JP4392088B2 - Boron nitride-coated spherical borate particles, mixed powder containing the same, and methods for producing them - Google Patents

Boron nitride-coated spherical borate particles, mixed powder containing the same, and methods for producing them Download PDF

Info

Publication number
JP4392088B2
JP4392088B2 JP30487299A JP30487299A JP4392088B2 JP 4392088 B2 JP4392088 B2 JP 4392088B2 JP 30487299 A JP30487299 A JP 30487299A JP 30487299 A JP30487299 A JP 30487299A JP 4392088 B2 JP4392088 B2 JP 4392088B2
Authority
JP
Japan
Prior art keywords
particles
borate
hbn
powder
mixed powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30487299A
Other languages
Japanese (ja)
Other versions
JP2001122615A (en
Inventor
正人 川野
卓 川崎
政秀 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP30487299A priority Critical patent/JP4392088B2/en
Publication of JP2001122615A publication Critical patent/JP2001122615A/en
Application granted granted Critical
Publication of JP4392088B2 publication Critical patent/JP4392088B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、六方晶窒化ホウ素で被覆された球状ホウ酸塩粒子とそれを含む混合粉末、及びそれらの製造方法に関する。
【0002】
【従来の技術】
六方晶窒化ホウ素(以下、「hBN」という。)粒子は、黒鉛に類似した層状構造を有し、その集合体であるhBN粉末は熱伝導性、電気絶縁性、化学安定性、固体潤滑性、耐熱衝撃性などの特性に優れている。
【0003】
これらの特性を活かして、電子材料分野では、電子部品から発生した熱を効率よく分散させるため、樹脂又はゴムにhBN粉末を充填した放熱部材、例えば放熱グリース、柔軟性スペーサー、放熱シートなどが使用されている。
【0004】
通常のhBN粉は鱗片粒子の集合体であり、これを樹脂やゴムに充填すると、粒子同士が同一方向に揃う{以下、この現象を「配向」という。(特開平9−202663号公報参照)}。hBN粒子の熱伝導率は面方向(a軸方向)が110W/mKであるのに対して、厚み方向(c軸方向)は2W/mKとかなり低いので、例えば放熱シート内でhBN粒子が配向すると、hBN粒子はその厚み方向(c軸方向)がシートの面方向と平行になって充填されてしまい、hBN粒子の面方向の高熱伝導性を十分に活かすことができなかった。
【0005】
そこで、配向しにくい非鱗片状のhBN粉、例えば噴霧乾燥によるhBN粉の造粒品、hBN焼結体の粉砕品、一次粒子の集合体を制御して製造されたhBN粉(特開平9−202663号公報)などの使用が提案されているが、これらにあっても、樹脂やゴムに充填する際に受ける混合・混練時の剪断応力に勝てず、hBN粒子が配向した。
【0006】
これらの問題を解決するため、本出願人は、先にコア・シェル構造をもつhBN被覆のホウ酸塩粒子を提案した(特願平10−352519号)。これは、コアとなるホウ酸塩をhBN粒子で被覆し、シェルを形成させた構造である。このコアとシェルの接着力はかなり強く、樹脂やゴムへ混合・混練する際の剪断応力を受けても壊れない特徴があった。しかし、このhBN被覆のホウ酸塩粒子においても、放熱部材の熱伝導率を向上させるにはいくつかの解決すべき課題があった。
【0007】
すなわち、hBN被覆のホウ酸塩粒子を合成する際にhBNが生成し、得られた粉末には、コア・シェル構造のhBN被覆のホウ酸塩粒子と鱗片状hBN粒子が含まれるが、この混合物の熱伝導性は、コア・シェル構造粒子以外の粒子の含有分だけ劣ることである。
【0008】
また、コア・シェル構造粒子の形状が角張った様な形状であったり、鱗片状hBN粒子を多く含んだ場合、樹脂やゴムの充填性及び流動性が悪くなり、放熱材料の成型や熱伝導率の向上に限界があった。
【0009】
そこで、コア・シェル構造の粒子を球形化させ、混合物中のコア・シェル粒子の割合を高めて使用することになるが、それには高度な分離技術が必要となり、量産性に問題があった。
【0010】
【発明が解決しようとする課題】
本発明は、上記に鑑みてなされたものであり、その目的は、放熱部材の熱伝導性を一段と向上でき、均質な放熱部材を製造することのできる、hBN被覆球状ホウ酸塩粒子、それを含む混合粉末、及びそれらの製造方法を提供することである。
【0011】
【課題を解決するための手段】
すなわち、本発明は、SEM写真から測定された球形度(Ψw)が0.72〜0.95である六方晶窒化ホウ素被覆球状ホウ酸マグネシウム及び/又はホウ酸カルシウム粉末と、それ以外の六方晶窒化ホウ素粉末とを含む混合物からなり、この混合物の24μm未満の粒子の含有率が2〜29%で、425μm以上の粒子の含有率が1〜4%であることを特徴とする混合粉末である。
【0012】
更に、本発明は、ホウ酸に、マグネシウム及び/又はカルシウムの水酸化物及び/又は炭酸塩を、マグネシウム及び/又はカルシウムとホウ素の原子比{([Mg]+[Ca])/[B]}が1〜2となるように混合し、それを非酸化性雰囲気下で加熱反応させ、得られた生成物を加熱溶融・冷却・粉砕・分級し、24μm以上の粒子とした後、非晶質窒化ホウ素粉末及び/又は六方晶窒化ホウ素粉末を、ホウ酸塩粒子からなる粉末の含有割合が25〜75%となるように混合し、非酸化性雰囲気下、温度1700〜2200℃で焼成することを特徴とする上記混合粉末の製造方法である。また、この混合粉末を24μm未満の粒子の含有率が2〜29%となるまで分級・精製することを特徴とする上記混合粉末の製造方法である。
【0013】
【発明の実施の形態】
以下、更に詳しく本発明について説明する。
【0014】
本発明のhBN被覆球状ホウ酸塩粒子の二次電子像(以下、「SEM写真」という。)を図1に示した。また、その粒子をエポキシ樹脂に包埋させ、破断したときに現れる粒子の破断面のSEM写真を図2示した。図1、図2から明らかなように、本発明のhBN被覆球状ホウ酸塩粒子は、コア部のホウ酸塩とシェル部のhBNからなるコア・シェル構造であり、球状体である。
【0015】
本発明のhBN被覆球状ホウ酸塩粒子の球形度は、粒子のSEM写真から得られる粒子の球形度(Ψw)によって求めることができる。本発明の処理を施すことによって24μm未満の粒子の大部分は鱗片状hBN粒子で、24μm以上の粒子はコア・シェル粒子となるため、球形度測定の対象粒子は24μm以上の粒子とする。球形度(Ψw)はWadellの球形度と呼ばれる指標であり、次式で定義される。
【0016】
球形度(Ψw)=(粒子の投影面積に等しい円の直径)/(粒子の投影像に外接する最小円の直径)
【0017】
なお、投影像の形状と球形度(Ψw)の関係は次のとおりである。
投影像の形状 球形度(Ψw)
正三角形 0.64
正四角形 0.79
正五角形 0.87
正六角形 0.91
【0018】
本発明のhBN被覆球状ホウ酸塩粒子の球形度は0.70以上であることが必要である。球形度0.70未満の粒子は、角張った不規則な粒子形状となり、放熱部材を成形する際に流動性が悪く、粒子が片流れを起こしやすくなる。図1、図2に示したのもは、球形度(Ψw)0.95である。
【0019】
本発明のhBN被覆球状ホウ酸塩粒子のコア部は、ホウ酸マグネシウム及び/又はホウ酸カルシウムで構成されている。これ以外のホウ酸塩、例えばホウ酸ナトリウムなどではコア・シェル粒子を形成することが困難となる。コア・シェル粒子のホウ酸マグネシウム、ホウ酸カルシウム及びhBNの確認は、エネルギー分散型蛍光X線測定器を用いて行うことができる。
【0020】
コア部の構成比率については、エポキシ樹脂に包埋し破断させたときに現れる粒子破断面のSEM写真から、粒子破断面の最大内接円の直径が30μm以上となるものを任意に5個以上選び出し、コア部の粒子破断面に対する面積占有率の平均値を算出したとき、50〜95%であることが好ましい。50%未満の粒子は球形度が低く、95%をこえるとシェル部のhBN含有率が低くなり、hBNの高熱伝導性などの特長が得られなくなる。
【0021】
一方、シェル部は、鱗片状hBNの一次粒子の集合物であり、その厚みは数〜十数μmであることが好ましい。また、シェル部は、コア部表面積の80%以上を覆う広さに被覆されていることが最適であるが、部分的に形成されていてもよい。シェル部によるコア部の被覆率に比例して熱伝導性が大きくなる。
【0022】
次に、本発明の混合粉末は、上記本発明のhBN被覆球状ホウ酸塩粒子と、それ以外のhBN粒子とを含む混合物からなるものである。本発明の混合粉末中のhBN被覆球状ホウ酸塩粒子の割合は、多いほど好ましく、hBN被覆球状ホウ酸塩粒子以外の粒子の割合は30%以下であることが好ましい。hBN被覆球状ホウ酸塩粒子以外のhBN粒子は、そのほとんどが24μm未満の単一粒子か、弱く凝集した鱗片粉の凝集粉である。
【0023】
本発明の混合粉末中の24μm未満の粒子の含有率は、30%以下であることが好ましい。混合粉末中の24μm未満の粒子の含有率は、混合粉末をエタノール中に超音波分散させ、24μmのJIS篩により篩い分けすることによって測定することができる。
【0024】
次に、本発明の混合粉末の製造方法について説明すると、まず、混合粉末製造用ホウ酸塩を以下の方法で合成する。
【0025】
ホウ酸に、マグネシウム及び/又はカルシウムの水酸化物及び/又は炭酸塩を、マグネシウム及び/又はカルシウムとホウ素の原子比{([Mg]+[Ca])/[B]}が1〜2となるように混合し、それを非酸化性雰囲気下で加熱反応させる。得られた生成物を加熱溶融し、冷却した後、取り出したインゴット状の合成物を粉砕する。
【0026】
ここで、上記原子比が1未満では、低融点のホウ酸塩となり、本発明の混合粉末を製造するときの焼成温度において粘性が低すぎ、コア・シェル粒子とならない。また原子比が2をこえると、高融点で粘性を持たない酸化マグネシウムや酸化カルシウムが残り、コア・シェル粒子の合成を妨げるだけでなく、放熱部材へ充填させたとき、放熱部材の耐湿信頼性や電気絶縁性などに悪影響する。反応温度は、600℃以上であることが望ましい。更には、得られた生成物の加熱溶融は、ホウ酸マグネシウム及び/又はホウ酸カルシウムの融点以上の温度で保持して行われる。
【0027】
次に、得られたインゴット粉砕物を分級する。分級はJIS篩を使い、24μm以上、より好ましくは24〜250μmに粒子を揃える。これを混合粉末製造用ホウ酸塩とする。24μm未満の混合粉製造用ホウ酸塩粒子が多く含まれると、コア部となるホウ酸塩が、シェル部を造るhBN粒子よりも小さくなるため、hBN粒子を取り込めずにコア・シェル粒子を生成できない。
【0028】
次いで、上記で得られた混合粉末製造用ホウ酸塩に、非晶質の窒化ホウ素及び/又はhBNを、ホウ酸塩粒子の含有割合が25〜75%となるように混合する。ホウ酸塩粒子の含有率が25%未満ではhBNの粒子の含有率が多くなるだけでなく、得られたhBN被覆球状ホウ酸塩粒子の球形度(Ψw)が0.70未満となる。一方、75%超ではhBN粒子が不足しホウ酸塩粒子同士が凝集し、不規則な形状の塊となる。
【0029】
その後、この混合原料を非酸化性雰囲気下、温度1700〜2200℃で焼成することによって、本発明の混合粉末を製造することができる。非酸化性雰囲気としては、酸素などの酸化性ガスを含まない雰囲気であるが、窒素ガス雰囲気が好ましい。また、焼成温度が1700℃未満ではhBNの結晶化が進まず、しかもホウ酸塩粒子が十分に融解しないため、コア・シェル粒子を含む混合粉末を製造することが困難となる。一方、2200℃超であっても、ホウ酸塩粒子が揮発するため、コア・シェル粒子を含む混合粉末を製造することができない。
【0030】
本発明のコア・シェル構造からなるhBN被覆球状ホウ酸塩粒子は、上記で製造された混合粉末を分級・精製し、24μm未満の粒子の含有率を2〜29%とすることによって製造することができる。これは、本発明によって製造された上記混合粉末中の24μm未満の粒子の大部分が、hBN粒子であることにもとづいている。24μm未満の粒子の除去には、JIS篩を用いて行われる。
【0031】
【実施例】
以下、実施例及び比較例をあげて更に具体的に説明する。
【0032】
実施例1〜9 比較例1〜10
ホウ酸と、水酸化マグネシウム又は水酸化カルシウムとを、表1に示される原子比で混合し、窒素雰囲気中、比較例5以外は1300℃で加熱してホウ酸塩を合成した後、表1に示される温度で溶融し、冷却した。比較例5は800℃に加熱した後冷却した。合成物中のホウ酸塩の確認は、X線回折により行い、何れの場合もマグネシア及び/又はカルシアのホウ酸塩であることを確認した。
【0033】
得られた合成物はインゴット状であるため、これをジョークラッシャー及びロールクラッシャーを用いて粉砕した。粉砕物の粒度構成は、24μm未満が約30%、250μm以上が約10%であった。比較例6を除いては、この粉砕物をJIS篩により24〜250μmサイズ品に分級し、混合粉末製造用ホウ酸塩とした。比較例6については粉砕物をそのまま用いた。
【0034】
この混合粉末製造用ホウ酸塩に、非晶質窒化ホウ素粉末又はhBN粉末を混合し、表1に示される混合粉末製造用ホウ酸塩濃度の混合原料を調製し、それを窒素雰囲気中、表1に示される焼成温度で2時間焼成した。焼成物は弱く凝集しているため、ヘンシェルミキサーを用いて解砕し、各種の混合粉末を製造した。
【0035】
更に、実施例9で製造された混合粉末は、比較例6の粉末を篩いにより24μm未満の粒子が2%になるまで除去して、本発明の混合粉末としたものである。
【0036】
次いで、上記で製造された実施例、比較例の混合粉末ないしはhBN被覆球状ホウ酸塩粒子について、コア部の面積占有率、粒度分布、球形度(Ψw)及びこれを用いて作製された放熱部材の流動性(スパイラルフロー)と熱伝導率を測定した。それらの結果を表2に示す。
【0037】
スパイラルフローと熱伝導率の測定は、以下に示す樹脂配合物に、本発明の混合粉末又はhBN被覆球状ホウ酸塩粒子(実施例9)を57.5体積%を充填してなる評価用樹脂にて実施した。
<樹脂配合物:「部」は質量基準である>
O−クレゾールノボラックのポリグリシジンエーテル 44部
(軟化点75℃)
フェノール・ホルムアルデヒド樹脂 23部
(軟化点80〜84℃)
トリフェニルフォスフィン(硬化促進剤) 2部
エステルワックス(離形剤) 6部
γ−グリシドキシプロピルトリメトキシシラン 4部
(シランカップリング剤)
【0038】
上記評価用樹脂をロール表面温度100℃のミキシングロールを用いて5分30秒間加熱混練した後、冷却して種々の樹脂組成物を得た。次に、樹脂組成物を用いて、スパイラルフロー及び熱伝導率を測定した。
【0039】
スパイラルフローは、スパイラルフロー金型を用いてEMMI−66(Epoxy Molding Material;Society of Plastic Industry)に準拠して測定した。成形温度は175℃、成形圧力は7.35MPaで成形した。また、樹脂組成物硬化体の熱伝導率は、スパイラルフローと同様の成形条件で成形、硬化して得られる曲げ試片の一部を直径10mm×厚み1mmの円板状に切り出し、レーザーフラッシュ熱伝導率測定装置を用いて室温で測定した。それらの結果を表2に示す。
【0040】
【表1】

Figure 0004392088
【0041】
【表2】
Figure 0004392088
【0042】
表1、表2から、本発明の混合粉末(実施例1〜8)及び本発明のhBN被覆球状ホウ酸塩粒子(実施例9)を用いて調製した樹脂組成物は、比較例のものに比べて流動性に富み、熱伝導性を一段と向上できたことがわかる。
【0043】
【発明の効果】
本発明によれば、放熱部材の熱伝導性を一段と向上することのできるhBN被覆球状ホウ酸塩粒子ないしはそれを含む混合粉末を提供できる。
【0044】
また、本発明の製造方法によれば、上記特性を有するhBN被覆球状ホウ酸塩粒子ないしはそれを含む混合粉末を容易に製造することができる。
【図面の簡単な説明】
【図1】実施例5で得たhBN被覆球状ホウ酸塩粒子の倍率250倍のSEM写真。
【図2】実施例5で得たhBN被覆球状ホウ酸塩粒子をエポキシ樹脂へ包埋させ、粒子を破断させたときの破断面の倍率3000倍のSEM写真。
【図3】比較例1で使用した粉末中から、24μm未満の粒子を除去し、24μm以上の粒子をSEM観察したときの倍率250倍のSEM写真。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to spherical borate particles coated with hexagonal boron nitride, mixed powders containing the same, and methods for producing them.
[0002]
[Prior art]
Hexagonal boron nitride (hereinafter referred to as “hBN”) particles have a layered structure similar to graphite, and the aggregated hBN powder has thermal conductivity, electrical insulation, chemical stability, solid lubricity, Excellent properties such as thermal shock resistance.
[0003]
Taking advantage of these characteristics, in the field of electronic materials, in order to efficiently dissipate heat generated from electronic components, heat dissipation members filled with hBN powder in resin or rubber, such as heat dissipation grease, flexible spacers, heat dissipation sheets, etc. are used. Has been.
[0004]
Ordinary hBN powder is an aggregate of scaly particles, and when this is filled in a resin or rubber, the particles are aligned in the same direction. (See JP-A-9-202663)}. The thermal conductivity of hBN particles is 110 W / mK in the plane direction (a-axis direction), whereas the thickness direction (c-axis direction) is considerably low at 2 W / mK. For example, the hBN particles are oriented in the heat dissipation sheet. Then, the hBN particles were filled with the thickness direction (c-axis direction) parallel to the sheet surface direction, and the high thermal conductivity in the surface direction of the hBN particles could not be fully utilized.
[0005]
Therefore, non-scaled hBN powder which is difficult to be oriented, for example, granulated product of hBN powder by spray drying, pulverized product of hBN sintered body, hBN powder produced by controlling aggregates of primary particles (Japanese Patent Laid-Open No. 9-9 However, even in these, the hBN particles were oriented without being able to overcome the shear stress at the time of mixing and kneading when they were filled into the resin or rubber.
[0006]
In order to solve these problems, the present applicant has previously proposed hBN-coated borate particles having a core-shell structure (Japanese Patent Application No. 10-352519). This is a structure in which a borate serving as a core is covered with hBN particles to form a shell. The adhesive strength between the core and the shell is quite strong, and there is a feature that the core and shell do not break even when subjected to shear stress when mixed and kneaded into resin or rubber. However, even in the hBN-coated borate particles, there are some problems to be solved in order to improve the thermal conductivity of the heat dissipation member.
[0007]
That is, hBN is formed when hBN-coated borate particles are synthesized, and the obtained powder contains core-shell structured hBN-coated borate particles and scaly hBN particles. The thermal conductivity of is inferior by the content of particles other than the core-shell structured particles.
[0008]
In addition, when the shape of the core / shell structure particles is square or contains a lot of scaly hBN particles, the filling and fluidity of the resin and rubber are deteriorated, and the molding of the heat dissipation material and the thermal conductivity There was a limit to improvement.
[0009]
Therefore, the particles having a core / shell structure are spheroidized to increase the ratio of the core / shell particles in the mixture. However, this requires a high level of separation technology, which causes a problem in mass productivity.
[0010]
[Problems to be solved by the invention]
The present invention has been made in view of the above, and an object of the present invention is to provide hBN-coated spherical borate particles that can further improve the thermal conductivity of the heat radiating member and can produce a homogeneous heat radiating member. It is to provide mixed powders, and methods for producing them.
[0011]
[Means for Solving the Problems]
That is, the present invention relates to hexagonal boron nitride-coated spherical magnesium borate and / or calcium borate powder having a sphericity (Ψw) of 0.72 to 0.95 measured from SEM photographs, and other hexagonal crystals. Ri Do from a mixture comprising boron nitride powder, at a content is 2-29% of 24μm particles smaller than this mixture, a mixed powder content of more particles 425μm is characterized in that it is a 1-4% is there.
[0012]
Furthermore, the present invention provides magnesium and / or calcium hydroxide and / or carbonate, boric acid, magnesium and / or calcium to boron atomic ratio {([Mg] + [Ca]) / [B]. } Are mixed so as to be 1 to 2, and are heated and reacted in a non-oxidizing atmosphere. The obtained product is heated, melted, cooled, pulverized, and classified to form particles of 24 μm or more, and then amorphous. quality boron powder及 beauty / or hexagonal boron nitride powder nitride, the content of powder of borate particles were mixed so that 25 to 75% under a non-oxidizing atmosphere, calcined at a temperature 1,700 to 2200 ° C. A method for producing the mixed powder, characterized in that: Further, a method for producing the mixed powder, wherein a powder mixture the content of particles below 24μm classifying-purified to 2-29%.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0014]
A secondary electron image (hereinafter referred to as “SEM photograph”) of the hBN-coated spherical borate particles of the present invention is shown in FIG. Moreover, the SEM photograph of the fracture surface of the particle which appears when the particle was embedded in an epoxy resin and fractured is shown in FIG. As is apparent from FIGS. 1 and 2, the hBN-coated spherical borate particles of the present invention have a core-shell structure consisting of a borate in the core part and hBN in the shell part, and are spherical.
[0015]
The sphericity of the hBN-coated spherical borate particles of the present invention can be determined by the sphericity (Ψw) of the particles obtained from the SEM photograph of the particles. By applying the treatment of the present invention, most of the particles of less than 24 μm are scaly hBN particles, and particles of 24 μm or more become core-shell particles, so the target particles for sphericity measurement are particles of 24 μm or more. The sphericity (Ψw) is an index called Wadell's sphericity and is defined by the following equation.
[0016]
Sphericity (Ψw) = (diameter of circle equal to projected area of particle) / (diameter of smallest circle circumscribing the projected image of particle)
[0017]
The relationship between the shape of the projected image and the sphericity (Ψw) is as follows.
Shape of projected image Sphericality (Ψw)
Regular triangle 0.64
Regular square 0.79
Regular pentagon 0.87
Regular hexagon 0.91
[0018]
The sphericity of the hBN-coated spherical borate particles of the present invention needs to be 0.70 or more. Particles having a sphericity of less than 0.70 have an angular and irregular particle shape, have poor fluidity when the heat dissipation member is molded, and the particles tend to cause a single flow. 1 and 2 show a sphericity (Ψw) of 0.95.
[0019]
The core of the hBN-coated spherical borate particles of the present invention is composed of magnesium borate and / or calcium borate. Other borate salts such as sodium borate make it difficult to form core / shell particles. Confirmation of magnesium borate, calcium borate, and hBN in the core / shell particles can be performed using an energy dispersive X-ray fluorescence spectrometer.
[0020]
Regarding the composition ratio of the core part, from the SEM photograph of the particle fracture surface that appears when embedded and fractured in an epoxy resin, arbitrarily five or more particles whose maximum inscribed circle diameter of the particle fracture surface is 30 μm or more When selected and the average value of the area occupancy ratio with respect to the particle fracture surface of the core portion is calculated, it is preferably 50 to 95%. Particles of less than 50% have a low sphericity, and if it exceeds 95%, the hBN content of the shell part becomes low, and features such as high thermal conductivity of hBN cannot be obtained.
[0021]
On the other hand, the shell portion is an aggregate of primary particles of scaly hBN, and the thickness thereof is preferably several to tens of μm. Further, the shell portion is optimally covered with an area covering 80% or more of the surface area of the core portion, but may be partially formed. Thermal conductivity increases in proportion to the coverage of the core portion by the shell portion.
[0022]
Next, the mixed powder of the present invention consists of a mixture containing the hBN-coated spherical borate particles of the present invention and other hBN particles. The proportion of hBN-coated spherical borate particles in the mixed powder of the present invention is preferably as large as possible, and the proportion of particles other than hBN-coated spherical borate particles is preferably 30% or less. Most of the hBN particles other than the hBN-coated spherical borate particles are single particles of less than 24 μm or agglomerated powder of weakly aggregated scale powder.
[0023]
The content of particles having a particle size of less than 24 μm in the mixed powder of the present invention is preferably 30% or less. The content ratio of particles less than 24 μm in the mixed powder can be measured by ultrasonically dispersing the mixed powder in ethanol and sieving with a 24 μm JIS sieve.
[0024]
Next, the mixed powder manufacturing method of the present invention will be described. First, a mixed powder manufacturing borate is synthesized by the following method.
[0025]
Boric acid, magnesium and / or calcium hydroxide and / or carbonate, magnesium and / or calcium and boron atomic ratio {([Mg] + [Ca]) / [B]} is 1-2 It is mixed so that it is heated and reacted in a non-oxidizing atmosphere. The obtained product is heated and melted and cooled, and then the ingot-shaped composite taken out is pulverized.
[0026]
Here, when the atomic ratio is less than 1, borate having a low melting point is obtained, the viscosity is too low at the firing temperature when the mixed powder of the present invention is produced, and the core / shell particles are not formed. If the atomic ratio exceeds 2, magnesium oxide and calcium oxide with high melting point and no viscosity remain, which not only hinders the synthesis of core / shell particles, but also when the heat dissipation member is filled, the moisture resistance reliability of the heat dissipation member Adversely affects electrical insulation. The reaction temperature is desirably 600 ° C. or higher. Furthermore, the obtained product is heated and melted while being held at a temperature equal to or higher than the melting point of magnesium borate and / or calcium borate.
[0027]
Next, the obtained ingot pulverized product is classified. For classification, JIS sieve is used, and the particles are aligned to 24 μm or more, more preferably 24 to 250 μm. This is a borate for producing mixed powder. When many borate particles for mixed powder production of less than 24 μm are included, the borate that becomes the core portion is smaller than the hBN particles that make the shell portion, so core / shell particles are generated without taking in hBN particles Can not.
[0028]
Subsequently, amorphous boron nitride and / or hBN are mixed with the borate for mixed powder production obtained above so that the content of borate particles is 25 to 75%. When the content of borate particles is less than 25%, not only the content of hBN particles is increased, but also the sphericity (Ψw) of the obtained hBN-coated spherical borate particles is less than 0.70. On the other hand, if it exceeds 75%, hBN particles are insufficient, and borate particles aggregate to form an irregularly shaped lump.
[0029]
Then, the mixed powder of this invention can be manufactured by baking this mixed raw material at the temperature of 1700-2200 degreeC in non-oxidizing atmosphere. The non-oxidizing atmosphere is an atmosphere that does not contain an oxidizing gas such as oxygen, but a nitrogen gas atmosphere is preferable. In addition, when the firing temperature is less than 1700 ° C., crystallization of hBN does not proceed, and the borate particles do not melt sufficiently, making it difficult to produce a mixed powder containing core / shell particles. On the other hand, even if the temperature exceeds 2200 ° C., the borate particles volatilize, and therefore, a mixed powder containing core / shell particles cannot be produced.
[0030]
The hBN coated spherical borate particles having a core / shell structure according to the present invention are manufactured by classifying and purifying the mixed powder manufactured as described above, and setting the content of particles less than 24 μm to 2 to 29%. Can do. This is based on the fact that most of the particles less than 24 μm in the mixed powder produced according to the present invention are hBN particles. Removal of particles less than 24 μm is performed using a JIS sieve.
[0031]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples.
[0032]
Examples 1-9 Comparative Examples 1-10
After boric acid and magnesium hydroxide or calcium hydroxide were mixed at the atomic ratio shown in Table 1, and a borate was synthesized by heating at 1300 ° C. in a nitrogen atmosphere except for Comparative Example 5, Table 1 The mixture was melted at the temperature shown in FIG. Comparative Example 5 was heated to 800 ° C. and then cooled. The borate in the composite was confirmed by X-ray diffraction, and in any case, it was confirmed to be a magnesia and / or calcia borate.
[0033]
Since the obtained composite was ingot-like, it was pulverized using a jaw crusher and a roll crusher. The particle size constitution of the pulverized product was about 30% when it was less than 24 μm and about 10% when it was 250 μm or more. Except for Comparative Example 6, this pulverized product was classified into 24-250 μm size products using a JIS sieve to obtain borate for mixed powder production. For Comparative Example 6, the pulverized product was used as it was.
[0034]
Amorphous boron nitride powder or hBN powder is mixed with this mixed powder manufacturing borate to prepare a mixed raw material having a borate concentration for mixed powder manufacturing shown in Table 1, and this is shown in a nitrogen atmosphere. Firing was carried out for 2 hours at the firing temperature shown in FIG. Since the fired product was weakly agglomerated, it was pulverized using a Henschel mixer to produce various mixed powders.
[0035]
Furthermore, the mixed powder produced in Example 9 was obtained by removing the powder of Comparative Example 6 by sieving until the particle size of less than 24 μm was 2%, thereby obtaining the mixed powder of the present invention.
[0036]
Next, with respect to the mixed powders or hBN-coated spherical borate particles of the examples and comparative examples manufactured above, the area occupancy of the core part, the particle size distribution, the sphericity (Ψw), and the heat radiating member produced using the same The fluidity (spiral flow) and the thermal conductivity of each were measured. The results are shown in Table 2.
[0037]
Measurement of spiral flow and thermal conductivity is performed by filling a resin compound shown below with 57.5% by volume of the mixed powder of the present invention or hBN-coated spherical borate particles (Example 9). It carried out in.
<Resin formulation: “part” is based on mass>
44 parts of polyglycidin ether of O-cresol novolac (softening point 75 ° C.)
Phenol / formaldehyde resin 23 parts (softening point 80 ~ 84 ℃)
Triphenylphosphine (curing accelerator) 2 parts ester wax (release agent) 6 parts γ-glycidoxypropyltrimethoxysilane 4 parts (silane coupling agent)
[0038]
The resin for evaluation was kneaded by heating for 5 minutes and 30 seconds using a mixing roll having a roll surface temperature of 100 ° C., and then cooled to obtain various resin compositions. Next, spiral flow and thermal conductivity were measured using the resin composition.
[0039]
The spiral flow was measured in accordance with EMMI-66 (Epoxy Molding Material; Society of Plastic Industry) using a spiral flow mold. Molding was performed at a molding temperature of 175 ° C. and a molding pressure of 7.35 MPa. In addition, the thermal conductivity of the cured resin composition is obtained by cutting a part of a bending specimen obtained by molding and curing under the same molding conditions as in spiral flow into a disk shape having a diameter of 10 mm and a thickness of 1 mm, and laser flash heat It measured at room temperature using the conductivity measuring apparatus. The results are shown in Table 2.
[0040]
[Table 1]
Figure 0004392088
[0041]
[Table 2]
Figure 0004392088
[0042]
From Tables 1 and 2, the resin composition prepared using the mixed powder of the present invention (Examples 1 to 8) and the hBN-coated spherical borate particles of the present invention (Example 9) is the same as that of the comparative example. Compared with the fluidity, it can be seen that the thermal conductivity was further improved.
[0043]
【The invention's effect】
According to the present invention, hBN-coated spherical borate particles that can further improve the thermal conductivity of the heat radiating member or a mixed powder containing the same can be provided.
[0044]
Moreover, according to the production method of the present invention, hBN-coated spherical borate particles having the above characteristics or a mixed powder containing the same can be easily produced.
[Brief description of the drawings]
1 is an SEM photograph of the magnification of 250 times of hBN-coated spherical borate particles obtained in Example 5. FIG.
FIG. 2 is an SEM photograph at a magnification of 3000 times of the fracture surface when hBN-coated spherical borate particles obtained in Example 5 were embedded in an epoxy resin and the particles were broken.
FIG. 3 is an SEM photograph at a magnification of 250 times when particles of less than 24 μm are removed from the powder used in Comparative Example 1 and particles of 24 μm or more are observed by SEM.

Claims (3)

SEM写真から測定された球形度(Ψw)が0.72〜0.95である六方晶窒化ホウ素被覆球状ホウ酸マグネシウム及び/又はホウ酸カルシウム粉末と、それ以外の六方晶窒化ホウ素粉末とを含む混合物からなり、この混合物の24μm未満の粒子の含有率が2〜29%で、425μm以上の粒子の含有率が1〜4%であることを特徴とする混合粉末。A hexagonal boron nitride-coated spherical magnesium borate and / or calcium borate powder having a sphericity (Ψw) of 0.72 to 0.95 measured from an SEM photograph, and other hexagonal boron nitride powder Ri Do from the mixture, mixing the powder content of 24μm of less than particles of the mixture with 2-29%, the content of the above particles 425μm is characterized in that it is a 1-4%. ホウ酸に、マグネシウム及び/又はカルシウムの水酸化物及び/又は炭酸塩を、マグネシウム及び/又はカルシウムとホウ素の原子比{([Mg]+[Ca])/[B]}が1〜2となるように混合し、それを非酸化性雰囲気下で加熱反応させ、得られた生成物を加熱溶融・冷却・粉砕・分級し、24μm以上の粒子とした後、非晶質窒化ホウ素粉末及び/又は六方晶窒化ホウ素粉末を、ホウ酸塩粒子からなる粉末の含有割合が25〜75%となるように混合し、非酸化性雰囲気下、温度1700〜2200℃で焼成することを特徴とする請求項1記載の混合粉末の製造方法。  Boric acid, magnesium and / or calcium hydroxide and / or carbonate, magnesium and / or calcium and boron atomic ratio {([Mg] + [Ca]) / [B]} is 1-2 The resulting product is heated and reacted in a non-oxidizing atmosphere, and the resulting product is heated, melted, cooled, pulverized, and classified to particles of 24 μm or more, and then amorphous boron nitride powder and / or Alternatively, the hexagonal boron nitride powder is mixed so that the content ratio of the powder composed of borate particles is 25 to 75%, and fired at a temperature of 1700 to 2200 ° C. in a non-oxidizing atmosphere. Item 2. A method for producing a mixed powder according to Item 1. 混合粉末を24μm未満の粒子の含有率が2〜29%となるまで分級・精製することを特徴とする請求項2記載の混合粉末の製造方法。  The method for producing a mixed powder according to claim 2, wherein the mixed powder is classified and purified until the content of particles less than 24 µm is 2 to 29%.
JP30487299A 1999-10-27 1999-10-27 Boron nitride-coated spherical borate particles, mixed powder containing the same, and methods for producing them Expired - Fee Related JP4392088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30487299A JP4392088B2 (en) 1999-10-27 1999-10-27 Boron nitride-coated spherical borate particles, mixed powder containing the same, and methods for producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30487299A JP4392088B2 (en) 1999-10-27 1999-10-27 Boron nitride-coated spherical borate particles, mixed powder containing the same, and methods for producing them

Publications (2)

Publication Number Publication Date
JP2001122615A JP2001122615A (en) 2001-05-08
JP4392088B2 true JP4392088B2 (en) 2009-12-24

Family

ID=17938302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30487299A Expired - Fee Related JP4392088B2 (en) 1999-10-27 1999-10-27 Boron nitride-coated spherical borate particles, mixed powder containing the same, and methods for producing them

Country Status (1)

Country Link
JP (1) JP4392088B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7494635B2 (en) 2003-08-21 2009-02-24 Saint-Gobain Ceramics & Plastics, Inc. Boron nitride agglomerated powder
JP5109882B2 (en) * 2008-09-05 2012-12-26 株式会社カネカ Method for producing hexagonal boron nitride powder
SG10201600443SA (en) * 2011-03-07 2016-02-26 Mitsubishi Gas Chemical Co Resin composition, and prepreg as well as laminate using the same
JP2013056789A (en) * 2011-09-07 2013-03-28 Mitsubishi Chemicals Corp Powdery boron nitride composition, and composite material composition including the same
EP2966036A4 (en) 2013-03-07 2016-11-02 Denka Company Ltd Boron-nitride powder and resin composition containing same
JP5887624B2 (en) * 2013-08-29 2016-03-16 熊本県 Thermally conductive composite particles, resin molded body and method for producing the same
JP2018145090A (en) * 2018-03-28 2018-09-20 住友ベークライト株式会社 Granulated powder, heat radiation resin composition, heat radiation sheet, semiconductor device, and heat radiation member
WO2019189794A1 (en) * 2018-03-30 2019-10-03 日本発條株式会社 Thermally conductive composite particles, method for producing same, insulating resin composition, insulating resin molded body, laminate for circuit boards, metal base circuit board and power module
CN113593801A (en) * 2021-08-02 2021-11-02 安徽大学 Composite material with low loss and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2614874B2 (en) * 1987-11-14 1997-05-28 電気化学工業株式会社 Pressureless sintered boron nitride compact
JP3461651B2 (en) * 1996-01-24 2003-10-27 電気化学工業株式会社 Hexagonal boron nitride powder and its use
JPH1036105A (en) * 1996-07-26 1998-02-10 Mitsui Petrochem Ind Ltd Water-resistant boron nitride and its production
JP3685629B2 (en) * 1998-12-11 2005-08-24 電気化学工業株式会社 Borate particles, method for producing inorganic powder containing the particles, and use thereof

Also Published As

Publication number Publication date
JP2001122615A (en) 2001-05-08

Similar Documents

Publication Publication Date Title
JP6022061B2 (en) Thermosetting resin composition, method for producing thermal conductive sheet, and power module
CN111511679B (en) Hexagonal boron nitride powder, method for producing same, and composition and heat dissipating material using same
JP2024003261A (en) Boron nitride aggregated particle, method for producing boron nitride aggregated particle, resin composition containing boron nitride aggregated particle, and molding
TWI718560B (en) Hexagonal boron nitride powder and its manufacturing method, its composition and heat dissipation material
CN108314456B (en) Boron nitride agglomerates, method for the production thereof and use thereof
JP5689985B2 (en) BN Sintered Particles with Recesses, Method for Producing the Same, and Polymer Material
WO2014123247A1 (en) Aluminum nitride powder
JP5602480B2 (en) Method for producing alumina particles provided with AlN modified layer
JP4392088B2 (en) Boron nitride-coated spherical borate particles, mixed powder containing the same, and methods for producing them
JP6979034B2 (en) Hexagonal boron nitride powder and its manufacturing method
KR20060088553A (en) Spherical coated magnesium oxide powder and method for production thereof, and resin composition comprising the powder
WO2020196679A1 (en) Boron nitride powder, method for producing same, composite material, and heat dissipation member
JP7433022B2 (en) Hollow silica particles, their manufacturing method, resin composite compositions and resin composites using the same
JP2020002000A (en) Negative thermal expansion material, method for producing the same and composite material
EP3943468A1 (en) Filler, molded body, heat dissipating material
TW202039359A (en) Method for producing granular boron nitride and granular boron nitride
JP2021506730A (en) A powder composition containing first and second aggregates of inorganic particles, and a polymer composition containing a polymer and a powder composition.
JP3458196B2 (en) High thermal conductive resin composition
JP2014028749A (en) Hybrid type bn agglomerated particle, manufacturing method thereof and polymer material
JP3685629B2 (en) Borate particles, method for producing inorganic powder containing the particles, and use thereof
TW201927922A (en) Glass-coated aluminum nitride particles, method for producing same, and heat dissipating resin composition containing same
WO2022071225A1 (en) Boron nitride powder and method for producing boron nitride powder
JP3572692B2 (en) α-Alumina powder-containing resin composition and rubber composition
WO2023204139A1 (en) Boron nitride powder, heat dissipation sheet, and method for producing boron nitride powder
EP4286072A1 (en) Inorganic coated sand

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees