JP6171654B2 - 画像形成装置、画像形成制御装置および画像形成装置制御方法 - Google Patents

画像形成装置、画像形成制御装置および画像形成装置制御方法 Download PDF

Info

Publication number
JP6171654B2
JP6171654B2 JP2013148448A JP2013148448A JP6171654B2 JP 6171654 B2 JP6171654 B2 JP 6171654B2 JP 2013148448 A JP2013148448 A JP 2013148448A JP 2013148448 A JP2013148448 A JP 2013148448A JP 6171654 B2 JP6171654 B2 JP 6171654B2
Authority
JP
Japan
Prior art keywords
light
image
light emitting
image forming
characteristic curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013148448A
Other languages
English (en)
Other versions
JP2015020299A (ja
Inventor
禎宏 江角
禎宏 江角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2013148448A priority Critical patent/JP6171654B2/ja
Publication of JP2015020299A publication Critical patent/JP2015020299A/ja
Application granted granted Critical
Publication of JP6171654B2 publication Critical patent/JP6171654B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Facsimile Scanning Arrangements (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)

Description

本発明は、複写機やプリンタなどの画像形成装置及びその制御装置や制御方法に関し、特に、複数の光源からのレーザビームを用いて複数ライン分の画像を1回の走査で感光体などの記録媒体に書き込む機能を有するマルチビーム型の画像形成装置の制御に関する。
画像形成装置として、感光体ドラムや感光体ベルト等の像担持体を第1方向(副走査方向)に駆動しつつ、画像データに応じた第2方向(主走査方向)の1ライン又は複数ライン毎の画像形成を繰り返し行うことで、2次元(1頁分毎)の画像形成を行うものが知られている。
その一例として、電子写真方式の画像形成装置では、画像データに応じて変調したレーザビームを像担持体の主走査方向に走査し、これと並行して、副走査方向に回転する像担持体(感光体ドラムや感光体ベルト)上に、前記レーザビームによって画像を形成している。この場合に、ドットクロックと呼ばれるクロック信号(画素クロック)を基準にして、レーザビームを画像データで変調するようにしている。
また、画像形成を高速に、または、高解像度で行うために、ポリゴンミラーの回転数上昇やレーザビームの変調周波数上昇では、装置の大型化やコスト上昇が発生する。そこで、高速あるいは高解像度の画像形成のため、複数のレーザビームを発生可能なレーザダイオード(LD)などの光源を備え、この複数の光源からの複数のレーザビームを用いて、画像データに応じた主走査方向の複数ライン毎の画像形成を副走査方向に繰り返して1頁分の画像形成を行うものが知られている。
図9は複数のレーザビームを発生可能な光源LDUであり、ここでは、LB_1〜LB_4の4レーザビームを発生する発光部LD_1〜LD_4を備えて構成されている。この場合に、光源LDUに含まれる発光部LD_1〜LD_4は、主走査方向に同一位置、すなわち、副走査方向に沿って配置されている。
一方、光源LDUを図10のように、副走査方向に平行ではなく所定角度傾けることで、複数のレーザビームLB_1〜LB_4それぞれのピッチを詰めることができる。すなわち、副走査方向に高精細化を実現することが可能になる。なお、この場合には、各発光部LD_1〜LD_4の主走査方向位置が異なる。
そのため、図11のように、主走査方向の下流側に位置する発光部LD_4、LD_3、LD_2、LD_1に合わせて、駆動データVIDEO_4、VIDEO_3、VIDEO_2、VIDEO_1の順にタイミングを調整して発光させるように制御する。すなわち、主走査方向下流側の発光部ほど、発光タイミングを早めるように制御する。
これにより、図9のように配置された光源LDUでは図12(a)のようなドットのピッチであったのに対して、図10のように配置された光源LDUでは図12(b)のような狭いドットピッチを実現できる。
ただし、光源LDUの個体差、光源LDUの傾け角度の誤差、駆動データのタイミングの誤差などにより、図12(c)や図12(d)のようにドットが傾いた状態に形成される場合も発生する。
このような傾きを有するドット群により副走査方向の線を画像形成すると、図13のような画質の劣化が生じることになる。ここでは、本来であれば、縦方向の直線になるべきところが、波打った状態の線になっている。
なお、複数のレーザビームを用いる場合の調整については、以下の特許文献1に記載されている。
特開2002−137447号公報
以上の特許文献1では、1ビームによるドット列に対して次の1ビームによるドット列を主走査方向にずらして配置される第1パターン群と、1ビームによるドット列に対して次の1ビームによるドット列を主走査反対方向にずらして配置される第2パターン群と、による評価チャートを出力する。そして、第1パターン群と第2パターン群とで濃度差を検出して、調整を行う。
この調整方法では、複雑で特殊な評価チャートを必要とすることに加え、2つの濃度センサを用いるためにセンサ間の感度差により精度が低下しやすいという問題がある。また、濃度差により調整を行うため、画像形成の濃度むらなどの影響を受けて、調整の精度が低下するという問題も抱えている。
また、以上の評価方法では、主走査方向のドット位置ズレの有無は分かるが、どれだけずれているかを正確に判定することができない。また、ドット位置ズレの影響を小さくすることは可能であるが、ドット位置ズレを無くすことはできない。
本発明は、上記の課題を解決するためになされたものであって、傾いた状態の複数発光部の光源を用いた場合の複数ライン並行発光におけるレーザビームの位置ずれを適切に把握して調整することが可能な画像形成装置、画像形成制御装置および画像形成装置制御方法を実現することを目的とする。
(1)本発明の一側面を反映した、画像形成装置、画像形成制御装置および画像形成装置制御方法の一態様は、原稿の画像を読み取る読取部と、第1方向に駆動された状態で、前記第1方向に直交する第2方向に走査された光線を受けることにより像が形成される像担持体と、複数発光部が配列された光源と、前記光源からの複数の光線を前記第1方向に異なる位置で前記第2方向に走査するよう前記像担持体に照射しつつ、前記像担持体を前記第1方向に駆動する走査部と、前記走査部の駆動を制御すると共に、前記複数発光部の発光タイミングを制御する制御部と、を備え、前記制御部は、前記第2方向に発光有と発光無を交互に繰り返す調整パターンの像を、前記光源に含まれる異なる発光部により生成するように前記光源を制御し、前記調整パターンの像を読み取って得た受光信号レベルの特性曲線、前記読取部の受光素子ピッチ、前記特性曲線の1周期に相当する前記読取部における受光素子数、前記特性曲線の1周期に相当する前記調整パターンの繰り返し数、、位相差に相当する受光素子数、異なる前記発光部による前記調整パターンの特性曲線同士の位相差、を求め、前記光源に含まれる異なる前記発光部の発光による対応する像の第2方向の位置ズレを算出する、ことを特徴とする。
(2)上記(1)において、前記制御部は、前記第2方向に発光有と発光無を交互に繰り返す調整パターンの像を生成するように前記光源を制御すると共に、前記読取部に含まれる受光素子のピッチをp、前記調整パターンにおける発光有と発光無とのピッチをp+δp、但しδp<p、となるように制御した場合に、前記特性曲線の1周期に相当する前記読取部における受光素子数をX’、前記特性曲線の1周期に相当する前記調整パターンの繰り返し数をX、前記位相差に相当する受光素子数をY、として求め、前記複数発光部における一端部に位置する発光部を第m番目発光部、前記一端部に対して他端部に位置する発光部を第n番目発光部としたとき、前記第m番目発光部の発光による像のドット位置と前記第n番目発光部の発光による像のドット位置との前記第2方向の位置ズレZを、Z=(((X’−X)・Y)/X)p、として算出する、ことを特徴とする。
(3)上記(1)−(2)において、前記特性曲線は、奇数番目受光素子の受光信号値を結んだ奇数特性曲線と、偶数番目受光素子の受光信号値を結んだ偶数特性曲線とからなる、ことを特徴とする。
(4)上記(1)−(3)において、前記制御部は、前記光源に含まれる前記発光部がa個である場合に、前記走査部による前記像担持体の前記第1方向の駆動速度を通常時の1/aに変更し、同一の前記発光部による前記調整パターンを前記第1方向に複数回繰り返すように制御する、ことを特徴とする。
)上記(1)−()において、前記制御部は、前記位置ズレを解消するように前記光源に含まれる前記複数発光部の発光タイミングを調整する、ことを特徴とする。
(1)本発明の一側面を反映した、画像形成装置、画像形成制御装置および画像形成装置制御方法の一態様では、第1方向(副走査方向)に駆動される像担持体に対して、第1方向に複数発光部が配列された光源を用いて、第1方向に直交する第2方向(主走査方向)に光線を走査して画像を形成する際に、第2方向に発光有と発光無を交互に繰り返す調整パターンの像を、光源に含まれる異なる発光部により生成するように光源を制御し、調整パターンの像を読み取って得た受光信号レベルの特性曲線、読取部の受光素子ピッチ、特性曲線の1周期に相当する読取部における受光素子数、特性曲線の1周期に相当する調整パターンの繰り返し数、位相差に相当する受光素子数、異なる発光部による調整パターンの特性曲線同士の位相差、を求め、光源に含まれる異なる発光部の発光による対応する像の第2方向の位置ズレを算出する。
この結果、傾いた状態の複数発光部の光源を用いた場合の複数ライン並行発光におけるレーザビームの位置ずれを算出することにより、適切に把握することが可能になる。
(2)上記(1)において、読取部に含まれる受光素子のピッチをp、調整パターンにおける発光有と発光無とのピッチをp+δp、但しδp<p、とした場合に、特性曲線の1周期に相当する読取部における受光素子数をX’、特性曲線の1周期に相当する調整パターンの繰り返し数をX、位相差に相当する受光素子数をY、として求め、複数発光部における一端部に位置する発光部を第m番目発光部、一端部に対して他端部に位置する発光部を第n番目発光部としたとき、第m番目発光部の発光による像のドット位置と第n番目発光部の発光による像のドット位置との第2方向の位置ズレZを、Z=(((X’−X)・Y)/X)p、として算出する。
この結果、傾いた状態の複数発光部の光源を用いた場合の複数ライン並行発光におけるレーザビームの位置ずれを、計算により正確に算出することができ、適切に把握することが可能になる。
(3)上記(1)−(2)において、特性曲線は、奇数番目受光素子の受光信号値を結んだ奇数特性曲線と、偶数番目受光素子の受光信号値を結んだ偶数特性曲線とからなるため、特性曲線の周期や位相差を容易に検出することが可能になる。
(4)上記(1)−(3)において、制御部は、光源に含まれる発光部が第1方向にa個である場合に、走査部による像担持体の第1方向の駆動速度を通常時の1/aに変更し、同一の発光部による調整パターンを第1方向に複数回繰り返す。これにより、調整パターンが第1方向に連続した線になり、読取部での読み取りが容易になる。
(5)上記(1)−(4)において算出された位置ズレに対して、この位置ズレを解消するように、光源に含まれる複数発光部の発光タイミングを調整する。
この結果、傾いた状態の複数発光部の光源を用いた場合の複数ライン並行発光におけるレーザビームの位置ずれを、計算により正確に解消することが可能になる。また、算出された位置ズレに基づいて発光タイミングを調整するため、微調整を複数回繰り返す必要はなく、適切な調整が簡潔に実行できる。
本発明の実施形態の画像形成装置の構成を示すブロック図である。 本発明の一実施形態の画像形成装置の構成を示す説明図である。 本発明の一実施形態の画像形成装置の動作を示す説明図である。 本発明の一実施形態の画像形成装置の動作を示す説明図である。 本発明の一実施形態の画像形成装置の動作を示すフローチャートである。 本発明の一実施形態の画像形成装置の動作を示す説明図である。 本発明の一実施形態の画像形成装置の動作を示す説明図である。 本発明の一実施形態の画像形成装置の動作を示す説明図である。 複数発光部の光源の様子を示す説明図である。 傾いた状態の複数発光部の光源の様子を示す説明図である。 傾いた状態の複数発光部の光源の駆動の様子を示す説明図である。 複数発光部の光源により形成されるドットの様子を示す説明図である。 複数発光部の光源により形成されるドットの様子を示す説明図である。
以下、図面を参照して本発明を実施するための最良の形態(実施形態)を詳細に説明する。
〔第一実施形態〕
本実施形態が適用される画像形成装置は、複数の光源からの複数n本のレーザビームを像担持体の主走査方向に走査して、複数nライン分の発光を並行して行うマルチビーム型の画像形成装置である。
以下、本実施形態のマルチビーム型の画像形成装置100の第1の実施形態の構成を、図1と図2に基づいて詳細に説明する。なお、図1では画像形成装置100全体の構成をブロック図として示し、図2は光学系170近傍を斜視図として示している。
なお、この実施形態では、画質を劣化させることなく、複数のレーザビームを用いる画像形成装置100の基本的な構成要件を中心に説明する。したがって、画像形成装置100として一般的であり、周知となっている構成要件については省略している。
〔実施形態の構成〕
この図1に示すように画像形成装置100は、画像形成装置100の各部を制御するためにCPUなどで構成されて画像データや所定の命令データに応じてレーザの発光の制御を行う全体制御部101と、画像形成プログラムや調整プログラム等の各種プログラムや調整パターンデータ等の各種パラメータを記憶しておく記憶手段としての記憶部103と、操作者による操作入力に応じた操作入力信号を全体制御部101に通知すると共に全体制御部101からの指示により各種情報表示とを行う操作表示手段としての操作部105と、原稿の画像を読み取って画像データを生成する読み取り手段としての読取部110と、全体制御部101からの指示に基づいて外部から入力される画像データあるいは読取部110での読み取りにより生成される画像データに対して画像形成に必要な画像処理を施す画像処理部120と、全体制御部101の制御に基づいて画像データに応じて光源の発光駆動を制御するレーザ制御部130と、画像形成を行う画像形成部としてのプリントエンジン140と、プリントエンジン140中で複数n本のレーザビームの発光と走査とを行うプリントヘッド150と、光源としてのレーザダイオードを駆動するレーザ駆動回路160と、レーザダイオードからの複数n本のレーザビームで感光体に対して走査を行うための光学部品で構成された光学系170と、プリントヘッド150によるレーザビームの走査を受けてトナー像を形成するプロセスユニット180と、を備えて構成されている。
また、主走査方向に発光有と発光無を交互に繰り返す調整パターンの像がプリントエンジン140により形成された場合に、読取部110で所定の調整パターンを読み取って得られる調整パターン画像データから、複数発光部のレーザビームの位置ズレを算出する発光位置ズレ制御部190を備えて構成される。ここで、全体制御部101とレーザ制御部130と発光位置ズレ制御部190とを合わせて、制御部として扱うことが可能である。
なお、図1では読取部110と発光位置ズレ制御部190とが画像形成装置100に含まれる状態を示すが、これに限定されるものではない。例えば、読取部110は、画像形成装置100において原稿を読み取る読取部110とは別に、像担持体や転写後の用紙において調整パターンを読み取るセンサであっても良いし、画像形成装置100の外部のスキャナであっても良い。同様に、発光位置ズレ制御部190は、画像形成装置100外部に存在する画像形成制御装置として構成されても良い。
なお、画像形成装置100の調整モード時には、発光位置ズレ制御部190は、複数発光部の発光タイミングを制御する際に、主走査方向にに発光有と発光無を交互に繰り返す調整パターンの像を生成するようにレーザ制御部130とプリントエンジン140とを制御し、該調整パターンの像の読み取り結果から発光位置ズレ制御部190が算出した複数発光部のレーザビームの位置ズレに基づいて複数発光部の発光タイミングを決定するよう制御する。
また、図2において、プリントヘッド150に含まれる光学系170は、複数レーザビームを発生させる複数発光部を備える光源としてのレーザダイオード171、レーザビームを光学的に各種補正をするコリメータレンズ172とシリンドリカルレンズ173、レーザビームを主走査方向に走査するポリゴンミラー174、光学的に走査角度の補正を行うfθレンズ175、光学的な補正を行うシリンドリカルレンズ176、水平同期信号検出のためのミラー177、水平同期信号検出のための水平同期センサ178とを備えて構成されている。
なお、この図2でレーザダイオード171として示した部分は、実際には複数のレーザダイオードから構成され複数のレーザビームを合成する光学部を含んで構成されたものでもよいし、一体に形成された複数ビームレーザアレイであってもよい。
なお、この図1では紙面の都合で4ラインのレーザビームが生成される状態を示しているが、4ラインに限定されるものではない。そして、以上のようにして走査される複数のレーザビームが像担持体としての感光体ドラム181上に走査され、感光体ドラム161の回転を副走査方向の走査として、感光体ドラム181表面にはレーザビームに応じた潜像が形成される。ここで、レーザビームを走査する方向が主走査方向、感光体ドラム181の回転方向が副走査方向である。
そして、レーザダイオード171は図10のように斜めに配置されているものの、発光タイミングの調整により、感光体ドラム181上で複数のレーザビームは副走査方向に配列されている。
なお、感光体ドラム181はプロセスユニット180に含まれ、レーザビームの走査を受けて感光体ドラム181上に静電潜像が形成され、この静電潜像は図示されない現像部によりトナー像にされ、さらに図示されない転写部によってトナー像が感光体ドラム181から用紙に転写される。また、カラー画像形成装置の場合には、ここに示したプリントヘッド150やプロセスユニット180を色数分配置する。
なお、以上の構成において、画像処理部120は画像形成に必要な各種の画像処理を施す画像処理部であり、この実施形態では複数発光部を有する光源としてのレーザダイオード171で並行露光を行うために、複数の光源に対応して、各ライン分の画像データを並行して出力する機能を有している。または、画像処理部120からは1ライン分ずつの画像データが出力されていて、レーザ制御部130において複数ライン分の画像データを蓄積して、複数ライン分並行してレーザダイオード171を駆動するようにしてもよい。
また、レーザダイオード171は、図10において光源LDUとして説明したように、複数発光部が副走査方向に完全に平行ではなく、図10のように所定角度傾けた状態で配置されている。さらに、レーザ制御部130の制御により、主走査方向の下流側に位置する発光部LD_4、LD_3、LD_2、LD_1に合わせて、駆動データVIDEO_4、VIDEO_3、VIDEO_2、VIDEO_1の順にタイミングを調整して発光させるように制御することで、図12(b)のような狭いドット間隔を実現しようとしている。ただし、レーザダイオード171の個体差、レーザダイオード171の傾け角度の誤差、駆動データのタイミングの誤差などにより、図12(c)や図12(d)のようにドットが傾いた状態に形成される問題が生じている。
〔調整パターン〕
以下、図3と図4の説明図を参照して、本実施形態の画像形成装置100における調整パターンの基本部分について説明する。
なお、図3は、図4の部分(開始部分)拡大図である。ここでは、副走査方向を第1方向、主走査方向を第2方向としている。
図3(a)は、主走査方向に発光有と発光無を交互に繰り返す調整パターンの像を、副走査方向に繰り返して形成した状態を示している。すなわち、副走査方向の黒線と空白線とが、主走査方向に繰り返す状態の調整パターンが形成されている。
なお、印刷分野では黒線と空白線を1ペアと扱い、黒線のライン数(ラインペア)をカウントすることが一般的である。しかし、本実施形態では、調整パターンにより形成される縦線と受光素子の素子番号との対応関係を考慮し、黒線(黒ライン)と空白線(白ライン)とで2ラインとカウントする、いわゆるTV解像度に準じた方式で計算する例で説明を行うことにする。
なお、黒線と空白線とを1ペアとするラインペアでカウントした場合には、後述する説明中のライン数を1/2すれば良いため、処理内容や計算結果が根本的に変化することはない。
ここで、図3(a)の調整パターンは、図3(b)の読取部110により読み取られる。この図3の状態では、各受光素子に#1〜#14の番号を付してある。そして、読取部110に含まれる受光素子のピッチ(隣接する受光素子間隔)をp、調整パターンにおける発光有と発光無とのピッチをp+δp、但しδp<p、となるように制御しておく。
なお、発光有と発光無とを1ドットで繰り返して生成される調整パターンのピッチp1が、受光素子ピッチpに比較して著しく小さくて、上述したpとp+δpの関係を満たさない場合には、複数ドット発光有、複数ドット発光無のようにする。
受光素子#1と調整パターンの黒線とが一致する状態に位置決めした場合、受光素子#1は黒線を読み取るため、その受光信号値は0近傍の最小値になる。そして、調整パターンのピッチp+δpと受光素子ピッチpとの差により、奇数番目の受光素子#3、受光素子#5と、徐々に黒線がずれて空白線が入り込むため、徐々に受光信号値が上昇する(図3(c))。なお、この奇数番目の受光信号値を結ぶと滑らかな特性曲線(奇数特性曲線)となる。
一方、受光素子#2は調整パターンの空白線と一致する状態であり、受光素子#2は空白線を読み取るため、の受光信号値は最大値近傍になる。そして、調整パターンのピッチp+δpと受光素子ピッチpとの差により、偶数番目の受光素子#4、受光素子#6と、徐々に空白線に対して黒線が入り込むため、徐々に受光信号値が下降する(図3(c))。なお、この偶数番目の受光信号値を結ぶと滑らかな特性曲線(偶数特性曲線)となる。
なお、「特性曲線」とは、本実施形態においては、奇数番目または偶数番目のいずれかの信号値を結ぶことにより生成される曲線を意味している。
また、このように調整パターンと受光素子との位置関係が徐々にずれていく現象は、異なるピッチの濃淡が重なり合って発生する「モアレ」の原理と類似している。
図3で示した調整パターン、受光素子、受光信号値の特性を、主走査方向に更に長く示すと、図4の状態になる。
この図4では、受光素子#1と受光素子#43とで、黒線が受光素子の位置と一致した状態(受光信号値=最低)であることが読み取れる。すなわち、調整パターン中の黒線と空白線の合計40ライン(40(p+δp))が特性曲線の1周期λとして、42受光素子分(42p)と一致していることが読み取れる。
この場合、40(p+δp)=42pであるため、δp=0.05pである。すなわち、受光素子ピッチpに対して、調整パターンにおける発光有と発光無とのピッチ(p+δp)は、1.05pであることが分かる。
〔実施形態の動作〕
以下、図5のフローチャート、図6と図7の調整パターン読み取り状態説明図を参照して、本実施形態の画像形成装置100の動作について説明する。なお、発光位置ズレ制御部190が画像形成装置100の外部であることも可能であるが、ここでは、発光位置ズレ制御部190が画像形成装置100の内部に存在しているとして説明する。
全体制御部101は、画像形成装置100の状態、操作部105からの入力、図示されない外部機器からの指示等を監視しており、これらに基づいて画像形成装置100の動作モードを決定する。調整の指示が入力されると、全体制御部101は画像形成装置100を調整モードとして動作させる。
この調整モード時には、全体制御部101は、画像形成装置100の各部を制御する権限を発光位置ズレ制御部190に委譲する。
この調整モードにおいて、発光位置ズレ制御部190は、副走査方向速度、すなわち、感光体ドラム181の回転速度と用紙の搬送速度を、1/(発光ビーム数)になるように制御する。ここでは、レーザダイオード171が4ビームであるので、副走査方向速度を通常時の1/4に制御する(図5中のステップS101)。
そして、発光位置ズレ制御部190は、第m番目の発光部、例えば、端部に位置する第1番目の発光部により、主走査方向に発光有と発光無とを交互に繰り返す調整パターンの像を、副走査方向に所定ライン数分繰り返して生成するように、レーザ制御部130とプリントヘッド150とを駆動制御する(図5中のステップS102)。なお、この段階は、図3又は図4に示した状態と同じである。
また、発光位置ズレ制御部190は、第n番目の発光部、例えば、上記mと反対側の端部に位置する第4番目の発光部により、主走査方向に発光有と発光無とを交互に繰り返す調整パターンの像を、副走査方向に所定ライン数分繰り返して生成するように、レーザ制御部130とプリントヘッド150とを駆動制御する(図5中のステップS103)。
なお、ここでは、複数発光部の両端部を用いることが正確な測定を行う上では最も望ましいが、これに限定されるものではない。
そして、以上のように形成された調整パターンを、発光位置ズレ制御部190の指示に基づいて、読取部110が読み取る(図5中のステップS104)。なお、読取部110での読み取りは、感光体ドラム181表面でのトナー像の読み取り、感光体ドラム181から転写された用紙(搬送中)での読み取り、画像形成装置100から出力された用紙を読取部にセットした状態での読み取り、のいずれであっても良い。
このように形成された調整パターンの読み取りについて、図6と図7を参照して説明する。なお、図6は、図7の部分(開始部分)拡大図である。ここでは、副走査方向を第1方向、主走査方向を第2方向としている。
図6と図7において(a1)は、第1番目の発光部により、主走査方向に発光有と発光無を交互に繰り返す調整パターンの像を副走査方向に繰り返した状態を示している。すなわち、副走査方向の黒線と空白線とが主走査方向に繰り返す状態の調整パターンが形成されている。
なお、発光位置ズレ制御部190が副走査方向速度を1/(発光ビーム数)にしているため、複数発光部であるにもかかわらず、同一の発光部による調整パターン(黒線、空白線)が副走査方向に連続した線になり、読取部110での読み取りが容易になる。
図6と図7において(a2)は、第4番目の発光部により、主走査方向に発光有と発光無を交互に繰り返す調整パターンの像を副走査方向に繰り返した状態を示している。すなわち、副走査方向の黒線と空白線とが主走査方向に繰り返す状態の調整パターンが形成されている。
なお、図9〜図13で説明したように、第1番目の発光部による位置と第4番目の発光部による位置とは、完全に副走査方向に揃っておらず、図6に示すように、主走査方向にZの位置ズレを有しているとする。
図3と図4において説明した場合と同様に、この図7では、(a1)と(a2)とを読取部110で読み取って得た結果により、発光位置ズレ制御部190は、奇数番目受光素子の受光信号値による奇数特性曲線と、偶数番目受光素子の受光信号値による偶数特性曲線とを、作成する。
図6と図7とにおいて、細実線は調整パターン(a1)を読み取ってた奇数番目の受光信号値の特性曲線「第1奇数特性曲線」、太実線は調整パターン(a1)を読み取ってた偶数番目の受光信号値の特性曲線「第1偶数特性曲線」、細破線は調整パターン(a2)を読み取ってた奇数番目の受光信号値の特性曲線「第2奇数特性曲線」、太破線は調整パターン(a2)を読み取ってた偶数番目の受光信号値の特性曲線「第2偶数特性曲線」、である。
また、「第1奇数特性曲線」と「第1偶数特性曲線」とを総称して「第1特性曲線」と呼び、「第2奇数特性曲線」と「第2偶数特性曲線」とを総称して「第2特性曲線」と呼ぶ。
そして、発光位置ズレ制御部190は、以上の特性曲線から、特性曲線周期の1周期λが調整パターン何ライン分に相当するかと、受光素子何素子分に相当するかを、検出する。同様に、発光位置ズレ制御部190は、以上の特性曲線から、第1特性曲線と第2特性曲線の位相差Pdifが、受光素子何素子分に相当するかを検出する(図5中のステップS105)。
図7では、第1奇数特性曲線において、受光素子#1と受光素子#43とで、黒線が受光素子の位置と一致した状態(受光信号値=最低)であることが読み取れる。すなわち、調整パターン中の黒線と空白線の合計40ライン(40(p+δp))が特性曲線の1周期λとして、42受光素子分(42p)と一致していることが読み取れる。
ここで、特性曲線1周期λに相当する調整パターンのライン数(=調整パターンの繰り返し数、以下「1周期ライン数」)をXとする。本実施形態の具体例においては、X=40である。また、特性曲線1周期λに相当する受光素子数(以下、「1周期受光素子数」)をX’とする。本実施形態の具体例においては、X’=42である。また、X’−X=δxとし、ここではδx=2である。なお、このXは、受光素子ピッチと調整パターンピッチとの差δpに反比例した値である。
また、図7において、第1奇数特性曲線と第1偶数特性曲線との交点(以下、第1交点)と、第2奇数特性曲線と第2偶数特性曲線との交点であって上記第1交点と同位相の交点(以下、第2交点)との位相差Pdifが、8受光素子分(8p)であることが読み取れる。なお、第1奇数特性曲線(又は第1偶数特性曲線)の最大値(又は最小値)と、第2奇数特性曲線(又は第2偶数特性曲線)の最大値(又最小値)とから位相差Pdifを求めることも可能である。ここで、特性曲線の位相差Pdifに相当する受光素子数(特性曲線位相差受光素子数)をYとする。本実施形態の具体例においてY=8である。なお、このYは、調整パターンの位置ズレZと上述した特性曲線1周期λとに比例した値である。
そして、発光位置ズレ制御部190は、以上のように求めた、1周期ライン数X、1周期受光素子数X’、特性曲線位相差受光素子数Y、受光素子ピッチpから、調整パターン(a1)と(a2)の主走査方向の位置ズレZを算出する(図5中のステップS106)。
ここで、図7と同様の状態を示す図面である図8を参照する。なお、この図8では、調整パターンのラインについても、受光素子#1側から順に数えるものとする。
調整パターン(a1)では、1ライン目の黒線が受光素子#1と一致している。一方、位相差Pdif(=Yp=8p)を有する調整パターン(a2)では、5本目の黒線(黒線と空白線を各1ライン(合計2ライン)とすると9ライン目の線)が受光素子#9と一致している。
この状態において、調整パターン(a1)において、4本の黒線と4本の空白線(合計8ライン)の両端(主走査方向の始端〜終端)間の距離は8(p+δp)となる。
また、この状態で、調整パターン(a1)の1本目の黒線から調整パターン(a2)の5本目の黒線(黒線と空白線を各1ライン(合計2ライン)とすると9ライン目の線)の両端(主走査方向の始端〜終端)間の距離は、Ypである。
さらに、調整パターン(a1)の5本目の黒線(黒線と空白線を各1ラインとすると9ライン目の線)と調整パターン(a2)の5本目の黒線(黒線と空白線を各1ラインとすると9ライン目の線)との間の距離は、主走査方向位置ズレZである。
よって、以上の数式を整理すると、図8からも明らかなように、特性曲線1周期λについて、
λ=X(p+δp)=X’p=(X+δx)pである。
この式を変形して、
δp=(δx/X)pとなる。
また、特性曲線位相差受光素子数Yについては、
Y(p+δp)=Yp+Zである。
また、この式を変形すると、
Z=Yδpとなる。
よって、以上のZ=Yδpに、
上述したδp=(δx/X)pを代入して、
Z=((δx・Y)/X)pあるいは、
Z=(((X’−X)・Y)/X)pと求めることができる。
すなわち、第1調整パターン(a1)と第2調整パターン(a2)との主走査方向の位置ズレZを、1周期ライン数X、1周期受光素子数X’、特性曲線位相差受光素子数Y、受光素子ピッチpから、算出することができる。
例えば、読取部110が600dpiの受光素子列である場合には、受光素子ピッチp=42.3μm である。ここで、1200dpiの画像形成装置を用いる場合に、黒線2ライン、空白線2ラインの繰り返しの調整パターンを作成する。
このとき、1周期ライン数X=100、1周期受光素子数X’=102、特性曲線位相差受光素子数Y=10、であったとする。
この場合、第1調整パターン(a1)と第2調整パターン(a2)との主走査方向の位置ズレZは、Z=((δx・Y)/X))p=(2・10/100)×42.3μm =8.5μm と求めることができる。
この場合、読取部110の受光素子ピッチpは、読取部110のセンサの特性として、製造メーカーより正確な値を入手することができる。また、1周期ライン数Xや、1周期受光素子数X’や、特性曲線位相差受光素子数Yについては、各受光素子の受光信号値から特性曲線を求めているので、十分正確な値となる。
また、Zが、Z自信よりも十分に大きな値であるXやYに投影されているため、誤差の影響が極めて小さくなる。
また、特定の受光信号値そのものを用いることはなく、また、ピッチの差であるδpの値を最終計算に直接使用することもないので、誤差の影響が極めて小さくなっている。
更に、この実施形態では、Zが計算により絶対値として算出されるため、調整パターン形成、読み取り、Z算出、調整値決定の一連の処理が一度で済む。すなわち、相対的な調整を繰り返して誤差を収束させるような処理は必要ない。従って、調整を極めて短時間で完了させることができる。
そして、発光位置ズレ制御部190は、以上のように求めた、調整パターン(a1)と(a2)の主走査方向の位置ズレZから、このZを解消するのに必要な発光タイミングの調整値を算出し、レーザ制御部130に通知する(図5中のステップS107)。なお、この調整値は、算出された位置ズレZと、レーザビームの感光体ドラム181上での走査速度とから計算により求めることができる。なお、図10と図11で説明したように、発光部の傾き(主走査方向の位置の違い)に応じてレーザ制御部130は発光タイミングを調整しており、この調整に関して発光位置ズレ制御部190からの調整値を加味する。
また、発光位置ズレ制御部190は、レーザ制御部130への通知の後に、調整完了の旨を全体制御部101に通知する。これにより、全体制御部101は、画像形成装置100の各部を通常動作に戻すよう制御する。
通常モードの画像形成時において、レーザ制御部130では、通知された調整値を加味して複数発光部の発光タイミングを調整することで、図12(c)や図12(d)のような傾きを解消して、図12(b)のように副走査方向に整列した状態のレーザビームの走査を行えるようになる。
〔その他の実施形態〕
なお、カラー画像形成装置の場合には、以上のような調整を各色毎に実行することが望ましい。
また、以上の説明では、レーザダイオード171は傾いた状態の複数の発光部を有するとしていたが、これに限定されるものではない。たとえば、副走査方向に直線状に並んでいるはずの複数の発光部を有するレーザダイオード171が何らかの理由で傾いてしまっている場合にも本実施形態を適用して、複数ライン並行発光時のレーザビームの歪みを矯正することが可能である。
また、以上の実施形態は、レーザビームを用いた電子写真方式の画像形成装置に用いることが好適であるが、これ以外にも、レーザビームを用いて印画紙に露光を行うレーザイメージャなど、各種の画像形成装置に本発明の各実施形態を適用することが可能であり、良好な結果を得ることが可能である。
また、光源としては、レーザダイオード(LD)以外の他の光源を用いた場合であっても適用することが可能である。
また、発光位置ズレ制御部190を全体制御部101に内蔵させることも可能であり、逆に、発光位置ズレ制御部190を外部の画像形成制御装置として構成することも可能である。
100 画像形成装置
101 全体制御部
103 記憶部
105 操作部
110 読取部
120 画像処理部
130 レーザ制御部
140 プリントエンジン
150 プリントヘッド
160 レーザ駆動回路
170 光学系
180 プロセスユニット
190 発光位置ズレ制御部

Claims (14)

  1. 原稿の画像を読み取る読取部と、
    第1方向に駆動された状態で、前記第1方向に直交する第2方向に走査された光線を受けることにより像が形成される像担持体と、
    複数発光部が配列された光源と、
    前記光源からの複数の光線を前記第1方向に異なる位置で前記第2方向に走査するよう前記像担持体に照射しつつ、前記像担持体を前記第1方向に駆動する走査部と、
    前記走査部の駆動を制御すると共に、前記複数発光部の発光タイミングを制御する制御部と、
    を備え、
    前記制御部は、
    前記第2方向に発光有と発光無を交互に繰り返す調整パターンの像を、前記光源に含まれる異なる発光部により生成するように前記光源を制御し、
    前記調整パターンの像を読み取って得た受光信号レベルの特性曲線、前記読取部の受光素子ピッチ、前記特性曲線の1周期に相当する前記読取部における受光素子数、前記特性曲線の1周期に相当する前記調整パターンの繰り返し数、位相差に相当する受光素子数、異なる前記発光部による前記調整パターンの特性曲線同士の位相差、を求め、
    前記光源に含まれる異なる前記発光部の発光による対応する像の第2方向の位置ズレを算出する、
    ことを特徴とする画像形成装置。
  2. 前記制御部は、
    前記第2方向に発光有と発光無を交互に繰り返す調整パターンの像を生成するように前記光源を制御すると共に、前記読取部に含まれる受光素子のピッチをp、前記調整パターンにおける発光有と発光無とのピッチをp+δp、但しδp<p、となるように制御した場合に、
    前記特性曲線の1周期に相当する前記読取部における受光素子数をX’、前記特性曲線の1周期に相当する前記調整パターンの繰り返し数をX、前記位相差に相当する受光素子数をY、として求め、
    前記複数発光部における一端部に位置する発光部を第m番目発光部、前記一端部に対して他端部に位置する発光部を第n番目発光部としたとき、
    前記第m番目発光部の発光による像のドット位置と前記第n番目発光部の発光による像のドット位置との前記第2方向の位置ズレZを、
    Z=(((X’−X)・Y)/X)p、として算出する、
    ことを特徴とする請求項1に記載の画像形成装置。
  3. 前記特性曲線は、奇数番目受光素子の受光信号値を結んだ奇数特性曲線と、偶数番目受光素子の受光信号値を結んだ偶数特性曲線とからなる、
    ことを特徴とする請求項1−2に記載の画像形成装置。
  4. 前記制御部は、
    前記光源に含まれる前記発光部がa個である場合に、前記走査部による前記像担持体の前記第1方向の駆動速度を通常時の1/aに変更し、
    同一の前記発光部による前記調整パターンを前記第1方向に複数回繰り返すように制御する、
    ことを特徴とする請求項1−3のいずれか一項に記載の画像形成装置。
  5. 前記制御部は、前記位置ズレを解消するように前記光源に含まれる前記複数発光部の発光タイミングを調整する、
    ことを特徴とする請求項1−4のいずれか一項に記載の画像形成装置。
  6. 原稿の画像を読み取る読取部と、第1方向に駆動された状態で、前記第1方向に直交する第2方向に走査された光線を受けることにより像が形成される像担持体と、複数発光部が配列された光源と、前記光源からの複数の光線を前記第1方向に異なる位置で前記第2方向に走査するよう前記像担持体に照射しつつ、前記像担持体を前記第1方向に駆動する走査部と、
    を有する画像形成装置を制御する画像形成制御装置であって、
    前記第2方向に発光有と発光無を交互に繰り返す調整パターンの像を前記光源に含まれる異なる発光部により生成するように前記光源を制御し、
    前記像担持体に形成された前記調整パターンの像又は前記像担持体から別媒体に転写された前記調整パターンの像のいずれかを前記読取部で読み取って得た受光信号レベルの特性曲線、前記読取部の受光素子ピッチ、前記特性曲線の1周期に相当する前記読取部における受光素子数、前記特性曲線の1周期に相当する前記調整パターンの繰り返し数、位相差に相当する受光素子数、異なる前記発光部による前記調整パターンの特性曲線同士の位相差、を求め、
    前記光源に含まれる異なる前記発光部の発光による対応する像の第2方向の位置ズレを算出し、
    前記位置ズレを前記画像形成装置に通知する、
    ことを特徴とする画像形成制御装置。
  7. 前記第2方向に発光有と発光無を交互に繰り返す調整パターンの像を生成するように前記光源を制御すると共に、前記読取部に含まれる受光素子のピッチをp、前記調整パターンにおける発光有と発光無とのピッチをp+δp、但しδp<p、となるように制御した場合に、
    前記特性曲線の1周期に相当する前記読取部における受光素子数をX’、前記特性曲線の1周期に相当する前記調整パターンの繰り返し数をX、前記位相差に相当する受光素子数をY、として求め、
    前記複数発光部における一端部に位置する発光部を第m番目発光部、前記一端部に対して他端部に位置する発光部を第n番目発光部としたとき、
    前記第m番目発光部の発光による像のドット位置と前記第n番目発光部の発光による像のドット位置との前記第2方向の位置ズレZを、
    Z=(((X’−X)・Y)/X)p、として算出する、
    ことを特徴とする請求項6に記載の画像形成制御装置。
  8. 前記特性曲線は、奇数番目受光素子の受光信号値を結んだ奇数特性曲線と、偶数番目受光素子の受光信号値を結んだ偶数特性曲線とからなる、
    ことを特徴とする請求項6−7に記載の画像形成制御装置。
  9. 前記光源に含まれる前記発光部がa個である場合に、前記走査部による前記像担持体の前記第1方向の駆動速度を通常時の1/aに変更するよう制御し、
    同一の前記発光部による前記調整パターンを前記第1方向に複数回繰り返すように制御する、
    ことを特徴とする請求項6−8のいずれか一項に記載の画像形成制御装置。
  10. 前記位置ズレを解消するように前記光源に含まれる前記複数発光部の発光タイミングを調整するよう制御する、
    ことを特徴とする請求項6−9のいずれか一項に記載の画像形成制御装置。
  11. 原稿の画像を読み取る読取部と、第1方向に駆動された状態で、前記第1方向に直交する第2方向に走査された光線を受けることにより像が形成される像担持体と、複数発光部が配列された光源と、前記光源からの複数の光線を前記第1方向に異なる位置で前記第2方向に走査するよう前記像担持体に照射しつつ、前記像担持体を前記第1方向に駆動する走査部と、
    を有する画像形成装置を制御する画像形成装置制御方法であって、
    前記第2方向に発光有と発光無を交互に繰り返す調整パターンの像を前記光源に含まれる異なる発光部により生成するように前記光源を制御し、
    前記像担持体に形成された前記調整パターンの像又は前記像担持体から別媒体に転写された前記調整パターンの像のいずれかを前記読取部で読み取って得た受光信号レベルの特性曲線前記読取部の受光素子ピッチ、前記特性曲線の1周期に相当する前記読取部における受光素子数、前記特性曲線の1周期に相当する前記調整パターンの繰り返し数、位相差に相当する受光素子数、異なる前記発光部による前記調整パターンの特性曲線同士の位相差、を求め、
    前記光源に含まれる異なる前記発光部の発光による対応する像の第2方向の位置ズレを算出する、
    よう制御することを特徴とする画像形成装置制御方法。
  12. 前記第2方向に発光有と発光無を交互に繰り返す調整パターンの像を生成するように前記光源を制御すると共に、前記読取部に含まれる受光素子のピッチをp、前記調整パターンにおける発光有と発光無とのピッチをp+δp、但しδp<p、となるように制御した場合に、
    前記特性曲線の1周期に相当する前記読取部における受光素子数をX’、前記特性曲線の1周期に相当する前記調整パターンの繰り返し数をX、前記位相差に相当する受光素子数をY、として求め、
    前記複数発光部における一端部に位置する発光部を第m番目発光部、前記一端部に対して他端部に位置する発光部を第n番目発光部としたとき、
    前記第m番目発光部の発光による像のドット位置と前記第n番目発光部の発光による像のドット位置との前記第2方向の位置ズレZを、
    Z=(((X’−X)・Y)/X)p、として算出する、
    ことを特徴とする請求項11に記載の画像形成装置制御方法。
  13. 前記特性曲線は、奇数番目受光素子の受光信号値を結んだ奇数特性曲線と、偶数番目受光素子の受光信号値を結んだ偶数特性曲線とからなる、
    ことを特徴とする請求項11−12に記載の画像形成装置制御方法。
  14. 前記光源に含まれる前記発光部がa個である場合に、前記走査部による前記像担持体の前記第1方向の駆動速度を通常時の1/aに変更するよう制御し、
    同一の前記発光部による前記調整パターンを前記第1方向に複数回繰り返すように制御する、
    ことを特徴とする請求項11−13のいずれか一項に記載の画像形成装置制御方法。
JP2013148448A 2013-07-17 2013-07-17 画像形成装置、画像形成制御装置および画像形成装置制御方法 Expired - Fee Related JP6171654B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013148448A JP6171654B2 (ja) 2013-07-17 2013-07-17 画像形成装置、画像形成制御装置および画像形成装置制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013148448A JP6171654B2 (ja) 2013-07-17 2013-07-17 画像形成装置、画像形成制御装置および画像形成装置制御方法

Publications (2)

Publication Number Publication Date
JP2015020299A JP2015020299A (ja) 2015-02-02
JP6171654B2 true JP6171654B2 (ja) 2017-08-02

Family

ID=52485214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013148448A Expired - Fee Related JP6171654B2 (ja) 2013-07-17 2013-07-17 画像形成装置、画像形成制御装置および画像形成装置制御方法

Country Status (1)

Country Link
JP (1) JP6171654B2 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3187093B2 (ja) * 1991-09-27 2001-07-11 キヤノン株式会社 位置ずれ測定装置
JPH0876039A (ja) * 1994-09-08 1996-03-22 Fuji Xerox Co Ltd マルチビームレーザ記録装置
JP2000214653A (ja) * 1999-01-20 2000-08-04 Canon Inc 画像形成装置および画像形成装置の制御方法
JP4080686B2 (ja) * 2000-11-06 2008-04-23 株式会社リコー 画像形成装置
JP2005092366A (ja) * 2003-09-12 2005-04-07 Ricoh Co Ltd 画像位置ずれ検査装置
JP5056382B2 (ja) * 2007-12-03 2012-10-24 富士ゼロックス株式会社 液滴吐出装置及び液滴吐出ヘッドの傾き検出方法

Also Published As

Publication number Publication date
JP2015020299A (ja) 2015-02-02

Similar Documents

Publication Publication Date Title
EP2086213B1 (en) Image reading apparatus, and image forming apparatus
US10409191B2 (en) Image forming apparatus
US9930214B2 (en) Correction method for image forming apparatus
US10397437B2 (en) Image forming apparatus
EP1844943B1 (en) Image forming apparatus and control method thereof
US10021271B2 (en) Correction method for image forming apparatus
JP5262602B2 (ja) 画像形成装置および画像形成装置制御プログラム
US9955040B2 (en) Image forming apparatus
JP2017094594A (ja) 画像形成装置
JP6171654B2 (ja) 画像形成装置、画像形成制御装置および画像形成装置制御方法
JP2015150850A (ja) 画像形成制御装置及び画像形成装置
JP2013142809A (ja) 画像形成装置制御方法および画像形成装置
US8400488B2 (en) Optical scanning apparatus and control method therefor
JP4612857B2 (ja) 画像形成装置及び画像の歪み補正方法
JP2005053000A (ja) 画像形成装置
JP2013151114A (ja) 画像形成装置及び画像形成装置の制御方法
US20240176274A1 (en) Image forming apparatus that decides malfunction, and malfunction deciding method
JP2004341153A (ja) 評価チャート、発光素子の評価方法及び画像形成装置
JP2021140035A (ja) 画像形成装置、その制御方法、および画像形成装置を制御するためのプログラム
JP6790493B2 (ja) 画像形成装置および画像形成制御プログラム
JP2009184145A (ja) 画像形成装置および画像形成装置制御プログラム
JP2001281589A (ja) 画像形成装置及び方法
JP2022182039A (ja) 光走査装置及びそれを備えた画像形成装置
JP2022182041A (ja) 光走査装置及びそれを備えた画像形成装置
JP2012234095A (ja) 画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170619

R150 Certificate of patent or registration of utility model

Ref document number: 6171654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees