同様に10〜35%程度の範囲内で、ファンモータの大きさや使用環境によって決定される。   As described above, iron is 20 to 60% by mass, copper alloy is 80 to 40% by mass, and the composition of the copper alloy part is 2 to 10% by mass of tin with 100% of copper, tin and zinc, zinc The alloy which is 5 to 25% by mass and the remaining copper is 20 to 60% by mass of iron, 26 to 74% by mass of copper, 1 to 8% by mass of tin and 2 to 20% by mass of zinc when converted to the total composition. The effective porosity of the porous sintered alloy is determined by the size of the fan motor and the usage environment within the range of about 10 to 35%, as in the case of conventional sintered oil-impregnated bearings.

多孔質焼結合金からなる軸受は、通常の焼結含油軸受の製造方法と同様に作ることができる。鉄粉、銅粉、錫粉、亜鉛粉、および成形潤滑剤を所定割合で混合し所定の形状に圧縮成形したのち焼結して焼結体とされる。前記の錫および亜鉛の添加のためには、青銅合金粉、黄銅合金粉を用いることもできる。
このような焼結体は、サイジングあるいはシェービング等の加工が施され、所定寸法に仕上げられるとともに、内周面を平滑にし、内周面に露出している気孔を適度に減少させる。表面の露出気孔は含浸された潤滑油を摺動面に供給する通路であるから、軸との金属接触を回避して安定した潤滑を得るために軸受摺動面の露出気孔の量は軸受摺動面積を100%とした面積率で2%以上は必要である。軸受摺動面の露出気孔が多過ぎると、潤滑油が多量に供給できる反面、軸と摺動する摺動面積が少なくなって軸受摺動面の局所面圧が高くなり潤滑膜が壊れやすくなるため、40%を超えないようにすることが望ましい。焼結合金を製造する際には、用いる原料粉末の粒度、成形密度、焼結体のサイジングの強さなどを調整して適正な露出気孔量に調整される。
また、軸受の内周には、潤滑油の飛散を防止するため、軸受摺動面に隣接して軸受端面に向かい拡径するテーパ面を設けたり、軸とのすき間を比較的大きくする段付き大径部を形成したりすることも好ましい実施態様である。端面近傍のテーパ面は回転軸との間でくさび状すき間を形成し、端面近傍の段付き大径部は、回転軸との間ですき間を形成し、これらは潤滑油のたまり場となってラビリンスシールを形成する。
A bearing made of a porous sintered alloy can be produced in the same manner as a conventional method for producing a sintered oil-impregnated bearing. Iron powder, copper powder, tin powder, zinc powder, and a molding lubricant are mixed at a predetermined ratio, compression-molded into a predetermined shape, and sintered to obtain a sintered body. For the addition of tin and zinc, bronze alloy powder or brass alloy powder can be used.
Such a sintered body is subjected to processing such as sizing or shaving and finished to a predetermined size, and the inner peripheral surface is smoothed to appropriately reduce pores exposed on the inner peripheral surface. Since the exposed pores on the surface are passages for supplying the impregnated lubricating oil to the sliding surface, the amount of exposed pores on the bearing sliding surface is the amount of bearing sliding to avoid metal contact with the shaft and obtain stable lubrication. An area ratio with a moving area of 100% is required to be 2% or more. If there are too many exposed pores on the bearing sliding surface, a large amount of lubricating oil can be supplied, but the sliding area that slides with the shaft decreases, the local pressure on the bearing sliding surface increases, and the lubricating film is easily broken. Therefore, it is desirable not to exceed 40%. When manufacturing a sintered alloy, the particle size of the raw material powder to be used, the forming density, the strength of the sizing of the sintered body, and the like are adjusted to adjust the amount of exposed pores.
In addition, a tapered surface is provided on the inner circumference of the bearing to increase the diameter toward the bearing end surface adjacent to the sliding surface of the bearing to prevent scattering of the lubricating oil, or a step that makes the clearance with the shaft relatively large. Forming a large diameter part is also a preferred embodiment. The tapered surface near the end surface forms a wedge-shaped gap with the rotating shaft, and the stepped large-diameter portion near the end surface forms a clearance with the rotating shaft. Form a seal.

2.含浸される潤滑油
温度が比較的高い環境下でも低い摩擦係数が長期にわたり維持されるような前記多孔質焼結合金からなる軸受との好適な組み合わせとなる潤滑油は、基油がポリ−α−オレフィンで、少なくとも油性剤としてジエステル2〜15質量%と極圧添加剤0.5〜3質量%とを含有する合成潤滑油である。潤滑油は通常の方法により前記多孔質焼結合金の軸受に含浸される。
2. Lubricating oil to be impregnated The lubricating oil, which is a suitable combination with the bearing made of the porous sintered alloy that maintains a low coefficient of friction over a long period of time even in an environment where the temperature is relatively high, It is a synthetic lubricating oil which is an olefin and contains at least 2 to 15% by mass of a diester and 0.5 to 3% by mass of an extreme pressure additive as an oily agent. Lubricating oil is impregnated in the porous sintered alloy bearing by a conventional method.

(1)基油
基油のポリ−α−オレフィン(PAO)は焼結軸受用含浸油として必要な、潤滑性、低温特性が良好で、熱的、化学的にも安定であり、腐食性、毒性もなく鉱油に比較して好ましい。極性を持たない構造であるため、焼結合金との反応物形成に伴うスラッジの発生が少なく、各種添加剤の効果を出しやすい利点がある。ポリ−α−オレフィンとしては例えば炭素数6〜14のα−オレフィンのオリゴマー、エチレン−プロピレン共重合体などのエチレン−α−オレフィン共重合体や1−デセンのオリゴマーを例示することができる。
また、基油の選択の指標としては動粘度が挙げられる。動粘度が低すぎると耐荷重性、耐蒸発性に劣ることがあり、動粘度が高すぎると摩擦係数が高くなる問題があるため、40℃における動粘度が20〜100mm/s(cSt)の範囲にあるものが好ましい。
(1) Base oil The base oil poly-α-olefin (PAO) is necessary as an impregnating oil for sintered bearings, has good lubricity and low-temperature characteristics, is thermally and chemically stable, corrosive, It is preferable compared to mineral oil without toxicity. Since it is a structure having no polarity, there is an advantage that sludge generation due to reaction product formation with the sintered alloy is small and the effects of various additives are easily obtained. Examples of the poly-α-olefin include an α-olefin oligomer having 6 to 14 carbon atoms, an ethylene-α-olefin copolymer such as an ethylene-propylene copolymer, and an oligomer of 1-decene.
An index for selecting the base oil is kinematic viscosity. If the kinematic viscosity is too low, load resistance and evaporation resistance may be inferior. If the kinematic viscosity is too high, there is a problem that the coefficient of friction increases. Therefore, the kinematic viscosity at 40 ° C. is 20 to 100 mm 2 / s (cSt). Those within the range are preferred.

(2)潤滑油に含まれる油性剤
含浸用潤滑油は、油性剤としてジエステルを2〜15質量%含有する。ジエステルとしてはジオクチルアジペート(DOA)、ジオクチルアゼレート(DOZ)、ジオクチルセバケート(DOS)等があるが、ジオクチルセバケート(DOS)が潤滑性の面で特に好適である。
ジエステルの含有量は、2質量%未満では摩擦係数の低減効果および耐久性延長効果を得ることができない。一方、15質量%を超えると、潤滑特性がポリ−α−オレフィンよりもジエステルの特性に近づき摩擦係数が低くなるものの、後述する極圧添加剤の効果が抑制されて摩擦係数および耐久性が向上しなくなる。これは、ジエステルの極性をもった分子が軸受摺動面に整列して吸着した(ミセルの形成)状態が緻密になり過ぎてしまい、摺動摩擦に対して極圧添加剤との相互作用が発揮されないためと考えられる。ジエステルを適度に添加することにより、軸受摺動面に極性をもった分子が適度に吸着し、その間に極圧添加剤が分散して吸着した分布になり、ジエステルと極圧添加剤とが協働して低い摩擦係数を呈する。
(2) Oily agent contained in lubricating oil The lubricating oil for impregnation contains 2 to 15% by mass of a diester as an oily agent. Examples of the diester include dioctyl adipate (DOA), dioctyl azelate (DOZ), dioctyl sebacate (DOS), and the like. Dioctyl sebacate (DOS) is particularly preferable in terms of lubricity.
If the diester content is less than 2% by mass, the effect of reducing the friction coefficient and the effect of extending the durability cannot be obtained. On the other hand, if it exceeds 15% by mass, the lubrication characteristics become closer to those of the diester than the poly-α-olefin and the friction coefficient becomes lower, but the effect of the extreme pressure additive described later is suppressed and the friction coefficient and durability are improved. No longer. This is because the molecules with diester polarity aligned and adsorbed on the bearing sliding surface (formation of micelles) become too dense, and the interaction with the extreme pressure additive is exerted against sliding friction. It is thought that it is not done. By adding diester moderately, molecules with polarity on the bearing sliding surface are adsorbed moderately, and the extreme pressure additive is dispersed and adsorbed between them, and the diester and extreme pressure additive cooperate. It works and exhibits a low coefficient of friction.

なお、油性剤として用いられる一般的なエステル油としては、モノエステル、ポリオールエステルがあるが、モノエステルは耐熱性、潤滑性の点で十分な特性は得られない。また、ポリオールエステルは摺動面の金属への吸着力が高く油性効果が高く摩擦係数を低下させるが、吸着力が高いことに起因してポリオールエステルが軸受摺動面へ優先的に吸着する。このため、極圧剤等の添加剤の効果が抑制され、一時的に摺動部への荷重負荷がかかり油膜が破断した際、摩耗が発生しやすくなるという問題があり、極圧添加剤と共存する場合は油性剤としてジエステルの方が優れている。   In addition, as general ester oil used as an oiliness agent, there are a monoester and a polyol ester, but the monoester cannot obtain sufficient characteristics in terms of heat resistance and lubricity. In addition, the polyol ester has a high adsorption power to the metal on the sliding surface and has a high oil effect and lowers the coefficient of friction, but the polyol ester is preferentially adsorbed on the bearing sliding surface due to the high adsorption force. For this reason, the effect of additives such as extreme pressure agents is suppressed, there is a problem that wear is likely to occur when the oil film breaks due to a temporary load load on the sliding portion, In the case of coexistence, diester is superior as an oily agent.

(3)極圧添加剤
含浸用潤滑油は、前記ジエステルの他に極圧添加剤を0.5〜3質量%を含有する。極圧添加剤は、摺動面に前記ジエステルの分子が吸着したミセルの間に分布し、ジエステルのもつ潤滑作用を補って潤滑膜を保持し、低摩擦係数を長期にわたり維持する効果がある。
極圧添加剤としては、硫黄系、りん系、有機金属系などを用いることができる。特に、ジチオリン酸亜鉛(Zn−DTP)、トリクレジルホスファイト(TCP)が耐摩耗性の点で優れている。含有量が0.5質量%未満では、前記ジエステルとの相互作用が発揮されない。また、含有量が3質量%を超えると、軸受摺動面にジエステルの分子が適度に吸着し、その間に極圧添加剤が分散して吸着した分布を形成するものの、過剰な極圧添加剤は低摩擦係数の発現に寄与することなく存在することになり、含有量に見合う効果が得られない。
(3) Extreme pressure additive The lubricating oil for impregnation contains 0.5 to 3% by mass of the extreme pressure additive in addition to the diester. The extreme pressure additive is distributed among the micelles on which the diester molecules are adsorbed on the sliding surface, and has an effect of maintaining the lubricating film by supplementing the lubricating action of the diester and maintaining the low friction coefficient over a long period of time.
As the extreme pressure additive, sulfur-based, phosphorus-based, organometallic-based and the like can be used. In particular, zinc dithiophosphate (Zn-DTP) and tricresyl phosphite (TCP) are excellent in terms of wear resistance. When the content is less than 0.5% by mass, the interaction with the diester is not exhibited. On the other hand, if the content exceeds 3% by mass, diester molecules are adsorbed moderately on the bearing sliding surface, and the extreme pressure additive is dispersed and adsorbed therebetween to form a distribution in which the excessive extreme pressure additive is present. Exists without contributing to the expression of a low friction coefficient, and an effect commensurate with the content cannot be obtained.

(4)その他の添加剤
含浸用潤滑油は、前記ポリ−α−オレフィンを基油とし、ジエステルおよび極圧添加剤だけを含有するものでもよいが、通常の潤滑油の場合と同様に、その他の添加剤として、粘度指数向上剤、酸化防止剤、腐蝕防止剤などを添加することができる。
例えば、粘度指数向上剤としてはポリメタクリレート、ポリイソブチレン等があり、含有量は1〜3質量%程度である。
また、酸化防止剤としてはアミン系やフェノール系のものが適用できる。含有量は0.3〜1質量%程度である。なお、前記の極圧添加剤として挙げたジチオリン酸亜鉛(Zn−DTP)は、酸化防止剤および腐蝕防止剤としても効果がある。
(4) Other additives The lubricating oil for impregnation may be based on the poly-α-olefin and contain only diesters and extreme pressure additives. However, as with ordinary lubricating oils, As additives, viscosity index improvers, antioxidants, corrosion inhibitors and the like can be added.
For example, the viscosity index improver includes polymethacrylate, polyisobutylene and the like, and the content is about 1 to 3% by mass.
As the antioxidant, amine-based or phenol-based ones can be applied. The content is about 0.3 to 1% by mass. The zinc dithiophosphate (Zn-DTP) mentioned as the extreme pressure additive is also effective as an antioxidant and a corrosion inhibitor.

