JP4395648B2 - Method for producing fine particle titanium oxide-containing powder ion exchange resin adsorbent, air or water cleaning method and apparatus using the same - Google Patents

Method for producing fine particle titanium oxide-containing powder ion exchange resin adsorbent, air or water cleaning method and apparatus using the same Download PDF

Info

Publication number
JP4395648B2
JP4395648B2 JP2002373423A JP2002373423A JP4395648B2 JP 4395648 B2 JP4395648 B2 JP 4395648B2 JP 2002373423 A JP2002373423 A JP 2002373423A JP 2002373423 A JP2002373423 A JP 2002373423A JP 4395648 B2 JP4395648 B2 JP 4395648B2
Authority
JP
Japan
Prior art keywords
exchange resin
titanium oxide
ion exchange
water
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002373423A
Other languages
Japanese (ja)
Other versions
JP2004203988A (en
Inventor
文男 前川
興治 貫井
Original Assignee
文男 前川
興治 貫井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 文男 前川, 興治 貫井 filed Critical 文男 前川
Priority to JP2002373423A priority Critical patent/JP4395648B2/en
Publication of JP2004203988A publication Critical patent/JP2004203988A/en
Application granted granted Critical
Publication of JP4395648B2 publication Critical patent/JP4395648B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Description

【0001】
【発明の属する技術分野】
空気中又は水中に存在する浮遊粉塵や悪臭成分を除去することで、住居・公共施設・職域などの居住空間を快適にすることに関する。
【0002】
【従来の技術】
悪臭を除去する方法は、感覚的脱臭法であるマスキング法、活性炭、ゼオライトほかによる物理的脱臭法、微生物的方法、化学的脱臭法、プラズマほかによる電気的脱臭法などが一般的であり、活性炭やキトサン等の吸着剤、高分子機能性膜を通流させることで空気を清浄する装置はある。最近では、光触媒用酸化チタンを用いて、アンモニア臭いやタバコのヤニを分解して空気を清浄する試みがあるが、本発明のような粒径1〜50μmの粉末イオン交換樹脂による悪臭や浮遊微粒子を吸着する作用と、酸化チタンの持つ悪臭成分分解作用による相乗作用を利用した空気又は水の清浄方法や装置は見当らない。
【0003】
工業用に常用されているイオン交換樹脂は、スチレンとジビニールベンゼンとの共重合体に酸性或いはアルカリ性の交換基を付与した高分子体で、直径0.3〜2mmの球形の粒状物質である。
【0004】
本発明で使用する粉末イオン交換樹脂は、工業用に常用されている粒状イオン交換樹脂を、機械粉砕により平均粒径1〜50μmの微粒子状に調製したイオン交換樹脂で、一般には市販されていないが、特殊な産業分野で使用されているものである。
【0005】
本発明で使用する粉末イオン交換樹脂は、必ずしも新品である必要はなく、使用済みの粒状イオン交換樹脂を、微粒子状に調製したもので充分である。
【0006】
微粒子状イオン交換樹脂吸着体を利用した水の濾過清浄剤や簡易プランターについては、特開2000−312881、特願2001−277268他で開示しているが、浮遊粉塵や悪臭成分の除去について実行したものはない。
【0007】
粉末イオン交換樹脂は、優れた悪臭成分吸着作用があることは既に判っていたが、空気中の悪臭除去に利用した装置の開発例は無い。その最大の理由は、当該樹脂が高価で、研究対象にならなかったことによるものと思われる。使用済みイオン交換樹脂を破砕することで安価に原材料が得られることで始めて可能になった新しい技術である。また、微粒子状酸化チタン包含イオン交換樹脂で、空気又は水の清浄化を試みた例は見当たらない。
【0008】
【発明が解決しようとする課題】
近年、悪臭除去・空気清浄などの生活空間を改善するためのニーズが強くなっている。そこで、清浄化に使用する濾過材である微粒子状酸化チタン包含粉末イオン交換樹脂吸着体及び微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体の製法と、その濾過材を使用して空気又は水を清浄化する安価な方法を提供することを課題とする。
【0009】
【課題を解決するための手段】
課題を解決するための手段である本発明の第一は、粒径1〜50μmの粉末イオン交換樹脂と粒径100nm以下の微粒子状酸化チタンを繊維太さ5デニール以下のカット繊維とを水中で接触混合することを特徴とする、空気又は水を清浄化するための微粒子状酸化チタン包含粉末イオン交換樹脂吸着体の製造方法であり、本発明の第二は、請求項1の粒径1〜50μmの粉末イオン交換樹脂と粒径100nm以下の微粒子状酸化チタンを繊維太さ5デニール以下のカット繊維とを水中で接触反応させて製造することを特徴とする、空気又は水を清浄化するための微粒子状酸化チタン包含粉末イオン交換樹脂吸着体の製法であり、本発明の第三は、使用済みのものであることを特徴とする微粒子状酸化チタン包含微粒子状イオン交換樹脂繊維吸着体又は微粒子状酸化チタン包含粉末イオン交換樹脂吸着体の製法であり、本発明の第四は、微粒子状酸化チタン包含粉末イオン交換樹脂吸着体又は請求項2の微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体を用いた空気又は水の清浄装置である。
【0010】
【発明の実施の形態】
本発明の実施の形態を吸着体の製法、吸着体を用いた清浄方法、実施例の順に説明する。先ず、微粒子状酸化チタン包含粉末イオン交換樹脂吸着体の製法について説明する。原料である粒径100nm以下の微粒子状酸化チタンと粒径1〜50μmの粉末の陰イオン及び陽イオン粉末イオン交換樹脂とを適当な重量比率で撹拌槽に投入し、投入した原料全体が撹拌できる程度の水を注水して、両原料が混合接触できるように撹拌し乳状懸濁水溶液を作る。これが乳液状の微粒子状酸化チタン包含粉末イオン交換樹脂吸着体であるが、保存し易くするために水分を適度に蒸発させた湿潤状態或いは乾燥粉末に近い状態にしても良い。
【0011】
このように調製した微粒子状酸化チタン包含粉末イオン交換樹脂吸着体は、粒径100nm以下の微粒子状酸化チタンが、粒径1〜50μmの粉末イオン交換樹脂の細孔部分にあるイオン交換基の持つ何らかの微弱な結合作用により保持され、粉末イオン交換樹脂に保持される微粒子状酸化チタンの量は、微粒子状酸化チタンの粒径が微細になる程多くなるものと推定される。
【0012】
次に、本発明請求項2の微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体の製法について説明する。製法は、粉末イオン交換樹脂繊維を作る第一工程と、該繊維に微粒子状酸化チタンを包含させる第二工程からなる。粒径1〜50μmの粉末陰イオン及び微粒子状陽イオン交換樹脂と親水性のある微小繊維状セルローズ(商品名セリッシュ)やバルク状セラミック繊維との凝集体を作って、水を入れた撹拌槽に入れ、さらにその撹拌槽にポリエステルやポリプロピレン或いはレーヨン等のカット繊維を入れて、水中で混合して一体化させ粉末イオン交換樹脂繊維に調製する。このように調製した粉末イオン交換樹脂繊維は、空隙率が大きく微粒子状酸化チタンを包含させ易い状態になっている。
【0013】
粉末イオン交換樹脂繊維の製造に用いる該カット繊維は、繊維が太くなると粉末樹脂や微粒子状酸化チタンとの親和性が悪くなって、均一組成を持つ繊維状吸着体を調製することは難しく、繊維太さは5デニール以下の短繊維よりなる極細のカット繊維が望ましい。
【0014】
また、微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体の繊維は、必ずしも新品である必要はなく、いわゆる反毛業者が再生するリサイクル繊維でも使用できることを確認した。
【0015】
次に、第二工程で粉末イオン交換樹脂繊維に微粒子状酸化チタンを包含させる。粒径100nm以下の微粒子状酸化チタンを水に懸濁させた乳状の水溶液を作り、粉末イオン交換樹脂繊維の入った撹拌槽に注入し、粉末イオン交換樹脂繊維と混合攪拌して内部に分散し、微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体を作る。撹拌のために使用した余分な水は、槽内の撹拌溶液の沈殿が終わった後に排出又は蒸散させる。微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体の作用効果は、湿潤状態の方が大きい。但し、乾燥した場合には、水を加えて湿潤状態にすれば作用効果が回復するので、保管・運搬時の水分の量は特に拘る必要はない。また、製造後使用目的に供するまでの間は、浮遊粉塵や悪臭成分の吸着による清浄効果低減を避けるためにできるだけ密封できる容器に保管するのが良い。
【0016】
以上のようにして作ったイオン交換樹脂に対する微粒子状酸化チタンの包含比率は、例えば、微粒子状酸化チタンに古河機械金属製商品名DN―1―0の平均粒径9nmの超微粒子状酸化チタンを使用した場合は、重量比率でイオン交換樹脂の10%程度まで吸着包含した超微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体を作ることができる。
【0017】
悪臭除去を目的として使用する場合の微粒子状イオン交換樹脂の組成について説明する。水の浄化を目的とする陰イオン交換樹脂を主体とする濾過体とは異なり、悪臭成分によって、イオン交換樹脂の組成を使い分けることが重要である。アンモニア等のカチオンを除くためには陽イオン交換樹脂、望ましくは強酸性陽イオン交換樹脂を主体とし、有機酸等のアニオン成分を除くためには陰イオン交換樹脂、望ましくは強塩基性陰イオン交換樹脂を主体とするのがよい。
【0018】
以下に、請求項4の請求項1から請求項3の吸着体を用いた空気又は水の清浄化方法とその装置について説明する。
【0019】
悪臭成分は、空気中の含有量が体積十億分率(ppb単位)の微量であっても、人間には強く感知される。該悪臭成分を含んだ空気を水と接触させると、速やかに臭い成分が水に溶解する。従って、清浄化作用を高めるためには、悪臭成分を含む空気又は水を微粒子状酸化チタン含有イオン交換樹脂吸着体、又は微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体などと、できるだけ接触面積を大きくすることが肝要である。
【0020】
以上の製法により作った吸着体を用いて、空気又は水を清浄化する方法について説明する。浮遊粉塵や悪臭成分を含む空気を清浄化する第一の方法は、繊維がなくても請求項1の製法による微粒子状酸化チタン包含粉末イオン交換樹脂の懸濁水溶液中に、悪臭成分を含んだ空気をエアーポンプで導入して通過させる方法である。
【0021】
浮遊粉塵や悪臭成分を含む空気を清浄化する第二の方法は、本発明である請求項2又は請求項3による微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体を、空気が通流できる隙間や孔或いは開口部を有した容器に入れて、悪臭を発生する閉鎖系空間に置く方法である。閉鎖系空間内の空気の流動によって空気中の悪臭成分が該吸着体に接触・吸着されて、優れた清浄作用を発揮することができる。
【0022】
浮遊粉塵や悪臭成分を含む空気を清浄化第三の方法は、本発明お請求項2又は請求項3の微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体を水の入った水槽に入れ、浮遊粉塵や悪臭成分を含む空気をエアーポンプで吸入して水中に導入して、浮遊粉塵や悪臭成分を水に溶解する。該水溶液と粉末イオン交換樹脂とが接触して、粉末イオン交換樹脂の持つ化学・物理吸着作用で水中の浮遊粉塵や悪臭成分が粉末イオン交換樹脂に捕捉されて清浄化される。
【0023】
粉末イオン交換樹脂の吸着能力には一定の容量があり、やがて平衡になってそれ以上は吸着できなくなるが、この段階で水中の微生物を捕捉吸着して生物膜を形成するようになる。特に、平均粒径が10ミクロン前後と比表面積が大きい微粒子状イオン交換樹脂、特に塩基性イオン交換樹脂は水中の微生物をほぼ完全に捕捉吸着する。
【0024】
粉末イオン交換樹脂濾過吸着体に微粒子状酸化チタンを包含させることで、水溶液においてもアンモニアを始めとする有害成分の分解作用が、各々を単独使用した場合と比較にならない程向上した。この理由としては、イオン交換樹脂交換基に捕捉された有害成分とイオン交換樹脂細孔に捕捉されている微粒子状酸化チタンとの反応が活発化するためと推定される。
【0025】
空気又は水の清浄化のためには、平均粒径50μm以下の微粒子状イオン交換樹脂の持つイオン成分に対する優れた化学・物理吸着作用と、水中で使用する場合に発揚される微生物膜による作用を単独又は併用し、効果的に使用する必要がある。
【0026】
一般に酸化チタンが、悪臭成分を酸化分解することは、よく知られているが、粉末イオン交換樹脂繊維吸着体と粒状の微粒子状酸化チタンを併用する時、吸着体を通流して排出される空気の清浄効果が向上するという予期しない効果を認めた。
【0027】
清浄作用に最も効果的な吸着体は、粒径1〜50μmの微粒子状粉末イオン交換樹脂吸着体に粒径10nm以下の超微粒子状酸化チタン粉末を混合・攪拌することで調製した超微粒子状酸化チタン包含微粒子状イオン交換樹脂繊維吸着体である。
【0028】
使用する酸化チタンは、酸化作用があれば何れのものでもよいが、酸化チタンを均一に分散させ、繊維からの分離を防ぐためには、粒径10μm以下の微粒子状酸化チタン、より望ましくは100nm以下の粒径を持つ超微粒子状酸化チタン粉末がよい。
【0029】
既に本発明者らが特願2002−048927で出願済みのイオン交換樹脂吸着体を用いる水の清浄方法の長所は、ある期間使用した粉末イオン交換樹脂の吸着能力が低下する段階で、水中で吸着した微生物が微生物膜を形成し、微生物膜による吸着分解能力が継続維持されることである。また、特徴的なことは、その微生物膜に磁場を働かせるとバイオリアクターの作用効果が倍増することで、この作業効果は工業的には極めて有用な事柄である。一方、この発明による酸化チタンを包含させることにより、これと同様の長所が現れる。実施例に挙げる酸化チタンを包含させることによる消臭効果は、酸化チタンによる悪臭分解作用が有利に作用し、粉末樹脂による悪臭吸着作用と相俟って、相乗的に働いた為と思われる。
【0030】
即ち、本発明の微粒子状酸化チタン包含粉末イオン交換樹脂吸着体又は微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体を空気の清浄化に用い、磁場を働かせた粉末イオン交換樹脂繊維吸着体を水の清浄化に用いる複合的な装置によって、より効果的な空気又は水の清浄化を実現することができる。
【0031】
例えば、図1に示すシステムのように工業的規模のシャワー方式あるいは水槽内導入方式の大型装置にも適用できる。何れの方式でも、浮遊粉塵・悪臭成分を含む空気を本発明の請求項2又は請求項3の製法により作った微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体に通流して浄化するが、水に悪臭成分を溶解する工程で使用する水は、生物濾過効果を効果的に利用するために、貯水槽から循環ポンプによって微粒子状酸化チタンを含まない粉末イオン交換樹脂繊維吸着体又は磁石包含粉末イオン交換樹脂吸着体に循環通流するのがよい。本システムでは、清浄効果を上げるために浮遊粉塵や悪臭成分を含む空気を吸込むエアポンプの吸込能力が重要である。
【0032】
微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体は、酸化チタンによる抗菌作用を有するので、特に観賞魚を飼育する水の生物濾過・生物脱臭効果を期待するバイオリアクターとして使用する場合には、難点があることも判った。硝化・脱窒素作用を目的とする濾過吸着体として使用するためには、酸化チタンが共存することを避け、微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体と微粒子状酸化チタンを包含しない粉末イオン交換樹脂繊維とを分離して併用するなどの配慮が必要である。
【0033】
例えば、特願2001―277268に記述した簡易プランターに適用する効果は大きく、本発明で言う水槽内の濾過吸着体と混合することなく、分割して適用することで、予期しない程の水の清澄効果と共に、このシステムより排出される空気中に存在する浮遊粉塵や落下菌が減少していることを認めた。特に、本発明による請求項2又は請求項3の製法で作った超微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体を、観葉植物を植えた植木鉢の表層部に置くことで、悪臭除去効果がを有したインテリアとしても期待される。
【0034】
このように、観葉植物と空気清浄を兼ねたインテリアとして、室内環境を重視するレストランやホテルに、また寝たきり老人の部屋の環境改善・癒しを考慮した福祉機器の一つとして提供することもできる。
【0035】
図1に示す様なシステムによる清浄化方法の最大のメリットは、浮遊粉塵や悪臭成分を水に溶解する工程で少量の水を用いる循環水システムでありながら、大量の水を放流するシステムに劣らない浮遊粉塵や悪臭成分の吸着・分解性能を発揮させることにある。これは1〜50μmの粉末イオン交換樹脂を使用することで始めて可能になったシステムで、磁場を働かせることによって効果を高め、その結果システムを簡略化・小型化することを可能にした。
【0036】
本発明の微粒子状酸化チタン包含粉末イオン交換樹脂吸着体又は微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体を水中で用いる場合、酸化チタンがバイオリアクターの働きにどの程度関与しているかは不明であるが、恐らく酸化チタンの持つ酸化作用で生じる微量の有機性窒素分解物が、藻類発生を抑制する効果をもたらすものと推定される。
【0037】
以下に、本発明の請求項1から請求項3により製造した吸着体を使用した実施例とそれらに関連する実験結果について記述する。
【0038】
【実施例1】
ペットのトイレのある部屋や、歯科診療所の待合場所で発生する独特の異臭について、本発明請求項1により製造した微粒子状酸化チタン包含粉末イオン交換樹脂の懸濁水溶液に、周辺空気をエアーポンプで導入浄化する方法と請求項2により製造した吸着体である超微粒子状酸化チタンを包含させた微粒子状イオン交換樹脂繊維吸着体を上部の開放された容器に約250ml入れて設置する方法で、両方法ともにペットの悪臭や診療所特有の臭いを除くことができ、空気清浄効果が著しく向上した。後者の場合、粉末イオン交換樹脂繊維吸着体単独の場合とは比較にならない程の優れた脱臭効果を確認した。
【0039】
【実施例2】
観賞魚を飼育している水槽内に設置した遮光濾過筒内に、濾過材として、本発明請求項2の製法により作った微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体を入れ、水槽水を内部循環させながら、水の汚れを観察し水質分析した結果、水の清浄効果が著しく向上した。観賞魚の死亡も少なく、藻類の発生も微粒子状酸化チタン単独使用の場合に比して激減した。特に、水槽水の透明度が向上し、光吸収分析において可視部吸収の減少のほか、紫外部特に200〜250nmの吸収が激減したばかりでなく、窒素化合物で代表される有害窒素化合物を少なくする作用効果が大きいことが判った。粒径9nmの超微粒子状酸化チタンは、粒状チタンに比べて清浄効果が大きく、粒径により著しく差異のあることを認めた。
【0040】
【実施例3】
室内で飼育している愛玩犬(チワワ10匹)の飼育ハウス(トイレのしつけハウス)居住区に毛布を置き、明らかにペット臭の感じられる実験布を調製する。30mの空間に該実験布を置き、そのそばに、次の8通りの方法で調製した各種脱臭剤を設置し、脱臭効果を3人のパネラーによる官能テストにより調べた。
【0041】
その1として、使用済み陽イオン交換樹脂(ダイアイオンPK216)を、気流粉砕法により調整した粉末陽イオン交換樹脂5gと微粒子状セルローズ(商品名セリッシユ)5gとバルク状セラミック繊維(イソライト工業)5gとポリエステルカット繊維(クラレ)5gに、超微粒子状酸化チタン(古河機械金属製、商品名DN−1−0)1gを水5リットルに混合し、ミキサー内で2〜5分間激しく攪拌する。10分間放置後、遠心分離機で水と繊維を分離し、繊維状吸着体を調製した。
【0042】
その2として、使用済み陽イオン交換樹脂に替えて、使用済み陰イオン交換樹脂(ダイアイオンPA308)を用いて調製した粉末陰イオン交換樹脂5gを用いて、その1と同様にして、微粒子状酸化チタン包含繊維状吸着体を調製した。
【0043】
その3として、使用済みイオン交換樹脂より調製された粉末陽イオン交換樹脂(ダイアイオンPK216)2.5gと粉末陰イオン交換樹脂(ダイアイオンPA308)2.5gを用いて、その1と同様にして、微粒子状酸化チタン包含繊維状吸着体を調製した。
【0044】
その4として、新品陽イオン交換樹脂(ダイアイオンPK216)を用いて、その1と同様に微粒子状酸化チタン包含繊維状吸着体を調製した。
【0045】
その5として、新品陰イオン交換樹脂(ダイアイオンPA308)を用いて、その2と同様に微粒子状酸化チタン包含繊維状吸着体を調製した。
【0046】
その6として、新品陽イオン交換樹脂(ダイアイオンPK216)と新品陰イオン交換樹脂(ダイアイオンPA308)を用いて、その3と同様に微粒子状酸化チタン包含繊維状吸着体を調製した。
【0047】
その7として、該超微粒子状酸化チタン単独では、繊維状吸着体は調製出来ないので、該超微粒子状酸化チタンを器に1g載せて比較資料とした。
【0048】
その8として、微粒子状酸化チタンを含まないその6と同様組成の陰・陽粉末イオン交換樹脂繊維吸着体を調製した。なお、その3、その6以外は微粒子状酸化チタンのリークがあり、微粒子状酸化チタンの包含量は減少した。
【0049】
評価は、実験前の臭いの強さを5とし、最も脱臭されたものを1とする5段階法で評価し、3人のパネラーが求めた平均値を四捨五入して求めた。以上の8通りで調製した脱臭剤の実験結果を表1に示す。
【0050】
実験結果で明らかなように、粉末陰・陽イオン交換樹脂と超微粒子状酸化チタンを包含したその3とその6に、優れた脱臭効果が認められた。利用する粉末イオン交換樹脂は、新品でも使用済みの物でも殆ど性能に差異は認められなかった。
【0051】
参考として、上記実験のその1からその8について、同一量の粉末イオン交換樹脂と微粒子状酸化チタンを水10Lに懸濁し、エアーポンプ(300ml/min)を用いて、周辺空気を導入させる実験を実施したが、各々の実験区に於いて、優るとも劣らない脱臭効果が認められた。
【0052】
【実施例4】
図2に示すように、水槽1の中に10リットルの水2を入れる。エアーポンプ4を稼動させて悪臭又は浮遊粉塵を含む空気を送るエアー導入パイプを、本発明の請求項2又は請求項3の製法で作った微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体3を収容する通水可能な吸着体収容容器8を経て、垂直に立つ直径2cmのエアーリフトパイプ3の下部に挿入する。空気は、エアーリフト現象により水を伴って上昇し、頂部から排出される。この時、持ち上げられた水は空気と水との接触が高まって悪臭が水に溶解し易くなるように、傘状落水板7を伝って広がりをもつて自然落下させる。
【0053】
頂部から排出される水を、滝の景観その他工夫をした造作物表層を流れるようにするとインテリア性を高めることができ応用範囲が広がる。
【0054】
頂部の傘状落水板の代わりに観葉植物を植えた植木鉢にすると、植木鉢の底の孔から水が自動的に潅水され、インテリアとしての効果と癒しの効果を求めることもできる。観葉植物の幹周辺の表層部に、本発明の請求項2又は請求項3の製法により作った微粒子状酸化チタン含有粉末イオン交換樹脂繊維吸着体を置くと清浄効果はさらに向上する。
【0055】
また、請求項2の微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体の代わりに、本発明の請求項1の製法で作った微粒子状酸化チタン包含粉末イオン交換樹脂吸着体を水に投入して良い。この場合は、通水可能な吸着体収納容器は不要となる。
【0056】
さらに、水槽に観賞魚を飼育する場合は、微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体に代えて、酸化チタンを含まない磁石包含粉末イオン交換樹脂吸着体を用いて、微生物膜による清浄作用を利用するのも良い。
【0057】
微生物膜に磁場を働かせる場合、磁石を粉末イオン交換樹脂吸着体に包含させないで、流水経路の途中に永久磁石を設置して、磁場を働かせることによっても微生物膜による清浄作用を促すことができる。
【0058】
関連の実験として、広さ4.5畳の部屋に、愛玩犬の糞便200gを置き、そのそばに図xの空気清浄装置を設置し、1週間後の空気を定法により測定した結果、明らかに清浄効果が認められた。以下に、実験内容と結果を記載する。
【0059】
その1として、超微粒子状酸化チタン粒(不二機販製)150gを水槽底に設置し、粉末イオン交換樹脂吸着体500mlを使用した場合の空気清浄効果を試みた。、臭いについては実施例3と同様に3人のパネラーによる官能テストを行い、また浮遊粉塵量と落下菌数については定法により測定した。その結果を表2に示す。
【0060】
その2として、その1で使用した粉末イオン交換樹脂吸着体500mlの中から250mlを採取し、水中で膨潤させた後、超微粒子酸化チタン粉末(商品名;DN―1−0、古河機械金属製)0.5gを用いて、両者を混合攪拌させて該吸着体に均一に分散吸着さた。この超微粒子状酸化チタン含有粉末イオン交換樹脂吸着体を100メッシュの布で包み、前述粉末イオン交換樹脂吸着体の上部に分割して設置し、その1と同様にして、酸化チタン粒に代替えして、超微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体を併用する実験をした。その結果を表3に示す。
【0061】
実験結果で明らかな様に、超微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体の空気清浄効果は大きく、粉末イオン交換樹脂吸着体との相乗作用のあることを確認した。
【0062】
【実施例5】
次ノ二つについて試みる。材料Aとして、粉末陽イオン交換樹脂10g(商品名ダイアイオンPK216)と微粒子状陰イオン交換樹脂10g(商品名ダイアイオンPA308)と微小繊維状セルローズ10g(商品名セリッシュ)を水中で混合攪拌し、そこへ超微粒子状酸化チタン2g(古河機械金属製、商品名DN―1−0)を添加し凝集させる。
【0063】
材料Bとして、ポリエステルカット繊維(クラレ製、0.43dN×3mm)5gとポリプロピレンカット繊維(ダイワ紡製、2dN×2mm)5gにバルク状セラミック繊維(イソライト工業製)5gを水中で混合分散して均一にし、これらカット繊維よりなる吸着体を作る。
【0064】
材料Aと材料Bを混合し、上記濾過体に粉末イオン交換樹脂と超微粒子状酸化チタンを均一に包含した繊維状濾過吸着体を調製する。
【0065】
調製した吸着体300mlを、実施例4で説明した装置に投入したその1と、酸化チタンを除いた粉末イオン交換樹脂繊維濾過体を投入したその2について、水の清浄効果について比較実験を行った。原液は、腐敗臭のある溜まり水を純水で3倍稀釈して水槽水とした。エアーポンプを稼動して水槽水を濾過体に通流させ、24時間後の水質の変化を測定した。水槽は、直射日光の当たる場所に置いた。その測定結果を表4に示す。
【0066】
【実施例6】
次の二つについて試みる。その1として、微粒子状陽イオン交換樹脂5gと微粒子状陰イオン交換樹脂5gを基本成分とする繊維状吸着体(特開2000−312881)を直径10cm×高さ20cmのカラムに充填する。
【0067】
その2として、その1に示す濾過吸着体の頂部より、微粒子状酸化チタンを均一に分散させた水を注ぎ(1gを水5リットルに懸濁させる)、微粒子状酸化チタン含有イオン交換樹脂濾過体を調製する。
【0068】
このカラムに充填された濾過体頂部から水がシャワー状になって噴出し、空気と接触した後落下する。この貯留水は循環ポンプによりカラム内部の吸着体を通流して、底部から頂部に排出する機能を持つ循環水10リットルを持つ閉鎖系水清浄作用を環システムを作る。1mの密閉空間を有するテスト装置に、本発明装置を入れ、アンモニアと酢酸について、使用前と使用後の濃度を、市販の検知管を用いて濃度変化を測定した。24時間稼動後の測定結果を表5に示す。
【0069】
【表1】

Figure 0004395648
【0070】
【表2】
Figure 0004395648
【0071】
【表3】
Figure 0004395648
【0072】
【表4】
Figure 0004395648
【0073】
【表5】
Figure 0004395648
【0074】
【発明の効果】
本発明は、以上説明したような構成であるので、以下に記載するような効果を奏する。
【0075】
粒状イオン交換樹脂を気流粉砕することで調製した粉末イオン交換樹脂は、物理的吸着機能が著しく向上することが認められており、溶液の濾過材としての利用方法は本発明者等が開発してきたが、空気中の浮遊粉塵や悪臭成分の除去については未開発の分野であった。本発明によって、粉末イオン交換樹脂に微粒子状酸化チタンを含有させて相乗効果を高め、微粒子状粉末イオン交換樹脂の利用価値を著しく高めることができる。
【0076】
粉末イオン交換樹脂の原料は、発電所などの産業廃棄物である使用済み粒状イオン交換樹脂を細かく粉砕して本発明に使用する粉末イオン交換樹脂の材料として使用でき、また微粒子状酸化チタン含有粉末イオン交換樹脂繊維吸着体に使用する繊維も、反毛業者の作るリサイクル繊維が活用できるので、資源有効活用の面から有効な技術である。
【0077】
イオン交換樹脂は、特定の臭気に自在に適応できるように調製できる素材であり、本発明の素材が安価で簡便な方法と装置であるので、空気又は水の清浄化に広範囲な分野での適用が期待される。
【0078】
空気や水の清浄化を目的とする各種技術があるが、本発明は光触媒酸化チタンによる空気浄化作用と微生物膜による水の浄化作用のように寿命の長い作用効果を合わせた相乗効果により、効果対費用及び効果対期間に優れている。
【図面の簡単な説明】
【図1】本発明の空気又は水の清浄化工程概念図である。
【図2】本発明の一実施形態を示す清浄化装置の立断面図である。
【符号の説明】
1.水槽
2.水
3.微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体又は磁石包含微粒子状酸化チタン含有イオン交換樹脂繊維吸着体
4.エアーポンプ
5.エアー導入パイプ
6.エアーリフトパイプ
7.傘状落水板
8.通流可能な吸着体収納容器
9.空気流方向を示す矢印
10.水流方向を示す矢印[0001]
BACKGROUND OF THE INVENTION
The present invention relates to comforting living spaces such as residences, public facilities, and occupational areas by removing airborne dust and bad odor components.
[0002]
[Prior art]
The methods for removing malodors include masking, which is a sensory deodorization method, physical deodorization using activated carbon, zeolite, etc., microbial methods, chemical deodorization, and electrical deodorization using plasma, etc. There are devices that purify the air by passing an adsorbent such as chitosan or a polymer functional membrane. Recently, there has been an attempt to clean the air by decomposing ammonia odor and cigarette dust using titanium oxide for photocatalyst. However, bad odor and suspended fine particles by powder ion exchange resin having a particle diameter of 1 to 50 μm as in the present invention. There is no air or water cleaning method or device that uses the synergistic effect of the action of adsorbing odor and the decomposition of the malodorous component of titanium oxide.
[0003]
An ion exchange resin commonly used for industrial use is a polymer obtained by adding an acidic or alkaline exchange group to a copolymer of styrene and divinylbenzene, and is a spherical granular material having a diameter of 0.3 to 2 mm. .
[0004]
The powder ion exchange resin used in the present invention is an ion exchange resin prepared by converting a granular ion exchange resin commonly used in industry into fine particles having an average particle diameter of 1 to 50 μm by mechanical pulverization, and is generally not commercially available. Is used in special industrial fields.
[0005]
The powder ion exchange resin used in the present invention does not necessarily have to be new, and it is sufficient to use a used granular ion exchange resin in the form of fine particles.
[0006]
The water filter detergent and the simple planter using the particulate ion exchange resin adsorbent are disclosed in Japanese Patent Application Laid-Open No. 2000-312881, Japanese Patent Application No. 2001-277268 and others, but the removal of floating dust and malodorous components was performed. There is nothing.
[0007]
The powder ion exchange resin has been already known to have an excellent malodor component adsorption action, but there is no development example of an apparatus used for removing malodor in the air. The biggest reason seems to be that the resin is expensive and has not been studied. This is a new technology that was made possible for the first time by obtaining raw materials at low cost by crushing used ion exchange resin. In addition, no examples of attempts to purify air or water with fine particle titanium oxide-containing ion exchange resins are found.
[0008]
[Problems to be solved by the invention]
In recent years, there has been a growing need for improving living spaces such as odor removal and air purification. Therefore, a method of producing a particulate titanium oxide-containing powder ion exchange resin adsorbent and a particulate titanium oxide-containing powder ion exchange resin fiber adsorbent, which are filter media used for cleaning, and air or water using the filter media. It is an object to provide an inexpensive method for cleaning.
[0009]
[Means for Solving the Problems]
The first of the present invention, which is a means for solving the problems,Purifying air or water, characterized in that a powder ion exchange resin having a particle size of 1 to 50 μm and finely divided titanium oxide having a particle size of 100 nm or less are contact-mixed in water with a cut fiber having a fiber thickness of 5 denier or less in water. For producing a powder ion exchange resin adsorbent containing fine particulate titanium oxide,The second of the present invention isThe powder ion exchange resin having a particle diameter of 1 to 50 μm according to claim 1 and finely divided titanium oxide having a particle diameter of 100 nm or less are produced by contact reaction in water with a cut fiber having a fiber thickness of 5 denier or less, It is a method of producing a powder ion exchange resin adsorbent containing fine particulate titanium oxide for cleaning air or water,The third aspect of the present invention isIt is a method for producing a particulate titanium oxide-containing particulate ion exchange resin fiber adsorbent or a particulate titanium oxide-containing powder ion exchange resin adsorbent characterized by being used, and the fourth aspect of the present invention is a particulate An air or water cleaning device using the titanium oxide-containing powder ion exchange resin adsorbent or the particulate titanium oxide-containing powder ion exchange resin fiber adsorbent according to claim 2.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described in the order of an adsorbent manufacturing method, a cleaning method using an adsorbent, and examples. First, a method for producing a powder ion exchange resin adsorbent containing fine particulate titanium oxide will be described. The raw material fine particle titanium oxide having a particle diameter of 100 nm or less and the powdered anion and cation powder ion exchange resin having a particle diameter of 1 to 50 μm are put into an agitation tank at an appropriate weight ratio, and the whole charged raw material can be stirred. Water of a certain degree is poured and stirred so that both raw materials can be mixed and contacted to make a milky suspension. This is an emulsion fine particle titanium oxide-containing powder ion exchange resin adsorbent, but it may be in a wet state or a dry powder state in which water is appropriately evaporated for easy storage.
[0011]
The fine particle titanium oxide-containing powder ion exchange resin adsorbent prepared in this manner has fine particle titanium oxide having a particle size of 100 nm or less, which has an ion exchange group in the pore portion of the powder ion exchange resin having a particle size of 1 to 50 μm. It is presumed that the amount of particulate titanium oxide retained by some weak binding action and retained in the powder ion exchange resin increases as the particle size of the particulate titanium oxide becomes finer.
[0012]
Next, a method for producing the fine particle titanium oxide-containing powder ion exchange resin fiber adsorbent according to claim 2 of the present invention will be described. The production method comprises a first step of making powder ion exchange resin fibers and a second step of including finely divided titanium oxide in the fibers. An agglomerate of powder anions and fine particle cation exchange resin with a particle size of 1 to 50 μm and hydrophilic fine fiber cellulose (trade name serish) or bulk ceramic fiber is made into a stirring tank containing water. Further, cut fibers such as polyester, polypropylene or rayon are put into the stirring tank, mixed in water and integrated to prepare powder ion exchange resin fibers. The powder ion exchange resin fiber prepared as described above has a large porosity and is easily in a state where fine particulate titanium oxide is included.
[0013]
The cut fibers used for the production of powder ion exchange resin fibers have a poor affinity for powder resin and fine particle titanium oxide when the fibers become thick, making it difficult to prepare a fibrous adsorbent having a uniform composition. The thickness is preferably ultrafine cut fibers made of short fibers of 5 denier or less.
[0014]
In addition, it was confirmed that the fibers of the fine particle titanium oxide-containing powder ion exchange resin fiber adsorbent do not necessarily need to be new, and can be used as recycled fibers regenerated by a so-called barber.
[0015]
Next, fine particle titanium oxide is included in the powder ion exchange resin fiber in the second step. A milky aqueous solution in which fine particle titanium oxide with a particle size of 100 nm or less is suspended in water is poured into a stirring tank containing powder ion exchange resin fibers, mixed with powder ion exchange resin fibers, and dispersed inside. Then, a powder ion exchange resin fiber adsorbent containing fine particulate titanium oxide is prepared. Excess water used for stirring is discharged or evaporated after the stirring solution in the tank has settled. The action and effect of the fine particle titanium oxide-containing powder ion exchange resin fiber adsorbent is greater in the wet state. However, when dried, the action and effect can be recovered by adding water to make it wet, so that the amount of water during storage and transportation is not particularly important. Moreover, it is good to store in the container which can be sealed as much as possible in order to avoid the cleaning effect reduction by adsorption | suction of a floating dust or a malodorous component until it uses for the purpose of use after manufacture.
[0016]
The inclusion ratio of fine particle titanium oxide to the ion exchange resin produced as described above is, for example, that fine particle titanium oxide is obtained by adding ultrafine particle titanium oxide having an average particle size of 9 nm of Furukawa Kikai Metals' trade name DN-1-0. When used, it is possible to make an ultrafine particulate titanium oxide-containing powder ion exchange resin fiber adsorbent that adsorbs and includes up to about 10% of the ion exchange resin by weight ratio.
[0017]
The composition of the particulate ion exchange resin when used for the purpose of removing malodors will be described. Unlike a filter body mainly composed of an anion exchange resin for purifying water, it is important to properly use the composition of the ion exchange resin depending on malodorous components. In order to remove cations such as ammonia, cation exchange resins, preferably strongly acidic cation exchange resins are mainly used. To remove anionic components such as organic acids, anion exchange resins, preferably strongly basic anion exchanges are used. It is good to use resin as a main component.
[0018]
The method for purifying air or water and the apparatus using the adsorbent according to claims 1 to 3 of claim 4 will be described below.
[0019]
The malodorous component is strongly perceived by humans even if the content in the air is a minute amount of the billions of parts by volume (ppb unit). When the air containing the malodorous component is brought into contact with water, the odorous component quickly dissolves in water. Accordingly, in order to enhance the cleaning action, air or water containing malodorous components should be contacted with the fine particle titanium oxide-containing ion exchange resin adsorbent or the fine particle titanium oxide-containing powder ion exchange resin fiber adsorbent as much as possible. It is important to make it larger.
[0020]
A method for purifying air or water using the adsorbent produced by the above production method will be described. The first method of purifying air containing airborne dust and malodorous components contained malodorous components in the aqueous suspension of fine particle titanium oxide-containing powder ion exchange resin according to the production method of claim 1 without fibers. In this method, air is introduced by an air pump and passed.
[0021]
A second method for purifying air containing airborne dust and malodorous components is a gap through which air can flow through the powdered ion-exchange resin fiber adsorbent containing fine particulate titanium oxide according to claim 2 or claim 3 according to the present invention. It is the method of putting in the closed system space which puts in the container which has a hole or an opening part, and produces a malodor. The malodorous component in the air is brought into contact with and adsorbed by the adsorbent by the flow of air in the closed system space, and an excellent cleaning action can be exhibited.
[0022]
The third method for purifying air containing suspended dust and malodorous components is to place the fine particle titanium oxide-containing powder ion exchange resin fiber adsorbent of claim 2 or 3 of the present invention in a water tank and float Air containing dust and offensive odor components is sucked with an air pump and introduced into water, and suspended dust and offensive odor components are dissolved in water. The aqueous solution and the powder ion exchange resin come into contact with each other, and suspended dust and malodorous components in water are captured by the powder ion exchange resin and cleaned by the chemical / physical adsorption action of the powder ion exchange resin.
[0023]
The adsorption capacity of the powder ion exchange resin has a certain capacity and eventually becomes equilibrium and cannot be adsorbed any more, but at this stage, it captures and adsorbs microorganisms in water to form a biofilm. In particular, a particulate ion exchange resin having an average particle size of about 10 microns and a large specific surface area, particularly a basic ion exchange resin, almost completely captures and adsorbs microorganisms in water.
[0024]
By including particulate titanium oxide in the powder ion exchange resin filtration adsorbent, the decomposition action of harmful components such as ammonia in aqueous solution was improved as compared with the case where each was used alone. This is presumably because the reaction between harmful components captured by the ion exchange resin exchange group and fine particulate titanium oxide captured by the ion exchange resin pores is activated.
[0025]
For cleaning air or water, it has excellent chemical / physical adsorption action for ionic components of particulate ion exchange resin with an average particle size of 50μm or less, and action by microbial membranes raised when used in water. It needs to be used effectively alone or in combination.
[0026]
In general, it is well known that titanium oxide oxidizes and decomposes malodorous components. However, when a powder ion exchange resin fiber adsorbent and granular fine titanium oxide are used in combination, the air discharged through the adsorbent is exhausted. The unexpected effect of improving the cleaning effect was recognized.
[0027]
The most effective adsorbent for cleaning action is ultrafine particulate oxidation prepared by mixing and stirring ultrafine particulate titanium oxide powder with a particle size of 10 nm or less into a fine particle ion exchange resin adsorbent with a particle size of 1 to 50 μm. It is a titanium-containing particulate ion exchange resin fiber adsorbent.
[0028]
Any titanium oxide may be used as long as it has an oxidizing action, but in order to uniformly disperse the titanium oxide and prevent separation from the fibers, fine titanium oxide having a particle size of 10 μm or less, more desirably 100 nm or less. A finely divided titanium oxide powder having a particle size of 5 mm is preferable.
[0029]
The present inventors have already filed a patent application2002-048927The advantage of the water purification method using the ion-exchange resin adsorbent that has been filed in is that the microorganisms adsorbed in water form a microbial membrane at a stage where the adsorption capacity of the powder ion-exchange resin used for a certain period of time decreases. The adsorption / decomposition ability by the is maintained continuously. Also, what is characteristic is that when a magnetic field is applied to the microbial membrane, the action effect of the bioreactor is doubled. This work effect is extremely useful industrially.On the other hand, by including the titanium oxide according to the present invention, the same advantages appear. It seems that the deodorizing effect by including the titanium oxide mentioned in the examples is synergistically combined with the malodor adsorption action by the powder resin because the malodor decomposition action by the titanium oxide is advantageous.
[0030]
That is, the powdered ion exchange resin adsorbent containing fine particle titanium oxide or the powder ion exchange resin fiber adsorbing powder containing particulate titanium oxide of the present invention is used for air purification, and the powder ion exchange resin fiber adsorbent using a magnetic field is used as water. More effective air or water cleaning can be realized by the combined apparatus used for cleaning the air.
[0031]
For example, the present invention can also be applied to a large-scale apparatus of an industrial scale shower method or a water tank introduction method as in the system shown in FIG. In any system, air containing airborne dust and malodorous components is purified by passing through the particulate ion-exchange resin fiber adsorbent containing fine particulate titanium oxide prepared by the method of claim 2 or claim 3 of the present invention. The water used in the process of dissolving the malodorous component in the powder is a powder ion exchange resin fiber adsorbent that does not contain particulate titanium oxide or magnet-containing powder ions from the water tank by a circulation pump in order to effectively use the biofiltration effect. It is preferable to circulate through the exchange resin adsorbent. In this system, in order to improve the cleaning effect, the suction capability of an air pump that sucks air containing airborne dust and malodorous components is important.
[0032]
The powder ion exchange resin fiber adsorbent containing fine particulate titanium oxide has an antibacterial action due to titanium oxide, so it is particularly difficult to use as a bioreactor that expects biological filtration and biological deodorization of water for breeding ornamental fish. I also found that there is. In order to use it as a filtration adsorbent for the purpose of nitrification and denitrification, it avoids the coexistence of titanium oxide, powder ion exchange resin fiber adsorbent containing fine particle titanium oxide and powder ion not containing fine particle titanium oxide It is necessary to consider that the exchange resin fibers are separated and used together.
[0033]
For example, the effect applied to the simple planter described in Japanese Patent Application No. 2001-277268 is great, and by applying it in a divided manner without mixing with the filtration adsorbent in the water tank referred to in the present invention, the clarification of unexpected water can be achieved. Along with the effect, it was confirmed that airborne dust and falling bacteria present in the air exhausted from this system decreased. In particular, by placing the ultrafine particulate titanium oxide-containing powder ion exchange resin fiber adsorbent produced by the production method of claim 2 or claim 3 according to the present invention on the surface layer portion of a plant pot in which a foliage plant is planted, a malodor removal effect can be obtained. It is also expected as an interior with
[0034]
In this way, as an interior that combines foliage plants and air purification, it can also be provided to restaurants and hotels that place importance on the indoor environment, and also as one of welfare equipment that takes into account the improvement and healing of the environment of bedridden elderly people.
[0035]
The greatest merit of the cleaning method by the system as shown in FIG. 1 is inferior to a system that discharges a large amount of water, although it is a circulating water system that uses a small amount of water in the process of dissolving suspended dust and malodorous components in water. There is no airborne dust or bad smell component adsorption / decomposition performance. This was the first system that became possible by using a powder ion exchange resin of 1 to 50 μm. The effect was enhanced by applying a magnetic field, and as a result, the system could be simplified and miniaturized.
[0036]
When the fine particle titanium oxide-containing powder ion exchange resin adsorbent or the fine particle titanium oxide-containing powder ion exchange resin fiber adsorbent of the present invention is used in water, it is unclear how much titanium oxide is involved in the function of the bioreactor. However, it is presumed that a trace amount of organic nitrogen decomposition products generated by the oxidation action of titanium oxide bring about an effect of suppressing the generation of algae.
[0037]
Below, the Example using the adsorbent manufactured by Claims 1-3 of this invention and the experimental result relevant to them are described.
[0038]
[Example 1]
About a peculiar odor generated in a room with a pet toilet or a waiting place in a dental clinic, ambient air is pumped into a suspension of fine particle titanium oxide-containing powder ion exchange resin produced according to the present invention. And a method of placing about 250 ml of a particulate ion exchange resin fiber adsorbent containing ultrafine particulate titanium oxide as an adsorbent produced according to claim 2 in an open container at the top, Both methods can remove the stench of pets and the odor peculiar to clinics, and the air cleaning effect is remarkably improved. In the latter case, an excellent deodorizing effect that was incomparable with the powder ion exchange resin fiber adsorbent alone was confirmed.
[0039]
[Example 2]
A particulate titanium oxide-containing powder ion-exchange resin fiber adsorbent made by the production method of claim 2 is placed as a filter medium in a light-shielding filter cylinder installed in an aquarium where ornamental fish are bred. As a result of observing water stains and analyzing the water quality while circulating internally, the water cleaning effect was remarkably improved. There were few deaths of ornamental fish, and the generation of algae was drastically reduced compared to the case of using fine particulate titanium oxide alone. In particular, the transparency of aquarium water is improved, and not only the absorption in the visible region is reduced in the light absorption analysis, but also the absorption in the ultraviolet region, particularly 200 to 250 nm, is drastically reduced, and the action of reducing harmful nitrogen compounds represented by nitrogen compounds is reduced. It turns out that the effect is great. It was recognized that the ultrafine particulate titanium oxide having a particle size of 9 nm has a greater cleaning effect than the granular titanium and has a significant difference depending on the particle size.
[0040]
[Example 3]
A blanket is placed in the housing area of a pet dog (10 Chihuahuas) housed indoors (toilet discipline house), and an experimental cloth that clearly has a pet odor is prepared. 30m3The experimental cloth was placed in the space, and various deodorizers prepared by the following eight methods were placed beside it, and the deodorizing effect was examined by a sensory test with three panelists.
[0041]
As one of them, a used cation exchange resin (Diaion PK216), 5 g of powder cation exchange resin prepared by an air-flow pulverization method, 5 g of particulate cellulose (trade name cerile), 5 g of bulk ceramic fiber (Isolite Industry), To 5 g of polyester cut fiber (Kuraray), 1 g of ultrafine titanium oxide (made by Furukawa Machine Metal, trade name DN-1-0) is mixed with 5 liters of water, and vigorously stirred in a mixer for 2 to 5 minutes. After standing for 10 minutes, water and fiber were separated with a centrifuge to prepare a fibrous adsorbent.
[0042]
As part 2, using 5g of powder anion exchange resin prepared by using a used anion exchange resin (Diaion PA308) instead of the used cation exchange resin, in the same manner as in Part 1, particulate oxidation A titanium-containing fibrous adsorbent was prepared.
[0043]
As part 3, 2.5 g of powdered cation exchange resin (Diaion PK216) and 2.5 g of powdered anion exchange resin (Diaion PA308) prepared from used ion exchange resin were used in the same manner as Part 1. Then, a particulate adsorbent containing titanium oxide was prepared.
[0044]
As No. 4, using a new cation exchange resin (Diaion PK216), a fine particulate titanium oxide-containing fibrous adsorbent was prepared in the same manner as in No. 1.
[0045]
As No. 5, using a new anion exchange resin (Diaion PA308), a fibrous adsorbent containing fine particulate titanium oxide was prepared as in No. 2.
[0046]
As No. 6, using a new cation exchange resin (Diaion PK216) and a new anion exchange resin (Diaion PA308), a particulate adsorbent containing titanium oxide was prepared in the same manner as in No.3.
[0047]
As No. 7, since the ultrafine particulate titanium oxide alone cannot prepare a fibrous adsorbent, 1 g of the ultrafine particulate titanium oxide was placed on a vessel for comparison.
[0048]
As No. 8, a negative / positive powder ion exchange resin fiber adsorbent having the same composition as No. 6 containing no particulate titanium oxide was prepared. In addition to those 3 and 6, there was a leak of particulate titanium oxide, and the inclusion amount of particulate titanium oxide decreased.
[0049]
The evaluation was performed by a five-step method in which the odor intensity before the experiment was set to 5 and the most deodorized one was set to 1, and the average value obtained by the three panelists was rounded off. Table 1 shows the experimental results of the deodorizer prepared in the above eight ways.
[0050]
As is apparent from the experimental results, excellent deodorizing effect was observed in Part 3 and Part 6 including powdered anion / cation exchange resin and ultrafine titanium oxide. As for the powder ion exchange resin to be used, there was almost no difference in performance regardless of whether it was new or used.
[0051]
As a reference, in the above experiments 1 to 8, the same amount of powder ion exchange resin and fine particle titanium oxide were suspended in 10 L of water, and an experiment was conducted in which ambient air was introduced using an air pump (300 ml / min). Although it was carried out, a deodorizing effect that is not inferior to that in each experimental section was observed.
[0052]
[Example 4]
As shown in FIG. 2, 10 liters of water 2 is placed in a water tank 1. An air-introducing pipe for sending air containing bad odors or suspended dust by operating the air pump 4 is produced by the fine particle titanium oxide-containing powder ion exchange resin fiber adsorbent 3 produced by the method of claim 2 or claim 3 of the present invention. It inserts into the lower part of the air lift pipe 3 with a diameter of 2 cm which stands vertically through the adsorbent storage container 8 capable of storing water. The air rises with water due to the air lift phenomenon and is discharged from the top. At this time, the raised water is allowed to fall naturally along the umbrella-shaped waterfall plate 7 so that the contact between the air and the water is increased and the bad odor is easily dissolved in the water.
[0053]
If the water discharged from the top is made to flow on the surface of the waterfall landscape or other specially designed crops, the interior can be enhanced and the range of application can be expanded.
[0054]
If you use a flower pot with a foliage plant instead of an umbrella-shaped waterfall plate at the top, water is automatically irrigated from the hole at the bottom of the flower pot, and you can seek the effect of the interior and the healing effect. The cleaning effect is further improved by placing the particulate titanium oxide-containing powder ion exchange resin fiber adsorbent produced by the method of claim 2 or 3 of the present invention on the surface layer around the trunk of the houseplant.
[0055]
Further, instead of the particulate titanium oxide-containing powder ion exchange resin fiber adsorbent of claim 2, the fine particle titanium oxide-containing powder ion exchange resin adsorbent prepared by the method of claim 1 of the present invention is poured into water. good. In this case, an adsorbent storage container capable of passing water is not necessary.
[0056]
Furthermore, when raising ornamental fish in the aquarium, instead of the powdered ion exchange resin fiber adsorbent containing particulate titanium oxide, a powder containing ion exchange resin adsorbent containing magnet oxide that does not contain titanium oxide can be used to clean the microorganisms. It is good to use.
[0057]
When a magnetic field is applied to the microbial membrane, the cleaning action by the microbial membrane can be promoted by installing a permanent magnet in the middle of the flowing water path and applying the magnetic field without including the magnet in the powder ion exchange resin adsorbent.
[0058]
As a related experiment, a pet dog's feces 200g was placed in a 4.5 tatami room, and the air purifier shown in Fig. X was installed next to it. A cleaning effect was observed. The contents and results of the experiment are described below.
[0059]
As part 1, 150 g of ultrafine titanium oxide particles (Fujiki Sales Co., Ltd.) were installed on the bottom of the water tank, and an air cleaning effect was attempted when 500 ml of powder ion exchange resin adsorbent was used. The odor was subjected to a sensory test by three panelists in the same manner as in Example 3, and the amount of suspended dust and the number of bacteria falling were measured by a conventional method. The results are shown in Table 2.
[0060]
As part 2, 250 ml was collected from 500 ml of the powder ion exchange resin adsorbent used in Part 1, swollen in water, and then ultrafine titanium oxide powder (trade name: DN-1-0, manufactured by Furukawa Machine Metal). ) Using 0.5 g, both were mixed and stirred and uniformly adsorbed on the adsorbent. This ultrafine particulate titanium oxide-containing powder ion exchange resin adsorbent is wrapped with a 100 mesh cloth, divided and installed on top of the powder ion exchange resin adsorbent, and replaced with titanium oxide particles in the same manner as in Part 1. Then, an experiment was conducted in which a powder ion exchange resin fiber adsorbent containing ultrafine particulate titanium oxide was used in combination. The results are shown in Table 3.
[0061]
As is apparent from the experimental results, the air-cleaning effect of the powder ion exchange resin fiber adsorbent containing ultrafine particulate titanium oxide was large, and it was confirmed that there was a synergistic action with the powder ion exchange resin adsorbent.
[0062]
[Example 5]
I will try the next two. As material A, 10 g of powdered cation exchange resin (trade name: Diaion PK216), 10 g of particulate anion exchange resin (trade name: Diaion PA308) and 10 g of fine fibrous cellulose (trade name: Celish) are mixed and stirred in water. Thereto, 2 g of ultrafine titanium oxide (made by Furukawa Machine Metal, trade name DN-1-0) is added and agglomerated.
[0063]
As material B, 5 g of a polyester cut fiber (Kuraray, 0.43 dN × 3 mm) and 5 g of a polypropylene cut fiber (Daiwabo, 2 dN × 2 mm) are mixed and dispersed in water with 5 g of a bulk ceramic fiber (Isolite Kogyo). The adsorbent made of these cut fibers is made uniform.
[0064]
A material A and a material B are mixed, and a fibrous filtration adsorbent in which the above-mentioned filter body uniformly includes a powder ion exchange resin and ultrafine titanium oxide is prepared.
[0065]
A comparative experiment was conducted with respect to the water cleaning effect of 300 ml of the prepared adsorbent that was put into the apparatus described in Example 4 and 2 that was charged with the powder ion exchange resin fiber filter except for titanium oxide. . The stock solution was used as aquarium water by diluting 3 times the pool water with rot odor with pure water. The air pump was operated to pass the aquarium water through the filter body, and the change in water quality after 24 hours was measured. The aquarium was placed in direct sunlight. The measurement results are shown in Table 4.
[0066]
[Example 6]
Try the next two. As one of them, a fibrous adsorbent (Japanese Patent Laid-Open No. 2000-312881) having 5 g of fine particle cation exchange resin and 5 g of fine particle anion exchange resin as basic components is packed in a column having a diameter of 10 cm and a height of 20 cm.
[0067]
As part 2, water in which finely divided titanium oxide is uniformly dispersed is poured from the top of the filtration adsorbent shown in No. 1 (1 g is suspended in 5 liters of water), and the finely divided titanium oxide-containing ion exchange resin filter is obtained. To prepare.
[0068]
From the top of the filter body packed in this column, water is sprayed in a shower-like manner and falls after coming into contact with air. This stored water flows through the adsorbent inside the column by a circulation pump, and forms a closed system water cleaning action having 10 liters of circulating water having a function of discharging from the bottom to the top. 1m3The apparatus of the present invention was placed in a test apparatus having a closed space, and the concentrations of ammonia and acetic acid before and after use were measured using a commercially available detector tube. Table 5 shows the measurement results after 24 hours of operation.
[0069]
[Table 1]
Figure 0004395648
[0070]
[Table 2]
Figure 0004395648
[0071]
[Table 3]
Figure 0004395648
[0072]
[Table 4]
Figure 0004395648
[0073]
[Table 5]
Figure 0004395648
[0074]
【The invention's effect】
Since the present invention is configured as described above, the following effects can be obtained.
[0075]
It has been recognized that the powder ion exchange resin prepared by air-pulverizing the granular ion exchange resin has a significantly improved physical adsorption function, and the inventors have developed a method for using the solution as a filter medium. However, removal of airborne dust and odorous components in the air was an undeveloped field. According to the present invention, it is possible to increase the synergistic effect by adding fine particle titanium oxide to the powder ion exchange resin and remarkably increase the utility value of the fine particle powder ion exchange resin.
[0076]
The raw material of the powder ion exchange resin can be used as a material for the powder ion exchange resin used in the present invention by finely pulverizing the used granular ion exchange resin, which is industrial waste such as a power plant. The fiber used for the ion-exchange resin fiber adsorbent is also an effective technology from the viewpoint of effective use of resources because recycled fiber made by anti-barriers can be used.
[0077]
Ion exchange resin is a material that can be prepared so that it can be freely adapted to a specific odor. Since the material of the present invention is an inexpensive and simple method and apparatus, it can be used in a wide range of fields for cleaning air or water. There is expected.
[0078]
There are various technologies for purifying air and water, but the present invention is effective due to a synergistic effect that combines long-life effects such as air purification action by photocatalytic titanium oxide and water purification action by microbial membrane. Excellent cost and effectiveness versus period.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a cleaning process of air or water according to the present invention.
FIG. 2 is an elevational sectional view of a cleaning apparatus showing an embodiment of the present invention.
[Explanation of symbols]
1. Aquarium
2. water
3. Particulate titanium oxide-containing powder ion exchange resin fiber adsorbent or magnet-containing particulate titanium oxide-containing ion exchange resin fiber adsorbent
4). Air pump
5. Air introduction pipe
6). Air lift pipe
7). Umbrella waterfall
8). Adsorbent storage container that can flow
9. Air flow direction arrow
Ten. Arrow indicating water flow direction

Claims (2)

微粒子状酸化チタン、粉末イオン交換樹脂、及び繊維太さ5デニール以下のカット繊維とを水中で接触反応させることを特徴とする、空気又は水を清浄化するための微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体の製法。Particulate titanium oxide-containing powder ion exchange for purifying air or water, characterized in that particulate titanium oxide, powder ion exchange resin, and cut fiber having a fiber thickness of 5 denier or less are brought into contact with each other in water. Manufacturing method of resin fiber adsorbent. 請求項1の前記吸着体を用いた空気又は水を清浄化することを特徴とする装置。An apparatus for purifying air or water using the adsorbent according to claim 1.
JP2002373423A 2002-12-25 2002-12-25 Method for producing fine particle titanium oxide-containing powder ion exchange resin adsorbent, air or water cleaning method and apparatus using the same Expired - Fee Related JP4395648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002373423A JP4395648B2 (en) 2002-12-25 2002-12-25 Method for producing fine particle titanium oxide-containing powder ion exchange resin adsorbent, air or water cleaning method and apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002373423A JP4395648B2 (en) 2002-12-25 2002-12-25 Method for producing fine particle titanium oxide-containing powder ion exchange resin adsorbent, air or water cleaning method and apparatus using the same

Publications (2)

Publication Number Publication Date
JP2004203988A JP2004203988A (en) 2004-07-22
JP4395648B2 true JP4395648B2 (en) 2010-01-13

Family

ID=32811704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002373423A Expired - Fee Related JP4395648B2 (en) 2002-12-25 2002-12-25 Method for producing fine particle titanium oxide-containing powder ion exchange resin adsorbent, air or water cleaning method and apparatus using the same

Country Status (1)

Country Link
JP (1) JP4395648B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007029270A (en) * 2005-07-25 2007-02-08 Daikin Ind Ltd Deodorizing mechanism
JP5543694B2 (en) * 2008-04-03 2014-07-09 ユニバーサル・バイオ・リサーチ株式会社 Separation and collection method of biological materials
JP2013226149A (en) * 2013-06-10 2013-11-07 Universal Bio Research Co Ltd Method for separating and collecting organism-related substance
JP7411504B2 (en) 2020-06-01 2024-01-11 神田 謹造 environmental disinfection equipment

Also Published As

Publication number Publication date
JP2004203988A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
KR100719788B1 (en) Naturally humidifying air cleaner using water filtering method and activated carbon filtering method
CN206234932U (en) A kind of air purifier
CN200961916Y (en) Multifunctional highly-effective air purifier
JP2005342509A (en) Air sterilizer/deodorizer
CN101322852A (en) Toilet air purification device
JP2002316148A (en) Cleaning device for foul water
CN109499234A (en) Hospital environment air treatment system
JP4395648B2 (en) Method for producing fine particle titanium oxide-containing powder ion exchange resin adsorbent, air or water cleaning method and apparatus using the same
KR102141509B1 (en) Photocatalyst space sterilizer with ionizer function
JP6389979B2 (en) Deodorant manufacturing method
CN107327954A (en) Horizontal indoor air efficient purifier with humidity conditioning function
CN208475515U (en) A kind of air purifier
CN208244451U (en) The funginert plant nethike embrane air filter of decomposing formaldehyde benzene
CN215175706U (en) New trend reforms transform and uses discharging equipment with purification structure
JP3720079B2 (en) Water treatment agent and method for producing the same
CN2925488Y (en) Air purifier
JP5082034B2 (en) Composite functional photocatalyst dispersion and porous composite functional photocatalyst
JP3751147B2 (en) Purification agent and water purification apparatus using the same
CN201643039U (en) Photocatalyst air cleaner
JP2585157B2 (en) Adsorbent composition and method for producing the same
CN213784697U (en) Cat lavatory with compound deodorization disinfection mechanism of inner loop
JP2002000710A (en) Deodorizing device
CN103130366B (en) Water quality purifying and sterilizing device
CN108310959A (en) The funginert plant nethike embrane air filter of decomposing formaldehyde benzene and manufacturing method
JP2005102674A (en) Deodorant using used ion exchange resin and method for producing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20021225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090416

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091006

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees