JP4384232B2 - Vacuum heat insulating material and refrigerator using the same - Google Patents

Vacuum heat insulating material and refrigerator using the same Download PDF

Info

Publication number
JP4384232B2
JP4384232B2 JP2008089175A JP2008089175A JP4384232B2 JP 4384232 B2 JP4384232 B2 JP 4384232B2 JP 2008089175 A JP2008089175 A JP 2008089175A JP 2008089175 A JP2008089175 A JP 2008089175A JP 4384232 B2 JP4384232 B2 JP 4384232B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
inner bag
vacuum heat
outer packaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008089175A
Other languages
Japanese (ja)
Other versions
JP2008170150A (en
Inventor
恒 越後屋
邦成 荒木
剛 久保田
隆 三関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2008089175A priority Critical patent/JP4384232B2/en
Publication of JP2008170150A publication Critical patent/JP2008170150A/en
Application granted granted Critical
Publication of JP4384232B2 publication Critical patent/JP4384232B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は断熱を必要とする冷蔵庫の断熱材として使用可能な真空断熱材及びこれを用いた冷蔵庫に関するものである。   The present invention relates to a vacuum heat insulating material that can be used as a heat insulating material for a refrigerator that requires heat insulation, and a refrigerator using the same.

近年、地球温暖化防止の観点から省エネルギーが強く望まれており、家庭用電化製品についても省エネルギー化は緊急の課題となっている。特に、冷蔵庫、冷凍庫では熱を効率的に利用するという観点から、優れた断熱性能を有する断熱材が求められている。   In recent years, energy saving is strongly desired from the viewpoint of preventing global warming, and energy saving is an urgent issue for household appliances. In particular, in a refrigerator and a freezer, a heat insulating material having excellent heat insulating performance is required from the viewpoint of efficiently using heat.

一般的な断熱材として、グラスウールなどの繊維材やウレタンフォームなどの発泡体が用いられている。しかし、これらの断熱材の断熱性を向上するためには断熱材の厚さを増す必要があり、断熱材を充填できる空間に制限があって、省スペースや空間の有効利用が必要な場合には適用することができない。   As general heat insulating materials, fiber materials such as glass wool and foams such as urethane foam are used. However, in order to improve the heat insulation of these heat insulating materials, it is necessary to increase the thickness of the heat insulating material, and there is a limit to the space that can be filled with the heat insulating material, and when space saving and effective use of the space are necessary. Is not applicable.

そこで、高性能な断熱材として真空断熱材が提案されている。これは、スペーサの役割を持つ芯材を、ガスバリア性を有する外包材中に挿入し、内部を減圧にして封止した断熱材である。真空断熱材としては、例えば特開平9−138058号公報に開示されているように、芯材として、グラスウール等の繊維質材を有機系バインダーを用いて固め成形したものを用いている。   Therefore, vacuum heat insulating materials have been proposed as high performance heat insulating materials. This is a heat insulating material in which a core material serving as a spacer is inserted into an outer packaging material having gas barrier properties, and the inside is reduced in pressure and sealed. As the vacuum heat insulating material, for example, as disclosed in JP-A-9-138058, a fiber material such as glass wool, which is solidified using an organic binder, is used as the core material.

一方、バインダーを用いてグラスウール等の繊維質材を固めた芯材であると、外包材内にその芯材を収納する時等に芯材の持つバリ等で外包材を損傷する可能性があることよりバインダーを使わないで芯材を作る方式の真空断熱材も提案されている。   On the other hand, if the core material is a fiber material such as glass wool that is hardened using a binder, the outer packaging material may be damaged by burrs of the core material when the core material is stored in the outer packaging material. In particular, a vacuum heat insulating material that makes a core material without using a binder has also been proposed.

これは、グラスウール等の繊維質材を内袋に収納し、その内袋を圧縮し、減圧し開口部を溶着密封して作る真空断熱材である。この例には、特開平4−337195号がある。   This is a vacuum heat insulating material made by storing a fibrous material such as glass wool in an inner bag, compressing the inner bag, depressurizing it, and welding and sealing the opening. An example of this is JP-A-4-337195.

ところで、真空断熱材を冷蔵庫などの断熱箱体に適用する場合は、外箱と内箱によって形成される発泡断熱材を、充填する空間の外箱側か、内箱側か、外箱と内箱との中間位置のいずれかに配置することができるが、実際は、外箱側に配置する。具体的には、外箱内面に真空断熱材を両面テープやホットメルトなどの接着剤を用いて接着することが多い。   By the way, when applying a vacuum heat insulating material to a heat insulating box such as a refrigerator, the foam heat insulating material formed by the outer box and the inner box is either the outer box side of the space to be filled, the inner box side, or the outer box and the inner box. Although it can arrange | position in either the intermediate | middle position with a box, actually arrange | positions in the outer box side. Specifically, a vacuum heat insulating material is often bonded to the inner surface of the outer box using an adhesive such as double-sided tape or hot melt.

真空断熱材を内箱側に配置することが少ない理由は、内箱側に配置すれば、真空断熱材の適用面積を小さくすることができるというメリットはあるが、内箱は外箱に比べて変形しやすく、内箱の外面は外箱の内面に比べて凹凸があるため、真空断熱材を強固に内箱の外面に固定することが困難な上に、発泡断熱材を充填した時に、真空断熱材と内箱との間に空洞が形成されやすく、空洞形成に起因して内箱が変形したり、断熱性能が低下するという問題があるからである。   The reason why the vacuum insulation material is rarely arranged on the inner box side is that if it is arranged on the inner box side, there is a merit that the application area of the vacuum insulation material can be reduced, but the inner box is compared to the outer box. It is easy to deform and the outer surface of the inner box is uneven compared to the inner surface of the outer box, so it is difficult to firmly fix the vacuum heat insulating material to the outer surface of the inner box, and when filling with foam heat insulating material, This is because a cavity is easily formed between the heat insulating material and the inner box, and there is a problem that the inner box is deformed due to the formation of the cavity or the heat insulating performance is lowered.

特開平9−138058号JP-A-9-138058 特開平4−337195号JP-A-4-337195

バインダーを利用して作る芯材は有機、無機の繊維積層体を、これ又、有機、無機のバインダーでボード状に固め、これをプレス等により定寸に切断加工して真空断熱材の芯材としているので形状の安定性及び硬化後のハンドリング性は良いが逆に外包材内にその芯材を入れる時或いは外包材内を減圧した時、上記プレス切断時に出来る端面のバリ等により外包材を損傷する他、芯材自体がボード化されている為に、外包材内の減圧時芯材側に変形がなく、端面のバリ等で外包材が損傷することは勿論、外包材と芯材端面との間にテント張り状態の対流空間を作ってしまう問題があった。又、真空断熱材は芯材の製作時に出来た歪み例えば、反り等を持ったままとなるので冷蔵庫外箱への取付時障害となる等の問題があった。   The core material made using a binder is an organic or inorganic fiber laminate, which is also solidified into a board with an organic or inorganic binder, and then cut into a fixed size by pressing or the like to form a vacuum insulation core material. However, the shape stability and handling after curing are good, but conversely, when the core material is put in the outer packaging material or when the inner packaging material is decompressed, the outer packaging material is made by the burr on the end face that can be formed during the press cutting. In addition to being damaged, the core material itself is made into a board, so there is no deformation on the core material side during decompression in the outer packaging material, and the outer packaging material is damaged due to burrs on the end surface. There was a problem of creating a tented convection space in between. In addition, the vacuum heat insulating material has a problem that it becomes a hindrance when attached to the refrigerator outer box because the vacuum heat insulating material remains warped, for example, warp or the like, which is generated when the core material is manufactured.

尚この対流空間は芯材の板厚が厚くなればなる程、又外包材の柔軟性がなければない程、出来やすいものであった。   The convection space was made easier as the thickness of the core became thicker and as the outer packaging material became less flexible.

この他バインダー使用の芯材であると例えば10年後に回収した冷蔵庫等から真空断熱材、特に芯材を取り出し、リサイクルしようとしても芯材として使った繊維積層体にバインダーが含浸している為解体すると上記芯材が粉状となり、且つその粉の粒子が一定せず再利用には向かないと云う問題があった。即ち、繊維積層体とバインダーとを分離して取り出すことが出来ず新たな芯材の形に成形することが難しいと云う課題があった。   For example, if the core material is a binder, the vacuum insulation material, especially the core material, is recovered from a refrigerator collected after 10 years, and the fiber laminate used as the core material is impregnated with the binder even if it is going to be recycled. Then, there was a problem that the core material became powdery, and the particles of the powder were not constant and not suitable for reuse. That is, there has been a problem that the fiber laminate and the binder cannot be separated and taken out and it is difficult to form into a new core material.

これに対し、特開平4−337195号公報に示されたものはバインダーの代わりに内装を使って繊維状積層体を圧縮した後、減圧し、形を整え、芯材となし、これを外包材内に入れて真空断熱材としたものである。   On the other hand, what is disclosed in Japanese Patent Application Laid-Open No. 4-337195 is a method of compressing a fibrous laminate using an interior instead of a binder, then reducing the pressure, adjusting the shape, and forming a core material. It is put into a vacuum heat insulating material.

即ち、上記特開平4−337195号公報に示された真空断熱材は無機質ファイバマットをプラスチックフィルム製の内袋内に収納し、内袋内を圧縮−減圧−溶着密封したものを内部材(芯材)とし、さらに前記内部材(芯材)を収納部材(外包材)内に収納した後、内袋の密封を破壊し前記収納部材(外包材)内を減圧して溶着密封する真空断熱材である。このものであると真空断熱材用コア材にグラスウールマットを用いることが出来る為、従来コア材として用いられていた発泡パーライト粉末無機質粉末等に比較し、断熱性能を著しく向上させることが出来るとしている。   That is, the vacuum heat insulating material disclosed in the above Japanese Laid-Open Patent Publication No. 4-337195 is an inner member (core) in which an inorganic fiber mat is housed in an inner bag made of a plastic film, and the inner bag is compressed-depressurized-welded sealed. In addition, after the inner member (core material) is housed in the housing member (outer packaging material), the inner bag (sealing material) is hermetically sealed, and the inside of the housing member (outer packaging material) is decompressed to be welded and sealed. It is. Since it is possible to use glass wool mat for the core material for vacuum heat insulating material, it is said that the heat insulating performance can be remarkably improved as compared with the foamed pearlite powder inorganic powder and the like conventionally used as the core material. .

換云すると上記特開平4−337195号公報に示された芯材はボード化されたものでない為従来の芯材の如く切断時芯材に形成されるバリ等が出来ないので芯材による外包材の損傷がないことは勿論、反り等もなく芯材端面と外包材との間に出来るテント張り状態の対流空間も出来にくいものであるが、この特開平−337195号公報に於いては対流空間を小さくする点への着目がないことは勿論、外包材の耳部処理で出来る対流空間に付いての開示も示唆もないものである。   In other words, the core material disclosed in the above Japanese Patent Laid-Open No. 4-337195 is not made into a board, so that a burr or the like formed on the core material at the time of cutting cannot be formed like a conventional core material. Of course, the convection space in a tent tension state between the end face of the core material and the outer packaging material is also difficult to form without any warp. Of course, there is no attention to the point of reducing the size, and there is no disclosure or suggestion about the convection space that can be produced by the ear processing of the outer packaging material.

又外包材にアルミ箔を使った場合、ガスバリア性には優れているが、アルミニウム自体の熱伝導率が高い為外包材を通しての熱伝導(ヒートブリッジ)によって十分な断熱性能が得られないと云う問題があった。   Also, when aluminum foil is used for the outer packaging material, it has excellent gas barrier properties, but due to the high thermal conductivity of aluminum itself, sufficient heat insulation performance cannot be obtained by heat conduction through the outer packaging material (heat bridge). There was a problem.

本発明は上記対流空間をなくし断熱性能に優れ且つ耳折り時の作業性を容易にし生産性に優れた真空断熱材及びこれを用いた冷蔵庫を提供するものである。   This invention provides the vacuum heat insulating material which eliminated the said convection space, was excellent in heat insulation performance, made workability at the time of an earfolding easy, and was excellent in productivity, and a refrigerator using the same.

また本発明はリサイクル性の良い真空断熱材冷蔵庫を得るようにしたものである。   In addition, the present invention provides a vacuum heat insulating material refrigerator with good recyclability.

更にはバインダーを使わない芯材とすることにより出来あがった真空断熱材自体の反り或いは平面精度確保と云う点で有利なバインダーレスの真空断熱材を得るようにしたものである。   Furthermore, a binderless vacuum heat insulating material that is advantageous in terms of warping of the vacuum heat insulating material itself produced by using a core material that does not use a binder or ensuring flatness accuracy is obtained.

上記課題を解決するために、本発明は、内袋内に柔軟性を有する無機繊維の積層体が収納され該無機繊維が減圧状態で端部が丸みを帯びて保持されたバインダーでボード状に固められていない芯材と、前記無機繊維の積層体に設けられた収納部に収納された吸着剤と、前記芯材を収納する外包材とを備え、前記内袋は熱溶着可能な合成樹脂製とし、前記外包材は外側に設けられた金属層と内側に設けられた熱溶着可能な合成樹脂材の層とで形成されその内部を減圧し溶着密封され、前記外包材の部内に前記内袋の部を位置させた4重部が前記芯材の端部の丸みに沿って折り曲げられたことを特徴とする。


In order to solve the above-mentioned problems, the present invention provides a board with a binder in which a laminate of flexible inorganic fibers is housed in an inner bag and the inorganic fibers are held in a reduced pressure state with rounded ends. A synthetic resin comprising: a core material that is not hardened ; an adsorbent that is stored in a storage portion provided in the laminate of inorganic fibers; and an outer packaging material that stores the core material; and manufacturing, the outer material is depressurized therein is formed by a layer of heat-weldable synthetic resin material provided on the metal layer and an inner disposed outside the welding sealing, the ear portion of the outer material The quadruple portion where the ear portion of the inner bag is located is bent along the roundness of the end portion of the core material .


上記のように、外包材の耳部内に無機繊維積層体を被包する内袋の耳部を位置させたものであるから、耳折りする時内袋の肉厚分必ず折り曲げ径が大きくなるので、耳部に異物等があっても外包材に損傷を与えることがない。また、外包材の耳部において金属層(例えばアルミ箔や金属蒸着層)に熱伝導を通して運ばれる高温側の熱は内袋の耳部によって一部遮断されるのでその熱伝導量は低減される。   As described above, since the ear portion of the inner bag that encapsulates the inorganic fiber laminate is positioned in the ear portion of the outer packaging material, the bend diameter always increases by the thickness of the inner bag when the ear is folded. Even if there is a foreign substance or the like in the ear, the outer packaging material will not be damaged. In addition, since the heat on the high temperature side that is carried through the heat conduction to the metal layer (for example, aluminum foil or metal vapor deposition layer) at the ear portion of the outer packaging material is partially blocked by the ear portion of the inner bag, the heat conduction amount is reduced. .

また、無機繊維積層体としてグラスウール、グラスファイバー、アルミナ繊維、シリカアルミナ繊維としたものであるから、無機繊維の積層体は再利用が出来ることは勿論、環境保全に貢献出来る。すなわち、耳部溶着の信頼性が増し、気密性保持も二重袋となるので一段と向上し、無機繊維がガス侵入等により劣化することがなくなり再利用が促進されるものである。   In addition, since the inorganic fiber laminate is made of glass wool, glass fiber, alumina fiber, or silica alumina fiber, the inorganic fiber laminate can be reused and can contribute to environmental conservation. In other words, the reliability of the welding of the ear part is increased, and the airtightness is also maintained by the double bag, so that the inorganic fiber is not deteriorated due to gas intrusion or the like and the reuse is promoted.

また、内袋はポリエチレンフィルムより構成し、その肉厚を15〜50μmとしたものである。内袋は所定のガスバリア性を必要とすることから、ある程度の厚さを必要とし、15μm以上としている。一方で、真空断熱材として外包材内にあるときは芯材よりも熱伝導率が高くなるため、熱伝導層となりうるものであり、50μm以下としている。   The inner bag is made of a polyethylene film and has a wall thickness of 15 to 50 μm. Since the inner bag needs a predetermined gas barrier property, it needs a certain thickness and is 15 μm or more. On the other hand, when it is in the outer packaging material as a vacuum heat insulating material, the thermal conductivity is higher than that of the core material, so that it can be a heat conductive layer and is 50 μm or less.

例えば、20μmの場合は内袋の重なり寸法が40μmとなり外包材の厚さ寸法と合わせて、無機繊維積層体中に混入する異物の大きさ40μm位迄は許容出来、異物が外包材を突き破るのを防止できるので生産性の向上が計れる、さらには外包材の耳部は耳折り部に上記内袋を内在するように介在させることにより直角に近い曲げでなく少なくとも内袋の厚みを加えた分の曲げ半径(R)となるので外包材の傷付きが防止できるものである。さらに減圧時には無機繊維積層体と内袋との間にテント張りの状態の対流空間を作ることがない。   For example, in the case of 20 μm, the overlap size of the inner bag is 40 μm, and it can be allowed up to about 40 μm of the foreign matter mixed in the inorganic fiber laminate together with the thickness of the outer packaging material, and the foreign matter can penetrate the outer packaging material. Productivity can be improved, and the ear part of the outer packaging material is not bent at a right angle by interposing the inner bag so that the inner bag is contained in the ear fold part, and at least the thickness of the inner bag is added. Therefore, the outer packaging material can be prevented from being damaged. Furthermore, a convection space in a tent tension state is not created between the inorganic fiber laminate and the inner bag during decompression.

なお、内袋は芯材を圧縮して内部を脱気するために開口を容着する。よって、安定的な容着のためには20μm〜30μmの肉厚を有することが望ましい。   The inner bag has an opening for compressing the core material and degassing the inside. Therefore, it is desirable to have a thickness of 20 μm to 30 μm for stable attachment.

さらには、外箱と内箱とによって形成される断熱空間に上述の真空断熱材を配設したものであるから、従来の対流空間を通しての熱移動を押えることが出来、効率の良い真空断熱材付冷蔵庫が得られる。   Furthermore, since the above-mentioned vacuum heat insulating material is disposed in the heat insulating space formed by the outer box and the inner box, heat transfer through the conventional convection space can be suppressed, and an efficient vacuum heat insulating material. An attached refrigerator is obtained.

本発明によれば、断熱性能に優れ且つ耳折り作業を容易にし生産性及びリサイクル性に優れた真空断熱材及びこれを用いた冷蔵庫を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the vacuum heat insulating material which was excellent in heat insulation performance, made the ear folding work easy, and was excellent in productivity and recyclability, and a refrigerator using the same can be provided.

また、バインダーを使わない芯材とすることにより出来あがった真空断熱材自体の反り或いは平面精度確保と云う点で有利なバインダーレスの真空断熱材を得ることができる。   In addition, a binderless vacuum heat insulating material that is advantageous in terms of warping of the vacuum heat insulating material itself produced by using a core material that does not use a binder or ensuring planar accuracy can be obtained.

以下本発明の実施の形態について図1から図12を用いて説明する。   Embodiments of the present invention will be described below with reference to FIGS.

図1は本発明を備えた冷蔵庫の縦断面図であり、図2は図1のA−A断面要部拡大図であり、図3は本発明を備えた真空断熱材とこれを説明する為の図で(a)は本発明の真空断熱材であり、(b)(c)は従来の一般的真空断熱材の説明図である。図4は本発明の真空断熱材製作工程を示す図で(a)が本発明を(b)が一般的真空断熱材の説明図であり、図5は本発明を備えた真空断熱材用芯材の製作工程迄を説明する為の説明図である。図6は図5の芯材を使って本発明の真空断熱材を完成させる迄の製作工程を説明する説明図であり、図7は本発明を備えた真空断熱材の耳部を説明する為の説明図であり、図8は真空断熱材を内箱に配設した図であり、図9及び図10は外包材と内袋との関係を説明する図である。図11は図7で示す耳部を折り曲げた状態を示す図であり、(a)は本発明を(b)は一般的真空断熱材を示す図であり、図12は図11に示す真空断熱材を冷蔵庫等の外箱と内箱が形成する断熱空間に配設した状態を示す図で(a)は本発明を(b)は一般的真空断熱材の配設状態を示す図である。   FIG. 1 is a longitudinal sectional view of a refrigerator provided with the present invention, FIG. 2 is an enlarged view of a main part of the AA cross section of FIG. 1, and FIG. 3 is for explaining the vacuum heat insulating material provided with the present invention. (A) is a vacuum heat insulating material of this invention, (b) (c) is explanatory drawing of the conventional general vacuum heat insulating material. 4A and 4B are diagrams showing the vacuum heat insulating material manufacturing process of the present invention. FIG. 4A is a diagram illustrating the present invention, FIG. 4B is an explanatory diagram of a general vacuum heat insulating material, and FIG. 5 is a vacuum heat insulating material core provided with the present invention. It is explanatory drawing for demonstrating to the manufacture process of material. FIG. 6 is an explanatory view for explaining a manufacturing process until the vacuum heat insulating material of the present invention is completed using the core material of FIG. 5, and FIG. 7 is for explaining an ear portion of the vacuum heat insulating material provided with the present invention. FIG. 8 is a diagram in which a vacuum heat insulating material is disposed in the inner box, and FIGS. 9 and 10 are diagrams for explaining the relationship between the outer packaging material and the inner bag. 11 is a view showing a state where the ear portion shown in FIG. 7 is bent, (a) is a view showing the present invention, (b) is a view showing a general vacuum heat insulating material, and FIG. 12 is a vacuum heat insulation shown in FIG. It is a figure which shows the state which has arrange | positioned the material in the heat insulation space which outer boxes and inner boxes, such as a refrigerator, form, (a) is this invention, (b) is a figure which shows the arrangement | positioning state of a general vacuum heat insulating material.

先ず、図1、図2に於いて、冷蔵庫本体1は上から冷蔵室2、野菜室3、第1の冷凍室4a、第2の冷凍室4bを有しており、上記各室の前面開口部を閉塞する扉5〜8を備えている。5は冷蔵室扉であり、6は野菜室扉であり、7は第1の冷凍室扉であり、8は第2の冷凍室扉である。而して上記扉6〜8は、引き出し式の扉で各々の部屋を構成する容器を扉引き出し時扉と伴に手前側に引き出す方式の冷蔵庫である。また、冷凍サイクルを備え、冷蔵庫本体1の背面底部に圧縮機9と、冷凍室背面側の冷却器10とを有する。冷却器10の上方には冷気ファン11が配設されて、冷気を各室へと送り、庫内を所定温度に冷却している。また、圧縮機9、冷却器10とともに凝縮器(図示せず)、キャピラリチューブ(図示せず)を伴なって冷凍サイクルを構成している。   First, in FIG. 1 and FIG. 2, the refrigerator main body 1 has a refrigerator compartment 2, a vegetable compartment 3, a first freezing compartment 4a, and a second freezing compartment 4b from the top, and the front opening of each of the above-mentioned compartments. Doors 5 to 8 are provided to close the section. 5 is a refrigerator compartment door, 6 is a vegetable compartment door, 7 is a 1st freezer compartment door, and 8 is a 2nd freezer compartment door. Thus, the doors 6 to 8 are refrigerators of a system in which the containers constituting each room are drawer-type doors and are pulled out to the near side together with the doors when the doors are pulled out. Moreover, it has a refrigeration cycle and has a compressor 9 and a cooler 10 on the back side of the freezer compartment at the back bottom of the refrigerator body 1. A cool air fan 11 is disposed above the cooler 10 to send cool air to each chamber and cool the interior to a predetermined temperature. Moreover, the compressor 9 and the cooler 10 together with a condenser (not shown) and a capillary tube (not shown) constitute a refrigeration cycle.

上記冷蔵庫本体1の外郭を形成するのは箱体12である。この箱体12は外箱13と内箱14、断熱壁15等より構成されている。   The box 12 forms the outer shell of the refrigerator body 1. The box 12 includes an outer box 13, an inner box 14, a heat insulating wall 15, and the like.

而して、上記断熱壁15は本発明を備えた真空断熱材16と発泡断熱材17より構成されている。   Thus, the heat insulating wall 15 is composed of the vacuum heat insulating material 16 and the foam heat insulating material 17 provided with the present invention.

上記発泡断熱材17はそれ自身接着力を有する現場発泡のウレタンフォーム等の発泡断熱材17である。又真空断熱材16は先の発泡断熱材17より高断熱性能を有すよう作られている。   The foam heat insulating material 17 is a foam heat insulating material 17 such as an in-situ foamed urethane foam having an adhesive force. The vacuum heat insulating material 16 is made to have a higher heat insulating performance than the previous foam heat insulating material 17.

例えば、発泡断熱材17の熱伝導率を0.016W/mK程度とすれば、真空断熱材16の熱伝導率は0.002W/mK程度に設定されている。   For example, if the thermal conductivity of the foam heat insulating material 17 is about 0.016 W / mK, the thermal conductivity of the vacuum heat insulating material 16 is set to about 0.002 W / mK.

従って、断熱壁の熱漏洩量面積を一定と仮定すれば、ウレタン等の発泡断熱材のみで形成した断熱壁厚さ寸法の約1/5から1/9程度の厚さ寸法を有する真空断熱材を使用すれば、該断熱壁からの熱漏洩量を同時に設定できる。しかし、真空断熱材のみで断熱壁を構成した箱体12にあっては外箱13と内箱14とが一体化されない為、箱体強度が設計値を満足しないので、本発明では、それ自身に接着力を有するウレタン等の発泡断熱材17を用い、前記外箱13と内箱14とを接着一体化している。尚上記発泡断熱材17の壁厚さ寸法は5mmから20mm程度つまり、平均厚さ寸法を15mm程度とし、局部的な薄いところでもウレタン等の発泡断熱材17が充填出来る5mm以上を確保して、箱体12の強度が低下するのを防止している。   Accordingly, assuming that the heat leak amount area of the heat insulating wall is constant, the vacuum heat insulating material having a thickness dimension of about 1/5 to 1/9 of the heat insulating wall thickness dimension formed only of the foam heat insulating material such as urethane. The amount of heat leakage from the heat insulation wall can be set at the same time. However, since the outer box 13 and the inner box 14 are not integrated in the box 12 in which the heat insulating wall is constituted only by the vacuum heat insulating material, the box strength does not satisfy the design value. The outer box 13 and the inner box 14 are bonded and integrated using a foam heat insulating material 17 such as urethane having adhesive strength. The wall thickness dimension of the foam insulation material 17 is about 5 mm to 20 mm, that is, the average thickness dimension is about 15 mm, and 5 mm or more that can be filled with the foam insulation material 17 such as urethane even in a locally thin place is secured. The strength of the box 12 is prevented from decreasing.

また、上記真空断熱材16の設置位置は、冷蔵庫の熱漏洩量の大きいところを重点的にカバーできる位置に配置して効果をあげている。そして、この真空断熱材16が冷蔵庫の断熱空間に示す割合は、60%以下に設定されている。換云すると、冷蔵庫の据付時の扉体を含む箱体高さ寸法がその幅寸法及び奥行より大きい場合は、該冷蔵庫の高さ方向の両側壁内部と、背面壁内部と扉内部とにそれぞれ設けている。そして真空断熱材の合計体積を前記外箱13と内箱14によって形成される断熱空間体積の60%以下に設定していると云うことである。   Moreover, the installation position of the said vacuum heat insulating material 16 has arrange | positioned in the position which can cover intensively the place where the heat leak amount of a refrigerator is large, and has the effect. And the ratio which this vacuum heat insulating material 16 shows to the heat insulation space of a refrigerator is set to 60% or less. In other words, if the height of the box including the door at the time of installing the refrigerator is larger than its width and depth, the inside of both side walls in the height direction of the refrigerator, the inside of the back wall, and the inside of the door, respectively. Provided. The total volume of the vacuum heat insulating material is set to 60% or less of the heat insulating space volume formed by the outer box 13 and the inner box 14.

尚、真空断熱材16の合計体積を前記外箱13と内箱14とによって形成される空間体積の60%以上にすると、ウレタンフォーム等の発泡断熱材17が均一に充填できなくなり、発泡断熱材17中にボイドが発生して、その強度及び断熱性能を劣化させてしまう。又前述した冷却器10の配管や冷気ファン11の配線(図示せず)が真空断熱材16に当接して該真空断熱材16を傷つける恐れが出てくる等の問題がある。   If the total volume of the vacuum heat insulating material 16 is 60% or more of the space volume formed by the outer box 13 and the inner box 14, the foam heat insulating material 17 such as urethane foam cannot be uniformly filled, and the foam heat insulating material. A void is generated in 17 and the strength and heat insulation performance are deteriorated. Further, there is a problem that the piping of the cooler 10 and the wiring (not shown) of the cool air fan 11 may come into contact with the vacuum heat insulating material 16 and damage the vacuum heat insulating material 16.

次に図3、図4、図5、図6に於いて本発明を備えた真空断熱材16に付いて説明する。   Next, the vacuum heat insulating material 16 provided with the present invention will be described with reference to FIG. 3, FIG. 4, FIG. 5, and FIG.

先ず図3に於いて、この真空断熱材16は芯材18と熱溶着用のプラスチック層を有す金属箔ラミネートフィルム等から成る外包材19とから成っている。而して、上記芯材18は無機繊維の積層体20と内袋21とから構成されている。そして上記内袋21は厚さ20μmの材質ポリエチレンフィル等から成る内袋21とから構成されている。   First, in FIG. 3, the vacuum heat insulating material 16 is composed of a core material 18 and an outer packaging material 19 made of a metal foil laminate film having a plastic layer for heat welding. Thus, the core member 18 is composed of a laminate 20 of inorganic fibers and an inner bag 21. The inner bag 21 is composed of an inner bag 21 made of a polyethylene film having a thickness of 20 μm.

一般に無機繊維の積層体20にはグラスウール、グラスファイバー、アルミナ繊維、シリカアルミナ繊維或いは本綿等の天然繊維が用いられている。又内袋21は肉厚20μmのポリエチレン等の合成樹脂フィルムが用いられている。肉厚20μmのフィルムを選ぶ理由は内袋内の減圧時このフィルムが無機繊維の積層体端との間に対流空間を作ることなく吸着する柔軟性を有すると共に、後述する外包材の開口部の溶着部に混入する異物の大きさを吸収して異物が外包材から露出しないようにする為である。   Generally, natural fibers such as glass wool, glass fiber, alumina fiber, silica-alumina fiber, or cotton are used for the laminate 20 of inorganic fibers. The inner bag 21 is made of a synthetic resin film such as polyethylene having a thickness of 20 μm. The reason why the film having a thickness of 20 μm is selected is that the film has the flexibility to adsorb without forming a convection space between the inorganic fiber laminate and the end of the outer packaging material to be described later when the inner bag is decompressed. This is because the size of the foreign matter mixed in the welded portion is absorbed so that the foreign matter is not exposed from the outer packaging material.

そして上記芯材18は後述する図5の(a〜c)に示す如く、ロール状で厚さ100mm〜150mmに予め作られた無機繊維の積層体20を定寸にカットし、2つ折或いは3つ折りして内袋21(肉厚20μm前後のポリエチレン製の合成樹脂フィルム)内に図5の(b)に示す如く、収納した後、その無機繊維の積層体をプレス機22等を使って、圧縮し、次いで内袋21内を減圧し、次いで熱溶着機23を使って内袋21の開口部を熱溶着密封し作られているものである。   The core material 18 is a roll-shaped inorganic fiber laminate 20 preliminarily made to a thickness of 100 mm to 150 mm and cut into two, three or three as shown in FIGS. After folding and storing in an inner bag 21 (polyethylene synthetic resin film having a wall thickness of about 20 μm) as shown in FIG. 5B, the inorganic fiber laminate was pressed using a press 22 or the like, The inner bag 21 is compressed and then the inner bag 21 is depressurized, and then the opening of the inner bag 21 is heat-sealed and sealed using a heat welding machine 23.

こうして作られた芯材は従来のバインダーを使用していないにも係わらず圧縮−減圧−溶着密封工程を経ることにより真空断熱材16芯材となるものである。   The core material thus produced becomes a vacuum heat insulating material 16 core material through a compression-decompression-welding sealing process, although a conventional binder is not used.

即ち芯材18はバインダーを使用していないが作ろうとする真空断熱材16の厚み形状に形成されており芯材の使命であるスペ−サの役目は十分果たし得るものである。その上この芯材はある程度の柔軟性があり取付部になじんで取り付けが容易なものである。   That is, the core material 18 is formed in the thickness shape of the vacuum heat insulating material 16 to be made without using a binder, and can sufficiently fulfill the role of a spacer which is the mission of the core material. In addition, the core material has a certain degree of flexibility and is easy to attach to the attachment portion.

更に詳説するならば上記無機繊維の積層体20は圧縮工程、或いは減圧工程前の原綿の状態では例えば200〜300mmあったものが圧縮−減圧工程で8〜15mmと20〜25分の1の厚さに圧縮される。   In more detail, the inorganic fiber laminate 20 is, for example, 200 to 300 mm in the state of raw cotton before the compression step or decompression step, but is 8 to 15 mm and 20 to 25 times the thickness in the compression-decompression step. It will be compressed.

従って原綿はこの圧縮時に当然内袋21の隙間を埋めるよう外周方向に広がる。   Accordingly, the raw cotton naturally spreads in the outer circumferential direction so as to fill the gaps in the inner bag 21 during the compression.

次いで減圧工程で肉厚20μm前後の内袋は無機繊維の積層体20を外周より該芯材を圧縮する形になる。換言すると内袋21はテント張り状の空間形成をなくすことが出来る薄さ、つまり柔軟性の良い(収納物の形状に沿って変形し易い)薄さであると言うことである。   Next, in the decompression step, the inner bag having a thickness of about 20 μm is compressed into the core material from the outer periphery of the inorganic fiber laminate 20. In other words, the inner bag 21 is thin enough to eliminate the formation of a tent-tensioned space, that is, thin enough to be flexible (easily deformed along the shape of the stored item).

ここで従来一般に使用されている真空断熱材の説明を図3の(b)(c)を用いて説明する。24は従来一般に使用されている真空断熱材、この真空断熱材24は芯材25を備えている。この芯材25はバインダーを使用して厚さ8〜15mmの板状に成形され、その端面はプレス等を使って切断されている。   Here, explanation of the vacuum heat insulating material generally used conventionally will be described with reference to FIGS. Reference numeral 24 denotes a vacuum heat insulating material generally used conventionally, and the vacuum heat insulating material 24 includes a core member 25. The core material 25 is formed into a plate shape having a thickness of 8 to 15 mm using a binder, and an end surface thereof is cut using a press or the like.

この芯材25を外包材26(金属箔ラミネートフィルム)内に収納し、外包材26内を減圧−溶着密封すると図3の(b)或いは図3の(c)の如くなる。即ち図3の(b)は外包材26の柔軟性の悪さが勝り芯材26端面に対流空間27を作った例であり図3の(c)は柔軟性の良さにより減圧の力で外包材26が芯材端面にピッタリとくっついた状態
を示す図である。尚上記外包材26はプラスチック−金属箔ラミネートフィルムで構成されており、外包材26の開口部を溶着、密封する際には、このプラスチック部を溶して溶着するものである。
When the core material 25 is housed in an outer packaging material 26 (metal foil laminate film) and the inside of the outer packaging material 26 is vacuum-welded and sealed, the result is as shown in FIG. 3B or FIG. That is, FIG. 3B shows an example in which the poor flexibility of the outer packaging material 26 is achieved and the convection space 27 is formed on the end face of the core material 26. FIG. It is a figure which shows the state which 26 stuck to the core material end surface. The outer packaging material 26 is made of a plastic-metal foil laminate film. When the opening of the outer packaging material 26 is welded and sealed, the plastic portion is melted and welded.

ここに於いて、図3の(b)に示す真空断熱材24を冷蔵庫の断熱壁として使うと繊維材等より出る水分或いはガス等が長年使用時上記対流空間27に溜って空間27内を対流し熱の移動を行なう。このことにより断熱性能は著しく低下してしまうものである。   Here, when the vacuum heat insulating material 24 shown in FIG. 3B is used as a heat insulating wall of the refrigerator, moisture or gas generated from the fiber material or the like accumulates in the convection space 27 when used for many years and convects in the space 27. The heat is transferred. As a result, the heat insulation performance is significantly reduced.

一方図3の(c)の状態になると、対流空間27は出来なくとも外包材26が芯材25の端面角部A、Bに当り外包材26をバリで損傷させる可能性が出てくる。   On the other hand, in the state shown in FIG. 3C, even if the convection space 27 cannot be formed, there is a possibility that the outer packaging material 26 hits the end face corners A and B of the core material 25 and damages the outer packaging material 26 with burrs.

換云すると芯材25をプレス等で切断した時出来たバリ等により外包材がA、B部で損傷してしまう可能性が大であった。   In other words, there is a high possibility that the outer packaging material is damaged at the A and B portions due to burrs or the like that are formed when the core material 25 is cut by a press or the like.

尚図3(a)中項番28は吸着剤を示す。この吸着剤28には例えば合成ゼオライトであるモレキュラーシーブ13x等が使われている。そしてこの吸着剤28は芯材中から出る水分及びガス成分を吸着する。即ち、外包材19に収納する前に芯材18(無機繊維20)は十分乾燥されるものであるが、ガス及び水分を完全に取りきることはコスト等の問題で出来ない。即ち十分な乾燥を行なうには多大な時間を必要とすることから不可能となる。この為に吸着剤28を入れて置くものであるがこの吸着剤28の能力にも限度はある。即ち真空断熱材として冷蔵庫に組み込まれた場合には例えば10年間上記吸着剤28で保証することは出来ない。この為、上記した如く対流空間がガス及び水分で埋まり対流により熱の移動を開始するようになってしまうものである。   In FIG. 3A, item number 28 indicates an adsorbent. For this adsorbent 28, for example, a molecular sieve 13x which is a synthetic zeolite is used. The adsorbent 28 adsorbs moisture and gas components emitted from the core material. That is, the core material 18 (inorganic fibers 20) is sufficiently dried before being stored in the outer packaging material 19, but it is impossible to completely remove gas and moisture due to problems such as cost. That is, it takes time to perform sufficient drying, which is impossible. For this purpose, the adsorbent 28 is put in, but the capacity of the adsorbent 28 is limited. That is, when it is incorporated in a refrigerator as a vacuum heat insulating material, it cannot be guaranteed with the adsorbent 28 for 10 years, for example. For this reason, the convection space is filled with gas and moisture as described above, and heat transfer is started by convection.

而して上記吸着剤28は無機繊維積層体20に設けられた吸着剤収納部29内に充填されている。内袋21はこの吸着剤28が吸着剤収納部29内より飛び出すのを防止する役目をも果している。従って上記吸着剤28は内袋の圧縮−減圧−溶着前に吸着剤収納部29内に入れておくものである。   Thus, the adsorbent 28 is filled in an adsorbent storage 29 provided in the inorganic fiber laminate 20. The inner bag 21 also serves to prevent the adsorbent 28 from jumping out of the adsorbent storage portion 29. Accordingly, the adsorbent 28 is placed in the adsorbent storage 29 before the inner bag is compressed, decompressed and welded.

一方図3(b)(c)中の項番30は吸着剤。この吸着剤の役目は図3(a)と同じである。ただ図3(b)(c)に示すものはバインダーを使って硬化した芯材25に設けた吸着剤収納部31に吸着剤30を入れており、本発明の如く内袋21を有していないので、吸着剤収納部31に吸着剤30を入れており、本発明の如く内袋21を有していないので、吸着剤30が収納部31より飛び出し、芯材25と外包材26との間に入って外包材を損傷する可能性がある。この為、このものに於いても当然収納部31を蓋する手段、例えば蓋体の設置が必要となる。   On the other hand, the item number 30 in FIGS. 3B and 3C is an adsorbent. The role of this adsorbent is the same as in FIG. However, what is shown in FIGS. 3 (b) and 3 (c) has an adsorbent 30 placed in an adsorbent storage section 31 provided in a core material 25 cured with a binder, and has an inner bag 21 as in the present invention. Since the adsorbent 30 is put in the adsorbent storage portion 31 and the inner bag 21 is not provided as in the present invention, the adsorbent 30 jumps out of the storage portion 31 and the core material 25 and the outer packaging material 26 are separated. There is a possibility of damaging the outer packaging material. For this reason, of course, it is necessary to install a means for covering the storage portion 31, for example, a lid.

次に上記真空断熱材16と従来の真空断熱材24の製作工程の違いを図4をもって説明する。図中(a)は本発明を示し、(b)は従来例を示す。   Next, the difference in the manufacturing process between the vacuum heat insulating material 16 and the conventional vacuum heat insulating material 24 will be described with reference to FIG. In the figure, (a) shows the present invention, and (b) shows a conventional example.

先ず図4(a)に於いて、本発明の真空断熱材16の製作工程を説明すると、ステップ32でロール状の原綿が所定寸法に切断される。その後、ステップ33で原綿は乾燥炉(230℃)に入れられ、乾燥された後、その原綿を内袋内に収納させ、ステップ34で仮圧縮袋詰め、(圧縮−減圧−溶着密封)を行い、芯材を作る。この状態で出来た芯材は一時保管も可能である。   First, referring to FIG. 4 (a), the production process of the vacuum heat insulating material 16 of the present invention will be described. In step 32, the roll raw cotton is cut into a predetermined size. After that, in Step 33, the raw cotton is put in a drying furnace (230 ° C.) and dried. Then, the raw cotton is stored in an inner bag, and in Step 34, temporarily compressed and packed (compression-decompression-welding sealing) is performed. Make a core material. The core material made in this state can be temporarily stored.

次いでステップ35で外包材内に芯材を収納する。その後内袋を破り、次いでステップ36で外包材内を減圧し、その開口部を溶着密封し、真空包装する。   Next, in step 35, the core material is accommodated in the outer packaging material. Thereafter, the inner bag is broken, and then, in step 36, the inside of the outer packaging material is depressurized, and the opening is welded and sealed and vacuum packaged.

その後ステップ37で真空断熱材16の周囲に出来る耳部(後述する)を一面(例えば上面)側に折り曲げその耳部を固定する。   Thereafter, in step 37, an ear portion (described later) formed around the vacuum heat insulating material 16 is bent to one surface (for example, the upper surface) side, and the ear portion is fixed.

そして出来た真空断熱材16を熱伝導率チェッカー等を用いて良品、不良品の検査(ステップ38)を行ない真空断熱材16を完成させるものである。   The resulting vacuum heat insulating material 16 is inspected for non-defective products and defective products using a thermal conductivity checker or the like (step 38) to complete the vacuum heat insulating material 16.

次に図4の(b)に付いて、この図4の(b)に示す従来の真空断熱材24の製作工程で図4の(a)と特に異なる点はバインダーを使っている点である。即ち(バインダー含浸、脱水)−(含浸コア切断)−(加熱成形)−(コア材切断)の工程である。   Next, in FIG. 4 (b), the manufacturing process of the conventional vacuum heat insulating material 24 shown in FIG. 4 (b) is different from FIG. 4 (a) in that a binder is used. . That is, it is a process of (binder impregnation, dehydration)-(impregnation core cutting)-(thermoforming)-(core material cutting).

これらの工程は何れもバインダーを使った時に必要となる工程であるが、本発明に於いてはこのバインダーを使わず、内袋でこれを代用させたものである。   These steps are all required when a binder is used, but in the present invention, this binder is not used, but an inner bag is used instead.

ここで上記図4に示す製作工程を図5、図6を用いて説明する。   Here, the manufacturing process shown in FIG. 4 will be described with reference to FIGS.

図5に示すものは原綿を所定寸法 破線より切断し、内袋に納めその内袋開口を溶着し芯材とする迄の図であり、図6に示すものは芯材18を外包材19に入れ、真空断熱材16とする過程を示した図である。   FIG. 5 shows the raw cotton cut from the broken line with a predetermined dimension, put in the inner bag, and the inner bag opening is welded to form the core material. FIG. 6 shows the core material 18 as the outer packaging material 19. It is the figure which showed the process of putting and making the vacuum heat insulating material 16. FIG.

先ず図5に於いて、(a)はロール状に巻かれた原綿を乾燥後例えば破線の部分で切断し、所定寸法とする所を示し、図5の(b)は(a)で切断された原綿(無機繊維積層体20)を2つ折りにして3方が溶着され袋状に形成された内袋21に収納した状態を示す図である。この時図(b)からも判るように原綿20はバインダー等の硬化剤を含んでいない為に内袋21形状に沿って自身のもつ柔軟性を利用し、変形し、角部は丸み形状(R形状)となる。   First, in FIG. 5, (a) shows a place where raw cotton wound in a roll shape is dried and then cut at, for example, a broken line portion to obtain a predetermined size, and (b) in FIG. 5 is cut at (a). It is a figure which shows the state which folded the raw cotton (inorganic fiber laminated body 20) in half, and was accommodated in the inner bag 21 formed in the bag shape by welding 3 sides. At this time, as can be seen from the figure (b), since the raw cotton 20 does not contain a curing agent such as a binder, it is deformed by utilizing its own flexibility along the shape of the inner bag 21 and the corners are rounded ( R shape).

これを図5の(c)に示す如く厚み方向で例えば25分の1位迄にプレス機22をもって圧縮し8〜15mmの原綿20とする。勿論この時吸着剤(図示せず)は内袋21内に入れておくものである。   As shown in FIG. 5 (c), this is compressed with a press machine 22 to about 1 / 25th in the thickness direction to obtain a raw cotton 20 of 8 to 15 mm. Of course, at this time, an adsorbent (not shown) is placed in the inner bag 21.

次いで内袋21内を減圧し、内袋21の開口部を溶着機23をもって溶着密封するものである。この過程に於いても原綿20は内袋21一杯にしかも角部はなくなり丸みをもった原綿20となり内袋21と共に真空断熱材16用芯材18を構成するものである。こうして出来た芯材18であれば連続工程を組まなくとも、この状態での保管が可能となることより生産調整等には非常に便利な芯材18となるものである。即ち保管中減圧状態で保持されるものである。   Next, the inside of the inner bag 21 is depressurized, and the opening of the inner bag 21 is welded and sealed with a welding machine 23. Even in this process, the raw cotton 20 fills the inner bag 21 and becomes a raw cotton 20 with rounded corners, which forms the core 18 for the vacuum heat insulating material 16 together with the inner bag 21. The core material 18 thus made becomes a very convenient core material 18 for production adjustment and the like because it can be stored in this state even without a continuous process. That is, it is kept under reduced pressure during storage.

次に図6に於いて、先ず図6の(a)に於いて外包材19内に収納された芯材18の内袋21は次の工程での減圧に備え、例えば図示部(内袋破り)が破られる。このことにより図6の(b)に於いて内袋21を含む芯材18内の減圧がスムーズに行なわれる。この時特筆すべきは、内袋21の耳部21a(L4部)が外包材19の耳部19a(L5部)内に図に示す如く入り込み、外包材19の耳部19aは4重になる点である。もともと外包材19の内側は熱溶着層(プラスチック層)となっており、例えば低密度ポリエチレンフィルム、鎖状低密度ポリエチレンフィルム、高密度ポリエチレンフィルム等の合成樹脂材で形成されていることから、内袋21のポリエチレンフィルムとの相性も良く、4重部の熱溶着は可能となる。そして熱溶着された部分は一体化されるものである。従って若し芯材18の収納時外包材の開口部にホコリ、チリが落ちたとしてもこの開口部は先にも記述した如く溶着材(内袋)があることよりホコリ、チリの異物を吸収し、外包材の溶着密封を確実に行うものである。   Next, in FIG. 6, first, in FIG. 6A, the inner bag 21 of the core material 18 accommodated in the outer packaging material 19 is prepared for decompression in the next step. ) Is broken. As a result, the pressure in the core member 18 including the inner bag 21 is smoothly reduced in FIG. 6B. At this time, it should be noted that the ear portion 21a (L4 portion) of the inner bag 21 enters the ear portion 19a (L5 portion) of the outer packaging material 19 as shown in the figure, and the ear portion 19a of the outer packaging material 19 becomes quadruple. Is a point. Originally, the inner side of the outer packaging material 19 is a heat-welded layer (plastic layer), and is formed of a synthetic resin material such as a low-density polyethylene film, a chain-like low-density polyethylene film, or a high-density polyethylene film. The compatibility with the polyethylene film of the bag 21 is good, and heat welding of the quadruple portion is possible. And the heat-welded part is integrated. Therefore, even if dust or dust falls in the opening of the outer packaging material when the core material 18 is stored, the opening absorbs dust and dust foreign matter due to the presence of the welding material (inner bag) as described above. Thus, the outer packaging material is securely sealed.

こうして作られた真空断熱材16は最後に耳部21aを含む耳部19aが例えば図6の(c)に示す如く耳部の根元を基点として上面側に折り込まれテープ等(図示せず)で固定される。   In the vacuum heat insulating material 16 made in this way, the ear part 19a including the ear part 21a is finally folded on the upper surface side with the base of the ear part as shown in FIG. 6C, for example, with tape or the like (not shown). Fixed.

この時にあって、本発明を備えた真空断熱材16の耳部21a、19aであると芯材18の端部が丸みをおびていることより、その丸みに沿って折り込まれ、耳部19aと外包材19との間に従来の如く対流空間を作ることなく折り込めるものである。換云すると図3の(c)で示した角部Bの破損を心配することなく折り曲げることが出来るものである。何故ならば内袋21が破損しやすい直角曲げを防止する為である。   At this time, when the ear portions 21a and 19a of the vacuum heat insulating material 16 provided with the present invention are formed, the end portion of the core member 18 is rounded, so that the ear portion 19a and the outer package are folded along the roundness. It can be folded without forming a convection space with the material 19 as in the prior art. In other words, it can be bent without worrying about the breakage of the corner B shown in FIG. This is because the inner bag 21 is prevented from being bent at right angles, which is easily damaged.

このことにより、真空断熱材16の外包材19のもつ金属部(バリア層)を通して伝導される熱移動に従来プラスされていた熱の対流空間の形成を最小限に押えることが出来るものである。   As a result, the formation of a heat convection space, which is conventionally added to heat transfer conducted through the metal part (barrier layer) of the outer packaging material 19 of the vacuum heat insulating material 16, can be suppressed to a minimum.

すなわち、耳折りする時の内袋の肉厚分必ず折り曲げ径が大きくなるので、耳部に異物等があっても、外包材に損傷を与えることもない。また、外包材の耳部に於いて金属層の熱伝導を通して運ばれる高温側の熱は内袋によって一部遮断されるのでその熱伝導量は低減される。   That is, since the bending diameter is always increased by the thickness of the inner bag when the ear is folded, the outer packaging material is not damaged even if there is a foreign substance or the like in the ear. In addition, since the heat on the high temperature side carried through the heat conduction of the metal layer at the ear portion of the outer packaging material is partially blocked by the inner bag, the amount of heat conduction is reduced.

次に、図7、図8をもって、外包材19を通しての熱伝導(ヒートブリッジ)によって外箱13側の熱が内箱14側に伝導されるメカニズムに付いて説明する。   Next, with reference to FIGS. 7 and 8, the mechanism by which the heat on the outer box 13 side is conducted to the inner box 14 side by heat conduction (heat bridge) through the outer packaging material 19 will be described.

真空断熱材16自体は先にも記述した如く発泡断熱材17の数倍の断熱性能をもっていると云われているが、外包材19、特にアルミ箔部は断熱効果が小さい。   The vacuum heat insulating material 16 itself is said to have a heat insulating performance several times that of the foam heat insulating material 17 as described above, but the outer packaging material 19, particularly the aluminum foil portion, has a small heat insulating effect.

通常このアルミ箔部を通して熱が伝導されることをヒートブリッジと云っている。   The heat conduction is usually referred to as heat conduction through the aluminum foil portion.

即ち、外包材の表面側アルミ箔は、図7、図8に示す如く外箱13に接触して配設される。   That is, the front side aluminum foil of the outer packaging material is disposed in contact with the outer box 13 as shown in FIGS.

従って、外箱13の熱は図7の矢印の如く耳部19aを経由して外箱13側の面19bから内箱14側の面19cに伝導される。この時本発明に於いては図7に示す如く耳部L1に対しL2部が内袋21の耳部21aで隔離されていることより、A部で外箱13側面19bの熱が内箱14側面19cに伝導されない構造となっている。   Accordingly, the heat of the outer box 13 is conducted from the surface 19b on the outer box 13 side to the surface 19c on the inner box 14 side via the ear 19a as shown by the arrow in FIG. At this time, in the present invention, as shown in FIG. 7, the L2 portion is separated from the ear portion L1 by the ear portion 21a of the inner bag 21, so that the heat on the side surface 19b of the outer box 13 is heated at the A portion. The structure is not conducted to the side surface 19c.

換云すると外包材19が形成する耳部L1に対し、内袋21が形成する耳部21aの長さL2を長くすればする程外包材の外箱13側面19bより外包材19の内箱13側面19cに伝導される熱量は大巾に低減することが出来るが製作上の観点よりL2/L1=0.8以下にしておくのが良い。   In other words, as the length L2 of the ear portion 21a formed by the inner bag 21 is made longer with respect to the ear portion L1 formed by the outer packaging material 19, the inner box 13 of the outer packaging material 19 than the side surface 19b of the outer casing 13 of the outer packaging material. Although the amount of heat conducted to the side surface 19c can be greatly reduced, it is preferable that L2 / L1 = 0.8 or less from the viewpoint of manufacturing.

尚、外包材19は通常19bと19cの2枚のシートを熱溶着して袋形態を作っている。そして、この熱溶着部L3を含む芯材18迄の重合部L1を外包材19の耳部と称し、同様に内袋の熱溶着部を含む重合部L2を内袋21の耳部21aと称している。   The outer packaging material 19 is usually formed into a bag shape by thermally welding two sheets 19b and 19c. The overlapping portion L1 up to the core material 18 including the heat welding portion L3 is referred to as an ear portion of the outer packaging material 19, and similarly, the overlapping portion L2 including the heat welding portion of the inner bag is referred to as an ear portion 21a of the inner bag 21. ing.

そして外包材19bと19cの熱溶着代L3中に上記内袋21の耳部21aを延ばしておくと内袋21の肉厚分60μmが溶着材となり、外包材19bと19c間の溶着を確実にすることが出来るものである。   And if the ear | edge part 21a of the said inner bag 21 is extended during the heat welding allowance L3 of the outer packaging materials 19b and 19c, 60 micrometers of thickness of the inner bag 21 will become a welding material, and the welding between outer packaging materials 19b and 19c will be ensured. It can be done.

図8は上記耳部19a、21aを内箱13側面19cに折り曲げ固定した図である。図からも明らかなように上記耳部19aは内袋21の肉厚(60μm)を含めて折り曲げることより従来の耳折り曲げ半径(R)より大きくなり折り曲げ時に発生する外包材19の損傷は大巾に低減出来るものである。このことにより耳部19aは芯材18に沿って折り曲げやすくなるものである。   FIG. 8 is a view in which the ears 19a and 21a are bent and fixed to the side surface 19c of the inner box 13. As shown in FIG. As can be seen from the figure, the ear 19a is bent including the thickness (60 μm) of the inner bag 21 and is larger than the conventional ear bending radius (R). Can be reduced. As a result, the ear portion 19 a can be easily bent along the core member 18.

次に上記外包材19に収納される内袋21との関係を図9、図10をもって説明する。   Next, the relationship with the inner bag 21 accommodated in the outer packaging material 19 will be described with reference to FIGS.

先ず図9は3方が予め熱溶着され、外包材19内に内袋21を収納した後、外包材19の開口部19dを内袋21の耳部21aと外包材19の耳部19aを一緒にして熱溶着したものである。   First, in FIG. 9, three sides are preliminarily heat-welded, and after the inner bag 21 is accommodated in the outer packaging material 19, the opening 19 d of the outer packaging material 19 is put together with the ear portion 21 a of the inner bag 21 and the ear portion 19 a of the outer packaging material 19. And heat-welded.

この熱溶着部幅W1は他の3方の熱溶着部幅W2より幅広に溶着されている。換云すると、外包材19の耳部19aの60〜70%部に内袋21の耳部21aがW1の如く入り込んでいる。   The heat welded portion width W1 is welded wider than the other three heat welded portion widths W2. In other words, the ear portion 21a of the inner bag 21 is inserted into 60 to 70% of the ear portion 19a of the outer packaging material 19 as W1.

このことにより、この部分を通しての熱伝導は他の3ヶ所(W2部)より大巾に小さくなるものである。   Thus, the heat conduction through this portion is much smaller than the other three locations (W2 portion).

次に図10に於いて、図10は図9の外包材19の熱溶着部W2を内袋21収納後W2より幅広のW3としたものである。
即ち、図10に示すものは内袋21の耳部21aを含めて熱溶着し、W3を得るようにしたものである。このものは、外包材19単体で一旦熱溶着(図9のW2部)した時、内袋21のサンドイッチ部W3を再度熱溶着する形になるので、作業工程はふえるが内袋を熱溶着時の溶着材とすることが出来るので溶着の信頼性は一段と向上するものである。
Next, in FIG. 10, FIG. 10 shows that the heat-welded portion W2 of the outer packaging material 19 of FIG. 9 is W3 wider than W2 after the inner bag 21 is stored.
That is, what is shown in FIG. 10 includes the ear portion 21a of the inner bag 21 and is thermally welded to obtain W3. In this case, when the outer packaging material 19 is once heat welded (W2 part in FIG. 9), the sandwich part W3 of the inner bag 21 is heat welded again. Therefore, the reliability of welding is further improved.

尚外包材19の内袋21収納用開口部19dの熱溶着は図9と同じである為に説明は省略する。   The heat welding of the opening 19d for accommodating the inner bag 21 of the outer packaging material 19 is the same as that shown in FIG.

次に上記対流空間に付いて図11、図12を用いて説明する。   Next, the convection space will be described with reference to FIGS.

図11、図12何れも本発明を備えた真空断熱材16と従来の真空断熱材24との比較を示したものであり、図11は真空断熱材24の単体の比較であり図12は冷蔵庫の断熱材とした使用した時の比較を示したものである。   11 and 12 both show a comparison between the vacuum heat insulating material 16 provided with the present invention and the conventional vacuum heat insulating material 24, FIG. 11 shows a comparison of the vacuum heat insulating material 24 alone, and FIG. 12 shows a refrigerator. It shows a comparison when used as a heat insulating material.

先ず図11に於いて、図11の(a)は本発明を備えた真空断熱材16である為、内袋21と無機繊維の積層体20との間には端部であっても対流空間は発生していない。又、このものは耳部19aを破線の如く耳折りしても、耳部19aは外包材に沿って隙間なく図9(a)の破線の如く折り曲げられる為対流空間は形成されない。
所が従来の真空断熱材24であると、芯材25がバインダーにより硬化され、ボード化されていることより端面は図に示すような切断面となる。
First, in FIG. 11, since (a) of FIG. 11 is the vacuum heat insulating material 16 provided with the present invention, a convection space is provided between the inner bag 21 and the inorganic fiber laminate 20 even at the end portion. Has not occurred. Further, even if the ear portion 19a is folded as shown by a broken line, the ear portion 19a is bent along the outer packaging material without a gap so that a convection space is not formed.
If the place is a conventional vacuum heat insulating material 24, the core 25 is hardened with a binder and formed into a board, so that the end surface becomes a cut surface as shown in the figure.

従って外包材26内を減圧しても、上記芯材25の端部に対流空間27aが発生しやすい。この対流空間27(a)の熱伝導率は、真空度が高い間は無視出来るものであるが、長年の使用でこの空間が水分或いは芯材より出るガスが充満すると、この対流空間27(a)を通して伝えられる熱は断熱許容値をオーバーしてしまう。又、この真空断熱材24の耳部40を図に示すように耳折りすると、外包材26が芯材25の端部Bに当り切断時にできるバリ等で損傷するのを避ける為にあまり張力をかけることなく破線の如く折り曲げてしまう。(図11(a)の如く、芯材18に沿って折り曲げられず)この結果耳折り部にも対流空間27bが出来てしまう。   Therefore, even if the inside of the outer packaging material 26 is depressurized, a convection space 27 a is likely to be generated at the end of the core material 25. The thermal conductivity of the convection space 27 (a) is negligible while the degree of vacuum is high. However, when the space is filled with moisture or a gas coming out of the core after many years of use, the convection space 27 (a) ) The heat transferred through) exceeds the heat insulation tolerance. Further, when the ear portion 40 of the vacuum heat insulating material 24 is folded as shown in the figure, the outer packaging material 26 hits the end B of the core material 25 so as to avoid damaging with a burr formed at the time of cutting or the like. It bends like a broken line without applying. (As shown in FIG. 11A, it is not bent along the core 18) As a result, a convection space 27b is also formed in the ear fold.

この対流空間27bは当初より減圧されていないものであるから、当然最初から熱を対流により運ぶ空間となり、全体として断熱性能の良い真空断熱材24と云うことは出来なかった。   Since the convection space 27b has not been depressurized from the beginning, it naturally becomes a space for transporting heat by convection from the beginning, and cannot be said to be the vacuum heat insulating material 24 having a good heat insulating performance as a whole.

図12に示すものは上記図11で説明した本発明と従来真空断熱材を冷蔵庫の断熱材中に組み込んだ状態を示す図である。   FIG. 12 is a view showing a state in which the present invention described in FIG. 11 and the conventional vacuum heat insulating material are incorporated in the heat insulating material of the refrigerator.

何れも外箱13にホットメルト或いは2面テープ41等を利用して真空断熱材を張り付けた後、発泡断熱材17を充填したものである。   In either case, a vacuum heat insulating material is attached to the outer box 13 using hot melt or a double-sided tape 41, and then the foam heat insulating material 17 is filled.

これらは何れも耳部19a、40が内箱14側に向けて折り込まれている。   As for these, the ear | edge parts 19a and 40 are folded toward the inner box 14 side.

本発明の真空断熱材16にあっては対流空間27a、27bが形成されていないことより、この対流空間27a、27bを通しての熱移動はない為、外包材の金属部を通しての熱移動ですむが従来の真空断熱材24にあっては、外包材26の金属部を通しての熱移動の他に対流空間27a、27bを通し、外箱13側の熱が内箱14側に入るのを防止しなければならなかった。従来はこの為の手段として発泡断熱材17の壁厚を厚くする等で対策していたものである。   In the vacuum heat insulating material 16 of the present invention, since the convection spaces 27a and 27b are not formed, there is no heat transfer through the convection spaces 27a and 27b, so heat transfer through the metal portion of the outer packaging material is sufficient. In the conventional vacuum heat insulating material 24, in addition to the heat transfer through the metal part of the outer packaging material 26, the convection spaces 27a and 27b must be passed to prevent the heat on the outer box 13 side from entering the inner box 14 side. I had to. Conventionally, measures have been taken by increasing the wall thickness of the foam heat insulating material 17 as a means for this purpose.

本発明は以上説明した如く、円袋内に無機繊維の積層体を納め、内袋を一時的に圧縮−減圧−溶着密封して内袋に隙間なく無機繊維の積層体を自身の持つ柔軟性を利用して配設して作った芯材を金属箔ラミネートフィルム等から成る外包材内に収納し、内袋の密封を破り外包材内を減圧し、溶着密封して作った真空断熱材に於いて、外包材の耳部内に無機繊維積層体を被包する内袋の耳部を位置させたものであるから、耳折りする時内袋の肉厚分必ず折り曲げ径が大きくなるので、耳部に異物等があっても外包材に損傷を与えることがないことは勿論、外包材の耳部に於いて金属箔例えばアルミ箔の熱伝導を通して運ばれる高温側の熱は内袋によって一部遮断されるのでその熱伝導量は低減されるものである。   In the present invention, as described above, a laminate of inorganic fibers is placed in a circular bag, and the inner bag is temporarily compressed, decompressed, welded and sealed, and the inner fiber has a laminate of inorganic fibers without gaps. A vacuum insulation material made by placing the core material made by using the inside of the outer packaging material made of metal foil laminate film, etc., breaking the sealing of the inner bag, reducing the pressure inside the outer packaging material, and welding and sealing However, since the ear part of the inner bag encapsulating the inorganic fiber laminate is positioned in the ear part of the outer packaging material, when the ear is folded, the folding diameter is always increased by the thickness of the inner bag. Of course, there is no damage to the outer packaging material even if there is a foreign object, etc., and the heat on the high temperature side that is carried through the heat conduction of the metal foil, such as aluminum foil, is partly by the inner bag at the ear of the outer packaging material. Since it is interrupted, the amount of heat conduction is reduced.

又、外包材の開口溶着部には、内袋の耳部が位置し、溶着後の肉厚が他の溶着部に比較して厚肉となるようにしたものであるから、内袋が溶着材となり外包材の溶着を容易にすることは勿論、溶着材が厚くなる分、チリやホコリ等の異物を吸収し、確実な溶着密封が出来るものである。   In addition, the inner bag is welded because the inner bag ears are located at the opening welded part of the outer packaging material, and the thickness after welding is thicker than other welded parts. In addition to facilitating the welding of the outer packaging material, it absorbs foreign matters such as dust and dust as the welding material becomes thicker, so that a reliable welding and sealing can be achieved.

又、無機繊維積層体としてグラスウール、グラスファイバー、アルミナ繊維、シリカアルミナ繊維等としたものであるから、無機繊維の積層体は再利用が出来ることは勿論、環境保全に貢献出来るものである。即ち耳部溶着の信頼性が増し、気密性保持が一段と向上し、無機繊維がガス侵入等により劣化することがなくなり再利用が促進されるものである。   In addition, since the inorganic fiber laminate is made of glass wool, glass fiber, alumina fiber, silica alumina fiber or the like, the laminate of inorganic fiber can be reused and can contribute to environmental conservation. That is, the reliability of the ear welding is increased, the hermeticity maintenance is further improved, the inorganic fiber is not deteriorated by gas intrusion or the like, and the reuse is promoted.

又、内袋は熱溶着可能な合成樹脂製となし、その肉厚は20〜50μmとしたものであるから、肉厚が20μmの場合は無機繊維積層体中に混入する異物の大きさ40μm迄、肉厚50μmの場合は100μm迄は許容出来、生産性の向上が計れるばかりでなく減圧時には無機繊維積層体と内袋との間にテント張りの状態の対流空間を作ることがないものである。   The inner bag is made of a heat-sealable synthetic resin and has a thickness of 20 to 50 μm. When the thickness is 20 μm, the size of the foreign matter mixed in the inorganic fiber laminate is up to 40 μm. In the case of a wall thickness of 50 μm, it is acceptable up to 100 μm, and not only can productivity be improved, but also a convection space in a tent tension state is not created between the inorganic fiber laminate and the inner bag at the time of decompression. .

更には、外箱と内箱とによって形成される断熱空間に真空断熱材を配設してなる冷蔵庫にあって、前記真空断熱材が請求項1〜4のいずれかに記載の真空断熱材である冷蔵庫としたものであるから、従来の対流空間を通しての熱移動を押えることが出来、効率の良い真空断熱材付冷蔵庫が得られるものである。   Furthermore, in the refrigerator which arrange | positions a vacuum heat insulating material in the heat insulation space formed by an outer box and an inner box, The said vacuum heat insulating material is a vacuum heat insulating material in any one of Claims 1-4. Since it is a certain refrigerator, heat transfer through the conventional convection space can be suppressed, and an efficient refrigerator with a vacuum heat insulating material can be obtained.

本実施例の冷蔵庫の縦断面図である。It is a longitudinal cross-sectional view of the refrigerator of a present Example. 図1の要部A−A断面拡大図である。It is principal part AA cross-section enlarged view of FIG. 本実施例の真空断熱材と従来の真空断熱材との比較説明図である。It is comparative explanatory drawing of the vacuum heat insulating material of a present Example, and the conventional vacuum heat insulating material. 本実施例の真空断熱材と従来の真空断熱材の製作工程の説明図である。It is explanatory drawing of the manufacturing process of the vacuum heat insulating material of a present Example, and the conventional vacuum heat insulating material. 芯材の製作工程説明図である。It is manufacturing process explanatory drawing of a core material. 真空断熱材の製作工程説明図である。It is manufacturing process explanatory drawing of a vacuum heat insulating material. 真空断熱材の耳部の説明図である。It is explanatory drawing of the ear | edge part of a vacuum heat insulating material. 真空断熱材を内箱に配設した図である。It is the figure which has arrange | positioned the vacuum heat insulating material in the inner box. 外包材と内袋との関係を説明する図である。It is a figure explaining the relationship between an outer packaging material and an inner bag. 図9とは異なる例を説明する図である。It is a figure explaining the example different from FIG. 耳部折り曲げ状態の比較説明図である。It is comparison explanatory drawing of an ear | edge part bending state. 真空断熱材の冷蔵庫配設状態を示す比較説明図である。It is comparative explanatory drawing which shows the refrigerator arrangement | positioning state of a vacuum heat insulating material.

符号の説明Explanation of symbols

1…冷蔵庫本体 2…冷蔵室 3…野菜室 4a…第1の冷凍室 4b…第2の冷凍室
5…冷蔵室扉 6…野菜室扉 7…第1冷凍室の扉 8…第2冷凍室の扉 9…圧縮機
10…冷却器 11…冷気ファン 12…箱体 13…外箱 14…内箱 15…断熱
壁 16…真空断熱材 17…発泡断熱材 18…芯材 19…外包材 19a…耳部
20…無機繊維の積層体 21…内袋 21a…耳部 22…プレス機 23…熱溶着機
24…従来の真空断熱材 25…芯材 26…外包材 27…対流空間(a)(b)
28…吸着剤 29…吸着剤収納部 30…吸着剤(図3(b)(c)) 31…吸着剤
収納部 32…ステップ32 33…ステップ33 34…ステップ34 35…ステッ
プ35 36…ステップ36 37…ステップ37 38…ステップ38 39…ステッ
プ39 40…従来真空断熱材の耳部 41…ホットメルト或いは2面テープ
DESCRIPTION OF SYMBOLS 1 ... Refrigerator main body 2 ... Refrigeration room 3 ... Vegetable room 4a ... 1st freezer room 4b ... 2nd freezer room 5 ... Cold room door 6 ... Vegetable room door 7 ... Door of 1st freezer room 8 ... 2nd freezer room 9 ... Compressor 10 ... Cooler 11 ... Cooling fan 12 ... Box 13 ... Outer box 14 ... Inner box 15 ... Insulating wall 16 ... Vacuum insulation 17 ... Foamed insulation 18 ... Core 19 ... Outer packaging 19a ... Ear
DESCRIPTION OF SYMBOLS 20 ... Laminated body of inorganic fiber 21 ... Inner bag 21a ... Ear part 22 ... Press machine 23 ... Thermal welding machine 24 ... Conventional vacuum heat insulating material 25 ... Core material 26 ... Outer packaging material 27 ... Convection space (a) (b)
28 ... Adsorbent 29 ... Adsorbent storage unit 30 ... Adsorbent (FIGS. 3B and 3C) 31 ... Adsorbent storage unit 32 ... Step 32 33 ... Step 33 34 ... Step 34 35 ... Step 35 36 ... Step 36 37 ... Step 37 38 ... Step 38 39 ... Step 39 40 ... Ear part of conventional vacuum heat insulating material 41 ... Hot melt or double-sided tape

Claims (4)

内袋内に柔軟性を有する無機繊維の積層体が収納され該無機繊維が減圧状態で端部が丸みを帯びて保持されたバインダーでボード状に固められていない芯材と、前記無機繊維の積層体に設けられた収納部に収納された吸着剤と、前記芯材を収納する外包材とを備え、前記内袋は熱溶着可能な合成樹脂製とし、前記外包材は外側に設けられた金属層と内側に設けられた熱溶着可能な合成樹脂材の層とで形成されその内部を減圧し溶着密封され、前記外包材の部内に前記内袋の部を位置させた4重部が前記芯材の端部の丸みに沿って折り曲げられたことを特徴とする真空断熱材。 A core material which is not hardened into a board with a binder in which a laminate of flexible inorganic fibers is housed in an inner bag and the inorganic fibers are held under a reduced pressure in a reduced pressure state, and the inorganic fibers An adsorbent housed in a housing portion provided in the laminate and an outer packaging material for housing the core material, the inner bag is made of a heat-sealable synthetic resin, and the outer packaging material is provided outside. A quadruple portion formed of a metal layer and a layer of heat- sealable synthetic resin material provided on the inner side, the inside of which is decompressed and welded and sealed, and the ear portion of the inner bag is positioned in the ear portion of the outer packaging material Is bent along the roundness of the end of the core material. 請求項1において、
前記無機繊維の積層体としてグラスウール、グラスファイバー、アルミナ繊維、シリカアルミナ繊維とした真空断熱材。
In claim 1,
A vacuum heat insulating material made of glass wool, glass fiber, alumina fiber, or silica-alumina fiber as the laminate of inorganic fibers.
請求項1又は2において、
前記内袋を熱溶着可能な合成樹脂製とし、その肉厚を15〜50μmとした真空断熱材。
In claim 1 or 2,
A vacuum heat insulating material in which the inner bag is made of a heat-weld synthetic resin and has a thickness of 15 to 50 μm.
外箱と内箱とによって形成される断熱空間に真空断熱材を配置してなる冷蔵庫において、前記真空断熱材は、内袋内に柔軟性を有する無機繊維の積層体が収納されされ該無機繊維が減圧状態で端部が丸みを帯びて保持されたバインダーでボード状に固められていない芯材と、前記無機繊維の積層体に設けられた収納部に収納された吸着剤と、前記芯材を収納する外包材とを備え、前記内袋は熱溶着可能な合成樹脂製とし、前記外包材は外側に設けられた金属層と内側に設けられた熱溶着可能な合成樹脂材の層とで形成されその内部を減圧し溶着密封され、前記外包材の部内に前記内袋の部を位置させた4重部が前記芯材の端部の丸みに沿って折り曲げられたことを特徴とする冷蔵庫。 In the refrigerator formed by arranging the vacuum heat insulating material in the insulation space formed by the outer box and the inner box, the vacuum insulation material, laminates of inorganic fibers having a flexibility is housed inside the inner bag inorganic fibers A core material that is not hardened into a board shape with a binder that is held in a rounded state at a reduced pressure, an adsorbent that is stored in a storage part provided in the laminate of inorganic fibers, and the core material The inner bag is made of a heat-sealable synthetic resin, and the outer bag is made of a metal layer provided on the outside and a layer of heat-sealable synthetic resin material provided on the inside. is formed by decompressing the inside are welded sealed, and characterized in that the quadruple of the ear portion was positioned within said bag to the ear portion of the outer material is folded along the rounded end of the core member Refrigerator.
JP2008089175A 2008-03-31 2008-03-31 Vacuum heat insulating material and refrigerator using the same Active JP4384232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008089175A JP4384232B2 (en) 2008-03-31 2008-03-31 Vacuum heat insulating material and refrigerator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008089175A JP4384232B2 (en) 2008-03-31 2008-03-31 Vacuum heat insulating material and refrigerator using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004297091A Division JP4215701B2 (en) 2004-10-12 2004-10-12 refrigerator

Publications (2)

Publication Number Publication Date
JP2008170150A JP2008170150A (en) 2008-07-24
JP4384232B2 true JP4384232B2 (en) 2009-12-16

Family

ID=39698406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008089175A Active JP4384232B2 (en) 2008-03-31 2008-03-31 Vacuum heat insulating material and refrigerator using the same

Country Status (1)

Country Link
JP (1) JP4384232B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6319945B2 (en) * 2012-12-26 2018-05-09 東芝ライフスタイル株式会社 Heat insulation box for refrigerator and method for manufacturing heat insulation box for refrigerator
SG10201800512YA (en) * 2013-06-07 2018-03-28 Mitsubishi Electric Corp Refrigerator

Also Published As

Publication number Publication date
JP2008170150A (en) 2008-07-24

Similar Documents

Publication Publication Date Title
JP4215701B2 (en) refrigerator
JP5608457B2 (en) Vacuum heat insulating material and refrigerator using the same
JP4215745B2 (en) Vacuum heat insulating material, refrigerator using vacuum heat insulating material, and manufacturing method of vacuum heat insulating material
JP4576197B2 (en) Vacuum insulation and refrigerator
JP2007009928A (en) Vacuum heat insulating material, its manufacturing method, and refrigerator
JP5544338B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2005147591A (en) Refrigerator
JP2007113748A (en) Method of manufacturing heat insulating wall, heat insulating unit, and heat insulating material
JP5372877B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2007064584A (en) Refrigerator
JP4384232B2 (en) Vacuum heat insulating material and refrigerator using the same
JP4603817B2 (en) Vacuum heat insulating material, refrigerator using vacuum heat insulating material, and method for manufacturing vacuum heat insulating material
JP2012062905A (en) Vacuum heat insulating material and refrigerator equipped with the same
KR101303440B1 (en) Refrigerator
JP2013040717A (en) Vacuum heat insulation material, and refrigerator using the same
JP5401422B2 (en) Vacuum heat insulating material and refrigerator using the same
JP5372878B2 (en) Vacuum heat insulating material and refrigerator equipped with the same
JP2006342852A (en) Vacuum thermal insulating material and refrigerator using it
TWI767409B (en) Manufacturing method of heat insulating member, heat insulating member, cooling/heating machine using the same, and manufacturing method of the cooling/heating machine
JP5982276B2 (en) Refrigerator using vacuum heat insulating material and vacuum heat insulating material
JP2015001290A (en) Vacuum heat insulation material and refrigerator
JP6000922B2 (en) Vacuum heat insulating material and cooling / heating equipment using the same
JP4806720B2 (en) Vacuum heat insulating material, refrigerator using vacuum heat insulating material, and method for manufacturing vacuum heat insulating material
JP2012063023A (en) Vacuum heat insulating material and refrigerator equipped with same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4384232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350