以下、実施例および比較例により本発明をさらに詳しく説明する。
1.試験−1
(1)軸受の作製
原料粉末は、還元鉄粉(ヘガネス社製、商品名NC100−24)、電解銅粉(福田金属箔粉工業(株)製、商品名CE−56)、錫粉(日本アトマイズ加工(株)製、商品名Sn−325)、銅・35%亜鉛合金粉(福田金属箔粉工業(株)製、商品名Bra−At−35)の各金属粉末と、成形潤滑剤(ステアリン酸亜鉛粉)とを用意した。表1に示す各種組成になるように各金属粉を配合し、金属粉に対して0.5質量%の成形潤滑剤を追加して混合した。
次に、その混合粉末を円筒形の軸受形状に圧縮成形し、焼結およびサイジングを行った。焼結は水素ガスと窒素ガスの混合ガス中で焼結温度780℃で行い、通常の方法でサイジングを行った。軸受の密度は6.5Mg/m、有効多孔率は約20%である。軸受合金の断面顕微鏡組織は、鉄のフェライト組織粒子と銅合金粒子とが斑状に分散した金属組織中に気孔が分布している。表1に示すように焼結合金は2種類で、鉄の量が40質量%一定で、銅合金組成が錫含有量5質量%のもの、ならびに、銅合金組成が錫含有量5質量%および亜鉛含有量15質量%のものである。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
1. Test-1
(1) Production of bearings The raw material powders were reduced iron powder (made by Höganäs, trade name NC100-24), electrolytic copper powder (made by Fukuda Metal Foil Powder Co., Ltd., trade name CE-56), tin powder (Japan) Atomizing Co., Ltd., trade name Sn-325), copper and 35% zinc alloy powder (Fukuda Metal Foil Powder Industry Co., Ltd., trade name Bra-At-35) metal powder, and molding lubricant ( Zinc stearate powder). Each metal powder was mix | blended so that it might become various compositions shown in Table 1, and 0.5 mass% shaping | molding lubricant was added and mixed with respect to the metal powder.
Next, the mixed powder was compression-molded into a cylindrical bearing shape, and sintered and sized. Sintering was performed at a sintering temperature of 780 ° C. in a mixed gas of hydrogen gas and nitrogen gas, and sizing was performed by an ordinary method. The density of the bearing is 6.5 Mg / m 3 and the effective porosity is about 20%. In the cross-sectional microstructure of the bearing alloy, pores are distributed in a metal structure in which iron ferrite structure particles and copper alloy particles are dispersed in a patch shape. As shown in Table 1, there are two types of sintered alloys, the amount of iron is constant at 40% by mass, the copper alloy composition has a tin content of 5% by mass, and the copper alloy composition has a tin content of 5% by mass and The zinc content is 15% by mass.

これら組成が異なる軸受試料に潤滑油を通常の減圧含浸装置を用いて含浸した。
潤滑油は、ポリ−α−オレフィンを基油とし、油性剤としてジエステルであるジオクチルセバケート(DOS)5質量%および極圧添加剤としてジチオリン酸亜鉛(Zn−DTP)1質量%を含有する潤滑油、前記ジエステルに代えてモノエステル5質量%および極圧添加剤ジチオリン酸亜鉛(Zn−DTP)1質量%を含有するもの、ならびに、ジエステルに代えてポリオールエステル(トリメチルプロパントレオレート)5質量%および極圧添加剤ジチオリン酸亜鉛(Zn−DTP)1質量%を含有するものの3種類である。
各潤滑油の粘度グレードはISO VG68相当(40℃における動粘度が61.2〜74.8mm/s)である。
These bearing samples having different compositions were impregnated with lubricating oil using a normal vacuum impregnation apparatus.
The lubricating oil is based on poly-α-olefin and contains 5% by mass of dioctyl sebacate (DOS) as a diester as an oily agent and 1% by mass of zinc dithiophosphate (Zn-DTP) as an extreme pressure additive. Oil, 5% by weight of monoester and 1% by weight of extreme pressure additive zinc dithiophosphate (Zn-DTP) instead of diester, and 5% by weight of polyol ester (trimethylpropanethroleate) instead of diester And extreme pressure additive zinc dithiophosphate (Zn-DTP) 1% by mass.
The viscosity grade of each lubricating oil is equivalent to ISO VG68 (kinematic viscosity at 40 ° C. is 61.2 to 74.8 mm 2 / s).

(2)軸受試験方法
試験方法は、モータで回転する軸の固定部に、試験用の軸を水平に固定し、軸受はハウジングに固定して軸と嵌合させ、ハウジングに垂直方向の荷重を与えた状態で軸を回転させて軸受ハウジングにかかる回転トルクを測定できる装置を用いて摩擦係数を測定した。また、試験後に軸受の摩耗量を測定して、各種合金組成の軸受と含浸した合成潤滑油との組み合わせの良否を比較した。
回転軸(シャフト)は熱処理されたマルテンサイト系ステンレス鋼SUS420材で表面粗さが約0.3Sである。周囲温度は80℃に保持され、軸の回転数を3000rpm、負荷面圧を0.1MPaにして運転した。摩擦係数は、安定期になる前の摩擦係数が比較的高い運転初期段階で比較することとし、軸受の摩耗量は、試験前の軸受内径寸法と1000時間運転した後の軸受内径寸法の差である。
(2) Bearing test method In the test method, the test shaft is fixed horizontally to the fixed part of the shaft that is rotated by the motor, the bearing is fixed to the housing and fitted to the shaft, and a vertical load is applied to the housing. The friction coefficient was measured using an apparatus capable of measuring the rotational torque applied to the bearing housing by rotating the shaft in the given state. In addition, the amount of wear of the bearing was measured after the test, and the quality of the combination of the bearing of various alloy compositions and the impregnated synthetic lubricant was compared.
The rotating shaft (shaft) is a heat-treated martensitic stainless steel SUS420 material and has a surface roughness of about 0.3S. The ambient temperature was maintained at 80 ° C., the shaft was rotated at 3000 rpm, and the load surface pressure was 0.1 MPa. The friction coefficient is compared at the initial stage of operation where the friction coefficient before the stable period is relatively high, and the amount of wear of the bearing is the difference between the bearing inner diameter before the test and the bearing inner diameter after 1000 hours of operation. is there.

Figure 0004409474
Figure 0004409474

(3)試験結果
結果を表1に示す。焼結合金組成に亜鉛を含有しない比較例1〜3は、総体的に摩擦係数が高く摩耗量も大きいが、亜鉛を含有する焼結合金では、摩擦係数が比較的低く摩耗量も小さい。特に、実施例1のように、潤滑油に添加されている油性剤がジエステルでは、他の試料と比べて摩擦係数が低く摩耗量も小さい。油性剤としてポリオールエステルを用いたものは、吸着性がよく滑り特性がよい物質とされており低い摩擦係数を示すが、摩耗量も比較的大きい。ポリオールエステルは、極性をもった分子が軸受摺動面に整列して吸着した状態が緻密で強いため、摺動摩擦に対して極圧添加剤との相互作用が発揮されないためと考えられる。また、焼結合金中の亜鉛は、摺動摩擦による酸化摩耗を生じ難くする効果があるものと考えられる。
このように、錫と亜鉛を含有する銅合金相と鉄相の斑組織からなる多孔質焼結合金とポリ−α−オレフィン基油にジエステルおよび極圧添加剤を含有する合成潤滑剤との組み合わせたものは相性が良好であることが分かる。
(3) Test results The results are shown in Table 1. Comparative Examples 1 to 3 that do not contain zinc in the sintered alloy composition generally have a high coefficient of friction and a large amount of wear, but sintered alloys containing zinc have a relatively low coefficient of friction and a small amount of wear. In particular, as in Example 1, when the oiliness agent added to the lubricating oil is a diester, the friction coefficient is low and the amount of wear is small compared to other samples. Those using a polyol ester as an oily agent are substances having good adsorptivity and good sliding properties and exhibit a low coefficient of friction, but also have a relatively large wear amount. The polyol ester is considered to be because the state in which polar molecules are aligned and adsorbed on the sliding surface of the bearing is dense and strong, so that the interaction with the extreme pressure additive is not exerted against the sliding friction. Moreover, it is considered that zinc in the sintered alloy has an effect of making it difficult to cause oxidative wear due to sliding friction.
Thus, a combination of a porous sintered alloy composed of a copper alloy phase containing tin and zinc and an uneven structure of an iron phase and a synthetic lubricant containing a diester and an extreme pressure additive in a poly-α-olefin base oil It can be seen that the product has good compatibility.

2.試験−2
次に、多孔質焼結合金に含浸する潤滑油を、ポリ−α−オレフィン基油にジエステルおよび極圧添加剤を含有する合成潤滑剤とし、鉄含有量、錫および亜鉛含有量の異なる各種組成の多孔質焼結合金との組み合わせについて、焼結合金組成の適正範囲を調べた。
(1)軸受の作製および軸受試験方法
前記と同じ原料粉を用いて、表2に示す各種組成になるように各金属粉を配合し、金属粉に対して0.5質量%の成形潤滑剤を追加して混合した。全体組成で鉄の含有量が20質量%、40質量%、60質量%の3水準で、錫および亜鉛の含有量を変化させた各種組成である。粉末成形、焼結、サイジングおよび潤滑油の含浸は前記の場合と同様に行った。試験方法はやはり前記と同様で、運転初期の摩擦係数と1000時間運転後の軸受摩耗量を測定した。
2. Test-2
Next, the lubricating oil impregnated in the porous sintered alloy is a synthetic lubricant containing a diester and an extreme pressure additive in a poly-α-olefin base oil, and various compositions having different iron contents, tin and zinc contents. The appropriate range of the sintered alloy composition was investigated for the combination with the porous sintered alloy.
(1) Preparation of bearing and bearing test method Using the same raw material powder as above, each metal powder was blended so as to have various compositions shown in Table 2, and 0.5% by mass of a molding lubricant based on the metal powder. And mixed. These are various compositions in which the contents of tin and zinc are changed in three levels of 20 mass%, 40 mass%, and 60 mass% in the overall composition. Powder molding, sintering, sizing, and impregnation with lubricating oil were performed as described above. The test method was the same as described above, and the friction coefficient at the initial stage of operation and the bearing wear after 1000 hours of operation were measured.

Figure 0004409474
Figure 0004409474

(2)試験結果
結果を表2に示す。なお、比較例1と実施例1は、表2に示した結果と同じである。また、実施例1と実施例2は亜鉛含有量の順番に表示しており、実施例2を実施例1の上欄に記載してある。
表2の比較例1から比較例7までの上から7つの試料は銅・錫・亜鉛系(銅合金)中における錫量を一定の5質量%とし、亜鉛含有量が異なる組成の焼結合金について比較したものである。銅・錫・亜鉛合金組成における亜鉛含有量が5質量%より少ないと摩擦係数および摩耗量とも大きく、また、亜鉛含有量が25質量%より大きいと摩擦係数は低いが摩耗量が少し大きくなる傾向を示している。
また、比較例8から比較例9までの4つの試料は、銅・錫・亜鉛系(銅合金)中における亜鉛を15質量%一定とし、錫含有量が異なる組成の焼結合金について比較したものである。銅・錫・亜鉛系(銅合金)中における錫含有量が3.3%より少なく1.6%になると、摩耗量が増え、また同様に錫含有量が10%を超え11.6%になると摩擦係数がやや高くまた摩耗量も増える。
この結果から、鉄相が40質量%、銅合金相が60質量%で、銅・錫・亜鉛系(銅合金)中の錫含有量が2〜10質量%、亜鉛含有量が5〜25質量%程度のとき、摩擦係数が低く、摩耗量も少ない結果になっている。
(2) Test results The results are shown in Table 2. Comparative Example 1 and Example 1 are the same as the results shown in Table 2. Moreover, Example 1 and Example 2 are displayed in order of zinc content, and Example 2 is described in the upper column of Example 1.
Seven samples from the top of Comparative Example 1 to Comparative Example 7 in Table 2 are sintered alloys having compositions in which the amount of tin in the copper / tin / zinc system (copper alloy) is constant 5% by mass and the zinc content is different. Is a comparison. When the zinc content in the copper / tin / zinc alloy composition is less than 5% by mass, both the friction coefficient and the wear amount are large, and when the zinc content is greater than 25% by mass, the friction coefficient is low but the wear amount tends to be a little larger. Is shown.
The four samples from Comparative Example 8 to Comparative Example 9 are comparisons of sintered alloys having compositions in which the zinc content in the copper / tin / zinc system (copper alloy) is constant at 15% by mass and the tin content is different. It is. When the tin content in the copper / tin / zinc system (copper alloy) is less than 3.3% and becomes 1.6%, the wear amount increases, and similarly, the tin content exceeds 10% and reaches 11.6%. Then, the coefficient of friction is slightly high and the amount of wear increases.
From this result, the iron phase is 40% by mass, the copper alloy phase is 60% by mass, the tin content in the copper / tin / zinc system (copper alloy) is 2 to 10% by mass, and the zinc content is 5 to 25% by mass. %, The coefficient of friction is low and the amount of wear is small.

実施例7から実施例12までの6つの試料は、鉄の含有量が20質量%の場合で、前記比較例1から比較例7までと同様に錫の含有量を一定として亜鉛含有量の異なる焼結体(実施例7〜10)、および亜鉛含有量を一定として錫含有量の異なる焼結体(実施例8、11、12)について比較したものである。
焼結合金の鉄の含有量が少ない(銅合金相が多い)ことにより前記の鉄の含有量が40質量%のものに比べて摩擦係数および摩耗量が僅かに低くなっている。銅・錫・亜鉛系銅合金中の錫含有量が2.5〜7.5質量%、亜鉛含有量が5〜25質量%の範囲内にある各実施例は摩擦係数、摩耗量ともに少ない結果になっている。
Six samples from Example 7 to Example 12 have a zinc content of 20% by mass and differ in zinc content with the same tin content as in Comparative Examples 1 to 7. The sintered bodies (Examples 7 to 10) and the sintered bodies (Examples 8, 11, and 12) having different zinc contents with a constant zinc content are compared.
Since the iron content of the sintered alloy is small (the copper alloy phase is large), the friction coefficient and the wear amount are slightly lower than those of the iron content of 40% by mass. Each example in which the tin content in the copper / tin / zinc-based copper alloy is in the range of 2.5 to 7.5% by mass and the zinc content is in the range of 5 to 25% by mass is low in both coefficient of friction and wear. It has become.

実施例13から実施例18までの6つの試料は、鉄の含有量が60質量%(銅合金相が40質量%)の場合である。前記の実施例等と同様に、錫の含有量を一定として亜鉛含有量の異なる焼結体(実施例13〜16)、および亜鉛含有量を一定として錫含有量の異なる焼結体(実施例14、17、18)について比較したものである。焼結合金が鉄の含有量が比較的多い(銅合金相が比較的少ない)ことにより、摩擦係数および摩耗量が僅かに高めになっているが、良好な状況を示している。
これらの結果から、摩擦係数および耐摩耗性ともに良好な軸受の多孔質焼結合金は、鉄相が20〜60質量%、銅合金相が80〜40質量%の斑組織であり、前記銅合金相の組成が銅合金を100として錫が2〜10質量%、亜鉛が5〜25質量%である。これは全体組成で鉄が20〜60質量%、銅が26〜74質量%、錫1〜8質量%、亜鉛2〜20質量%に相当する。また、この合金の気孔内に基油がポリ−α−オレフィンでジエステルおよび極圧添加剤を含有する合成潤滑剤を含浸した軸受が摩擦係数が低く摩耗量の少ないものであることが分かる。
Six samples from Example 13 to Example 18 are cases in which the iron content is 60% by mass (copper alloy phase is 40% by mass). Similar to the above-described examples and the like, sintered bodies having different tin contents with constant tin content (Examples 13 to 16), and sintered bodies having different zinc contents with constant zinc content (Examples) 14, 17, 18). Although the sintered alloy has a relatively high iron content (the copper alloy phase is relatively small), the coefficient of friction and the amount of wear are slightly increased, but it shows a good situation.
From these results, the porous sintered alloy of the bearing having a good coefficient of friction and wear resistance has a plaque structure in which the iron phase is 20 to 60% by mass and the copper alloy phase is 80 to 40% by mass. The composition of the phase is 2 to 10% by mass of tin and 5 to 25% by mass of zinc with a copper alloy as 100. This corresponds to 20-60 mass% iron, 26-74 mass% copper, 1-8 mass% tin, and 2-20 mass% zinc in the overall composition. It can also be seen that the bearing in which the base oil is a poly-α-olefin and impregnated with a synthetic lubricant containing an extreme pressure additive in the pores of the alloy has a low friction coefficient and a small amount of wear.

3.試験−3
次に、含浸した潤滑油のジエステル含有量および極圧添加剤の含有量と、摩擦係数および摩耗量との関係を調べた。
(1)軸受の作製と軸受試験方法
多孔質焼結合金は、前記実施例1と同じで、全体組成が鉄40質量%、銅48質量%、錫3質量%、および亜鉛9質量%であり、粉末成形、焼結、サイジングおよび潤滑油の含浸などの製法も同じである。また、軸受試験方法も前記の試験方法と同じである。なお、潤滑油に含まれるジエステルはジオクチルセバケート(DOS)、極圧添加剤はジチオリン酸亜鉛(Zn−DTP)である。
3. Test-3
Next, the relationship between the diester content and the extreme pressure additive content of the impregnated lubricating oil, the friction coefficient, and the wear amount was examined.
(1) Production of bearing and bearing test method The porous sintered alloy is the same as in Example 1, and the total composition is 40 mass% iron, 48 mass% copper, 3 mass% tin, and 9 mass% zinc. The production methods such as powder molding, sintering, sizing and impregnation with lubricating oil are the same. The bearing test method is the same as the test method described above. The diester contained in the lubricating oil is dioctyl sebacate (DOS), and the extreme pressure additive is zinc dithiophosphate (Zn-DTP).

Figure 0004409474
Figure 0004409474

(2)試験結果
結果を表3に示す。実施例19と比較例10を比較すると、ジエステル含有量が2質量%より少ないと摩擦係数および摩耗量が増加する。添加による効果が不足しているものと考えられる。また、実施例20と比較例11を対比すると分かるように、ジエステルの含有量が15質量%を超えると、摩耗量が大きくなる。これは、ジエステルの量が摺動面に対して多すぎて、極圧添加剤の効果が発揮されないためと考えられる。比較例12は極圧添加剤を加えない場合であり、ジエステルだけでは潤滑が不充分であることを示している。実施例21は極圧添加剤の含有量が異なるものを比較しており、極圧添加剤の含有量が0.5質量%で摩耗量の減少に効果が認められる。実施例22の極圧添加剤の含有量が3質量%では摩擦係数および摩耗量が、実施例1の1質量%のものと同等であり、多量添加しても効果が伴わないことを示している。
これらのことから、ジエステルと極圧添加剤の共存が潤滑性を良好にしているということができ、ジエステルの含有量が2〜15質量%で極圧添加剤の含有量が0.5〜3質量%の潤滑油が良好である。
(2) Test results The results are shown in Table 3. When Example 19 and Comparative Example 10 are compared, if the diester content is less than 2% by mass, the friction coefficient and the amount of wear increase. It is thought that the effect by addition is insufficient. As can be seen from the comparison between Example 20 and Comparative Example 11, when the diester content exceeds 15% by mass, the amount of wear increases. This is presumably because the amount of diester is too large with respect to the sliding surface and the effect of the extreme pressure additive is not exhibited. Comparative Example 12 is a case where no extreme pressure additive is added, indicating that the diester alone is insufficiently lubricated. Example 21 compares those with different contents of the extreme pressure additive, and when the content of the extreme pressure additive is 0.5 mass%, an effect is found in reducing the wear amount. When the content of the extreme pressure additive of Example 22 is 3% by mass, the coefficient of friction and the amount of wear are the same as those of Example 1 by 1% by mass. Yes.
From these facts, it can be said that the coexistence of the diester and the extreme pressure additive improves the lubricity, the diester content is 2 to 15% by mass, and the extreme pressure additive content is 0.5 to 3%. A mass% lubricant is good.

本願発明の焼結含油軸受は、高い温度環境でも摩擦係数が低く、摩耗量が少ない軸受要素を提供することができ、特に、軸流ファンモータ用に好適なものであり、軸流ファンモータに使用すればモータの耐久性の向上、信頼性の向上に寄与することができる。
The sintered oil-impregnated bearing of the present invention can provide a bearing element that has a low coefficient of friction and a low amount of wear even in a high temperature environment, and is particularly suitable for an axial fan motor. If used, it can contribute to improvement of durability and reliability of the motor.

Claims (3)

軸受材料の全体組成が鉄20〜60質量%、銅26〜74質量%、錫1〜8質量%および亜鉛2〜20質量%で、前記組成のうち銅・錫・亜鉛系合金成分の組成が錫2〜10質量%、亜鉛5〜25質量%および銅残部であって、合金組織が鉄相と銅合金相とが斑に分散している多孔質焼結合金からなり、
前記多孔質焼結合金からなる軸受の気孔内にポリ−α−オレフィンを基油とし、ジエステル2〜15質量%および極圧添加剤0.5〜3質量%を含有し、残部が前記基油である潤滑油が含浸されていることを特徴とする焼結含油軸受。
The total composition of the bearing material is iron 20 to 60% by mass, copper 26 to 74% by mass, tin 1 to 8% by mass and zinc 2 to 20% by mass. Among the above compositions, the composition of the copper / tin / zinc alloy component is 2 to 10% by mass of tin, 5 to 25% by mass of zinc and the balance of copper, and the alloy structure consists of a porous sintered alloy in which the iron phase and the copper alloy phase are dispersed in spots,
Wherein the porous sintered consisting binding gold in the pores of the bearing poly -α- olefin as base oil, containing a di-ester 2-15% by weight and 0.5 to 3 wt% extreme pressure additive, the remainder being the base A sintered oil-impregnated bearing, characterized by being impregnated with lubricating oil.
前記潤滑油が、さらに、粘度指数向上剤1〜3質量%、酸化防止剤0.3〜1質量%の少なくとも1種を含有することを特徴とする請求項1に記載の焼結含油軸受。  The sintered oil-impregnated bearing according to claim 1, wherein the lubricating oil further contains at least one of a viscosity index improver of 1 to 3% by mass and an antioxidant of 0.3 to 1% by mass. 前記軸受の用途が軸流ファンモータ用軸受であることを特徴とする請求項1または2に記載の焼結含油軸受。The sintered oil-impregnated bearing according to claim 1 or 2, wherein the bearing is used for an axial fan motor bearing.
JP2005124494A 2005-04-22 2005-04-22 Sintered oil-impregnated bearing Expired - Fee Related JP4409474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005124494A JP4409474B2 (en) 2005-04-22 2005-04-22 Sintered oil-impregnated bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005124494A JP4409474B2 (en) 2005-04-22 2005-04-22 Sintered oil-impregnated bearing

Publications (2)

Publication Number Publication Date
JP2006300246A JP2006300246A (en) 2006-11-02
JP4409474B2 true JP4409474B2 (en) 2010-02-03

Family

ID=37468775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005124494A Expired - Fee Related JP4409474B2 (en) 2005-04-22 2005-04-22 Sintered oil-impregnated bearing

Country Status (1)

Country Link
JP (1) JP4409474B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100129021A1 (en) * 2007-04-24 2010-05-27 Ntn Corporation Rolling bearing
WO2011034829A1 (en) * 2009-09-16 2011-03-24 The Lubrizol Corporation Lubricating composition containing an ester
BR102013020846A8 (en) 2013-08-15 2016-03-22 Mahle Int Gmbh internal combustion engine bearing
JP7464394B2 (en) 2020-01-24 2024-04-09 トヨタ自動車株式会社 Metallic materials

Also Published As

Publication number Publication date
JP2006300246A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP4946868B2 (en) Lubricating oil composition
JP5523223B2 (en) Sintered oil-impregnated bearing
JP4409474B2 (en) Sintered oil-impregnated bearing
JP2006266429A (en) Bearing and combination of bearing and shaft
JP4074703B2 (en) Sintered oil-impregnated bearing unit
JP5265996B2 (en) Lubricating oil composition
JP2008063385A (en) Lubricating oil for liquid bearing, liquid bearing using the same and lubricating method of liquid bearing
JP3918520B2 (en) Lubricating composition for oil-impregnated bearings
JP5391526B2 (en) Lubricating oil composition for impregnation
JP3433402B2 (en) Oil composition for impregnated bearings
JPH09125086A (en) Oil-containing bearing oil composition
JP4213714B2 (en) Sintered oil-impregnated bearing
JP2010175002A (en) Oil-impregnated sintered bearing
JP6775770B1 (en) Lubricating grease composition
JP3911133B2 (en) Sintered oil-impregnated bearing
JP6536866B1 (en) Sintered bearing, sintered bearing device and rotating device
JPH11172267A (en) Lubricating oil composition for bearing
JP5606939B2 (en) Lubricating composition for oil-impregnated bearings
JP7129389B2 (en) Iron-copper-based sintered oil-impregnated bearing
JPH1036870A (en) Bearing oil composition
WO2023243496A1 (en) Fluid dynamic pressure bearing lubricant oil composition, fluid dynamic pressure bearing, and fluid dynamic pressure bearing apparatus
JP2003082374A (en) Grease composition
JP2010184954A (en) Sintered oilless bearing
JP2005179571A (en) Impregnation bearing oil and bearing impregnated therewith
JP2023182538A (en) Lubricant composition for fluid dynamic pressure bearing, fluid dynamic pressure bearing, and fluid dynamic pressure bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091111

R150 Certificate of patent or registration of utility model

Ref document number: 4409474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees