JP4406276B2 - 走査光学系検査装置、走査光学系検査方法、及び画像形成装置 - Google Patents

走査光学系検査装置、走査光学系検査方法、及び画像形成装置 Download PDF

Info

Publication number
JP4406276B2
JP4406276B2 JP2003420061A JP2003420061A JP4406276B2 JP 4406276 B2 JP4406276 B2 JP 4406276B2 JP 2003420061 A JP2003420061 A JP 2003420061A JP 2003420061 A JP2003420061 A JP 2003420061A JP 4406276 B2 JP4406276 B2 JP 4406276B2
Authority
JP
Japan
Prior art keywords
light
scanning
optical system
receiving means
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003420061A
Other languages
English (en)
Other versions
JP2005181019A (ja
Inventor
直裕 上条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2003420061A priority Critical patent/JP4406276B2/ja
Publication of JP2005181019A publication Critical patent/JP2005181019A/ja
Application granted granted Critical
Publication of JP4406276B2 publication Critical patent/JP4406276B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Heads (AREA)
  • Facsimile Scanning Arrangements (AREA)

Description

本発明は、走査光学系検査装置に関し、特に複写機、プリンター製品等に使用されている走査型の書込みユニットの検査、検証、また、LEDアレイ等の光源列のドット位置ずれ検査において、回転多面体鏡の回転数と光源制御のクロックを基準として定まる同期ずれや、走査光学系の倍率誤差による走査範囲での各位置でのビーム光束の結像位置などを検査し、ドット位置ずれや色ずれの発生を低減させることを目的とする走査光学系検査装置に関する。
走査光学系のビーム光束の検証方法としては、従来、(1)回転多面鏡を固定させた状態で、静止ビームを対象に、ビームをスリットでスキャンしスリットを通過した光量を時系列に検出することで光量分布を測定する方法、(2)2次元エリアセンサに結像してビームプロファイルを2次元的に検出する方法、などが知られている。
一方、回転多面鏡を回転させた状態で、走査ビームを対象に、光源を常時点灯状態にしてビーム光束を走査し、スリットを横切らせ、上記(1)の方法のようにスリットを通過した光量を時系列で検出することで光量分布状態を検出する方法、光源を点滅状態にし、走査周期と同期を取りながら、走査点滅ビームの光量分布状態を2次元エリアセンサで検出する方法、が知られている。このほかにラインセンサを用いたものや、スリットに角度を持たせて、主副走査方向のビーム径に対応した方法、なども知られている。
上記(1)、(2)の回転多面体鏡を固定した場合の検出では、同期ずれによるビーム光束の位置変動を測定できないのは自明であり、走査光学系の倍率誤差の検証としては固定している回転多面体鏡の角度を高精度に調整しなければならず、たとえば、回転多面体鏡の軸が軸受けから磁力等により浮遊させている場合などは固定が非常に困難となる。回転多面体鏡の代わりにビーム光束偏向用の基準ミラー等を設置する方法も考えられるが、倍率誤差検出専用となり、専用器上での光学特性は確保可能だが、製品上での光学特性を確保するには更に工夫を要する。
上記(1)によるスリットスキャン方式では、同期信号とスリットを通過するビームの光量変動を時間軸上で比較することで倍率誤差を検出することは可能と考えられるが、常時点灯状態のみ検出可能であるため、同期ずれによるドット位置ずれなどは検出不可能である。
主走査方向に長い走査光学系の全走査範囲でビーム光束を検出するために、検査装置としては、検査光学系を光軸方向に移動する機構や、主走査方向、副走査方向に移動する機構を設けて、画像形成装置の感光体面上に結像したビーム光束のデフォーカス量を検出する構成や、主走査方向全域での検出に対応した構成、副走査方向のビーム位置に追従する構成が一般的に適用されている。
上記従来の方法としては、走査光学系調整装置および走査光学系調整方法として、備えているビーム検出部移動機構でビーム検出部を光軸方向に移動し、ピント調整基準位置にビーム検出部を固定する方法が開示されている(例えば、特許文献1参照)。この方法では、感光体面上と想定されるピント基準位置のビームプロファイルを検出するが、ビーム検出部間での相対位置が確保されておらず、走査線曲りや倍率誤差等の不具合を詳細に検出することはできない。
他に慣用されている技術としてビーム検出部をレーザ測長器などを用いて位置決めする方法やビーム検出部を移動するステージをマグネスケールなどを用いて位置決めする方法が考えられるが、スリットやPD、CCDリニアセンサ、CCDエリアセンサの位置を特定しているものではなく、更には、複数のビーム検出部を有する場合、各ビーム検出部間の相対位置を検出するのは困難である。
走査光学系の走査ビーム光量分布測定方法および測定装置として開示されている方法は、各走査位置でのビーム光束の光量分布を検出するには最適であるが、倍率誤差や同期ずれに起因するビーム光束位置ずれは、複数位置で同時に同一の走査時期にビーム光束を検出しなければならないため、構成上不可能である(例えば、特許文献2参照)。
例えば、特許文献3には、画像形成装置における光走査装置の位置調整方法として知られている方法があるが、複数設置されているセンサ間の相対位置の確保が困難である。
また、エリアセンサを複数個設置して、走査全域に対応する場合、画像製品の高解像度化に伴う走査ビーム光束の小ビーム径化に対し、光学素子の形状も複雑化し、狭ピッチで走査全域を検査する必要がある。走査光学系を構成する光学素子の品質、組付け精度によっては、倍率誤差等の影響を光源制御で補正する際には、全走査域で全ドットの相対位置を詳細に検出する必要がある。また、受光したビーム光束のエリアセンサ上での位置は検出可能であるが、画像形成装置に対する絶対位置の検出まではできない。位置調整装置を画像製品に挿入する説明もあるが、各製品毎に微妙に異なる走査光学系の位置に位置調整装置を合わせるのは困難であり、検出値の信頼性が低い。
走査光学系調整装置および走査光学系調整方法において、ビーム検出部とビーム検出部移動機構とからなり、走査光学系のビームを走査させた状態で検出装置であって、スリットからなるビーム検出手段によりビーム位置を検出して2次元センサからなるビーム検出部の視野内にビームを追いこむようビーム検出部移動機構を動作させる方法、また、ビーム検出部移動機構によりピント位置調整を実施する方法も知られている(例えば、特許文献1参照)。
画像形成装置における光走査装置の位置調整方法として、複数の光走査装置を有する画像形成装置の走査エリアに複数のエリアセンサを有し、書出し位置ずれや書終り位置を検出することで各光走査装置間のビームの位置ずれを補正する方法も開示されている(例えば、特許文献3参照)。
走査光学系の走査ビーム光量分布測定方法および測定装置として、二次元エリアセンサを主走査方向に移動可能なステージ上に設置し、ステージ上を移動させながら走査光学ユニットの各主走査位置での走査ビームの光量分布データを格納し、解析する方法も開示されている(例えば、特許文献2参照)。
特開平8−262350号公報 特開2002−86795公報 特開2000−275555公報
電子写真方式の画像製品に搭載される画像形成装置を構成する走査光学系は、LD(レーザダイオード)等の光源から出射されるビームをコリメータレンズ等で整形し、回転多面体鏡等により走査ビームに変調し、走査ビームに変調されたビームはfθレンズ、シリンドリカルレンズ、またはミラーなどの光学素子を経て、所望のビーム径、ビームプロファイルに加工されて感光体面上に結像する。感光体面上に結像したビームの光量分布状態から静電潜像、ついで画像形成プロセスより画像が作られる。
斯かる走査光学系においては回転多面体鏡等の走査タイミングから光源点滅の同期が取られ、同期にばらつきがあるとドット位置ずれが生じ、画像品質の低下などの不具合が生じる。また、画像品質の低下は走査光学系の光学素子に起因する倍率誤差によっても生じ、更には、カラー画像製品のように画像形成プロセスが複数の位置で行われる装置では、それぞれの位置での画像形成プロセス間に生じるドット位置ずれが色ずれ等の画像品質低下を生じる原因となる。
走査光学系から出射されるビーム光束の特性は、光源制御での電気的要因、光学素子での光学的要因、ユニットの機械的要因などの最終結果として顕れるため、ビーム光束の位置ずれ原因は各要因を分離して測定する必要がある。
走査光学系は一般に主走査方向に長く、副走査方向に短い特有の構造となっており、高い画像品質を確保するには、主走査方向全域でビーム光束の品質が確保されている必要がある。そのため、主走査方向全域での測定が必要となり、各位置での測定器の位置決め精度が重要となる。
本発明は、上述した実情を考慮してなされたものであって、感光体面上を想定した画像形成装置の結像位置でのビーム光束を相互に位置関係が明確化された複数箇所の受光手段により同一走査機会において受光し、同期ずれや倍率誤差、複数の画像形成装置間でのビーム位置ずれを検出、補正するための光学系検査装置、光学系検査方法を提供し、ひいては、当該画像形成装置の最終出力である画像の品質を向上させるための、光源制御装置、走査光学系、画像形成装置を提供することを目的とする。
更に詳細には、請求項1の目的は、画像のドット位置ずれや色ずれの要因である、走査光学系の倍率誤差や走査線曲り等の光学的要因によるビーム光束位置ずれと、同期位置ずれによるビーム光束位置ずれとを分離して、検出、検査することを可能とする走査光学系検査装置を提供することである。
請求項2の目的は、走査光学系における走査全域の任意の2点間または複数位置間でのビーム光束位置を検出し、走査全域での倍率誤差や走査線曲り等の光学的要因によるビーム光束位置ずれと、同期位置ずれによるビーム光束位置ずれとを分離して、検出、検査することを可能とする走査光学系検査装置を提供することである。
請求項3の目的は、走査光学系の合焦点位置を検出し、走査光学系における走査全域の任意の2点間または複数位置間でのビーム光束位置を検出し、走査全域での倍率誤差や走査線曲り等の光学的要因によるビーム光束位置ずれと、同期位置ずれによるビーム光束位置ずれとを分離して、検出、検査することを可能とする走査光学系検査装置を提供することである。
請求項4の目的は、外部に設けた光源より発光されるビーム光束の位置を基準として、受光手段の移動に伴う複数の受光手段間の検出位置誤差を除去して、走査光学系における走査全域の任意の2点間または複数位置間でのビーム光束位置を検出し、走査全域での倍率誤差や走査線曲り等の光学的要因によるビーム光束位置ずれと、同期位置ずれによるビーム光束位置ずれと、受光手段を移動する移動手段の高さ方向の起伏による機械的な検出位置ずれとを分離して、検出、検査することを可能とする走査光学系検査装置を提供することである。
請求項5の目的は、同期検知信号用の走査ビーム光量の時間変化と、走査光学系検査装置から検出されるビーム光束位置ずれ量を比較し、微小時間における走査ビーム光量とビーム光束位置ずれ量を関連付け、同期位置ずれ量によるビーム光束位置ずれ量を予測可能とすることを特徴とする走査光学系検査装置を提供することである。
請求項6の目的は、同期検知信号用の走査ビーム光量の時間変化と、走査光学系検査装置から検出されるビーム光束位置ずれ量を参照テーブルとして、格納手段に格納することにより、同期位置ずれ量からビーム書出し位置の補正をすることを可能とする走査光学系検査装置を提供することである。
請求項7の目的は、光源を所定のパターン点灯により点滅制御し、書出し位置と、走査全域の任意の位置で走査ビーム光束を受光することにより、書出し位置での同期位置ずれによるビーム光束位置ずれと、複数箇所の走査ビーム光束位置から倍率誤差や走査線曲り等の光学的要因によるビーム光束位置ずれとを、分離して検出、検査することを特徴とする走査光学系検査方法を提供することである。
請求項8の目的は、請求項7において、任意の2点間または複数位置間での同期位置ずれによるビーム光束位置ずれと、倍率誤差や走査線曲り等の光学的要因によるビーム光束位置ずれとを、分離して、検出、検査することを可能とする走査光学系検査方法を提供することである。
請求項9の目的は、請求項7乃至8において、同期検知信号に用いる走査ビーム光量の時間変動による同期位置ずれ量と、ビーム光束の書出し位置ずれ量を検出し、関連付けることで、同期位置ずれ量からビーム光束書出し位置導出を可能とする走査光学系検査方法を提供することである。
請求項10の目的は、カラー画像製品などに適用されるような複数の位置で画像形成プロセスを行う画像形成装置(以降、露光ステーションと記載する)において、ドット位置ずれや色ずれの原因となる、各露光ステーション内でのビーム光束位置ずれや各露光ステーション間でのビーム光束位置ずれを、外部の基準光源から発光されるビーム光束の位置を基準として、各露光ステーションで検出するビーム光束の相対位置ずれを除去し、同期位置ずれによるビーム光束位置ずれと、倍率誤差や走査線曲り等の光学的要因によるビーム光束位置ずれとを、分離して検出、検査することを可能とする走査光学系検査装置を提供することである。
請求項11の目的は、露光ステーションが複数あり、それぞれの露光ステーションでのビーム光束の相対的な位置関係を検出するため、一の露光ステーションでビーム光束を検出した受光手段の位置より出射した基準光源から発光される位置決め用ビーム光束を他の露光ステーションの受光手段で取得し、その位置決め用ビーム光束の位置を検出すれば、一の露光ステーションと他の露光ステーションの相対位置を取得、補正することが可能となる点にある。
一の露光ステーションの受光手段が移動しても、位置決め用ビーム光束も同じ位置に移動するため、各位置での受光手段間の相対位置を取得、補正することが可能となり、各露光ステーション間のビーム光束の位置ずれを精度よく、検出し、補正することでビーム光束位置ずれを低減し、画像の品質向上を可能とする走査光学系検査装置を提供することである。
請求項12の目的は、同期位置ずれによるビーム光束位置ずれを補正して、光源を点滅制御することを可能とする光源制御装置を提供することである。
請求項13の目的は、請求項12に記載の光源制御装置を有し、同期位置ずれによるビーム光束位置ずれを補正したビーム光束を走査することを可能とする走査光学系を提供することである。
請求項14の目的は、ビーム光束を検出する複数の受光手段の相対位置基準となる光源を有し、複数の受光手段により検出されるビーム光束の相対位置精度を向上することを可能とする走査光学系を提供することである。
請求項15の目的は、請求項13乃至14の走査光学系を有し、ドット位置ずれや色ずれを低減することを可能とした画像形成装置を提供することである。
上記の課題を解決するために、請求項1に記載の発明は、光源と、光源を点滅制御しビーム光束を発光する光源制御手段と、前記ビーム光束を偏向、走査させるビーム光束偏向手段と、偏向、走査された前記ビーム光束を所定の位置に結像させる光学素子を有する走査光学系の検査装置であって、走査されたビーム光束書出し位置でビーム光束を受光する第一の受光手段と、任意の走査結像位置でビーム光束を受光する第二のまたは複数の受光手段と、前記第二のまたは複数の受光手段を任意の走査結像位置に移動する移動手段と、前記第二のまたは複数の受光手段の位置を検出する受光位置検出手段と、前記走査光学系の同期信号を検出する同期信号検知手段と、前記第一の受光手段と前記第二のまたは複数の受光手段に同一の走査機会に生じる同期信号を出力する同期信号出力手段と、を有し、前記第一の受光手段と第二のまたは複数の受光手段が共通の同期信号により受光を開始し、同一走査機会において、書出し位置と他の任意の走査位置でビームの特徴量を検査する走査光学系検査装置を特徴とする。
また、請求項2に記載の発明は、前記第一の受光手段を前記第二のまたは複数の受光手段に干渉しない任意の走査結像位置に移動する第二の移動手段を有する請求項1に記載の走査光学系検査装置を特徴とする。
また、請求項3に記載の発明は、前記第一の受光手段と前記第二のまたは複数の受光手段とを、または、前記第一の受光手段、第二のまたは複数の受光手段と、前記第一の受光手段、前記第二のまたは複数の受光手段を任意の走査結像位置に移動する移動手段とをビーム光束の走査方向と垂直に移動する、第三の移動手段を有する請求項1又は2に記載の走査光学系検査装置を特徴とする。
また、請求項4に記載の発明は、光軸を前記ビーム光束の走査方向と平行に固定した第二の光源と、前記第二の光源より発光するビーム光束を前記第一の受光手段および前記第二のまたは複数の受光手段に入射するようにビーム光束の光路を分岐、反射するためのビーム光束光路変更手段と、を有し、前記第一の受光手段と第二のまたは複数の受光手段の相対位置を検出、前記第一の受光手段で受光したビーム光束の位置と前記第二のまたは複数の受光手段で受光したビーム光束の相対位置を検出する請求項1乃至3のいずれか1項に記載の走査光学系検査装置を特徴とする。
また、請求項5に記載の発明は、前記同期信号検知手段が、第三の受光手段と、前記第三の受光手段で取得される光量変化を時間分割する取得光量処理手段とから成り、光量変動による同期ずれとビーム光束位置を比較、予測値を導出する請求項1乃至4のいずれか1項に記載の走査光学系検査装置を特徴とする。
また、請求項6に記載の発明は、前記同期信号検知により取得される光量時間変化データと、前記第一の受光手段及び、前記第二のまたは複数の受光手段により取得される書出し位置及び走査位置でのビーム光束の位置データを、格納する格納手段を有する請求項1乃至5のいずれか1項に記載の走査光学系検査装置を特徴とする。
また、請求項7に記載の発明は、前記走査光学系において、光源を所定の周波数で点滅制御する手順と、前記第二のまたは複数の受光手段の位置を走査範囲内で任意に変更する手順と、走査光学系の走査範囲で書出し位置と、前記書出し位置とは別の第二の位置または複数位置でのビーム光束を同一走査機会で受光する手順と、前記第一の受光手段でビーム光束の書出し位置を検出する手順と、前記第二のまたは複数の受光手段の位置でのビーム光束位置を検出する手順とより成る走査光学系検査方法を特徴とする。
また、請求項8に記載の発明は、前記走査光学系において、光源を所定の周波数で点滅制御する手順と、前記第一の受光手段の位置及び前記第二のまたは複数の受光手段の位置を走査範囲内で干渉しないように任意に変更する手順と、走査光学系の走査範囲で第一の位置と、前記第一の位置とは別の第二の位置または複数位置でのビーム光束を同一走査機会で受光する手順と、前記第一の位置でのビーム光束位置と前記第二の位置または複数位置でのビーム光束位置を検出する手順とより成る走査光学系検査方法を特徴とする。
また、請求項9に記載の発明は、走査光学系の同期信号を検知する手順と、前期同期信号の時間変化データを取得する手順と、前記走査光学系の書出し位置でのビーム光束位置を取得する手順と、上記三手順を複数回繰返す手順とより成り、同期信号の時間変化データから同期位置ずれによるビーム光束書出し位置を検出する走査光学系検査方法を特徴とする。
また、請求項10に記載の発明は、前記走査光学系において、前記光源を複数有し、前記複数光源から発光した複数のビーム光束を偏向する一又は複数のビーム光束偏向手段と、複数の光学素子とにより、複数の結像位置へ走査結像させる走査光学系、または、複数の走査光学系を有し、走査、結像位置を複数有する画像形成装置を構成する走査光学系に適用する走査光学系検査装置であって、それぞれの走査、結像位置に請求項1乃至6に記載の前記走査光学系検査装置を複数設定し、光軸をそれぞれの走査結像位置の走査方向に垂直となるように固定した第三の光源と、前記第三の光源より発光するビーム光束をそれぞれの走査結像位置に適用した前記走査光学系検査装置のそれぞれの前記第一の受光手段に入射するようにビーム光束の光路を分岐、反射するための第二のビーム光束光路変更手段と、前記第三の光源と平行に光路を有する第四の光源と、前記第四の光源より発光するビーム光束をそれぞれの走査結像位置に適用した前記走査光学系検査装置のそれぞれの前記第二のまたは複数の受光手段に入射するようにビーム光束の光路を分岐、反射するための第三のまたは複数のビーム光束光路変更手段とを有する請求項1乃至6のいずれか1項に記載の走査光学系検査装置を特徴とする。
また、請求項11に記載の発明は、請求項10に記載の第四の光源が、それぞれの走査結像位置に適用した前記走査光学系検査装置のうち一の前記第二のまたは複数の受光手段に固定され、前記第二のまたは複数の受光手段が移動した際、付属して第四の光源も同じ位置に移動する請求項10に記載の走査光学系検査装置を特徴とする。
また、請求項12に記載の発明は、請求項6に記載の格納手段を有し、同期ずれによるビーム光束位置ずれと、請求項7乃至9の走査光学系検査方法により取得されるビーム光束位置ずれ量を補正して、光源を制御する光源制御装置を特徴とする。
また、請求項13に記載の発明は、請求項12に記載の光源制御装置を有する走査光学系を特徴とする。
また、請求項14に記載の発明は、請求項4に記載の第二の光源、または請求項4に記載の第二の光源と請求項10に記載の第三、第四の光源を有する走査光学系を特徴とする。
また、請求項15に記載の発明は、請求項13乃至14に記載の走査光学系を有する画像形成装置を特徴とする。
本発明によれば、請求項1の機構を用いることにより、第一の受光手段で検出したビーム光束の書出し位置を基準とし、第一の受光手段と同一の走査機会において、第二のまたは複数の受光手段で検出したビーム光束位置との相対距離から、単一の受光手段のみでは実現し得なかった、同期位置ずれによるビーム光束位置ずれに影響されない、倍率誤差や走査線曲り等の光学的要因によるビーム光束位置の検出をすることが可能となる。
請求項2の機構を用いることにより、第一の受光手段で検出した走査域での任意の位置のビーム光束位置を基準とし、第一の受光手段と同一の走査機会において、第二のまたは複数の受光手段で検出したビーム光束位置との相対距離から、単一の受光手段のみでは実現し得なかった、同期位置ずれによるビーム光束位置ずれに影響されない、走査域での任意の区間で倍率誤差や走査線曲り等の光学的要因によるビーム光束位置の検出を可能とする。
請求項3の機構を用いることにより、請求項2乃至3の作用効果に加え、走査光学系より出射される走査ビーム光束の結像状態の検出、検査を可能とする。
請求項4の機構を用いることにより、位置の基準となるビーム光束を有することから、第一の受光手段と、第二のまたは複数の受光手段との間で、受光面の相対位置を検出し、受光手段の移動等に伴う機械的な位置ずれを除去して、走査光学系のビーム光束位置検出を可能とするとともに、複数の受光手段のキャリブレーションを可能とする。
請求項5の機構を用いることにより、同期検知信号用の走査ビーム光量変化を検知して、同期のON/OFFタイミングずれを検出し、ビーム光束位置ずれ量と比較することで、光量変化から同期位置ずれ量に起因するビーム光束位置ずれ量を予測することが可能となり、以降、予測された位置ずれ量から光源の発光タイミング調整を可能とする。
請求項6の機構を用いることにより、請求項5に記載の作用効果に加え、同期位置ずれ量とビーム光束位置ずれ量をテーブル化し、格納することで、同期位置ずれが検出された際、光源の発光タイミング調整を短時間で実行可能とする。
請求項7の機構を用いることにより、光源の発光タイミングは光源に内蔵されているPDなどで別途モニタリング可能であるから、光源の点滅動作の周期性は保証可能であり、点滅動作の周期性から、走査ビーム光束も周期的に位置決めされていることを前提にその点滅位置の周期性との差異を検出することで、走査光学系の倍率誤差や走査線曲り等の光学的要因によるビーム光束位置ずれ量の検出を可能とする。その際、複数箇所でビーム光束位置を検出し、得られる相対距離から周期性との差異を導出すれば、同期位置ずれによる影響は除去可能となる。
請求項8の機構を用いることにより、請求項7に加え、走査域での任意の2点間または複数位置間で、走査光学系の倍率誤差や走査線曲り等の光学的要因によるビーム光束位置ずれ量の検出を可能とする。
請求項9の機構を用いることにより、同期検知信号用の走査ビーム光量と、ビーム光束位置の変動を同時に検出することにより、同期位置ずれに対応したビーム光束の書出し位置検出を可能とする。
請求項10の機構を用いることにより、露光ステーションが複数ある画像形成装置や画像製品において、各露光ステーションでビーム光束位置を検出する受光手段の相対位置を決定する基準となる光源を有することで、各受光手段の相対位置決めを露光ステーション間でも確保可能となり、微小な位置ずれも、基準光源より発光されるビーム光束を受光し、位置ずれ量を検出、補正することで、各露光ステーション内、各露光ステーション間でのビーム光束位置を検出することが可能となり、ドット位置ずれ、色ずれの低減、画像品質の向上を可能とする。
請求項11の機構を用いることにより、外部に基準光源を設置すること無く、更に、全走査域でビーム光束の位置を検出する際、外部に基準光源を設ける場合は複数の基準光源が必要となるが、単一の基準光源により、複数の基準光源の機能を果たすことが可能となるため、請求項10の作用効果をより簡易な構成で実現することが可能となる。
請求項12の機構を用いることにより、同期検知信号を与える光量データから同期位置ずれ補正量を保持することにより、同期位置ずれを検知した際に、同期位置ずれを補正したビーム光束位置に対応したタイミングで光源を点滅制御することが可能となる。
請求項13の機構を用いることにより、同期位置ずれによるビーム光束位置ずれを補正して、所望の位置にビーム光束を照射可能とし、画像のドット位置ずれや色ずれを低減して画像品質の向上を可能とする。
請求項14の機構を用いることにより、ビーム光束位置を検出するための受光手段の相対基準位置を決定する光源を有し、固有の基準位置を有することが可能であることから、走査光学系毎に部品やユニットの機械的位置が異なっても、検査対象毎に検査装置の調整をする必要が無く、走査光学系、この走査光学系を有する画像形成装置、、画像製品のメンテナンスなども容易とすることが可能となる。
請求項15の機構を用いることにより、倍率誤差等の光学的要因や同期位置ずれ等の電気的要因による画像形成装置のドット位置ずれや色ずれを低減し、最終出力である画像品質を向上することが可能となる。
以下、図面を参照して、本発明の実施形態を詳細に説明する。
図1は、本発明の一実施形態に係るデジタル複写機の概略構成図である。この構成は、画像処理装置としての複写機100であり、この複写機100の上面にはコンタクトガラス206が設けられている。また、複写機100の上部には自動原稿送り装置(以下、単にADFという)201が設けられており、このADF1はコンタクトガラス206を開閉するように複写機100に図示しないヒンジ等を介して連結されている。このADF1は、複数の原稿からなる原稿束を載置可能な原稿載置台としての原稿トレイ202と、原稿トレイ202に載置された原稿束から原稿を1枚ずつ分離してコンタクトガラス206に向かって搬送する分離・搬送手段と、分離・搬送手段によってコンタクトガラス206に向かって搬送された原稿をコンタクトガラス206上の読取位置に搬送・停止させるとともに、コンタクトガラス206の下方に配設された複写機100の読取手段(公知の露光ランプ51、ミラー52,55,56、レンズ53、CCD54等)50により読み取りが終了した原稿をコンタクトガラス206から搬出する。給紙モータはコントローラからの出力信号によって駆動されるようになっており、コントローラは複写機100から給紙スタート信号が入力されると、給紙モータを正・逆転駆動するようになっている。給紙モータが正転駆動されると、給送ローラ3が時計方向に回転して原稿束から最上位に位置する原稿が給紙され、コンタクトガラス206に向かって搬送される。この原稿の先端が原稿セット検知センサ207によって検知されると、コントローラは原稿セット検知センサ207からの出力信号に基づいて給紙モータを逆転駆動させる。これにより、後続する原稿が進入するのを防止して分離されないようになっている。
また、コントローラは原稿セット検知センサ207が原稿の後端を検知したとき、この検知時点からの搬送ベルトモータの回転パルスを計数し、回転パルスが所定値に達したときに、給送ベルト204の駆動を停止して給送ベルト204を停止することにより、原稿をコンタクトガラス206読取位置に停止させる。また、コントローラは原稿セット検知センサ207によって原稿の後端が検知された時点で、給紙モータを再び駆動し、後続する原稿を上述したように分離してコンタクトガラス206に向かって搬送し、この原稿が原稿セット検知センサ207によって検知された時点からの給紙モータのパルスが所定パルスに到達したときに、給紙モータを停止させて次原稿を先出し待機させる。そして、原稿がコンタクトガラス206の読取位置に停止したとき、複写機100によって原稿の読み取りおよび露光が行なわれる。この読み取りおよび露光が終了すると、コントローラには複写機100から信号が入力されるため、コントローラはこの信号が入力すると、搬送ベルトモータを正転駆動して、搬送ベルト216によって原稿をコンタクトガラス206から排送ローラ5に搬出する。
上記のように、ADF201にある原稿トレイ202に原稿の画像面を上にして置かれた原稿束は、操作部上のプリントキーが押下されると、一番上の原稿からコンタクトガラス206上の所定の位置に給送される。給送された原稿は、読み取りユニット50によってコンタクトガラス206上の原稿の画像データを読み取り後、給送ベルト204および反転駆動コロによって排出口A(原稿反転排出時の排出口)に排出される。さらに、原稿トレイ202に次の原稿が有ることを検知した場合、前原稿と同様にコンタクトガラス206上に給送される。
第1トレイ208、第2トレイ209、第3トレイ210に積載された転写紙は、各々第1給紙ユニット211、第2給紙ユニット212、第3給紙ユニット213によって給紙され、縦搬送ユニット214によって感光体215に当接する位置まで搬送される。読み取りユニット50にて読み込まれた画像データは、書き込みユニット57からのレーザによって感光体215に書き込まれ、現像ユニット227を通過することによってトナー像が形成される。そして、転写紙は感光体215の回転と等速で搬送ベルト216によって搬送されながら、感光体215上のトナー像が転写される。その後、定着ユニット217にて画像を定着させ、排紙ユニット218に搬送される。排紙ユニット218に搬送された転写紙は、ステープルモードを行わない場合は、排紙トレイ219に排紙される。
例えば、図2に示すように、一般に画像形成装置内の走査光学系は、ポリゴンミラー1の回転により光源であるLD(レーザダイオード)ユニット2から出射されたビーム光束が偏向、走査され、fθレンズ3を透過して、製品の感光***置と想定される結像位置4に結像されるように構成されており、結像位置4で所望のビーム径、ビーム光量等が得られるようになっている。
また、図2中のLDユニット2から出射するビーム光束は光源制御回路5によりON/OFF制御され、結像位置4にはビーム光束が点滅しながら走査することとなる。図2中の同期検知PD6への走査ビーム光束入射をトリガとして生成した同期信号を基準に、光源制御回路5によるビーム光束の制御、発光開始タイミングが決まる。
図2の同期検知PD6に入射するビーム光束の光量が図3に示すように変動した場合、同期ずれは同図時間Δtとなり、図4に示すようにビーム光束の書出し位置が主走査方向に距離Lだけ変動し、走査域全体のドット位置がずれることとなる。このとき、Lは走査光学系の理想的な結像位置で次のように導出される。
回転多面鏡の回転数r[rpm]、印刷幅d[m]、回転多面鏡の面数n[面]とし、印刷に有効となる走査幅の割合をu[%]とすると、
回転多面鏡の1回転にかかる時間60/r[sec]
回転多面鏡1面分が走査する時間60/r/n[sec]
回転多面鏡1面が走査する距離d/(u/100)[m]
走査ビームが結像面で走査する速度vは、
{d/(u/100)}/(60/r/n)[m/sec]・・・(a)
(a)式で導出される速度vで主走査方向に移動している。
同期ずれによるビーム光束位置は、
L=v×Δt・・・(b)
だけ変動することとなる。
走査光学系の結像位置で走査ビーム光束を受光する場合、同期位置ずれによるビーム光束位置の変動により、走査域で所定の位置で受光してから、次いで別の位置で受光する方法では、2点間で検出したビーム光束の相対位置に誤差が含まれる。
そこで、図5に示すように、走査光学系7から出射される走査ビーム光束の結像位置4aに焦点位置を合わせた拡大レンズ8、8a、CCDエリアセンサ9、9a、CCDエリアセンサ9aを主走査方向に移動する移動ステージ10から成るビーム光束受光系を構築する。ビーム光束の画像を拡大して受光する場合には上記拡大レンズ8、8aを必要とするが、等倍での受光で解像度が満たされれば、拡大レンズは必要なく、CCDエリアセンサ9、9aのCCD素子で直接受光することも可能である。
走査光学系7では画像形成に有効な光学系外に設置された同期検知用PD6aへの走査ビーム光束入射により同期信号発生回路11で同期信号を発生し、CCDエリアセンサ9、9aに向けて同一走査機会に同期信号を出力し、CCDエリアセンサ9、9aのシャッタトリガ信号とする。シャッタトリガ信号は同時にCCDエリアセンサ9、9aに供給され、シャッタ開放時間を調整することにより、同一の走査機会において、走査域での異なる複数箇所でビーム光束を受光することが可能となる。
図6に示すように、CCDエリアセンサ9で受光したビーム光束12がビーム光束12aに変動する際の、同一走査機会にCCDエリアセンサ9aで受光した画像を図7に示す。図5の移動ステージ10に含まれて、図示しないマグネスケール等によるCCDエリアセンサ9aの位置を検出することで、CCDエリアセンサ9との距離とビーム光束の位置12と13、または12aと13aとの画像面内での位置とから、走査光学系の走査域での複数位置でのドット間距離を検出することが可能となる。ここで、比較する2つのCCDエリアセンサで検出されるビーム光束の位置が互いに同期位置ずれの影響を受けるため、相殺され、検出されたドット間距離は同期位置ずれの影響を受けない。
CCDエリアセンサ9で検出されたビーム光束12、12aの位置は書出し位置であるため、CCDエリアセンサ9aで検出されたビーム光束13、13aの位置が走査域上の狙った位置にあるかどうかの判断をするデータとして適用できる。狙った位置の設定は、上記数式(a)を導出する際に適用したパラメータや光源制御クロックと点灯タイミングから導出可能であるが、ポリゴン回転数や、点灯タイミングのずれは外部に同期検知信号をモニタリングする装置を設定したり、LD光源に一般的に併設されているPDで光量をモニタリングすることで可能である。
例えば、前出の構成・動作において、図8に示すように、拡大レンズ8bとCCDエリアセンサ9bを主走査方向に移動する移動ステージ10bと、拡大レンズ8cとCCDエリアセンサ9cを主走査方向に移動する移動ステージ10aにより、走査光学系の走査域上任意の複数位置でビーム光束を同一走査機会で受光し、複数位置での相対位置を、同期位置ずれの影響を除去して、検出可能とする。この際、複数位置でのCCDエリアセンサの位置は移動ステージ10a、10bに含まれ、図示しないマグネスケール等により検出することで可能とし、同時に機械的干渉も防止可能である。他に、慣用例としてレーザ測長器などを外部に設置することで、複数のCCDエリアセンサの相対位置を検出し、干渉を防止する方法等が有用である。
例えば、前出の構成・動作において、図9に示すように、拡大レンズ8d、8eと、CCDエリアセンサ9d、9eと、CCDエリアセンサ9d、9eを移動する移動ステージ10cとをベース14に固定し、移動ステージ15によりガイド16、16aに沿って、ベース14走査光学系のビーム走査方向と直交方向に移動する。
受光素子がCCDエリアセンサであることから、ビーム光束の2次元光量分布を検出可能であり、移動ステージ15により検査系全体を走査光学系の光軸方向に移動することで、走査光学系のビーム光束の結像状態を検出可能となる。
ここで、検出されるビーム光束の光量分布状態からビーム径などの特徴量が得られ、同時にビーム光束位置から倍率誤差が測定可能で、上記両条件を同時に満たすか否かの検査、または、両条件を満たす走査光学系の光軸方向位置を決定し得る。
例えば、前述の構成動作において、図10に示すように、外部にLD光源17を設置し、必要に応じてコリメートレンズ18を固定し、平行光を得る。LD光源17の光軸は主走査方向と平行となるよう調整が必要である。調整は、移動ステージ10d上にピンホールやCCDエリアセンサなどを設置し、移動ステージ10d上で移動し、LD光源17からのビーム光束位置を検出することで可能である。
LD光源17から出射されたビーム光束をビームスプリッタ19で分岐し、一方のビーム光束をCCDエリアセンサ9fで受光し、他方はミラー19aで反射し、CCDエリアセンサ9gで受光する。CCDエリアセンサ9gが図中CCDエリアセンサ9hに移動した際は、ビームスプリッタ19を透過したビーム光束をミラー19bで反射し、CCDエリアセンサ9hで受光する。
移動ステージ10dの高さ方向に起伏が無い場合、CCDエリアセンサによるLD光源17からのビーム光束受光画面は図11(i)、(ii)に示すように同一高さにあるが、移動ステージ10dの高さ方向に起伏がある場合、図11(iii)に示すようにLD光源17からのビーム光束受光位置の高さに変位L1を生じる。
検出値から変位L1を補正することで走査光学系の走査線曲り、走査線傾きを高精度で検出可能となる。ここで、ビームスプリッタ19、ミラー19a、19bの設置位置は、走査光学系から出射されるビーム光束に光学的に影響を与えない場合は、ミラー19a、19bをビームスプリッタに置き換えて、LD光源17と走査光学系から出射されるビーム光束との高さを等しくしてもいいが、一般的に、走査光学系からのビーム光束の主走査方向位置ずれ、光軸方向への結像位置ずれを生じるため、図12に示すように、拡大レンズ8fの開口が許容する範囲で、LD光源を走査光学系からのビーム光束と高さ方向にシフトし、ビームスプリッタまたはミラー19cで折り返し、CCDエリアセンサ9iで受光する構成が好ましい。
例えば、請求項1乃至4の構成・動作において、図2に示す同期検知PD6に入射する走査ビーム光量をAD変換回路で一定のサンプリングレートで時間分割し、受光する場合、光量変動があれば、図3に示した検出値として取得される。同期信号を発生させる閾値thに必要な光量に達するまでの時間差をΔtとすると、請求項1の構成・動作に記載の数式(b)から同期位置ずれ量が導出できることから、閾値thが不明の場合でも、ビーム光束位置ずれ量と数式(b)からΔtを逆算し、光量変動へフィードバックすることにより閾値thを導出することが可能となる。
上記、閾値thを用いて、同期検知PD6に入射するビーム光束の光量変動から同期位置ずれ量が導出され、数式(b)からLを補正量として、光源の発光タイミングを調整することが可能となる。
例えば、図2の光源制御回路5に図示しないメモリを搭載し、ΔtとLのテーブルを記憶させておく、または、数式(b)と数式(b)を導出するに適用したパラメータを記憶させておく。光源制御のフローは図12に示すように、画像データからビーム光束の点灯パターンを導出し、同期ずれΔtがある場合、点灯パターンの書出しタイミングの位相をシフトする。
図2に示す同期検知PD6で検出される同期信号の時間変化は同期検知PD6を横切る光量の時間変化となるため、図3に示すように得られ、AD変換することにより光量の時間変化を数値データとして得ることができる。同期検知PD6で検出される信号に強度変化がある場合、同期検知の閾値thによりΔtだけ、同期信号にずれを生じる。設計値等により、数式(b)からビーム光束位置ずれ量を導出できるが、同数式中vは、図14に示すv1、v2のように、厳密には走査光学系の結像位置により変わるため、同期信号の取得とビーム光束位置の取得を複数回繰返すことにより、vを決定し、v×Δtを同期位置ずれ量として補正する。
例えば、図15に示すように、単一のポリゴンミラー1dで、複数のLDユニット2b、2c、2d、2eからの出射光を偏向、走査し、fθレンズ3b、3c、3d、3eを通り、ミラー21、21a、21b、21c、21d、21e、21f、21g、21h、21i、21jにより光路を曲げて感光体22、22a、22b、22c上の結像位置4b、4c、4d、4eに結像する走査光学系、または、図2に示した形態の走査光学系が、図16に示す走査光学系7a、7b、7c、7dのように、感光体22d、22e、22f、22gそれぞれに対応して複数有し、それぞれの結像位置4f、4g、4h、4iにビーム光束を結像する場合、各走査光学系内の倍率誤差、同期ずれ等によるビーム光束の位置ずれ、ドット位置ずれと同様、各走査光学系間のビーム光束の相対位置ずれは、出力画像のドット位置ずれや色ずれ等の画像品質を低下させる。そのため、各走査光学系でのビーム光束の相対位置を正確に検出し、ずれがある場合は補正する必要がある。
そこで、図17に示すように、各走査光学系7e、7f、7g、7hの書出し位置でのビーム光束を受光するCCDエリアセンサ9j、9l、9n、9pと、任意の走査位置でビーム光束受光するCCDエリアセンサ9k、9m、9o、9qと、CCDエリアセンサ9k、9m、9o、9qを任意の位置に移動する移動ステージ10e、10f、10g、10hからなる検査装置で、感光***置に想定される位置に結像するビーム光束を取得する。図17の各走査光学系7e、7f、7g、7hに対する各検査光学系を図中矢印αの方向より見た図を図18に示す。外部に基準光源17a、17b、17c、17dを固定し、基準光源17a、17b、17c、17dから出射されたビーム光束をビームスプリッタ19d、19f、19h、19jで反射および透過して、反射光をCCDエリアセンサ9j、9l、9n、9pで受光し、透過光はミラー19e、19g、19i、19kで反射してCCDエリアセンサ9k、9m、9o、9qで受光する。これにより、請求項4の構成動作を各検査装置内で実現し得る。
更に、各走査光学系間のビーム光束の相対位置ずれを検出補正するために、外部に走査光学系の走査方向と垂直に光軸を有するように、基準光源17e、17fを固定し、基準光源17eから出射されたビーム光束をビームスプリッタ19l、19n、19p、19rで反射し、それぞれ、CCDエリアセンサ9j、9l、9n、9pで受光する。また、基準光源17fから出射されたビーム光束をビームスプリッタ19m、19o、19q、19sで反射し、それぞれ、CCDエリアセンサ9k、9m、9o、9qで受光し、基準光源のビーム光束位置を検出することで、CCDエリアセンサ9j、9l、9n、9p内、CCDエリアセンサ9k、9m、9o、9q内の走査光学系の主走査方向の位置ずれが検出され、CCDエリアセンサ間の相対的な位置ずれを補正して、走査光学系のビーム光束の位置、および、走査光学系間の相対的なビーム光束位置を正確に検出することが可能となる。
図18においては、CCDエリアセンサ9mは、CCDエリアセンサ9k、9o、9qから主走査方向に大きく位置ずれを生じている場合を示しており、まずは移動ステージに付属するマグネスケール等の位置検出手段により、検出系の粗い位置決めを実施し、相対位置決めは基準光源からのビーム光束位置で補正すると、CCDカメラの筐体とCCD素子との位置個体差など、不明確な条件を補正することが可能となる。
本項目の上記説明中、基準光源を外部に固定する旨、記載したが、基準光源17a、17b、17c、17dはそれぞれの走査光学系検査装置に固定しても良く、基準光源17e複数の走査光学系検査装置のうち、一の走査光学系検査装置、たとえば、図18中のCCDエリアセンサ9j上に固定して良い。それにより製品毎に基準光源を固定する必要が無く、検査装置の汎用性が向上する。
また、基準光源17fは主走査方向の検出したい位置に固定するのでも良いが、次請求項のように、図18中のCCDエリアセンサ9kに固定し、付属して移動することで、主走査方向の任意の位置で、各走査光学系検査装置の相対位置ずれを検出、補正することが可能となる。
例えば、図18の基準光源17fがCCDエリアセンサ9kに付属して移動することにより、走査光学系の主走査方向の任意の位置において、各走査光学系検査装置の相対位置ずれを検出、補正することで、各走査光学系間のビーム光束位置ずれ、ドット位置ずれを検出、補正することが可能となる。
更に、基準光源17eを、検査装置ではなく、走査光学系に固定することで固有の基準位置として保証され、検査装置の着脱時の位置ずれを補正することが可能となる。
例えば、図2の光源制御回路5に図示しないメモリを搭載し、ΔtとLのテーブルを記憶させておく、または、数式(b)と数式(b)を導出するに適用したパラメータを記憶させておく。光源制御のフローは図14に示すように、画像データからビーム光束の点灯パターンを導出し、同期ずれΔtがある場合、点灯パターンの書出しタイミングの位相をシフトする。例えば、図2中の光源制御回路5に、メモリを搭載した走査光学系である。
例えば、図18に記載の基準光源17a、17b、17c、17d、17e、17fを固定した走査光学系であって、ビーム光束検出時に発光させることにより、走査光学系検査装置の各CCDエリアセンサの相対位置を検出することが可能となる。
更に、検査装置に基準光源が固定されている場合に比べ、これらの基準光源の位置は走査光学系固有の位置として、検査、検出の度に生じる検査装置の位置ずれの影響を受けない走査光学系と感光体等を備えて成る画像形成装置である。
本発明の一実施形態に係るデジタル複写機の概略構成図である。 本発明の走査光学系検査装置の基本構成を示す光学系概略説明図である。 本発明の装置の同期検知で入射光量変動と同期ずれ時間の関係を示す説明図である。 本発明の装置でのビーム光束変動によるドット位置ずれの例の図である。 本発明の走査ビームに対するビーム光束受光系の構成を示す概略図である。 本発明における受光ビーム光束の変動の例を示す図である。 本発明の上記と別のセンサで受光したビーム光束の変動の例を示す図である。 本発明の複数位置で光束を同一走査で受光し同期位置ずれの影響を除去し検出できる装置の構成図である。 本発明の走査方向と垂直に移動する装置によりビーム光束の2次元光量分布を検出できる装置の構成図である。 本発明のビームスプリッタを使用し走査光学系の走査線曲り、走査線傾きを高精度の検出できる装置の構成図である。 本発明の走査光学系の走査線曲り、走査線傾きを高精度の検出できる例を示す光束の図である。 本発明の走査光学系からの光束の主走査方向、光軸方向への結像位置ずれの影響を避けるための光学系の説明図である。 本発明の走査光学系検査装置の光源制御のフロー図である。 本発明の装置でのビーム光束位置ずれ量計算時の走査速度に関する説明図である。 本発明の単一のポリゴンミラーで、複数のLDユニット出射光を偏向、走査する場合の構成図である。 本発明の検査装置でビーム光束の相対位置を正確に検出することが必要になる複写機の例の概略図である。 本発明の検査装置を感光体の想定される位置に設置した斜視図である。 本発明の検査装置のエリアセンサが主走査方向に大きく位置ずれを生じている場合の説明図である。
符号の説明
1,1a,1b ポリゴンミラー
2,2a,2b,2c,2d,2e LDユニット
3,3a,3b,3c,3d,3e fθレンズ
4,4a,4b,4c,4d,4e,4f,4g,4h 走査結像位置
5,5a 光源制御回路
6,6a 同期検知用PD
7,7a,7b,7c,7d,8e,7f,7g,7h 走査光学系
8,8a,8b,8c,8d,8e,8f 拡大レンズ
9,9a,9b,9c,9d,9e,9f,9g,9h,9i,9j,9k,9l,9m,9n,9o,9p,9q CCDエリアセンサ
10,10a,10b,10c,10d,10e,10f,10g,10h 移動ステージ
11 同期信号発生回路
12,12a,12b 書出し位置ビーム光束取得画像
13,13a,13b,13c 主走査方向の任意位置でのビーム光束取得画像
14 ベース
15 移動ステージ
16,16a ガイド
17,17a,17b,17c,17d,17e,17f 基準光源
18 コリメートレンズ
19,19a,19b,19c,19d,19e,19f,19g,19h,19i,19j,19k,19l,19m,19n,19o,19p,19q,19r,19s ビームスプリッターおよびミラー
20,20a,20b 基準光源からのビーム光束受光位置
21,21a,21b,21c,21d,21e,21f,21g,21h,21i,21j 折り返しミラー
22,22a,22b,22c,22d,22e,22f,22g 感光体

Claims (12)

  1. 光源と、光源を点滅制御しビーム光束を発光する光源制御手段と、前記ビーム光束を偏向、走査させるビーム光束偏向手段と、偏向、走査された前記ビーム光束を所定の位置に結像させる光学素子とを有する走査光学系の検査装置であって、走査されたビーム光束書出し位置でビーム光束を受光する第一の受光手段と、任意の走査結像位置でビーム光束を受光する第二のまたは複数の受光手段と、前記第二のまたは複数の受光手段を任意の走査結像位置に移動する移動手段と、前記第一の受光手段を前記第二のまたは複数の受光手段に干渉しない任意の走査結像位置に移動する第二の移動手段と、前記第二のまたは複数の受光手段の位置を検出する受光位置検出手段と、前記走査光学系の同期信号を検出する同期信号検知手段と、前記第一の受光手段と前記第二のまたは複数の受光手段に同一の走査機会に生じる同期信号を出力する同期信号出力手段とを有し、前記第一の受光手段と第二のまたは複数の受光手段が共通の同期信号により受光を開始し、同一走査機会において、書出し位置と他の任意の走査位置でビームの特徴量を検査することを特徴とする走査光学系検査装置。
  2. 前記第一の受光手段と前記第二のまたは複数の受光手段とを、または、前記第一の受光手段、第二のまたは複数の受光手段と、前記第一の受光手段、前記第二のまたは複数の受光手段を任意の走査結像位置に移動する移動手段とをビーム光束の走査方向と垂直に移動する第三の移動手段を有することを特徴とする請求項1記載の走査光学系検査装置。
  3. 光軸を前記ビーム光束の走査方向と平行に固定した第二の光源と、前記第二の光源より発光するビーム光束を前記第一の受光手段および前記第二のまたは複数の受光手段に入射するようにビーム光束の光路を分岐、反射するためのビーム光束光路変更手段と、を有し、前記第一の受光手段と第二のまたは複数の受光手段の相対位置を検出、前記第一の受光手段で受光したビーム光束の位置と前記第二のまたは複数の受光手段で受光したビーム光束の相対位置を検出することを特徴とする請求項1乃至2のいずれか1項に記載の走査光学系検査装置。
  4. 前記同期信号検知手段が、前記第三の受光手段と、前記第三の受光手段で取得される光量変化を時間分割する取得光量処理手段とから成り、光量変動による同期ずれとビーム光束位置を比較、予測値を導出することを特徴とする請求項1乃至3のいずれか1項に記載の走査光学系検査装置。
  5. 前記同期信号検知により取得される光量時間変化データと、前記第一の受光手段及び前記第二のまたは複数の受光手段により取得される書出し位置及び走査位置でのビーム光束の位置データを格納する格納手段を有することを特徴とする請求項1乃至4のいずれか1項に記載の走査光学系検査装置。
  6. 走査光学系において、光源を所定の周波数で点滅制御する手順と、第二または複数の受光手段の位置を走査範囲内で任意に変更する手順と、前記走査光学系の走査範囲で書出し位置と、前記書出し位置とは別の第二の位置または複数位置でのビーム光束を同一走査機会で受光する手順と、第一の受光手段でビーム光束の書出し位置を検出する手順と、前記第二のまたは複数の受光手段の位置でのビーム光束位置を検出する手順と、より成ることを特徴とする走査光学系検査方法。
  7. 走査光学系において、光源を所定の周波数で点滅制御する手順と、第一の受光手段の位置及び第二のまたは複数の受光手段の位置を走査範囲内で干渉しないように任意に変更する手順と、前記走査光学系の走査範囲で第一の位置と、前記第一の位置とは別の第二の位置または複数位置でのビーム光束を同一走査機会で受光する手順と、前記第一の位置でのビーム光束位置と前記第二の位置または複数位置でのビーム光束位置を検出する手順と、より成ることを特徴とする走査光学系検査方法。
  8. 前記走査光学系において、前記走査光学系の同期信号を検知する手順と、前期同期信号の時間変化データを取得する手順と、前記走査光学系の書出し位置でのビーム光束位置を取得する手順と、上記三手順を複数回繰返す手順とより成り、前記同期信号の時間変化データから同期位置ずれによるビーム光束書出し位置を検出することを特徴とする請求項6又は7記載の走査光学系検査方法。
  9. 前記走査光学系において、前記光源を複数有し、前記複数光源から発光した複数のビーム光束を偏向する一又は複数のビーム光束偏向手段と、複数の光学素子とにより、複数の結像位置へ走査結像させる走査光学系、または複数の走査光学系を有し、走査、結像位置を複数有する画像形成装置を構成する走査光学系に適用する走査光学系検査装置であって、それぞれの走査、結像位置に請求項1乃至5の何れか1項に記載の走査光学系検査装置を複数設定し、光軸をそれぞれの走査結像位置の走査方向に垂直となるように固定した第三の光源と、前記第三の光源より発光するビーム光束をそれぞれの走査結像位置に適用した前記走査光学系検査装置のそれぞれの前記第一の受光手段に入射するようにビーム光束の光路を分岐、反射するための第二のビーム光束光路変更手段と、前記第三の光源と平行に光路を有する第四の光源と、前記第四の光源より発光するビーム光束をそれぞれの走査結像位置に適用した前記走査光学系検査装置のそれぞれの前記第二のまたは複数の受光手段に入射するようにビーム光束の光路を分岐、反射するための第三のまたは複数のビーム光束光路変更手段とを有することを特徴とする走査光学系検査装置。
  10. 前記第四の光源が、それぞれの走査結像位置に適用した前記走査光学系検査装置のうち一の前記第二のまたは複数の受光手段に固定され、前記第二のまたは複数の受光手段が移動した際、付属して第四の光源も同じ位置に移動することを特徴とする請求項9記載の走査光学系検査装置。
  11. 前記格納手段を有し、同期ずれによるビーム光束位置ずれと、請求項6乃至8の何れか1項に記載の走査光学系検査方法により取得される前記ビーム光束位置ずれ量を補正して、光源を制御可能にすることを特徴とする光源制御装置を有することを特徴とする請求項9又は10記載の走査光学系検査装置。
  12. 請求項1〜5又は9〜11の何れか1項に記載の走査光学系検査装置を有することを特徴とする画像形成装置。
JP2003420061A 2003-12-17 2003-12-17 走査光学系検査装置、走査光学系検査方法、及び画像形成装置 Expired - Fee Related JP4406276B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003420061A JP4406276B2 (ja) 2003-12-17 2003-12-17 走査光学系検査装置、走査光学系検査方法、及び画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003420061A JP4406276B2 (ja) 2003-12-17 2003-12-17 走査光学系検査装置、走査光学系検査方法、及び画像形成装置

Publications (2)

Publication Number Publication Date
JP2005181019A JP2005181019A (ja) 2005-07-07
JP4406276B2 true JP4406276B2 (ja) 2010-01-27

Family

ID=34781746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003420061A Expired - Fee Related JP4406276B2 (ja) 2003-12-17 2003-12-17 走査光学系検査装置、走査光学系検査方法、及び画像形成装置

Country Status (1)

Country Link
JP (1) JP4406276B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220011568A1 (en) * 2020-07-10 2022-01-13 Toshiba Tec Kabushiki Kaisha Scanning light measuring apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4859451B2 (ja) * 2005-12-12 2012-01-25 株式会社リコー レーザ走査光学系の光学特性測定装置及びその光学特性測定方法
JP4643521B2 (ja) * 2006-08-22 2011-03-02 シャープ株式会社 画像信号処理装置およびそれを備えてなる画像形成装置
JP5233236B2 (ja) * 2007-10-12 2013-07-10 コニカミノルタビジネステクノロジーズ株式会社 光走査装置
JP5163719B2 (ja) * 2010-09-15 2013-03-13 コニカミノルタビジネステクノロジーズ株式会社 画像形成装置
CN104359871A (zh) * 2014-10-16 2015-02-18 爱彼思(苏州)自动化科技有限公司 一种高精度非接触式光泽度检测的方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220011568A1 (en) * 2020-07-10 2022-01-13 Toshiba Tec Kabushiki Kaisha Scanning light measuring apparatus

Also Published As

Publication number Publication date
JP2005181019A (ja) 2005-07-07

Similar Documents

Publication Publication Date Title
JP4768348B2 (ja) 光走査装置及び画像形成装置
US8390660B2 (en) Image forming apparatus
JP4989169B2 (ja) 画像形成装置、及び制御方法
JP2008224965A (ja) 光走査装置、および画像形成装置
US7218337B2 (en) Optical scanner, optical-path adjustment method, and image forming apparatus
US7995089B2 (en) Motor polygon assembly (MPA) facet reflectivity mapping
US7057634B2 (en) Multi-beam scanning device and image forming apparatus using the scanning device
US8334887B2 (en) Apparatus and method for determining beam delays in a printing device
JP4406276B2 (ja) 走査光学系検査装置、走査光学系検査方法、及び画像形成装置
US7889221B2 (en) Optical scanning apparatus
US8400488B2 (en) Optical scanning apparatus and control method therefor
JP2004286508A (ja) 走査光学系のドット位置測定装置およびその方法
JP5879898B2 (ja) アクチュエータ、光走査装置及び画像形成装置
JP4643159B2 (ja) 光路調整方法
US9971273B2 (en) Image forming apparatus
JP2009047551A (ja) 光学特性測定装置・走査光学系ユニット・画像形成装置
JP2007083601A (ja) 画像形成装置
JP2020040252A (ja) 情報処理装置及び画像形成装置
JP4456384B2 (ja) マルチビーム走査装置及び画像形成装置
JP2019197176A (ja) 画像形成装置及び情報処理装置
JP2005308971A (ja) 画像形成装置
JP4895242B2 (ja) 光走査装置及び画像形成装置
JP6171654B2 (ja) 画像形成装置、画像形成制御装置および画像形成装置制御方法
JP2002311368A (ja) 光走査装置、及び光走査装置のレジ調整・左右倍率調整方法
JP2001281589A (ja) 画像形成装置及び方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061002

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees