JP2006266429A - Bearing and combination of bearing and shaft - Google Patents

Bearing and combination of bearing and shaft Download PDF

Info

Publication number
JP2006266429A
JP2006266429A JP2005087093A JP2005087093A JP2006266429A JP 2006266429 A JP2006266429 A JP 2006266429A JP 2005087093 A JP2005087093 A JP 2005087093A JP 2005087093 A JP2005087093 A JP 2005087093A JP 2006266429 A JP2006266429 A JP 2006266429A
Authority
JP
Japan
Prior art keywords
bearing
shaft
liquid crystal
lubricating composition
sliding surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005087093A
Other languages
Japanese (ja)
Inventor
Motohiro Miyasaka
元博 宮坂
Yoshio Fuwa
良雄 不破
Kazuhiro Miyajima
和浩 宮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd, Toyota Motor Corp filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2005087093A priority Critical patent/JP2006266429A/en
Publication of JP2006266429A publication Critical patent/JP2006266429A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/103Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Lubricants (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing having a high coefficient of friction even if a load applied on its sliding surface is high, a small abrasion loss in it, and high durability, and the combination of the bearing and a shaft. <P>SOLUTION: This bearing is made of a porous sintered alloy impregnated with a liquid crystal lubricating composition in a liquid state. This liquid crystal lubricating composition in the liquid state has kinematic viscosity of 5-200 mm<SP>2</SP>/s at 40°C as a discotic liquid crystal. In addition, in this combination of the bearing and the shaft, the shaft has a DLC (diamond-like carbon) coat at least on its sliding surface in slidable contact with the bearing, and the bearing is made of the porous sintered alloy impregnated with the liquid crystal lubricating composition in the liquid state. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、軸受および軸受と軸との組み合わせに関する。   The present invention relates to a bearing and a combination of a bearing and a shaft.

自動車の室内送風装置やワイパーなどの車体装備品を駆動するためのモータなどの軸材料には、中炭素の機械構造用炭素鋼(例えば、S45Cなど)が用いられている。これらの軸材料は強靱で耐摩耗性も高いので好適に使用されている。   Medium shaft carbon steel (for example, S45C) is used for shaft materials such as motors for driving vehicle interior equipment such as indoor air blowers and wipers of automobiles. These shaft materials are preferably used because they are tough and have high wear resistance.

また、このような軸を支持する軸受としては、主に焼結含油軸受が用いられている。焼結合金としては、銅合金の特徴である滑り特性、なじみ性、放熱性などと、鉄の特徴である比較的硬質、比較的低比重、安価などを兼ね備えている鉄銅系材料が好ましいものとされている。含浸される潤滑油としては、摺動特性が安定しており、使用される温度環境に適合するように、基油がポリ−α−オレフィン系合成油で、粘度指数向上剤、油性向上剤などを添加したものが知られている(特許文献1参照)。   Further, as a bearing for supporting such a shaft, a sintered oil-impregnated bearing is mainly used. As the sintered alloy, iron-copper materials that have the characteristics of copper alloy, such as sliding characteristics, conformability, heat dissipation, etc., and the characteristics of iron, such as relatively hard, relatively low specific gravity, and low cost, are preferable. It is said that. As the lubricating oil to be impregnated, the base oil is a poly-α-olefin synthetic oil with a stable sliding characteristic and suitable for the temperature environment to be used, viscosity index improver, oiliness improver, etc. Is known (see Patent Document 1).

しかし、車両の車体装備品駆動用モータなどでは更に一層の小型化と軽量化の要求があり、上記のような従来の軸受と軸との組み合わせでは十分に対応することができない。これは小型化することにより従来にもまして軸受にかかる負荷が増大するからであり、より耐久性の高い軸受と軸との組み合わせの開発が望まれていた。
特開平8−295896号公報(1頁)
However, there is a demand for further miniaturization and weight reduction in a vehicle body accessory drive motor of a vehicle, and the conventional combination of a bearing and a shaft as described above cannot sufficiently cope with it. This is because the load applied to the bearing increases more than ever by downsizing, and the development of a combination of a bearing and a shaft with higher durability has been desired.
JP-A-8-295896 (1 page)

本発明は上記の課題を解決するためになされたものであり、摺動面にかかる荷重が高くても摩擦係数が小さくまた軸受摩耗量も小さいより耐久性の高い軸受および軸受と軸との組み合わせを提供することを課題とする。   SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems. A bearing having a higher durability and a combination of a bearing and a shaft having a small friction coefficient and a small amount of bearing wear even when a load applied to the sliding surface is high. It is an issue to provide.

本発明の軸受は、多孔質焼結合金からなる軸受の気孔に液状の液晶潤滑組成物が含浸されていることを特徴とする。液晶潤滑組成物が多孔質焼結合金に含浸している軸受は、従来の潤滑油を含有する軸受よりも面圧が高くても摺動面に油膜が保持されて良好な潤滑を保つことができるので、低摩擦係数と耐久性とを要求される小型モータなどによる駆動手段に好適である。   The bearing of the present invention is characterized in that a liquid crystal lubricating composition is impregnated in pores of a bearing made of a porous sintered alloy. A bearing in which a porous sintered alloy is impregnated with a liquid crystal lubricating composition can maintain good lubrication by retaining an oil film on a sliding surface even if the surface pressure is higher than a bearing containing a conventional lubricating oil. Therefore, it is suitable for driving means such as a small motor that requires a low coefficient of friction and durability.

前記液晶潤滑組成物の液晶は、ディスコチック液晶であり、この液晶潤滑組成物の40℃における動粘度が5〜200mm2/sであることが好ましい。ディスコチック液晶はその分子構造が板状であるので、軸と軸受との摺動面における金属接触を低減することができ、また、板状面で滑りが発生する。さらに、40℃における動粘度を上記の範囲とすることで、−20℃以下の低温下でも良好な摺動特性を発揮することができる。 The liquid crystal of the liquid crystal lubricating composition is a discotic liquid crystal, and the liquid crystal lubricating composition preferably has a kinematic viscosity at 40 ° C. of 5 to 200 mm 2 / s. Since the molecular structure of the discotic liquid crystal is plate-like, metal contact on the sliding surface between the shaft and the bearing can be reduced, and slippage occurs on the plate-like surface. Furthermore, by setting the kinematic viscosity at 40 ° C. within the above range, good sliding characteristics can be exhibited even at a low temperature of −20 ° C. or lower.

本発明の軸受の好ましい態様では、軸受の軸受摺動面における露出気孔の面積率は2〜40%とすることがよい。露出気孔の面積率をこの範囲とすることで摺動面に安定した液晶潤滑組成物の潤滑膜を維持することができる。また、この軸受は軸受摺動面に摺動方向と交差する方向に複数の溝、または凹部(ディンプル)を備えていることが好ましい。この場合には、軸受の軸受摺動面における露出気孔の面積が10%以下であるとともに、摺動方向と交差する方向の溝または凹部の表面における露出気孔の面積率が、軸受摺動面における露出気孔の面積率よりも大きいことが望ましい。このような態様の軸受は、溝または凹部に液晶潤滑組成物を保持して摺動面への供給を行うので、摺動面の潤滑膜を維持し良好な摺動特性を持続することができるので軸受の寿命を長くすることができる。   In a preferred aspect of the bearing of the present invention, the area ratio of the exposed pores on the bearing sliding surface of the bearing is preferably 2 to 40%. By setting the area ratio of the exposed pores within this range, it is possible to maintain a stable lubricating film of the liquid crystal lubricating composition on the sliding surface. Further, this bearing preferably includes a plurality of grooves or recesses (dimples) in a direction intersecting the sliding direction on the bearing sliding surface. In this case, the area of the exposed pores on the bearing sliding surface of the bearing is 10% or less, and the area ratio of the exposed pores on the surface of the groove or recess in the direction intersecting the sliding direction is It is desirable that it is larger than the area ratio of the exposed pores. Since the bearing of such an aspect holds the liquid crystal lubricating composition in the groove or the recess and supplies the sliding surface, the lubricating film on the sliding surface can be maintained and good sliding characteristics can be maintained. Therefore, the life of the bearing can be extended.

また、本発明の軸受と軸との組み合わせは、軸受が前記の液状の液晶潤滑組成物が含浸されている多孔質焼結合金からなり、軸は少なくとも前記軸受との摺動面にDLC皮膜を有するものであることを特徴とする。軸に形成されたDLC皮膜は、他の硬質薄膜皮膜に比べて圧倒的に低い摩擦係数と優れた耐凝着性、耐摩耗性、低攻撃性を有する被膜であり、低摩擦係数と耐久性とを要求される小型モータなどによる駆動手段には好適である。また、軸のDLC皮膜の厚さは0.1〜15μmであることが望ましい。DLC皮膜の厚さをかかる範囲とすることで、軸受との摩擦係数が安定して小さい軸を得ることができる。   Further, the combination of the bearing and the shaft of the present invention is that the bearing is made of a porous sintered alloy impregnated with the liquid liquid crystal lubricating composition, and the shaft has a DLC film on at least a sliding surface with the bearing. It is what has. The DLC film formed on the shaft has a friction coefficient that is overwhelmingly lower than other hard thin film films, and has excellent adhesion resistance, wear resistance, and low aggressiveness. Low coefficient of friction and durability It is suitable for driving means such as a small motor that requires The thickness of the DLC film on the shaft is preferably 0.1 to 15 μm. By setting the thickness of the DLC film within such a range, a shaft with a stable friction coefficient with the bearing can be obtained.

本発明の軸受と軸との組み合わでは、多孔質焼結合金からなる軸受の気孔に液状の液晶潤滑組成物が含浸されているので、液晶が揮発する潤滑性能によって、面圧が比較的高くても従来の潤滑油が含有された軸受よりも摩擦係数が低くなり耐久性が向上する。特に、液晶潤滑組成物が含浸された多孔質焼結合金からなる軸受と、DLC被膜を有する軸とを組み合わせて用いると、より摩擦係数が低いものとなり、耐久性がより向上する。   In the combination of the bearing and shaft of the present invention, the liquid crystal lubricating composition is impregnated in the pores of the bearing made of a porous sintered alloy. However, the friction coefficient is lower than that of the conventional bearing containing the lubricating oil, and the durability is improved. In particular, when a bearing made of a porous sintered alloy impregnated with a liquid crystal lubricating composition and a shaft having a DLC coating are used in combination, the friction coefficient is lower and the durability is further improved.

以下、本発明の好適な実施の形態を説明する。   Hereinafter, preferred embodiments of the present invention will be described.

本発明の軸受は多孔質焼結合金からなり液状の液晶潤滑組成物が含浸されている。液状の液晶潤滑組成物は、従来の含浸油に比べて面圧が高くても良好な潤滑を保持することができる。また、本発明の軸受と軸との組み合わせは、液状の液晶潤滑組成物が含浸されている多孔質焼結合金の軸受と、摺動面にDLC(ダイヤモンドライクカーボン)皮膜を形成した軸を嵌合したものである。軸に形成されているDLC皮膜は緻密なアモロファス構造のため表面は非常に滑らかで結晶粒界がなく、他の硬質薄膜皮膜に比べて圧倒的に低い摩擦係数と優れた耐凝着性、耐摩耗性、低攻撃性を有する。従って、DLC皮膜を有する軸と液晶を含浸した軸受との組み合わせでは、摺動面の負荷荷重が増大しても安定して低い摩擦係数を維持することができるので、従来に比べて各段に耐久性のある軸受と軸との組み合わせとすることができる。   The bearing of the present invention is made of a porous sintered alloy and impregnated with a liquid crystal lubricating composition. The liquid liquid crystal lubricating composition can maintain good lubrication even if the surface pressure is higher than that of the conventional impregnating oil. Further, the combination of the bearing and the shaft of the present invention fits a porous sintered alloy bearing impregnated with a liquid crystal lubricating composition and a shaft on which a DLC (diamond-like carbon) film is formed on the sliding surface. It is a combination. The DLC film formed on the shaft has a dense amorofus structure, so the surface is very smooth and free of crystal grain boundaries. It has an overwhelmingly low friction coefficient and excellent adhesion resistance and resistance compared to other hard thin film films. Abrasion and low aggressiveness. Therefore, the combination of the shaft having the DLC film and the bearing impregnated with the liquid crystal can stably maintain a low coefficient of friction even when the load on the sliding surface is increased. It can be a combination of a durable bearing and shaft.

以下、軸、軸受および軸受合金、液晶潤滑組成物の順に詳細に説明する。   Hereinafter, the shaft, the bearing and the bearing alloy, and the liquid crystal lubricating composition will be described in detail in this order.

1.軸
軸は、中炭素の機械構造用炭素鋼、例えばS45C材などを用いることができる。また、より好適な軸は、外周面の少なくとも軸受との摺動部にDLC被膜を形成したものである。DLC被膜の厚さは0.1〜15μmとすることが望ましい。皮膜厚さが0.1μm未満では耐摩耗性が不十分となることがあり、また、15μmを越えるとDLC被膜の密着性が低下するからである。DLC被覆は、一般的に知られているCVD法、PVD法、またはUBMS法によって形成する。例えば、高真空中のアーク放電プラズマCVDで炭化水素ガスを分解し、プラズマ中のイオンや励起分子を軸表面に加速してぶつけることにより形成することができる。処理温度は100〜200℃程度、好ましくは150℃程度である。なお、DLC被膜に各種イオンを打ち込んだり、所望の金属元素を添加することでDLC被膜の膜の特性を変化させることができる。これらによって複合多層のDLC被膜としてもよい。
1. The shaft can be a medium carbon carbon steel for mechanical structure, such as S45C material. A more suitable shaft is one in which a DLC film is formed on at least a sliding portion of the outer peripheral surface with the bearing. The thickness of the DLC film is preferably 0.1 to 15 μm. This is because if the film thickness is less than 0.1 μm, the wear resistance may be insufficient, and if it exceeds 15 μm, the adhesion of the DLC film decreases. The DLC coating is formed by a generally known CVD method, PVD method, or UBMS method. For example, it can be formed by decomposing hydrocarbon gas by arc discharge plasma CVD in high vacuum and accelerating and colliding ions and excited molecules in the plasma against the shaft surface. The treatment temperature is about 100 to 200 ° C, preferably about 150 ° C. The characteristics of the DLC film can be changed by implanting various ions into the DLC film or adding a desired metal element. It is good also as a composite multilayer DLC film by these.

2.軸受および軸受合金
本発明における軸受は多孔質焼結合金からなる。多孔質焼結合金の組成は限定されないが、従来から好適とされている鉄を主成分とする合金で、鉄銅系合金とすることが好ましい。鉄銅系合金としては各種のものが適用できるが、銅を1〜50質量%含有し残部が鉄である合金や、この合金にさらに1〜3質量%程度の錫を含有する合金、あるいはこれらの合金に0.5質量%程度の黒鉛を含有する合金などが好適である。より具体的には、10〜50質量%の銅を含有し残部が鉄である合金であって銅の一部が箔状粉末の形で添加された合金や、25〜30質量%の銅と1〜3質量%の錫とを含有し残部が鉄である合金、あるいは錫および燐を含む銅合金相と鉄のフェライト相とが面積比においてほぼ均等割合の混在状態を呈した断面組織で、0.7質量%以下の黒鉛粒子が分散している合金などを好適な合金として例示することができる。
2. Bearing and Bearing Alloy The bearing in the present invention is made of a porous sintered alloy. The composition of the porous sintered alloy is not limited, but it is an alloy mainly composed of iron that has been conventionally suitable, and is preferably an iron-copper alloy. Various types of iron-copper alloys can be used, but alloys containing 1 to 50% by mass of copper and the balance being iron, alloys containing about 1 to 3% by mass of tin in addition to these alloys, or these An alloy containing about 0.5% by mass of graphite is preferable. More specifically, an alloy containing 10 to 50% by mass of copper with the balance being iron and a part of the copper added in the form of a foil-like powder, or 25 to 30% by mass of copper. An alloy containing 1 to 3% by mass of tin and the balance being iron, or a cross-sectional structure in which a copper alloy phase containing tin and phosphorus and an iron ferrite phase exhibit a mixed state in an almost equal proportion in area ratio, An alloy in which 0.7% by mass or less of graphite particles are dispersed can be exemplified as a suitable alloy.

焼結合金は、通常の焼結含油軸受の製造方法と同様に、上記のような金属粉末を配合し所定の形状に成形したのち焼結して焼結体とすることができる。得られた焼結体の気孔率は10〜30%であることが望ましい。気孔率を10%未満として焼結体の密度を高くすると、焼結体の強度は高いが潤滑組成物の含有量は少なくなる。他方、気孔率を30%を越えて密度を低くすると、潤滑組成物の含有量は多くできるが焼結体の強度が低くなり摺動面の摩耗を早めることになる。好ましくは20〜25%である。このような焼結体からなる軸受の軸との摺動面(以後、軸受摺動面という)には、摺動面に露出している気孔(以下、露出気孔という)を減少させると同時に平滑にするため、サイジングあるいはシェービング等の表面加工が施される。また、これらの表面加工で軸受が所定寸法に仕上げられる。   The sintered alloy can be sintered into a sintered body after blending the metal powder as described above and forming it into a predetermined shape in the same manner as in the ordinary method for producing a sintered oil-impregnated bearing. It is desirable that the porosity of the obtained sintered body is 10 to 30%. When the porosity is less than 10% and the density of the sintered body is increased, the strength of the sintered body is high, but the content of the lubricating composition is reduced. On the other hand, if the density is lowered beyond 30%, the content of the lubricating composition can be increased, but the strength of the sintered body is lowered and the wear of the sliding surface is accelerated. Preferably it is 20 to 25%. On the sliding surface (hereinafter referred to as bearing sliding surface) with the bearing shaft made of such a sintered body, pores exposed on the sliding surface (hereinafter referred to as exposed pores) are reduced and smoothed. Therefore, surface processing such as sizing or shaving is performed. Further, the bearings are finished to a predetermined dimension by these surface treatments.

軸受摺動面上の露出気孔は、含浸された液状の液晶潤滑組成物を摺動面に供給する通路である。従って、軸との金属接触を回避して安定した潤滑を得るためには、露出気孔はその合計面積が軸受摺動面積を100%とした面積率で軸受摺動面上に2%以上存在することが必要である。また、軸受摺動面の露出気孔の面積率が40%以上では、軸と摺動する摺動面積が少なくなるために軸受摺動面の局所面圧が高くなり、液状の液晶潤滑組成物の潤滑膜が壊れやすくなる。よって、焼結合金を製造する際には、用いる原料粉末の粒度、成形密度、焼結体のサイジングの強さなどを調整して適正な露出気孔量に調整することが望ましい。   The exposed pores on the bearing sliding surface are passages for supplying the impregnated liquid crystal lubricating composition to the sliding surface. Therefore, in order to obtain stable lubrication while avoiding metal contact with the shaft, the exposed pores have a total area of 2% or more on the bearing sliding surface at an area ratio where the bearing sliding area is 100%. It is necessary. In addition, when the area ratio of the exposed pores on the bearing sliding surface is 40% or more, the sliding area that slides with the shaft decreases, so that the local surface pressure of the bearing sliding surface increases, and the liquid liquid crystal lubricating composition The lubricating film becomes fragile. Therefore, when producing a sintered alloy, it is desirable to adjust the particle size of the raw material powder to be used, the forming density, the strength of sizing of the sintered body, and the like to adjust the amount of exposed pores appropriately.

また、軸受の軸受摺動面には、摺動方向と交差する方向の複数の溝(例えば、傾斜溝、ヘリンボーン模様溝)、または凹部(例えば、円形または長円形のディンプル)を備えることが望ましい。このような複数の溝または凹部を備える軸受摺動面では、形成された溝または凹部に液状の液晶潤滑組成物を蓄えて近傍の軸受摺動面へ供給することができ、軸受寿命を永くすることができる。この場合、軸受の軸受摺動面における露出気孔の面積率を10%以下とし、溝または凹部の表面における露出気孔量を軸受摺動面より多い状態にするとよい。軸受内の気孔に含浸されている液状の液晶潤滑組成物が摺動中にポンプ作用により開放気孔を介して溝や凹部の露出気孔へ染み出して周辺近傍の摺動面へ供給される。また、摺動面の露出気孔量が少ないので、高い面圧を受けても供給された液状の液晶潤滑組成物が摺動面の露出気孔から逆に軸受内へ吸収されることが少なく、確実に潤滑膜を形成することができる。その結果、軸受を長寿命化できる。このように液状の液晶潤滑組成物は溝や凹部から軸受摺動面に供給されるので、軸受の軸受摺動面の露出気孔が僅かしか存在しないほど平滑に仕上げられた軸受であっても、良好な軸受性能を発揮するとともに、軸受寿命を永くすることができる。   Further, it is desirable that the bearing sliding surface of the bearing includes a plurality of grooves (for example, inclined grooves and herringbone pattern grooves) in the direction intersecting the sliding direction, or concave portions (for example, circular or oval dimples). . In such a bearing sliding surface provided with a plurality of grooves or recesses, the liquid crystal lubricating composition can be stored in the formed grooves or recesses and supplied to a nearby bearing sliding surface, thereby extending the bearing life. be able to. In this case, it is preferable that the area ratio of the exposed pores on the bearing sliding surface of the bearing is 10% or less, and the amount of exposed pores on the surface of the groove or recess is larger than that on the bearing sliding surface. The liquid liquid crystal lubricating composition impregnated in the pores in the bearing exudes to the exposed pores in the grooves and the recesses through the open pores by the pumping action during sliding, and is supplied to the sliding surface in the vicinity of the periphery. In addition, since the amount of exposed pores on the sliding surface is small, the supplied liquid crystal lubricating composition is less likely to be absorbed into the bearing from the exposed pores on the sliding surface even under high surface pressure. A lubricating film can be formed. As a result, the life of the bearing can be extended. Thus, since the liquid liquid crystal lubricating composition is supplied to the bearing sliding surface from the groove or recess, even a bearing finished so smooth that there are only a few exposed pores on the bearing sliding surface of the bearing, The bearing life can be extended while exhibiting good bearing performance.

軸受摺動面の溝や凹部は、粉末成形時に形成するのが好ましい。これはサイジングで目潰しされることがないので、表面の気孔を十分に確保することができるからである。溝や凹部の形成は、金型を用いた公知の方法を適用することができる。例えば、軸受内周面に傾斜溝や凹部を形成する場合では、外周に傾斜溝や凹部に対応する形状の凸部を設けたコアロッドを用い、まず金型内で粉末を所定の形状に圧縮成形して、次に、この圧縮成形体を金型からコアロッドとともに抜出して外周を開放し、しかる後に圧縮成形体からコアロッドを抜き取る方法が好適である。また、摺動方向と直交する溝の場合は、コアロッドに形成される凸条は軸方向に延在しているので、通常の粉末圧縮成形と同様に金型から抜出して成形することができる。   It is preferable to form grooves and recesses on the bearing sliding surface during powder molding. This is because the pores on the surface can be sufficiently secured because the sizing is not crushed. A well-known method using a mold can be applied to form the groove and the recess. For example, when forming an inclined groove or recess on the inner peripheral surface of the bearing, a core rod having a convex portion corresponding to the inclined groove or recess is provided on the outer periphery, and first, the powder is compression molded into a predetermined shape in the mold. Then, it is preferable to extract the compression molded body together with the core rod from the mold to open the outer periphery, and then extract the core rod from the compression molded body. Moreover, in the case of the groove | channel orthogonal to a sliding direction, since the protruding item | line formed in a core rod is extended in the axial direction, it can be shape | molded by extracting from a metal mold | die similarly to normal powder compression molding.

本発明の軸受と軸との組み合わせは、送風機などの車体装備品を駆動するモータ等に好適に用いることができるが、このようなモータ用軸受では、ラジアル荷重だけを受ける構造のものと、ラジアル荷重に加えてスラスト荷重をも受ける構造のものがある。後者の場合では、スラスト加重を受ける軸受端面にも同様に、露出気孔量の調整や、溝や凹部の形成を行うことが好ましい。また、軸受の内周には、軸受摺動面に隣接して液状の液晶潤滑組成物の飛散を防止するために、軸受端面側に向かって拡径するテーパ面を設けたり、軸とのすき間を比較的大きくする段付き大径部を形成したりすることができる。前者の端面近傍のテーパ面と軸とのくさび状すき間、あるいは後者の端面近傍の段付き大径部と軸とのすき間は、液状の液晶潤滑組成物の溜まり場となってラビリンスシールを形成する。   The combination of the bearing and the shaft of the present invention can be suitably used for a motor for driving body equipment such as a blower. However, such a motor bearing has a structure that receives only a radial load, and a radial bearing. There is a structure that receives a thrust load in addition to a load. In the latter case, it is preferable to similarly adjust the amount of exposed pores and form grooves and recesses on the bearing end face that receives thrust load. In addition, a taper surface that expands toward the bearing end surface side is provided on the inner periphery of the bearing adjacent to the bearing sliding surface to prevent the liquid crystal lubricating composition from scattering, and the clearance with the shaft A stepped large-diameter portion that relatively increases the diameter can be formed. The wedge-shaped gap between the tapered surface near the former end face and the shaft, or the gap between the stepped large diameter portion near the latter end face and the shaft forms a labyrinth seal as a reservoir for the liquid crystal lubricating composition.

3.液晶潤滑組成物
液状の液晶潤滑組成物は、軸受に負荷される比較的高い面圧においても摺動面における潤滑を失うことなく潤滑膜を維持することができる。液晶としては、サーモトロピック型の液晶が好ましく、中でも板状分子のディスコチック液晶を好適に使用することができる。ディスコチック液晶は板状の分子構造を有するので、滑りにより剪断を受けた場合、剪断方向に配列しやすく、また、板同士で滑りやすいために特に好ましい。また、液晶化合物としては、例えば、特開2004−182855号公報に記載されているトリフェニレン系化合物、トルキセン系化合物、フタロシアニン系化合物、トリアジン系化合物等、あるいは特開2002−69472号公報に記載されているメラミン系化合物、トリアジン系化合物等を例示することができる。このような液晶潤滑組成物は、基本的には液晶化合物だけからなるが、液晶化合物に必要に応じて酸化防止剤、腐食防止剤、粘度調整剤などの公知の各種添加剤を加えてもよい。
3. Liquid Crystal Lubricating Composition A liquid liquid crystal lubricating composition can maintain a lubricating film without losing lubrication on the sliding surface even at a relatively high surface pressure applied to the bearing. As the liquid crystal, a thermotropic liquid crystal is preferable, and among them, a discotic liquid crystal having a plate-like molecule can be preferably used. Since the discotic liquid crystal has a plate-like molecular structure, when it is sheared by sliding, it is particularly preferable because it is easily aligned in the shearing direction and slips between the plates. Examples of liquid crystal compounds include triphenylene compounds, truxene compounds, phthalocyanine compounds, triazine compounds described in JP-A No. 2004-182855, and JP-A No. 2002-69472. Examples thereof include melamine compounds and triazine compounds. Such a liquid crystal lubricating composition basically consists of a liquid crystal compound, but various known additives such as an antioxidant, a corrosion inhibitor, and a viscosity modifier may be added to the liquid crystal compound as necessary. .

液晶潤滑組成物は常温で液状であり、摺動中にポンプ作用により軸受内の気孔から摺動面に流出して潤滑膜を形成する。流動点は低温域の粘度特性を考慮して−20℃以下のものを選択することが望ましく、40℃における動粘度が5〜200mm2/sの範囲にあるものが好ましい。これは、40℃における動粘度が5mm2/s未満であると摺動部の潤滑膜が破断されやすくなり、また、200mm2/sを越えると剪断抵抗が大きくなり、摩擦が高くなるからである。より好ましくは20〜120mm2/sである。液状の液晶潤滑組成物は、多孔質焼結合金からなるすべり軸受の気孔に含浸され、軸と摺動することで軸との摺動面を潤滑する。含浸は周知の焼結含油軸受の場合と同様に、液状の液晶潤滑組成物中に軸受を浸漬するか、浸漬後減圧して含浸させることができる。 The liquid crystal lubricating composition is liquid at normal temperature, and flows out from the pores in the bearing to the sliding surface by a pump action during sliding to form a lubricating film. It is desirable to select a pour point of −20 ° C. or lower in consideration of the viscosity characteristics in a low temperature range, and a kinematic viscosity at 40 ° C. in the range of 5 to 200 mm 2 / s is preferable. This is because if the kinematic viscosity at 40 ° C. is less than 5 mm 2 / s, the lubricating film of the sliding part is easily broken, and if it exceeds 200 mm 2 / s, the shear resistance increases and the friction increases. is there. More preferably, it is 20-120 mm < 2 > / s. The liquid liquid crystal lubricating composition is impregnated in the pores of a sliding bearing made of a porous sintered alloy, and lubricates the sliding surface with the shaft by sliding with the shaft. The impregnation can be performed by immersing the bearing in a liquid liquid crystal lubricating composition or by reducing the pressure after immersion, as in the case of a known sintered oil-impregnated bearing.

以下、実施例と比較例とにより本発明をさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

(1)軸と軸受との作製
まず、以下のような軸と軸受とを作製して供試材とした。
(1) Production of shaft and bearing First, the following shaft and bearing were produced and used as test materials.

(1−1)軸
機械構造用炭素鋼S45C材を熱処理した外径10mm×長さ80mmで表面粗さが約0.3Sの軸を用意した。この軸に、次の方法で厚さ2μmのDLC被膜を形成して軸Aとした。DLC被膜の形成は、アンバランスド・マグネトロン・スパッタリング(UBMS)装置によりグラファイトターゲットを用い、フローガスはアルゴンとメタンの混合ガスとし、バイアス電圧100V、温度150℃で行った。また、DLC皮膜を形成しない他の軸はそのまま軸Bとした。軸Aの表面硬さはHV2000、軸Bの表面硬さはHV600であった。
(1-1) Shaft A shaft having an outer diameter of 10 mm, a length of 80 mm, and a surface roughness of about 0.3 S was prepared by heat-treating the carbon steel S45C material for mechanical structure. A DLC film having a thickness of 2 μm was formed on this axis by the following method to obtain axis A. The DLC film was formed using a graphite target with an unbalanced magnetron sputtering (UBMS) apparatus, a flow gas of a mixed gas of argon and methane, a bias voltage of 100 V, and a temperature of 150 ° C. The other axis on which no DLC film was formed was used as axis B as it was. The surface hardness of the axis A was HV2000, and the surface hardness of the axis B was HV600.

(1−2)軸受
軸受は、銅を30質量%と錫を3質量%含み残部が鉄で、密度が6.13Mg/m3 、有効多孔率が24%、寸法が内径10mm、外径16mm、全長10mmであり、以下のようにして作製した。すなわち、まず還元鉄粉(ヘガネス製、名称NC100−24)、電解銅粉(福田金属箔粉工業製、名称CE−56)、錫粉(日本アトマイズ加工製、名称Sn−325)の各金属粉末と、成形潤滑剤(ステアリン酸亜鉛粉)とを混合し、次に、その混合粉末を圧縮成形、焼結、およびサイジングした。焼結は水素ガスと窒素ガスの混合ガス中で焼結温度760℃で実施した。また、サイジングはネガティブサイジングとし、軸受内周の気孔量を減少させ、表面露出気孔量を約10面積%に調整した。このようにして作製した焼結体に組成が異なるA、B、Cの潤滑液を含浸して軸受A、軸受B、軸受Cを作製した。
(1-2) Bearing The bearing is 30% by mass of copper and 3% by mass of tin, the balance is iron, the density is 6.13 Mg / m 3 , the effective porosity is 24%, the dimensions are 10 mm inside diameter, and 16 mm outside diameter. The total length was 10 mm, and was produced as follows. That is, first, each metal powder of reduced iron powder (manufactured by Heganess, name NC100-24), electrolytic copper powder (manufactured by Fukuda Metal Foil Powder Industry, name CE-56), and tin powder (manufactured by Nippon Atomizing, name Sn-325). And a molding lubricant (zinc stearate powder) were mixed, and then the mixed powder was compression molded, sintered, and sized. Sintering was performed at a sintering temperature of 760 ° C. in a mixed gas of hydrogen gas and nitrogen gas. The sizing was negative sizing, the amount of pores on the inner periphery of the bearing was decreased, and the amount of surface exposed pores was adjusted to about 10 area%. Bearings A, B, and C were manufactured by impregnating the thus prepared sintered bodies with lubricating liquids of A, B, and C having different compositions.

上記軸受A〜Cは内周に溝を備えていないが、内周に溝を備えた焼結体を作製し、潤滑液Aを含浸させて軸受Dとした。軸受Dは、軸受A〜Cと同様の混合粉末を用い、粉末成形金型のコアロッド外周に軸方向に延びる高さ20μmの凸条を7本設け、それに嵌合するパンチを用いて圧粉成形し、軸受A〜Cと同様に焼結およびサイジングして液状の液晶潤滑組成物を含浸させたものである。軸受Dの溝はサイジングされていないので気孔が多く存在する焼結面であるが、サイジングされた軸受面は露出気孔の面積率が約3%に調整された。   The bearings A to C were not provided with a groove on the inner periphery, but a sintered body having a groove on the inner periphery was prepared and impregnated with a lubricating liquid A to obtain a bearing D. The bearing D uses the same mixed powder as the bearings A to C, and is provided with seven 20 μm-high protruding ridges extending in the axial direction on the outer periphery of the core rod of the powder molding die, and compacted by using a punch fitted therein. In the same manner as the bearings A to C, the liquid crystal lubricating composition is impregnated by sintering and sizing. Since the groove of the bearing D is not sized, it is a sintered surface with many pores. However, the area ratio of the exposed pores of the sized bearing surface was adjusted to about 3%.

上記の各焼結体に含浸した潤滑液は以下の通りである。なお、焼結体への含浸は通常の減圧含浸とした。   The lubricating liquid impregnated in each of the sintered bodies is as follows. The impregnation into the sintered body was a normal reduced pressure impregnation.

潤滑液Aは、本発明の液状の液晶潤滑組成物で、複素環状系有機物であるClを含む1,3,5トリアジン系化合物であり、ディスコチック液晶である。40℃における動粘度は116mm2/s、流動点は−20℃である。 Lubricating liquid A is a liquid crystal lubricating composition of the present invention, is a 1,3,5 triazine compound containing Cl which is a heterocyclic organic substance, and is a discotic liquid crystal. The kinematic viscosity at 40 ° C. is 116 mm 2 / s, and the pour point is −20 ° C.

潤滑液Bは潤滑油で、商品名がSJ5W−20のトヨタ自動車(株)純正エンジンオイルである。40℃における動粘度は44mm2/sである。 Lubricating fluid B is a lubricating oil, and is a genuine engine oil of Toyota Motor Corporation having a trade name of SJ5W-20. The kinematic viscosity at 40 ° C. is 44 mm 2 / s.

潤滑液Cも潤滑油で、NOKクリューバ製の商品名がオールタイムJ652であり、ポリオールエステル系の合成油である。40℃における動粘度は64mm2/sである。 Lubricating liquid C is also a lubricating oil, and the product name made by NOK CRUBA is All Time J652, and is a polyol ester-based synthetic oil. The kinematic viscosity at 40 ° C. is 64 mm 2 / s.

(1−3)軸受と軸との組み合わせ
以上の軸受A〜軸受Dと、軸A、軸Bとを組み合わせて実施例と比較例の軸受と軸との組み合わせを準備した。なお、組み合わせのときの軸外径と軸受内径との寸法差を21μmとした。実施した実施例と比較例との組み合わせは表1の通りである。
(1-3) Combination of bearing and shaft A combination of the bearing A to the bearing D described above, the shaft A, and the shaft B was used to prepare a combination of the bearing and the shaft of the example and the comparative example. The dimensional difference between the shaft outer diameter and the bearing inner diameter when combined was 21 μm. Table 1 shows combinations of the implemented examples and comparative examples.

Figure 2006266429
Figure 2006266429

(2)軸受試験方法と試験結果
(試験−1)
実施例1と比較例1および2の組み合わせにラジアル方向の荷重を加えて摩擦係数を測定した。摩擦係数は、モータで回転する軸固定部に試験用の軸を水平に固定し、軸受はハウジングに固定して軸と嵌合させ、ハウジングに垂直方向の荷重を与えた状態で軸を回転させて軸受ハウジングにかかる回転トルクを測定した結果から算出して求めた。
(2) Bearing test method and test results (Test-1)
A coefficient of friction was measured by applying a radial load to the combination of Example 1 and Comparative Examples 1 and 2. The coefficient of friction is that the test shaft is fixed horizontally to the shaft fixed part that is rotated by the motor, the bearing is fixed to the housing and fitted to the shaft, and the shaft is rotated with a vertical load applied to the housing. The rotational torque applied to the bearing housing was calculated from the result of measurement.

本試験−1では、軸の回転数を1000rpm一定とし、軸受にラジアル方向に荷重Wを与えて15分間保持したときの摩擦係数μを測定した。荷重Wは0.5〜7kN(51〜714kgf)の範囲で、0.5〜3.0kNまでは0.5kNおきに、また、3.0〜7.0kNまでは1.0kNおきに変化させた10水準とした。結果を表2に示す。   In this test-1, the coefficient of friction μ was measured when the shaft rotation speed was kept constant at 1000 rpm, the bearing was given a load W in the radial direction and held for 15 minutes. The load W is in the range of 0.5 to 7 kN (51 to 714 kgf), and is changed every 0.5 kN from 0.5 to 3.0 kN and every 1.0 kN from 3.0 to 7.0 kN. 10 levels. The results are shown in Table 2.

Figure 2006266429
Figure 2006266429

表2に示したように、軸Bと液晶潤滑組成物(A)を含浸した焼結軸受Aとの組み合わせである実施例1では、負荷荷重が7kNでも摩擦係数μが0.01であり、面圧が高くても良好な摺動特性を示すことがわかる。これに対し、軸Bとエンジンオイル(B)を含浸した軸受Bとの組み合わせである比較例1では、実施例1に比べて摩擦係数が比較的高く、また荷重が2.5kNで摩擦係数が急激に上昇した。また、軸Bと合成油(C)を含浸した軸受Cとの組み合わせである比較例2では、2kN以下の荷重では摩擦係数が実施例1と同程度で低く良好であるが、荷重が2.5kNでは急激に上昇した。このように、液状の液晶潤滑組成物は面圧が低い領域でも摩擦係数が低く、また、面圧が高い領域でも、摺動面の潤滑膜が破壊されることなく良好に潤滑を維持しており、各種のモータ用に好適に適用できることがわかる。   As shown in Table 2, in Example 1, which is a combination of the shaft B and the sintered bearing A impregnated with the liquid crystal lubricating composition (A), the friction coefficient μ is 0.01 even when the load is 7 kN, It can be seen that even if the surface pressure is high, good sliding characteristics are exhibited. On the other hand, in Comparative Example 1, which is a combination of the shaft B and the bearing B impregnated with engine oil (B), the friction coefficient is relatively higher than that in Example 1, and the friction coefficient is 2.5 kN when the load is 2.5 kN. It rose rapidly. In Comparative Example 2, which is a combination of the shaft B and the bearing C impregnated with the synthetic oil (C), the friction coefficient is as low and good as that of Example 1 at a load of 2 kN or less. It rose sharply at 5kN. As described above, the liquid liquid crystal lubricating composition has a low coefficient of friction even in a region where the surface pressure is low, and also maintains good lubrication even in a region where the surface pressure is high without destroying the lubricating film on the sliding surface. It can be seen that the present invention can be suitably applied to various motors.

(試験−2)
軸受内周面の溝の有効性を実施例1と実施例3とにより確認した。試験条件は、軸の回転数を1000rpm、およびラジアル荷重を7kNで一定とし、1500時間連続運転をしたのちの各々の摩擦係数を測定した。その結果、摩擦係数はいずれも約0.01程度であるが、溝を用いた方がやや低い値を示した。潤滑組成物が溝から摺動面へ良好に供給されているものと推察され、軸受寿命が延長するものと考えられる。
(Test-2)
The effectiveness of the groove on the inner peripheral surface of the bearing was confirmed by Example 1 and Example 3. The test conditions were as follows: the number of rotations of the shaft was 1000 rpm, the radial load was constant at 7 kN, and the friction coefficient was measured after 1500 hours of continuous operation. As a result, the friction coefficients were all about 0.01, but a slightly lower value was obtained when the grooves were used. It is assumed that the lubricating composition is satisfactorily supplied from the groove to the sliding surface, and the bearing life is considered to be extended.

(試験−3)
一般的に摩擦係数が大きくなる低回転数、低荷重条件下で、実施例1(軸Bと軸受A)、実施例2(軸Aと軸受A)、比較例1(軸Bと軸受B)、および比較例3(軸Aと軸受B)の各組み合わせについて摩擦係数と軸受摩耗量とを測定した。試験条件は、軸の回転数100rpm、およびラジアル荷重を98N(10kgf)で一定とし、400分間のならし運転を行ったのちの摩擦係数と、軸受面の摩耗量とを測定した。なお、摩耗量は試験前後の軸受内径の寸法差である。結果を表3に示す。
(Test-3)
Example 1 (Axis B and Bearing A), Example 2 (Axis A and Bearing A), and Comparative Example 1 (Axis B and Bearing B) For each combination of Comparative Example 3 (Axis A and Bearing B), the friction coefficient and the bearing wear amount were measured. The test conditions were a shaft rotation speed of 100 rpm and a radial load constant of 98 N (10 kgf), and the friction coefficient after running for 400 minutes and the amount of wear on the bearing surface were measured. The amount of wear is a dimensional difference between the inner diameters of the bearings before and after the test. The results are shown in Table 3.

Figure 2006266429
Figure 2006266429

表3に示すように、軸受摩耗量は、いずれの組み合わせでも2μmで、なじみ運転による初期摩耗であることが分かる。また、摩擦係数は、軸の回転数と荷重が低いので、表1の実施例1の荷重0.5kNの0.08よりも高い値になっているが、実施例1(軸Bと軸受A)と実施例2(軸Aと軸受A)とでは、実施例2の方が0.09と実施例1の0.14よりも各段に小さい値が得られ、DLC皮膜の効果の高いことが分かる。ところが、比較例3(軸Aと軸受B)では、軸にDLC皮膜が形成されているにもかかわらず摩擦係数が0.14と比較例1(軸Bと軸受B)と同一の値であった。これらのことより、実施例2(軸Aと軸受A)の組み合わせが液晶潤滑組成物とDLC被膜との相性が良く優れた組み合わせであることが分かる。   As shown in Table 3, the amount of bearing wear is 2 μm in any combination, and it can be seen that this is the initial wear due to the running-in operation. Further, the friction coefficient is higher than 0.08 of the load 0.5 kN of Example 1 in Table 1 because the rotational speed and load of the shaft are low, but Example 1 (axis B and bearing A). ) And Example 2 (shaft A and bearing A), the value of Example 2 is 0.09, which is smaller than 0.14 of Example 1, and the effect of the DLC film is high. I understand. However, in Comparative Example 3 (Axis A and Bearing B), although the DLC film is formed on the shaft, the friction coefficient is 0.14, which is the same value as in Comparative Example 1 (Axis B and Bearing B). It was. From these, it can be seen that the combination of Example 2 (axis A and bearing A) is an excellent combination with excellent compatibility between the liquid crystal lubricating composition and the DLC film.

本発明の軸と軸受との組み合わせは、上記の実施例に限定されるものではなく、本発明の主旨を逸脱しない範囲で変更することができる。上記の実施例では、回転自在に嵌合された軸受と軸との組み合わせについて説明したが、軸線方向に移動自在に嵌合された軸受と軸との組み合わせにおいても本発明は同様の効果を奏する。また、実施例では軸材料に熱処理された炭素鋼を用いたが、小型軽量のモータなどでは、熱処理しない炭素鋼や、炭素鋼に代えてセラミックや樹脂などを軸材料とすることもできる。   The combination of the shaft and the bearing of the present invention is not limited to the above-described embodiments, and can be changed without departing from the gist of the present invention. In the above-described embodiment, the combination of the bearing and the shaft that are rotatably fitted is described. However, the present invention has the same effect even in the combination of the bearing and the shaft that are fitted so as to be movable in the axial direction. . Further, in the embodiment, carbon steel that has been heat-treated is used as the shaft material. However, in a small and light motor or the like, the shaft material may be carbon steel that is not heat-treated, or ceramic or resin instead of carbon steel.

本発明の軸受および軸受と軸との組み合わせは、耐荷重が高いので、例えば、小型モータに好適に用いることができる。特に車両の室内送風装置やワイパなどの車体装備品に適用して優れた効果を奏する。   Since the bearing of the present invention and the combination of the bearing and the shaft have high load resistance, it can be suitably used for, for example, a small motor. The present invention is particularly effective when applied to vehicle interior equipment such as a vehicle interior blower and a wiper.

Claims (8)

多孔質焼結合金からなる軸受の気孔に液状の液晶潤滑組成物が含浸されていることを特徴とする軸受。   A bearing characterized in that a liquid crystal lubricating composition is impregnated in pores of a bearing made of a porous sintered alloy. 前記液晶潤滑組成物がディスコチック液晶であることを特徴とする請求項1に記載の軸受。   The bearing according to claim 1, wherein the liquid crystal lubricating composition is a discotic liquid crystal. 前記液晶潤滑組成物の40℃における動粘度が5〜200mm2/sの範囲内であることを特徴とする請求項1又は2に記載の軸受。 3. The bearing according to claim 1, wherein the liquid crystal lubricating composition has a kinematic viscosity at 40 ° C. within a range of 5 to 200 mm 2 / s. 前記軸受の該軸受摺動面における露出気孔の面積が2〜40%の範囲内であることを特徴とする請求項1〜3のいずれかに記載の軸受。   The bearing according to any one of claims 1 to 3, wherein an area of exposed pores in the bearing sliding surface of the bearing is in a range of 2 to 40%. 前記軸受は該軸受摺動面に摺動方向と交差する方向の複数の溝または凹部を備えていることを特徴とする請求項1〜4のいずれかに記載の軸受。   The bearing according to claim 1, wherein the bearing includes a plurality of grooves or recesses in a direction intersecting the sliding direction on the bearing sliding surface. 前記軸受の該軸受摺動面における露出気孔の面積が10%以下であるとともに、前記溝または凹部の表面における露出気孔の面積率が前記軸受摺動面における露出気孔の面積率よりも大きいことを特徴とする請求項5に記載の軸受。   The area of the exposed pores on the bearing sliding surface of the bearing is 10% or less, and the area ratio of the exposed pores on the surface of the groove or recess is larger than the area ratio of the exposed pores on the bearing sliding surface. The bearing according to claim 5. 請求項1〜6のいずれかに記載の軸受と、該軸受と摺動する面にDLC(ダイヤモンドライクカーボン)皮膜を有する軸とからなることを特徴とする軸受と軸との組み合わせ。   A combination of a bearing and a shaft, comprising the bearing according to any one of claims 1 to 6 and a shaft having a DLC (diamond-like carbon) film on a surface sliding with the bearing. 前記DLC皮膜の厚さが0.1〜15μmであることを特徴とする請求項7に記載の軸受と軸との組み合わせ。
The combination of a bearing and a shaft according to claim 7, wherein the DLC film has a thickness of 0.1 to 15 µm.
JP2005087093A 2005-03-24 2005-03-24 Bearing and combination of bearing and shaft Pending JP2006266429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005087093A JP2006266429A (en) 2005-03-24 2005-03-24 Bearing and combination of bearing and shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005087093A JP2006266429A (en) 2005-03-24 2005-03-24 Bearing and combination of bearing and shaft

Publications (1)

Publication Number Publication Date
JP2006266429A true JP2006266429A (en) 2006-10-05

Family

ID=37202620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005087093A Pending JP2006266429A (en) 2005-03-24 2005-03-24 Bearing and combination of bearing and shaft

Country Status (1)

Country Link
JP (1) JP2006266429A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257384A (en) * 2005-02-15 2006-09-28 Fuji Photo Film Co Ltd Lubricant composition
JP2006257382A (en) * 2005-02-15 2006-09-28 Fuji Photo Film Co Ltd Mechanical element
JP2006328126A (en) * 2005-05-24 2006-12-07 Fujifilm Holdings Corp Lubricant composition and machinery element
WO2009078323A1 (en) * 2007-12-14 2009-06-25 Ntn Corporation Sliding member and slide bearing
JP2010184954A (en) * 2009-02-10 2010-08-26 Fujifilm Corp Sintered oilless bearing
WO2011040164A1 (en) * 2009-09-29 2011-04-07 Ntn株式会社 Fluid dynamic bearing device
JP2013092163A (en) * 2011-10-24 2013-05-16 Hitachi Powdered Metals Co Ltd Oil-impregnated sintered bearing and production method therefor
US9016429B2 (en) 2013-04-02 2015-04-28 Caterpillar Inc. Machine bearing system including hard thin film and method of using same
CN106062348A (en) * 2014-03-04 2016-10-26 本田技研工业株式会社 Internal-combustion engine cylinder block and production method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221436B2 (en) * 1982-04-22 1990-05-14 Asulab Sa
JP2000213543A (en) * 1999-01-28 2000-08-02 Sankyo Seiki Mfg Co Ltd Bearing device and spindle motor
JP2002061654A (en) * 2000-08-23 2002-02-28 Nippon Densan Corp Dynamic pressure bearing component, dynamic pressure bearing using the same, and spindle motor
JP2003120674A (en) * 2001-10-16 2003-04-23 Hitachi Powdered Metals Co Ltd Sintered oil-containing bearing for electric motor and its manufacturing method
JP2004359848A (en) * 2003-06-05 2004-12-24 Nsk Ltd Grease composition and rolling device obtained using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221436B2 (en) * 1982-04-22 1990-05-14 Asulab Sa
JP2000213543A (en) * 1999-01-28 2000-08-02 Sankyo Seiki Mfg Co Ltd Bearing device and spindle motor
JP2002061654A (en) * 2000-08-23 2002-02-28 Nippon Densan Corp Dynamic pressure bearing component, dynamic pressure bearing using the same, and spindle motor
JP2003120674A (en) * 2001-10-16 2003-04-23 Hitachi Powdered Metals Co Ltd Sintered oil-containing bearing for electric motor and its manufacturing method
JP2004359848A (en) * 2003-06-05 2004-12-24 Nsk Ltd Grease composition and rolling device obtained using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257384A (en) * 2005-02-15 2006-09-28 Fuji Photo Film Co Ltd Lubricant composition
JP2006257382A (en) * 2005-02-15 2006-09-28 Fuji Photo Film Co Ltd Mechanical element
JP2006328126A (en) * 2005-05-24 2006-12-07 Fujifilm Holdings Corp Lubricant composition and machinery element
WO2009078323A1 (en) * 2007-12-14 2009-06-25 Ntn Corporation Sliding member and slide bearing
JP2009144836A (en) * 2007-12-14 2009-07-02 Ntn Corp Sliding member and sliding bearing
JP2010184954A (en) * 2009-02-10 2010-08-26 Fujifilm Corp Sintered oilless bearing
WO2011040164A1 (en) * 2009-09-29 2011-04-07 Ntn株式会社 Fluid dynamic bearing device
JP2011074949A (en) * 2009-09-29 2011-04-14 Ntn Corp Fluid dynamic pressure bearing device
CN102575707A (en) * 2009-09-29 2012-07-11 Ntn株式会社 Fluid dynamic bearing device
JP2013092163A (en) * 2011-10-24 2013-05-16 Hitachi Powdered Metals Co Ltd Oil-impregnated sintered bearing and production method therefor
US9016429B2 (en) 2013-04-02 2015-04-28 Caterpillar Inc. Machine bearing system including hard thin film and method of using same
CN106062348A (en) * 2014-03-04 2016-10-26 本田技研工业株式会社 Internal-combustion engine cylinder block and production method therefor
JPWO2015133490A1 (en) * 2014-03-04 2017-04-06 本田技研工業株式会社 Cylinder block for internal combustion engine and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2006266429A (en) Bearing and combination of bearing and shaft
JP5247329B2 (en) Iron-based sintered bearing and manufacturing method thereof
KR101057306B1 (en) Sliding bearing
CN110043564B (en) Method for manufacturing sintered bearing, and vibration motor
JP2001240925A (en) Copper series sliding material
JP2005082867A (en) Method for manufacturing iron/copper base sintered alloy for oilless bearing
JP6921046B2 (en) Manufacturing method of sintered bearing
WO2006073090A1 (en) Sintered metallic material, oil-retaining bearing constituted of the metallic material, and fluid bearing apparatus
JP2008275115A (en) Oil-impregnated sintered bearing for fan motor
JP6424983B2 (en) Iron-based sintered oil-impregnated bearing
JP2013204807A (en) Sliding bearing
JP2001279349A (en) Sintered oilless bearing material using copper-coated iron powder and its producing method
JP2008180374A (en) Rolling bearing
JP2006300246A (en) Oil-impregnated sintered bearing
JP6819696B2 (en) Iron-based sintered oil-impregnated bearing
JP2019065323A (en) Iron-based sintered shaft bearing, and iron-based sintered oil-containing shaft bearing
JP3734981B2 (en) Sintered oil-impregnated bearing for spindle motor
JP2007225077A (en) Sliding bearing and its manufacturing method
JP2001107162A (en) Bronze series sintered alloy, bearing using the same and their producing method
JP5640885B2 (en) Scroll compressor
JPWO2004072498A1 (en) Sintered oil-impregnated bearing
JP6536866B1 (en) Sintered bearing, sintered bearing device and rotating device
JP2005164040A (en) Journal bearing system and process for manufacturing lining for dynamic pressure bearing
JP2010175002A (en) Oil-impregnated sintered bearing
JPH102335A (en) Bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100325