JP3572692B2 - α-Alumina powder-containing resin composition and rubber composition - Google Patents

α-Alumina powder-containing resin composition and rubber composition Download PDF

Info

Publication number
JP3572692B2
JP3572692B2 JP31669094A JP31669094A JP3572692B2 JP 3572692 B2 JP3572692 B2 JP 3572692B2 JP 31669094 A JP31669094 A JP 31669094A JP 31669094 A JP31669094 A JP 31669094A JP 3572692 B2 JP3572692 B2 JP 3572692B2
Authority
JP
Japan
Prior art keywords
alumina
alumina powder
component
powder
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31669094A
Other languages
Japanese (ja)
Other versions
JPH08169980A (en
Inventor
正英 毛利
紳一郎 田中
洋 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP31669094A priority Critical patent/JP3572692B2/en
Publication of JPH08169980A publication Critical patent/JPH08169980A/en
Application granted granted Critical
Publication of JP3572692B2 publication Critical patent/JP3572692B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は、α−アルミナ粉末を含有する樹脂組成物またはゴム組成物、特に高熱伝導性で成形性に優れたα−アルミナ粉末を含有する樹脂組成物またはゴム組成物に関する。
【0002】
【従来の技術】
近年、電子材料の分野を中心に機器の集積化、高密度化、コンパクト化が進み、それに伴い半導体等の電子部品から発散される熱の放散が大きな課題となっている。そのため、高い熱伝導性と高い電気絶縁性を有する樹脂組成物あるいはゴム組成物が要求されるようになり、熱伝導性封止材、熱伝導性接着材、放熱シートとして実用化されている。
【0003】
これらの材料には、高い熱伝導性、電気絶縁性の他に、低い熱膨張率であること、耐熱性が高いことと、特に材料特性を十分に引き出すため成形加工性に優れることが要求されている。これらの材料として用いられる熱伝導性電気絶縁樹脂組成物あるいはゴム組成物には、エポキシ樹脂、イミド樹脂、シリコーン樹脂、シリコーンゴム等に、シリカ、アルミナ、マグネシア、ボロンナイトライド等の無機粉末を添加したものが知られている。
【0004】
上記無機粉末として、電融アルミナや焼結アルミナを粉砕したα−アルミナが用いることが報告されているが、該α−アルミナは、破砕形状で鋭いカッテイングエッジ(破面)を有するため、充填性に劣り、高い熱伝導性が期待される場合には、十分なものではなかった。
【0005】
上記の問題を解決するため、特開昭64−69661号公報には、アルミナ粒子とカッテイングエッジを有しない形状である球状コランダム粒子からなるアルミナを充填した高熱伝導性ゴム・プラスチック組成物が提案されている。しかし、該球状コランダム粒子は、電融アルミナ、焼結アルミナの粉砕品の、粒度分布を維持しつつ、カッテイングエッジを減少させ、同時に形状を球状化させる処理をすることにより得たものであり、粒度分布が広く、十分に高い熱伝導性と優れた成形加工性を同時に満足させる組成物を得るためのものとしては、必ずしも満足できるものではなかった。
【0006】
一方、特公昭58−22055号公報には、特殊なα−アルミナ粉末、すなわち形状因子が1.0〜1.4で、かつある一定の粒度分布を有するα−アルミナ粉末は、シリコーンゴムに高充填することが可能であり、得られたシリコーンゴムは高い熱伝導性を有することが記載されている。しかし、該α−アルミナ粉末は一部が凝集した球状粒子であり、これをさらにロッドミルあるいはマラー及びらいかい器形式の粉体処理装置で解砕する必要があり、この解砕により微粒子が発生するとともに、カッテイングエッジが生じることは避けられない。このため、高い熱伝導性と優れた成形加工性を同時に満足させる樹脂またはゴム組成物は得られていない。
【0007】
また、特開平4−328163号公報には、オルガノポリシロキサンに球状アルミナと硬化剤を添加した熱伝導性シリコーンゴム組成物が記載されている。ここで用いられている球状アルミナは、金属アルミニウムを溶融してから酸素と直接酸化させることにより得られ、高い真球度を有する。しかし、該球状アルミナは球状化させた溶融アルミニウムを酸化させるため、得られる球状アルミナの粒度分布が広い。したがって高レベルの性能を期待する用途には、必ずしも満足できるものではない。また、溶融アルミニウムは均一には酸化されず、活性が高い表面を有するため、貯蔵安定性も必ずしも十分満足できるものではない。
【0008】
【発明が解決しようとする課題】
本発明の目的は、上記した問題点を解決して、高い熱伝導性と優れた成形加工性の両方を満足させることのできるα−アルミナ粉末を含有する樹脂またはゴム組成物を提供することにある。
【0009】
【課題を解決するための手段】
本発明はつぎの発明からなる。
〔I〕(1)A1成分:実質的に破面を有しない、多面体一次粒子よりなり、重量累積粒度分布の微粒側から累積10%、累積50%の粒径をそれぞれD10、D50としたとき、D50が50μm以下で、D50/D10比が2以下であるα−アルミナ粉末、(2)B成分:樹脂またはゴム、を含み、該A1成分の配合量が15〜70体積%であることを特徴とするα−アルミナ粉末含有樹脂組成物またはゴム組成物。
【0010】
〔II〕(1)A1成分:実質的に破面を有しない、多面体一次粒子よりなり、重量累積粒度分布の微粒側から累積10%、累積50%の粒径をそれぞれD10、D50としたとき、D50が50μm以下で、D50/D10比が2以下であるα−アルミナ粉末、(2)A2成分:前記A1成分のD50と該A2成分のD50の比が5以上であるα−アルミナ粉末、及び(3)B成分:樹脂またはゴム、を含み、総α−アルミナ配合量(A1成分とA2成分の配合量の合計)が15〜94体積%であり、該総α−アルミナ配合量中のA1成分の割合が40重量%以上、100重量%未満であることを特徴とするα−アルミナ粉末含有樹脂組成物またはゴム組成物。
【0011】
以下に本発明について詳しく説明する。本発明に用いることのできる、A1成分のα−アルミナ粉末は、実質的に破面を有しない、多面体一次粒子よりなり、重量累積粒度分布の微粒側から累積10%、累積50%の粒径をそれぞれD10、D50としたとき、D50が50μm以下で、D50/D10比が2以下であるα−アルミナ粉末である。該α−アルミナ粉末を樹脂またはゴムに配合することにより、成形加工性を損なうことなく高充填できるとともに、該α−アルミナ粒子が多面体形状を有しているため、粒子間の接触が球形粒子のように点ではなく、面接触し、熱伝導性を高めることが可能になる。該α−アルミナ粉末の配合量は、15〜70体積%、好ましくは50〜70体積%、さらに好ましくは60〜70体積%である。15体積%未満では熱伝導率を高める効果が低く、また、70体積%を越えると成形加工性が低下する。
【0012】
さらに、A1成分のα−アルミナ粉末に、該A1成分のD50に対するD50の比が5以上である、より微細な粒子径を有するα−アルミナ粉末(A2成分)を混合して、樹脂またはゴムに充填することにより、成形加工性を損なうことなく、さらに高充填することが可能になる。この場合、総α−アルミナ配合量(A1成分とA2成分の配合量の合計)中のA1成分の割合が40重量%以上、100重量%未満、好ましくは50重量%以上90重量%以下、さらに好ましくは65重量%以上85重量%以下である。総α−アルミナ配合量は、15〜94体積%、好ましくは50〜94体積%、さらに好ましくは70〜94体積%である。微粒子のα−アルミナ粉末(A2成分)の配合量が総アルミナ粉末配合量の60重量%を越えると成形加工性を低下させるので好ましくない。
【0013】
上記本発明において、A1成分のα−アルミナ粉末として、D50/D10比が1.5以下の、実質的に破面を有しない、多面体一次粒子よりなるα−アルミナ粉末を用いることが好ましい。
【0014】
また、A1成分のα−アルミナ粉末は、重量累積粒度分布の微粒側から累積90%の粒径をD90としたとき、D90/D10比が3以下の、実質的に破面を有しない、多面体一次粒子よりなるα−アルミナ粉末であることが好ましい。
【0015】
さらに、A1成分のα−アルミナ粉末は、D50をBET比表面積径で除した値が1.5以下の、実質的に破面を有しない、多面体一次粒子よりなるα−アルミナ粉末であることが好ましい。この本発明に好ましく用いられるα−アルミナ粉末は、粒子表面に欠陥が殆ど無いため、吸着水分が低く、エポキシ樹脂やイミド樹脂に充填した場合、水分に起因するクラックの発生を低減でき、また、シリコーン樹脂やシリコーンゴムに充填した場合、シリコーン中のケイ素に結合した水素との反応が抑制され優れた貯蔵安定性を有することが可能になる。
【0016】
該A1成分のα−アルミナ粉末としては、例えば、原料としての遷移アルミナまたは熱処理により遷移アルミナとなるアルミナ前駆体を、塩化水素ガスを含有する雰囲気ガス中にて焼成することにより得られるα−アルミナ粉末(特開平6−191833号公報あるいは特開平6−191836号公報)を挙げることができる。
【0017】
本発明に用いるA2成分のα−アルミナ粉末としては、バイヤー法アルミナ、電融アルミナ、有機金属の加水分解法によるアルミナ等、工業的規模で入手可能な各種のアルミナ粉末を使用することができる。
【0018】
本発明に用いる樹脂成分またはゴム成分としては、熱伝導性が高い樹脂やゴムが好適であり、例えば、エポキシ樹脂、イミド樹脂、ポリエステル樹脂、シリコーン樹脂、シリコーンゴム等を挙げることができる。また、これらの樹脂類やゴム類を混合して用いることもできる。
エポキシ樹脂としては、ビスフェノールA型、フェノールノボラック、クレゾールノボラック等のポリフェノール化合物のグリシジルエーテル化物に代表される物質を使用することができる。
【0019】
シリコーンゴムの主成分としては、直鎖状オルガノポリシロキサンで加硫可能なものであれば特に制限されず、例えばジメチルポリシロキサンまたはビニル基含有ジメチルポリシロキサンと有機過酸化物からなる熱加硫型オルガノポリシロキサン、ビニル基含有ジメチルポリシロキサンと−SiH基を有するジメチルハイドロジエンポリシロキサンと触媒としての白金または白金化合物からなる付加反応加硫型オルガノポリシロキサン、またはこれらの混合物が好ましく用いられる。
【0020】
なお、本発明の樹脂組成物またはゴム組成物中には、α−アルミナ粉末以外の無機粉末、分散剤、脱泡剤、離型剤、難燃剤、着色剤等の各種添加剤を、本発明の目的を損なわない範囲にて、添加することも可能である。
【0021】
本発明において、α−アルミナ粉末を樹脂あるいはゴムに混合する方法は特に制限されず、ロール、ニーダーあるいはプラネタリー型撹拌機等の一般の混合機を用いて混合、コンパウンド化することが可能である。
【0022】
本発明の樹脂組成物またはゴム組成物を用いて半導体等、電子部品を封止する方法としては、トランスファーモールド、コンプレッションモールド、インジェクションモールド、あるいはポッテイング法等を用いることができ、成形する方法としては、押出成形、射出成形、圧縮成形、カレンダーロール成形等を用いることができる。
【0023】
【実施例】
次に実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
【0024】
なお、本発明における各種の測定は次のようにして行った。
1. 一次粒子径の測定
SEM(走査型電子顕微鏡、日本電子(株)製:T−300)を使用して粉末粒子の写真を撮影し、その写真から5ないし10個の粒子を選び出して画像解析を行い、その平均値として求めた。
【0025】
2. 粒度分布の測定
セデイグラフ5000ET(マイクロメリテイクス社製)を使用し、X線透過沈降法により測定した。
【0026】
3. BET比表面積の測定
フローソーブII 2300型(マイクロメリテイクス社製)を使用して測定した。
【0027】
実施例1
住友化学工業(株)製のγ−アルミナ粉末(商品名:AKP−G15)を塩化水素ガス100%雰囲気中、1100℃で、2時間焼成し、α−アルミナ粉末を得た。得られたα−アルミナ粉末は実質的に破面を有しない、8〜20面を有する多面体粒子よりなり、一次粒子径は18μmであった。粒度分布を測定した結果、D50が18μm、D10が14μm、D90が25μmであり、D50/D10比は1.3、D90/D10比は1. 8であった。BET比表面積は0. 1m/gであったので、BET比表面積径は15μmとなり、D50をBET比表面積径で除した値は1. 2であった。
【0028】
住友化学工業(株)製のγ−アルミナ粉末(商品名:AKP−G15)にBET比表面積が5. 8m/gの住友化学工業(株)製α−アルミナ粉末(商品名:AKP−30)を0. 3重量%添加して混合原料とし、該混合原料を塩化水素ガス100%雰囲気中、1000℃で、1時間焼成し、α−アルミナ粉末を得た。得られたα−アルミナ粉末は実質的に破面を有しない、8〜20面を有する多面体粒子よりなり、一次粒子径は2μmであった。粒度分布を測定した結果、D50が2. 0μmであった。BET比表面積は1. 0m/gであった。
【0029】
上記一次粒子径が18μmのα−アルミナ粉末と、上記一次粒子径が2μmのα−アルミナ粉末を種々の割合で混合し、得られたα−アルミナの混合粉末を2g採取して内径2cmの金型に充填して、1500kg/cmの圧力を一軸プレス機によりかけた。金型ごと一軸プレス機から取り外し、加圧後の粉末の密度を重量と寸法から算出した結果を表1に示した。上記一次粒子径が18μmのα−アルミナ粉末と上記一次粒子径が2μmのα−アルミナ粉末の重量比が80:20の場合に最も密度が高くなり、3. 03g/cmとなった。
【0030】
上記一次粒子径が18μmのα−アルミナ粉末と上記一次粒子径が2μmのα−アルミナ粉末を重量比で80:20の割合で混合し、α−アルミナ混合粉末を得てエポキシ樹脂に配合した。
エポキシ樹脂として住友化学工業(株)製のエポキシ樹脂(商品名:スミエポキシESCN−195−XL)を使用し、エポキシ硬化剤、硬化促進剤、離型剤およびカップリング剤を添加し、該α−アルミナ混合粉末を70体積%となるように添加して、110℃でロールにより混練を行った。体積%は、α−アルミナの密度を4. 0g/cm、エポキシ樹脂の密度を1. 2g/cmとして重量から計算した。該混合物をトランスファー成形により板状に成形し、180℃に加熱して硬化させ、複合体(成形体)を作製した。得られた複合体の室温(21℃)における熱伝導度をレーザーフラッシュ法により測定した結果、3.0W/mKであった。
【0031】
【表1】

Figure 0003572692
【0032】
実施例2
実施例1で作製した一次粒子径が18μmのα−アルミナ粉末と、住友化学工業(株)製のα−アルミナ粉末(商品名:AKP−30)を重量比で80:20の割合で混合し、α−アルミナ混合粉末を得た。AKP−30の粒度分布を測定した結果、D50が0. 35μmであり、一次粒子径が18μmのα−アルミナのD50をAKP−30のD50で除した値は51であった。該混合粉末を充填剤として、実施例1と同様にして、ただし添加量は75体積%となるようにエポキシ樹脂に配合して複合体を作製した。得られた複合体の室温(21℃)における熱伝導度をレーザーフラッシュ法により測定した結果、5. 1W/mKであった。
【0033】
実施例3
実施例1で作製した一次粒子径が18μmのα−アルミナ粉末と、住友化学工業(株)製のα−アルミナ粉末(商品名:AKP−30)を重量比で80:20の割合で混合し、α−アルミナ混合粉末を得た。該混合粉末を充填剤として、実施例1と同様にして、ただし添加量は80体積%となるようにエポキシ樹脂に添加し複合体を作製した。得られた複合体の室温(21℃)における熱伝導度をレーザーフラッシュ法により測定した結果、8. 9W/mKであった。
【0034】
比較例1
フジミインコーポレーテッド社製の電融アルミナWA#800とWA#6000を種々の割合で混合して、実施例1と同様にして加圧後の粉末の密度を測定した。測定の結果を表2に示した。WA#800は破面を有する不定形粒子よりなるα−アルミナ粉末であり、D50が15μm、D10が11μm、D90が17μmであり、D50/D10比は1. 4、D90/D10比は1. 6であった。BET比表面積は0. 2m/gであったので、BET比表面積径は7. 5μmとなり、D50をBET比表面積径で除した値は2. 0であった。WA#6000は破面を有する不定形粒子よりなるα−アルミナ粉末であり、D50が1. 8μm、であり、WA#800のD50をWA#6000のD50比で除した値は8. 3であった。また、WA#6000のBET比表面積は3. 7m/gであった。
【0035】
WA#800とWA#6000を重量比で80:20の割合で混合し、実施例1と同様にしてエポキシ樹脂に充填剤として添加したが、総アルミナ添加量を70体積%とした場合はエポキシ樹脂とα−アルミナ粉末の混合物は流動性のある混合物にならず、トランスファー成形ができなかった。総アルミナ添加量を60体積%として実施例1と同様にして複合体を作製した。得られた複合体の室温(21℃)における熱伝導度をレーザーフラッシュ法により測定した結果、1.6W/mKであった。
【0036】
【表2】
Figure 0003572692
【0037】
比較例2
実施例1で用いたエポキシ樹脂にα−アルミナ粉末を配合せずに成形し硬化させたものの室温(21℃)における熱伝導度をレーザーフラッシュ法により測定した結果、0. 2W/mKであった。
【0038】
【発明の効果】
本発明のα−アルミナ粉末含有樹脂組成物またはゴム組成物は、高い熱伝導性を有し、成形性に優れた電気絶縁性の材料であり、熱伝導性封止材、熱伝導性接着材、放熱シート等の用途に適している。[0001]
[Industrial applications]
TECHNICAL FIELD The present invention relates to a resin composition or a rubber composition containing α-alumina powder, particularly a resin composition or a rubber composition containing α-alumina powder having high heat conductivity and excellent moldability.
[0002]
[Prior art]
2. Description of the Related Art In recent years, integration, densification, and compactness of devices have been progressing mainly in the field of electronic materials, and accordingly, dissipation of heat radiated from electronic components such as semiconductors has become a major issue. Therefore, a resin composition or a rubber composition having high thermal conductivity and high electrical insulation has been required, and has been practically used as a thermal conductive sealing material, a thermal conductive adhesive, and a heat dissipation sheet.
[0003]
In addition to high thermal conductivity and electrical insulation, these materials are required to have a low coefficient of thermal expansion, high heat resistance, and especially excellent moldability in order to sufficiently bring out the material properties. ing. To the thermally conductive electrical insulating resin composition or rubber composition used as these materials, an inorganic powder such as silica, alumina, magnesia, boron nitride, etc. is added to epoxy resin, imide resin, silicone resin, silicone rubber, etc. Is known.
[0004]
It has been reported that α-alumina obtained by pulverizing fused alumina or sintered alumina is used as the inorganic powder. However, since α-alumina has a sharp cutting edge (fracture surface) in a crushed shape, its filling property is low. However, when high thermal conductivity was expected, it was not sufficient.
[0005]
In order to solve the above-mentioned problems, Japanese Patent Application Laid-Open No. 64-69661 proposes a highly heat-conductive rubber / plastic composition filled with alumina consisting of alumina particles and spherical corundum particles having a shape having no cutting edge. ing. However, the spherical corundum particles are obtained by performing a process of reducing the cutting edge and simultaneously spheroidizing the shape while maintaining the particle size distribution of the crushed product of fused alumina and sintered alumina. It was not always satisfactory for obtaining a composition having a wide particle size distribution and simultaneously satisfying sufficiently high thermal conductivity and excellent moldability.
[0006]
On the other hand, Japanese Patent Publication No. 58-22055 discloses that a special α-alumina powder, that is, an α-alumina powder having a shape factor of 1.0 to 1.4 and having a certain particle size distribution, is highly suitable for silicone rubber. It is described that it can be filled and the resulting silicone rubber has a high thermal conductivity. However, the α-alumina powder is a partly aggregated spherical particle, which needs to be further crushed by a rod mill or a muller and a grinder-type powder processing apparatus, and fine particles are generated by this crushing. At the same time, it is inevitable that a cutting edge occurs. For this reason, a resin or rubber composition that simultaneously satisfies high thermal conductivity and excellent moldability has not been obtained.
[0007]
Japanese Patent Application Laid-Open No. 4-328163 describes a thermally conductive silicone rubber composition obtained by adding spherical alumina and a curing agent to an organopolysiloxane. The spherical alumina used here is obtained by melting metallic aluminum and then directly oxidizing it with oxygen, and has high sphericity. However, since the spherical alumina oxidizes the spheroidized molten aluminum, the obtained spherical alumina has a wide particle size distribution. Therefore, it is not always satisfactory for applications expecting a high level of performance. Moreover, since the molten aluminum is not uniformly oxidized and has a surface with high activity, the storage stability is not always sufficiently satisfactory.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide a resin or rubber composition containing α-alumina powder that can solve both the above-mentioned problems and satisfy both high thermal conductivity and excellent moldability. is there.
[0009]
[Means for Solving the Problems]
The present invention comprises the following inventions.
[I] (1) A1 component: consisting of polyhedral primary particles having substantially no fractured surface, where D10 and D50 are the particle diameters of 10% and 50%, respectively, from the fine particle side of the weight cumulative particle size distribution. , D50 is 50 µm or less, D50 / D10 ratio is 2 or less, (2) B component: resin or rubber, and the compounding amount of the A1 component is 15 to 70% by volume. Characteristic α-alumina powder-containing resin composition or rubber composition.
[0010]
[II] (1) A1 component: consisting of polyhedral primary particles having substantially no fractured surface, when the particle diameters of 10% and 50% are D10 and D50, respectively, from the fine particle side of the weight cumulative particle size distribution. Α-alumina powder having a D50 of 50 μm or less and a D50 / D10 ratio of 2 or less, (2) A2 component: an α-alumina powder having a ratio of D50 of the A1 component and D50 of the A2 component of 5 or more, And (3) a B component: a resin or a rubber, wherein the total amount of α-alumina (the total amount of the components A1 and A2) is 15 to 94% by volume, and The α-alumina powder-containing resin composition or the rubber composition, wherein the proportion of the A1 component is 40% by weight or more and less than 100% by weight.
[0011]
Hereinafter, the present invention will be described in detail. The A1 component α-alumina powder that can be used in the present invention is composed of polyhedral primary particles having substantially no fracture surface, and has a particle size of 10% cumulative and 50% cumulative from the fine particle side of the weight cumulative particle size distribution. Is D10 and D50, respectively, and is an α-alumina powder having a D50 of 50 μm or less and a D50 / D10 ratio of 2 or less. By blending the α-alumina powder with a resin or rubber, high filling can be achieved without impairing the moldability, and since the α-alumina particles have a polyhedral shape, contact between the particles is limited to spherical particles. It is possible to improve the thermal conductivity by making surface contact instead of point. The compounding amount of the α-alumina powder is 15 to 70% by volume, preferably 50 to 70% by volume, and more preferably 60 to 70% by volume. If it is less than 15% by volume, the effect of increasing the thermal conductivity is low, and if it exceeds 70% by volume, the moldability decreases.
[0012]
Further, α-alumina powder of component A1 is mixed with α-alumina powder (component A2) having a finer particle diameter, wherein the ratio of D50 to D50 of component A1 is 5 or more, to form a resin or rubber. By filling, even higher filling can be achieved without impairing the moldability. In this case, the proportion of the A1 component in the total amount of α-alumina (the sum of the amounts of the components A1 and A2) is 40% by weight or more and less than 100% by weight, preferably 50% by weight or more and 90% by weight or less. Preferably it is 65% by weight or more and 85% by weight or less. The total amount of α-alumina is 15 to 94% by volume, preferably 50 to 94% by volume, and more preferably 70 to 94% by volume. If the amount of the fine particles of α-alumina powder (component A2) exceeds 60% by weight of the total amount of the alumina powder, the molding processability is undesirably reduced.
[0013]
In the present invention, it is preferable to use an α-alumina powder having a D50 / D10 ratio of 1.5 or less and substantially having no fractured surface and composed of polyhedral primary particles as the α-alumina powder of the component A1.
[0014]
Further, the α-alumina powder of the A1 component has a D90 / D10 ratio of 3 or less and has substantially no fractured surface when the particle size of 90% of the particles is D90 from the fine particle side in the weight cumulative particle size distribution. It is preferably an α-alumina powder composed of primary particles.
[0015]
Further, the α-alumina powder of the A1 component may be an α-alumina powder composed of polyhedral primary particles having substantially no fracture surface and having a value obtained by dividing D50 by a BET specific surface area diameter of 1.5 or less. preferable. The α-alumina powder preferably used in the present invention has almost no defects on the particle surface, and therefore has a low adsorbed moisture, and when filled in an epoxy resin or an imide resin, can reduce the occurrence of cracks due to moisture, When filled in a silicone resin or silicone rubber, the reaction with hydrogen bonded to silicon in silicone is suppressed, and excellent storage stability can be obtained.
[0016]
As the α-alumina powder of the A1 component, for example, α-alumina obtained by calcining a transition alumina as a raw material or an alumina precursor which becomes a transition alumina by heat treatment in an atmosphere gas containing hydrogen chloride gas is used. Powder (JP-A-6-191833 or JP-A-6-191835) can be used.
[0017]
As the α-alumina powder of the component A2 used in the present invention, various types of alumina powder available on an industrial scale such as Bayer method alumina, electrofused alumina, and alumina obtained by hydrolysis of an organic metal can be used.
[0018]
As the resin component or the rubber component used in the present invention, a resin or rubber having high thermal conductivity is suitable, and examples thereof include an epoxy resin, an imide resin, a polyester resin, a silicone resin, and a silicone rubber. Further, these resins and rubbers can be used as a mixture.
As the epoxy resin, a substance represented by a glycidyl etherified product of a polyphenol compound such as bisphenol A type, phenol novolak, and cresol novolak can be used.
[0019]
The main component of the silicone rubber is not particularly limited as long as it can be vulcanized with a linear organopolysiloxane. For example, a heat vulcanization type comprising dimethylpolysiloxane or vinyl group-containing dimethylpolysiloxane and an organic peroxide can be used. An organopolysiloxane, an addition reaction vulcanization type organopolysiloxane comprising a vinyl group-containing dimethylpolysiloxane, a dimethylhydrogenpolysiloxane having a -SiH group and platinum or a platinum compound as a catalyst, or a mixture thereof is preferably used.
[0020]
In the resin composition or rubber composition of the present invention, various additives such as an inorganic powder other than α-alumina powder, a dispersant, a defoaming agent, a release agent, a flame retardant, and a coloring agent are used in the present invention. Can be added within a range that does not impair the purpose of the above.
[0021]
In the present invention, the method of mixing the α-alumina powder with the resin or rubber is not particularly limited, and it is possible to mix and compound using a general mixer such as a roll, a kneader or a planetary type stirrer. .
[0022]
As a method for sealing an electronic component such as a semiconductor using the resin composition or the rubber composition of the present invention, transfer molding, compression molding, injection molding, or a potting method can be used. , Extrusion molding, injection molding, compression molding, calender roll molding and the like can be used.
[0023]
【Example】
Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
[0024]
Various measurements in the present invention were performed as follows.
1. Measurement of Primary Particle Size Photographs of the powder particles were taken using an SEM (scanning electron microscope, manufactured by JEOL Ltd .: T-300), and 5 to 10 particles were selected from the photograph to perform image analysis. And the average value was obtained.
[0025]
2. Measurement of particle size distribution The particle size distribution was measured by X-ray transmission sedimentation method using 5000 ET (manufactured by Micromeritics).
[0026]
3. Measurement of BET specific surface area The BET specific surface area was measured using Flowsorb II Model 2300 (manufactured by Micromeritix).
[0027]
Example 1
Γ-alumina powder (trade name: AKP-G15) manufactured by Sumitomo Chemical Co., Ltd. was fired in a 100% hydrogen chloride gas atmosphere at 1100 ° C. for 2 hours to obtain α-alumina powder. The obtained α-alumina powder was composed of polyhedral particles having substantially no fracture surface and having 8 to 20 faces, and the primary particle diameter was 18 μm. As a result of measuring the particle size distribution, D50 was 18 μm, D10 was 14 μm, D90 was 25 μm, the D50 / D10 ratio was 1.3, and the D90 / D10 ratio was 1. It was 8. The BET specific surface area is 0. Since it was 1 m 2 / g, the BET specific surface area diameter was 15 μm, and the value obtained by dividing D50 by the BET specific surface area diameter was 1. It was 2.
[0028]
A BET specific surface area of γ-alumina powder (trade name: AKP-G15) manufactured by Sumitomo Chemical Co., Ltd. was 5. 8 m 2 / g of α-alumina powder (trade name: AKP-30) manufactured by Sumitomo Chemical Co., Ltd. 3 wt% was added to obtain a mixed raw material, and the mixed raw material was fired in a 100% hydrogen chloride gas atmosphere at 1000 ° C. for 1 hour to obtain α-alumina powder. The resulting α-alumina powder was composed of polyhedral particles having substantially no fracture surface and having 8 to 20 faces, and the primary particle diameter was 2 μm. As a result of measuring the particle size distribution, D50 was 2. It was 0 μm. The BET specific surface area is 1. It was 0 m 2 / g.
[0029]
The α-alumina powder having a primary particle diameter of 18 μm and the α-alumina powder having a primary particle diameter of 2 μm are mixed at various ratios, and 2 g of the obtained mixed powder of α-alumina is collected to obtain a gold powder having an inner diameter of 2 cm. The mold was filled and a pressure of 1500 kg / cm 2 was applied by a uniaxial press. The mold was removed from the uniaxial press, and the density of the powder after pressing was calculated from the weight and dimensions. Table 1 shows the results. 2. The density becomes highest when the weight ratio of the α-alumina powder having a primary particle diameter of 18 μm to the α-alumina powder having a primary particle diameter of 2 μm is 80:20. It became 03 g / cm 3 .
[0030]
The α-alumina powder having a primary particle diameter of 18 μm and the α-alumina powder having a primary particle diameter of 2 μm were mixed at a weight ratio of 80:20 to obtain an α-alumina mixed powder, which was mixed with an epoxy resin.
As an epoxy resin, an epoxy resin (trade name: Sumiepoxy ESCN-195-XL) manufactured by Sumitomo Chemical Co., Ltd. was used, and an epoxy curing agent, a curing accelerator, a release agent and a coupling agent were added, and the α- The alumina mixed powder was added so as to be 70% by volume, and kneaded at 110 ° C. with a roll. % By volume means the density of α-alumina. 0 g / cm 3 , and the density of the epoxy resin was 1. It was calculated from the weight as 2 g / cm 3 . The mixture was formed into a plate by transfer molding, and cured by heating to 180 ° C. to produce a composite (molded body). The thermal conductivity of the obtained composite at room temperature (21 ° C.) was measured by a laser flash method and found to be 3.0 W / mK.
[0031]
[Table 1]
Figure 0003572692
[0032]
Example 2
The α-alumina powder having a primary particle diameter of 18 μm prepared in Example 1 and α-alumina powder (AKP-30) manufactured by Sumitomo Chemical Co., Ltd. were mixed at a weight ratio of 80:20. , Α-alumina mixed powder was obtained. As a result of measuring the particle size distribution of AKP-30, D50 was found to be 0. The value obtained by dividing the D50 of α-alumina having a primary particle diameter of 18 μm by the D50 of AKP-30 was 51 μm. Using the mixed powder as a filler, a composite was prepared in the same manner as in Example 1 except that the addition amount was 75% by volume in an epoxy resin. 4. Thermal conductivity of the obtained composite at room temperature (21 ° C.) was measured by a laser flash method. It was 1 W / mK.
[0033]
Example 3
The α-alumina powder having a primary particle diameter of 18 μm prepared in Example 1 and α-alumina powder (AKP-30) manufactured by Sumitomo Chemical Co., Ltd. were mixed at a weight ratio of 80:20. , Α-alumina mixed powder was obtained. The mixed powder was used as a filler in the same manner as in Example 1 except that the mixed powder was added to an epoxy resin so as to be 80% by volume to prepare a composite. 7. The thermal conductivity of the obtained composite at room temperature (21 ° C.) was measured by a laser flash method. It was 9 W / mK.
[0034]
Comparative Example 1
The fused alumina WA # 800 and WA # 6000 manufactured by Fujimi Incorporated were mixed at various ratios, and the powder density after pressing was measured in the same manner as in Example 1. Table 2 shows the measurement results. WA # 800 is α-alumina powder composed of irregular particles having a fractured surface, D50 is 15 μm, D10 is 11 μm, D90 is 17 μm, and the D50 / D10 ratio is 1. 4. The D90 / D10 ratio is 1. It was 6. The BET specific surface area is 0. Since it was 2 m 2 / g, the BET specific surface area diameter was 7. 5 μm, and the value obtained by dividing D50 by the BET specific surface area diameter is 2. It was 0. WA # 6000 is an α-alumina powder composed of irregular particles having a fractured surface, and has a D50 of 1. 8 μm, and the value obtained by dividing the D50 of WA # 800 by the D50 ratio of WA # 6000 is 8. It was 3. The BET specific surface area of WA # 6000 is 3. It was 7 m 2 / g.
[0035]
WA # 800 and WA # 6000 were mixed at a weight ratio of 80:20 and added as a filler to the epoxy resin in the same manner as in Example 1. However, when the total amount of alumina added was 70% by volume, epoxy The mixture of the resin and the α-alumina powder did not become a fluid mixture, and transfer molding was not possible. A composite was produced in the same manner as in Example 1 except that the total amount of added alumina was 60% by volume. The thermal conductivity of the obtained composite at room temperature (21 ° C.) was measured by a laser flash method and found to be 1.6 W / mK.
[0036]
[Table 2]
Figure 0003572692
[0037]
Comparative Example 2
As a result of measuring the thermal conductivity at room temperature (21 ° C.) of the epoxy resin used in Example 1 without molding α-alumina powder without blending α-alumina powder by a laser flash method, it was found that the epoxy resin was 0.1%. It was 2 W / mK.
[0038]
【The invention's effect】
The α-alumina powder-containing resin composition or rubber composition of the present invention has high thermal conductivity, is an electrically insulating material having excellent moldability, and has a heat conductive sealing material and a heat conductive adhesive. Suitable for applications such as heat dissipation sheets.

Claims (4)

(1)A1成分:実質的に破面を有しない、多面体一次粒子よりなり、重量累積粒度分布の微粒側から累積10%、累積50%の粒径をそれぞれD10、D50としたとき、D50が50μm以下で、D50/D10比が2以下であるα−アルミナ粉末、(2)A2成分:前記A1成分のD50と該A2成分のD50の比が5以上であるα−アルミナ粉末、及び(3)B成分:樹脂またはゴム、を含み、総α−アルミナ配合量(A1成分とA2成分の配合量の合計)が15〜94体積%であり、該総α−アルミナ配合量中のA1成分の割合が40重量%以上、100重量%未満であることを特徴とするα−アルミナ粉末含有樹脂組成物またはゴム組成物。(1) A1 component: Consisting of polyhedral primary particles having substantially no fractured surface. When the particle diameters of 10% and 50% of accumulation from the fine particle side of the weight accumulation particle size distribution are D10 and D50, respectively, D50 is Α-alumina powder having a D50 / D10 ratio of 2 or less at 50 μm or less, (2) A2 component: α-alumina powder having a ratio of D50 of the A1 component and D50 of the A2 component of 5 or more, and (3) ) B component: containing resin or rubber, the total amount of α-alumina (the total amount of the components A1 and A2) is 15 to 94% by volume, and the amount of A1 component in the total amount of α-alumina An α-alumina powder-containing resin composition or rubber composition having a ratio of 40% by weight or more and less than 100% by weight. A1成分として、D50/D10比が1.5以下の、実質的に破面を有しない、多面体一次粒子よりなるα−アルミナ粉末を用いる請求項記載のα−アルミナ粉末含有樹脂組成物またはゴム組成物。As A1 component, D50 / D10 ratio of 1.5 or less, substantially no fractured surface, alpha-alumina powder containing resin composition or rubber according to claim 1, wherein the use of alpha-alumina powder comprising polyhedral primary particles Composition. A1成分が、重量累積粒度分布の微粒側から累積90%の粒径をD90としたとき、D90/D10比が3以下の、実質的に破面を有しない、多面体一次粒子よりなるα−アルミナ粉末である請求項記載のα−アルミナ粉末含有樹脂組成物またはゴム組成物。Α-alumina composed of polyhedral primary particles having a D90 / D10 ratio of 3 or less and having substantially no fracture surface, where D1 is a particle size of 90% cumulative from the fine particle side of the weight cumulative particle size distribution, powder in a claim 1 alpha-alumina powder containing resin composition or rubber composition. A1成分が、D50をBET比表面積径で除した値が1.5以下の、実質的に破面を有しない、多面体一次粒子よりなるα−アルミナ粉末である請求項記載のα−アルミナ粉末含有樹脂組成物またはゴム組成物。A1 component, the value obtained by dividing the D50 in BET specific surface area diameter of 1.5 or less, substantially no fractured surface, consisting of polyhedral primary particle α- alumina powder in a claim 1 wherein the α- alumina powder Containing resin composition or rubber composition.
JP31669094A 1994-12-20 1994-12-20 α-Alumina powder-containing resin composition and rubber composition Expired - Fee Related JP3572692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31669094A JP3572692B2 (en) 1994-12-20 1994-12-20 α-Alumina powder-containing resin composition and rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31669094A JP3572692B2 (en) 1994-12-20 1994-12-20 α-Alumina powder-containing resin composition and rubber composition

Publications (2)

Publication Number Publication Date
JPH08169980A JPH08169980A (en) 1996-07-02
JP3572692B2 true JP3572692B2 (en) 2004-10-06

Family

ID=18079823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31669094A Expired - Fee Related JP3572692B2 (en) 1994-12-20 1994-12-20 α-Alumina powder-containing resin composition and rubber composition

Country Status (1)

Country Link
JP (1) JP3572692B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070492A (en) * 2005-09-07 2007-03-22 Hitachi Ltd Heat conductive grease, adhesive and elastomer composition, and cooling device
WO2007105741A1 (en) 2006-03-10 2007-09-20 Teijin Chemicals Ltd. Multilayer body
CN105658715B (en) * 2013-10-24 2017-11-28 Dic株式会社 Resin combination, heat sink material and radiating component

Also Published As

Publication number Publication date
JPH08169980A (en) 1996-07-02

Similar Documents

Publication Publication Date Title
JP7069485B2 (en) Hexagonal boron nitride powder and its manufacturing method, as well as compositions and radiating materials using it.
KR102265034B1 (en) Hexagonal boron nitride powder, its manufacturing method, resin composition, and resin sheet
JP7096921B2 (en) Hexagonal boron nitride powder and its manufacturing method, as well as compositions and radiating materials using it.
JP6351585B2 (en) Resin-impregnated boron nitride sintered body and use thereof
KR102185730B1 (en) Aluminum nitride powder
JP6720014B2 (en) Hexagonal boron nitride primary particle aggregate, resin composition and use thereof
JP3937494B2 (en) Alumina-filled resin or rubber composition
KR20150127614A (en) Boron-nitride powder and resin composition containing same
KR102540533B1 (en) light-weight polymer composition with excellent thermal conductivity and manufacturing method of the same and product using the same
JP3850371B2 (en) Resin composition containing magnesium oxide powder
WO2019031458A1 (en) Low-dielectric-constant thermally-conductive heat dissipation member
JP3572692B2 (en) α-Alumina powder-containing resin composition and rubber composition
EP3498667A1 (en) Powder composition comprising first and second agglomerates of inorganic particles and polymer composition comprising a polymer and the powder composition
JP2016124908A (en) Resin molded body
JP7292941B2 (en) Aluminum nitride composite filler
TWI679252B (en) Glass-coated aluminum nitride particles, method for producing the same, and exothermic resin composition containing the same
JP3458196B2 (en) High thermal conductive resin composition
JP2002531372A (en) Polymer blends, their production and use, and sintered bodies produced therefrom
JP2583261B2 (en) filler
JP2001122615A (en) Boron nitride coated spherical borate particle,, mixed powder containing the same and method for manufacture thereof
JP6745521B2 (en) Magnesium oxide particles, manufacturing method thereof, and heat dissipation material
JP3685629B2 (en) Borate particles, method for producing inorganic powder containing the particles, and use thereof
JP2825158B2 (en) Filler for resin
WO2023162641A1 (en) Powder, powder manufacturing method, and heat dissipation sheet
JP7438443B1 (en) Boron nitride aggregated particles, sheet member, and method for producing boron nitride aggregated particles

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040621

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees