JP2013040717A - Vacuum heat insulation material, and refrigerator using the same - Google Patents

Vacuum heat insulation material, and refrigerator using the same Download PDF

Info

Publication number
JP2013040717A
JP2013040717A JP2011178077A JP2011178077A JP2013040717A JP 2013040717 A JP2013040717 A JP 2013040717A JP 2011178077 A JP2011178077 A JP 2011178077A JP 2011178077 A JP2011178077 A JP 2011178077A JP 2013040717 A JP2013040717 A JP 2013040717A
Authority
JP
Japan
Prior art keywords
heat insulating
adsorbent
vacuum heat
insulating material
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011178077A
Other languages
Japanese (ja)
Inventor
Yushi Arai
祐志 新井
Kuninari Araki
邦成 荒木
Hisashi Echigoya
恒 越後屋
Yasuto Terauchi
康人 寺内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2011178077A priority Critical patent/JP2013040717A/en
Publication of JP2013040717A publication Critical patent/JP2013040717A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve attaching performance with adhesive by increasing the smoothness of the surface of a vacuum heat insulation material, and to increase the heat insulation performance of the vacuum heat insulation material.SOLUTION: The vacuum heat insulation material 50 includes: a core material 51 made of a fiber aggregate in which fibers gather; adsorbent 54 which adsorbs gas and moisture; an enveloping material 52 which envelops the core material 51 and the adsorbent 54; and an external wrapping material 53 in which the enveloping material 52 is housed. The core material 51 is a laminate of the fiber aggregate which does not contain any binder for mutually binding fibers, and the granular adsorbent 54 is arranged between the core material 51 and the enveloping material 52, and the granular adsorbent 54 is held between the fibers of the core material 51, and the surface in contact with the enveloping material 52 forms a flat shape. Also, the granular adsorbent 54 is arranged between the core material 51 and the enveloping material 52 only at an attachment surface side to which the vacuum heat insulation material 50 is attached.

Description

本発明は、芯材及び粒状吸着材とこれらを内包する内包材を有する真空断熱材及び真空断熱材を適用した冷蔵庫に関するものである。   The present invention relates to a vacuum heat insulating material having a core material and a granular adsorbent material and an internal packaging material containing them, and a refrigerator to which the vacuum heat insulating material is applied.

地球温暖化防止に対する社会の取り組みとして、CO2の排出抑制を図るため、様々な分野で省エネ化が推進されている。近年の電気製品、特に冷熱関連の家電製品においては消費電力量低減の観点から、真空断熱材を採用して断熱性能を強化したものが主流になっている。また、各種原材料から製品の製造工程に至るまでのあらゆるエネルギー消費量を抑制するため、原材料についてはリサイクル化の推進、製造工程においては燃料代や電気代の抑制等、省エネ化が推進されている。そのため、より断熱性能の高い断熱材や、使用する用途に沿った形状の断熱材を用いることでより、断熱面積を大きくすることができる優れた真空断熱材が求められている。   As a social effort to prevent global warming, energy conservation is being promoted in various fields in order to control CO2 emissions. In recent years, electric appliances, particularly household appliances related to cooling and heating, mainly use vacuum heat insulating materials to enhance heat insulating performance from the viewpoint of reducing power consumption. In addition, in order to reduce energy consumption from various raw materials to product manufacturing processes, energy saving is promoted by promoting recycling of raw materials and reducing fuel and electricity costs in the manufacturing process. . Therefore, there is a demand for an excellent vacuum heat insulating material that can increase the heat insulating area by using a heat insulating material with higher heat insulating performance and a heat insulating material having a shape according to the application to be used.

一般に用いられる真空断熱材の芯材は繊維集合体であり、大気圧の状態では嵩が大きくそのまま真空断熱材の芯材として使用するには、芯材にバインダを付着させ、圧縮プレス等によりボード化しなければならない。しかし、バインダを付着させボード化すると、バインダ成分により熱が伝わり真空断熱材としたときに断熱性能が低下することや、製造費においても高くなってしまう。そのため、従来の真空断熱材製造方法では、芯材の繊維集合体を収納する内包材を用いて、それを外包材で包み真空断熱材とすることで、バインダを用いずに作製することができ断熱性能が良好な真空断熱材を得ることができる。   The core material of vacuum heat insulating material that is generally used is a fiber assembly. In order to use it as it is as a core material for vacuum heat insulating material as it is bulky at atmospheric pressure, a binder is attached to the core material and the board is pressed by a compression press or the like. Must be converted. However, if a binder is attached to form a board, heat is transferred by the binder component, resulting in a decrease in heat insulation performance when used as a vacuum heat insulating material and an increase in manufacturing costs. Therefore, in the conventional vacuum heat insulating material manufacturing method, it is possible to manufacture without using a binder by using an inner packaging material that contains a fiber assembly of core material and wrapping it with an outer packaging material to form a vacuum heat insulating material. A vacuum heat insulating material with good heat insulating performance can be obtained.

しかし、芯材の繊維集合体を収納する内包材を用いた製造方法では、芯材にバインダを付着させて圧縮プレス等によりボード化したときとは異なり、プレス加工を行っていないことから、芯材である繊維集合体の目付量(単位面積当たりの重さ)のバラツキにより表面に凹凸が発生してしまう。   However, in the manufacturing method using the inner packaging material that stores the fiber assembly of the core material, unlike the case where the binder is attached to the core material and formed into a board by a compression press or the like, the core material is not pressed, so the core material is not processed. Unevenness is generated on the surface due to variation in the basis weight (weight per unit area) of the fiber aggregate as a material.

また、真空断熱材とした後に圧縮プレスや圧縮ロールを通して平滑することで表面凹凸を減少させることができるが、圧縮力が大きいと外被材が破れリークしてしまうことや、圧縮力が大きいと芯材である繊維集合体が破損し短繊維となり熱が伝わりやすくなり性能が低下してしまう。   In addition, surface irregularities can be reduced by smoothing through a compression press or a compression roll after forming a vacuum heat insulating material, but if the compression force is large, the jacket material may be torn and leak, or if the compression force is large The fiber aggregate that is the core material is broken and becomes short fibers, so that heat is easily transmitted and the performance is deteriorated.

真空断熱材を開示した公知技術を挙げると、特許文献1に示された真空断熱材では、芯材と外被材との間に平面性に優れた硬質板を用いることにより真空断熱材としての表面性を良くしている。平面性に優れた硬質板を用いることで、芯材の凹凸には影響されることがなくなり、真空断熱材としたときに平面性の優れた真空断熱材を得ることができる旨が記載されている。   When the publicly known technique which disclosed the vacuum heat insulating material is given, in the vacuum heat insulating material shown in Patent Document 1, as a vacuum heat insulating material, a hard plate having excellent flatness is used between the core material and the jacket material. The surface property is improved. It is described that by using a hard plate with excellent flatness, it is not affected by the unevenness of the core material, and that a vacuum heat insulating material with excellent flatness can be obtained when used as a vacuum heat insulating material. Yes.

また、特許文献2に示された真空断熱材では、気体吸着の吸着剤をフィルムに含有させて筒状形状にして、この筒状形状の吸着材を芯材と外被材との間に配置して真空断熱材とすることによって、吸着剤の凹凸形状の影響を受けることなく、表面の平滑性の良い真空断熱材とすることができると記載されている。   Moreover, in the vacuum heat insulating material shown by patent document 2, the gas adsorption adsorbent is made to contain in a cylinder shape, and this cylindrical adsorption material is arrange | positioned between a core material and a jacket material. Thus, it is described that by using a vacuum heat insulating material, it is possible to obtain a vacuum heat insulating material with good surface smoothness without being affected by the uneven shape of the adsorbent.

また、特許文献3に示された真空断熱材では、流動改質剤と吸着剤を混合し通気性を有する包材で包み、包材を平板状に圧縮成型し芯材と外被材との間に配置することで、真空断熱材としたときに吸着剤の凹凸影響が無く平滑性が良い真空断熱材とすることができると記載されている。   Moreover, in the vacuum heat insulating material shown by patent document 3, a flow modifier and an adsorbent are mixed, it wraps with the packaging material which has air permeability, the packaging material is compression-molded in flat form, and a core material and a jacket material are made. It is described that a vacuum heat insulating material having good smoothness can be obtained without being affected by the unevenness of the adsorbent when arranged as a vacuum heat insulating material.

特開平7−55088号公報JP 7-55088 A 特開2010−31958号公報JP 2010-31958 A 特開2009−168091号公報JP 2009-168091 A

しかし、上記の特許文献1の構成では、硬質板を芯材と外被材の間に入れることで、表面性を良くすることができるものの、硬質板の熱伝導率が高いことから、真空断熱材としたときの断熱性能が悪くなってしまう。また、真空断熱材にしたときに硬質板と外被材とが接触する部分において鋭利な個所が発生してしまい、この鋭利な部分にぶつけや擦れが起こったときに、外被材が破れ易くなり真空断熱材のリークが発生しやすくなる虞があった。   However, although the surface property can be improved by putting the hard plate between the core material and the jacket material in the configuration of the above-mentioned Patent Document 1, since the thermal conductivity of the hard plate is high, the vacuum insulation The heat insulation performance when used as a material will deteriorate. In addition, when a vacuum insulating material is used, a sharp point occurs at the part where the hard plate and the outer cover material come into contact with each other, and when the sharp part is struck or rubbed, the outer cover material is easily torn. Therefore, there is a possibility that leakage of the vacuum heat insulating material is likely to occur.

また、上記の特許文献2の真空断熱材は、吸着剤をフィルムの筒状形状として吸着剤の芯材と外被材との間に配置し、吸着剤の影響が少なく真空断熱材の表面凹凸を抑制することができるが、芯材の凹凸深さが吸着剤のフィルム厚さよりも大きい場合においては、真空断熱材としたときに表面に凹凸が現れてしまうという課題があった。   Moreover, the vacuum heat insulating material of the above-mentioned Patent Document 2 has an adsorbent in a cylindrical shape of a film and is arranged between the core material of the adsorbent and the jacket material, and the surface unevenness of the vacuum heat insulating material is less affected by the adsorbent. However, when the unevenness depth of the core material is larger than the film thickness of the adsorbent, there is a problem that unevenness appears on the surface when the vacuum heat insulating material is used.

また、上記の特許文献3の真空断熱材は、吸着剤物質と流動改質剤との混合物を包材とともに平板状に圧縮成型することで、それを真空断熱材の芯材と外被材との間に設置することで平面性を得ることができるが、平板状に圧縮成型するために手間がかかることや製造費においても高くなってしまう。また、圧縮成型をしている間に吸着剤が吸湿してしまうという虞があった。   Moreover, the vacuum heat insulating material of said patent document 3 is compression-molding the mixture of an adsorbent substance and a flow modifier with a packaging material in flat form, and it is made into the core material and jacket material of a vacuum heat insulating material. The flatness can be obtained by installing between the two, but it takes time to compress and mold into a flat plate and the manufacturing cost is increased. In addition, the adsorbent may absorb moisture during compression molding.

本発明は、上述した課題を解決するものであり、真空断熱材の表面の平滑性が高く、真空断熱材の断熱性能が高い真空断熱材を提供することにある。   This invention solves the subject mentioned above, and it is providing the vacuum heat insulating material with the high smoothness of the surface of a vacuum heat insulating material, and the high heat insulation performance of a vacuum heat insulating material.

前記課題を解決するために、本発明は主として次のような構成を採用する。
繊維の集合した繊維集合体からなる芯材と、ガス及び水分を吸着する吸着剤と、前記芯材と前記吸着剤を内包する内包材と、前記内包材を収容する外被材と、を有する真空断熱材であって、前記芯材は、前記繊維同士を結着させるバインダを含まない前記繊維集合体の積層体であり、前記芯材と前記内包材との間に粒状の吸着剤が配設され、前記粒状の吸着剤は、前記芯材の繊維と繊維の間に保持され、前記内包材と接する面が平坦形状を形成する構成とする。
In order to solve the above problems, the present invention mainly adopts the following configuration.
A core material composed of a fiber aggregate in which fibers are aggregated; an adsorbent that adsorbs gas and moisture; an inner packaging material that encloses the core material and the adsorbent; and an outer jacket material that houses the inner packaging material. It is a vacuum heat insulating material, and the core material is a laminate of the fiber assembly that does not include a binder that binds the fibers, and a granular adsorbent is disposed between the core material and the inner packaging material. The granular adsorbent is held between the fibers of the core material, and the surface in contact with the inner packaging material forms a flat shape.

前記真空断熱材において、前記粒状の吸着剤は、前記真空断熱材を貼り付ける貼り付け面側のみにおいて前記芯材と前記内包材との間に配設されること。また、前記粒状の吸着剤に加えて、前記粒状の吸着材よりも吸湿性のある他の吸着剤が前記芯材の層間に配設されること。   In the vacuum heat insulating material, the granular adsorbent is disposed between the core material and the inner packaging material only on the attachment surface side to which the vacuum heat insulating material is attached. In addition to the particulate adsorbent, another adsorbent having a hygroscopic property than the granular adsorbent is disposed between the layers of the core material.

本発明によれば、真空断熱材の繊維集合体の芯材表面と内包材との間に、繊維集合体の繊維と繊維間距離よりも小さい粒状の吸着剤を配置して、吸着剤を繊維と繊維の間に入り込ませることで、真空断熱材としたときにその表面の凹凸を抑制することができる。   According to the present invention, between the core material surface of the fiber assembly of the vacuum heat insulating material and the inner packaging material, a particulate adsorbent smaller than the fiber assembly fiber and the inter-fiber distance is disposed, and the adsorbent is made of fiber. By allowing it to enter between the fibers, unevenness of the surface can be suppressed when a vacuum heat insulating material is used.

本発明の実施形態に係る真空断熱材を用いた冷蔵庫の正面外観図である。It is a front external view of the refrigerator using the vacuum heat insulating material which concerns on embodiment of this invention. 本実施形態に係る真空断熱材を用いた冷蔵庫の縦断面図であり、図1のA−A断面図である。It is a longitudinal cross-sectional view of the refrigerator using the vacuum heat insulating material which concerns on this embodiment, and is AA sectional drawing of FIG. 本発明の実施例1に係る吸着材内包の真空断熱材の断面図である。It is sectional drawing of the vacuum heat insulating material of the adsorbent inclusion which concerns on Example 1 of this invention. 本発明の実施例1に係る真空断熱材における、芯材、粒状の吸着材、内包材及び外被材の配置構造を示す断面図である。It is sectional drawing which shows the arrangement structure of the core material, a granular adsorbent material, an inner packaging material, and a jacket material in the vacuum heat insulating material which concerns on Example 1 of this invention. 複数の吸着剤に水を滴下した場合のそれぞれの発熱温度の経過を示したグラフである。It is the graph which showed progress of each exothermic temperature at the time of dripping water to a plurality of adsorption agents. 本発明の実施例2に係る真空断熱材における、芯材、芯材の一方面に設けられた粒状吸着剤、芯材の層間に設けられた吸着剤、内包材及び外被材の配置構造を示す断面図である。In the vacuum heat insulating material according to Example 2 of the present invention, the arrangement structure of the core material, the granular adsorbent provided on one surface of the core material, the adsorbent provided between the layers of the core material, the inner packaging material, and the jacket material. It is sectional drawing shown.

本発明の実施形態に係る真空断熱材について、図面を参照しながら以下説明する。まず、本実施形態に係る真空断熱材を用いた冷蔵庫について、図1と図2を参照しながら以下説明する。   The vacuum heat insulating material which concerns on embodiment of this invention is demonstrated below, referring drawings. First, the refrigerator using the vacuum heat insulating material which concerns on this embodiment is demonstrated below, referring FIG. 1 and FIG.

図1と図2において、冷蔵庫1は、上から冷蔵室2、製氷室3a、上段冷凍室3b、下段冷凍室4、野菜室5を有している。図1には、上述した各室の前面開口部を閉塞する扉を示しており、上からヒンジ10等を中心に回動する冷蔵室扉6a,6bと、製氷室扉7aと、上段冷凍室扉7bと、下段冷凍室扉8と、野菜室扉9と、が配置されている。冷蔵室扉6a,6b以外は全て引き出し式の扉である。   1 and 2, the refrigerator 1 has a refrigerator compartment 2, an ice making room 3a, an upper freezer compartment 3b, a lower freezer compartment 4, and a vegetable compartment 5 from the top. FIG. 1 shows a door that closes the front opening of each chamber described above. The refrigerator doors 6a and 6b rotate around the hinge 10 and the like from above, the ice making door 7a, and the upper freezer compartment. The door 7b, the lower freezer compartment door 8, and the vegetable compartment door 9 are arrange | positioned. All except the refrigerator compartment doors 6a and 6b are drawer type doors.

引き出し式扉7〜9は扉を引き出すと、各室を構成する容器が扉と共に引き出されてくる。また、各扉6〜9には冷蔵庫本体1とを密閉するためのパッキン11を備え、パッキン11は各扉6〜9の室内側外周縁に取り付けられている。   When the drawer-type doors 7 to 9 are pulled out, the containers constituting each chamber are pulled out together with the doors. Moreover, each door 6-9 is provided with the packing 11 for sealing the refrigerator main body 1, and the packing 11 is attached to the indoor side outer periphery of each door 6-9.

また、冷蔵室2と製氷室3a及び上段冷凍室3bとの間を区画断熱するために仕切断熱壁12が配置されている。この仕切断熱壁12は厚さ30〜50mm程度の断熱壁で、スチロフォーム、発泡断熱材(硬質ウレタンフォーム)、真空断熱材等、それぞれを単独使用又は複数の断熱材を組み合わせて作られている。製氷室3a及び上段冷凍室3bと下段冷凍室4との間は、温度帯が同じであるため区画断熱する仕切断熱壁ではなく、パッキン11の受面を形成した仕切り部材13を設けている。下段冷凍室4と野菜室5との間には区画断熱するための仕切断熱壁14を設けており、仕切断熱壁12と同様に30〜50mm程度の断熱壁であり、スチロフォーム、或いは発泡断熱材(硬質ウレタンフォーム)、真空断熱材等で作られている。   In addition, a partition heat insulation wall 12 is arranged to insulate the space between the refrigerator compartment 2, the ice making room 3a, and the upper freezing room 3b. The partition heat insulating wall 12 is a heat insulating wall having a thickness of about 30 to 50 mm, and is made of a single material or a combination of a plurality of heat insulating materials such as styrofoam, foam heat insulating material (hard urethane foam), vacuum heat insulating material, and the like. . Since the temperature zone is the same between the ice making chamber 3a and the upper freezing chamber 3b and the lower freezing chamber 4, there is provided a partition member 13 that forms a receiving surface for the packing 11 instead of a partition heat insulating wall for partition heat insulation. A partition heat insulation wall 14 is provided between the lower freezer compartment 4 and the vegetable compartment 5 to insulate the partition. Like the partition heat insulation wall 12, it is a heat insulation wall of about 30 to 50 mm, and is made of styrofoam or foam insulation. Made of material (rigid urethane foam), vacuum insulation, etc.

上述したように、基本的に冷蔵、冷凍等の貯蔵温度帯の異なる部屋の仕切りには仕切断熱壁を設置している。尚、箱体20内には上から冷蔵室2、製氷室3a及び上段冷凍室3b、下段冷凍室4、野菜室5の貯蔵室をそれぞれ区画形成しているが、各貯蔵室の配置については特にこれに限定するものではない。また、冷蔵室扉6a,6b、製氷室扉7a、上段冷凍室扉7b、下段冷凍室扉8、野菜室扉9に関しても、回転による開閉、引き出しによる開閉及び扉の分割数等について、特に限定するものではない。   As described above, partition heat insulation walls are basically installed in partitions of rooms with different storage temperature zones such as refrigeration and freezing. In the box 20, storage compartments for the refrigerator compartment 2, the ice making compartment 3a and the upper freezer compartment 3b, the lower freezer compartment 4, and the vegetable compartment 5 are formed from above, respectively. The invention is not particularly limited to this. Further, the refrigerator doors 6a and 6b, the ice making door 7a, the upper freezer compartment door 7b, the lower freezer compartment door 8, and the vegetable compartment door 9 are also particularly limited in terms of opening and closing by rotation, opening and closing by drawer, and the number of divided doors. Not what you want.

箱体20は、外箱21と内箱22とを備え、外箱21と内箱22とによって形成される空間に断熱部を設けて箱体20内の各貯蔵室と外部とを断熱している。外箱21と内箱22の間の空間に真空断熱材50を配置し、真空断熱材50以外の空間には硬質ウレタンフォーム等の発泡断熱材23が充填されている。真空断熱材50については図3を用いて詳述するが、図2に示すように、この真空断熱材50は接着剤を用いて外箱21又は内箱22の貼付面に固着される。   The box 20 includes an outer box 21 and an inner box 22, and a heat insulating part is provided in a space formed by the outer box 21 and the inner box 22 to insulate each storage chamber in the box 20 from the outside. Yes. A vacuum heat insulating material 50 is disposed in a space between the outer box 21 and the inner box 22, and a space other than the vacuum heat insulating material 50 is filled with a foam heat insulating material 23 such as hard urethane foam. The vacuum heat insulating material 50 will be described in detail with reference to FIG. 3. As shown in FIG. 2, the vacuum heat insulating material 50 is fixed to the sticking surface of the outer box 21 or the inner box 22 using an adhesive.

また、冷蔵庫の冷蔵室2、製氷室3a、下段冷凍室4、野菜室5等の各室を所定の温度に冷却するために製氷室3a、上段冷凍室3b、下段冷凍室4の背側には冷却器28が備えられており、冷却器28と圧縮機30と凝縮機31、図示しないキャピラリーチューブとを接続し、冷凍サイクルを構成している。冷却器28の上方には冷却器28にて冷却された冷気を冷蔵庫内に循環して所定の低温温度を保持する送風機27が配設されている。   Further, in order to cool each room such as the refrigerator compartment 2, the ice making room 3a, the lower freezing room 4 and the vegetable room 5 to a predetermined temperature, it is provided behind the ice making room 3a, the upper freezing room 3b, and the lower freezing room 4. Is provided with a cooler 28, which connects the cooler 28, a compressor 30, a condenser 31, and a capillary tube (not shown) to constitute a refrigeration cycle. Above the cooler 28, a blower 27 that circulates cold air cooled by the cooler 28 in the refrigerator and maintains a predetermined low temperature is disposed.

また、冷蔵庫の冷蔵室2と製氷室3a及び上段冷凍室3bと、冷凍室4と野菜室5と、を区画する断熱材として、それぞれ仕切断熱壁12,14を配置し、発泡ポリスチレン33と真空断熱材50cで構成されている。この仕切断熱壁12,14については硬質ウレタンフォーム等の発泡断熱材23を充填しても良く、特に発泡ポリスチレン33と真空断熱材50cに限定するものではない。   Moreover, partition heat insulation walls 12 and 14 are arranged as heat insulating materials for partitioning the refrigerator compartment 2, ice making room 3 a and upper freezer room 3 b, freezer room 4 and vegetable room 5, respectively, and foamed polystyrene 33 and vacuum It is comprised with the heat insulating material 50c. The partition heat insulating walls 12 and 14 may be filled with a foam heat insulating material 23 such as rigid urethane foam, and are not particularly limited to the foamed polystyrene 33 and the vacuum heat insulating material 50c.

また、箱体20の天面後方部には冷蔵庫1の運転を制御するための基板や電源基板等の電気部品41を収納するための凹部40が形成されており、電気部品41を覆うカバー42が設けられている。カバー42の高さは外観意匠性と内容積確保を考慮して、外箱21の天面とほぼ同じ高さになるように配置している。特に限定するものではないが、カバー42の高さが外箱の天面よりも突き出る場合は10mm以内の範囲に収めることが望ましい。これに伴って、凹部40は断熱材23側に電気部品41を収納する空間だけ窪んだ状態で配置されるため、断熱厚さを確保するため必然的に内容積が犠牲になってしまう。   In addition, a concave portion 40 for accommodating an electrical component 41 such as a substrate for controlling the operation of the refrigerator 1 or a power supply substrate is formed in the rear portion of the top surface of the box 20, and a cover 42 that covers the electrical component 41. Is provided. The height of the cover 42 is arranged so as to be substantially the same height as the top surface of the outer box 21 in consideration of appearance design and securing the internal volume. Although it does not specifically limit, when the height of the cover 42 protrudes from the top | upper surface of an outer box, it is desirable to set it in the range within 10 mm. Along with this, the recess 40 is disposed in a state where only the space for housing the electrical component 41 is recessed on the heat insulating material 23 side, so that the internal volume is inevitably sacrificed in order to ensure the heat insulating thickness.

内容積をより大きくとると凹部40と内箱22間の断熱材23の厚さが薄くなってしまう。このため、凹部40の断熱材23中に真空断熱材50aを配置して断熱性能を確保、強化している。本実施形態では、真空断熱材50aを冷蔵庫の前面側(扉6側)と電気部品41に跨るように、略Z形状に成形した1枚の真空断熱材50aとしている。尚、カバー42は外部からのもらい火や何らかの原因で発火した場合等を考慮し鋼板製としている。   If the internal volume is increased, the thickness of the heat insulating material 23 between the recess 40 and the inner box 22 will be reduced. For this reason, the vacuum heat insulating material 50a is arrange | positioned in the heat insulating material 23 of the recessed part 40, and the heat insulation performance is ensured and strengthened. In the present embodiment, the vacuum heat insulating material 50a is a single vacuum heat insulating material 50a formed in a substantially Z shape so as to straddle the front side (door 6 side) of the refrigerator and the electrical component 41. The cover 42 is made of a steel plate in consideration of a fire from the outside or a case where it is ignited for some reason.

また、箱体20の背面下部に配置された圧縮機30や凝縮機31は発熱の大きい部品であるため、庫内への熱侵入を防止するため、内箱22側への投影面に真空断熱材50dを配置している。   In addition, since the compressor 30 and the condenser 31 arranged at the lower back of the box 20 are components that generate a large amount of heat, in order to prevent heat from entering the inside of the box, a vacuum insulation is provided on the projection surface toward the inner box 22 side. The material 50d is arranged.

次に、本発明の実施形態に係る真空断熱材の構成と製造方法について、図3を参照しながら以下説明する。本実施形態に係る真空断熱材50は、芯材51と、芯材51を圧縮状態に保持するための内包材52と、内包材52で圧縮状態に保持した芯材51を被覆するガスバリヤ層を有する外被材53と、から構成されている。真空断熱材50の形状は、図2に示すように、符合50a〜50dで示す真空断熱材のそれぞれの形状に対応するものであり、図3の図示例において、その上下の厚さが薄く、その上面から見た平面が矩形又は正方形形状を呈する、薄い板状形状のものである。   Next, the structure and manufacturing method of the vacuum heat insulating material according to the embodiment of the present invention will be described below with reference to FIG. The vacuum heat insulating material 50 according to this embodiment includes a core material 51, an inner packaging material 52 for holding the core material 51 in a compressed state, and a gas barrier layer that covers the core material 51 held in a compressed state by the inner packaging material 52. And a covering material 53 having the same. The shape of the vacuum heat insulating material 50 corresponds to each shape of the vacuum heat insulating material indicated by reference numerals 50a to 50d, as shown in FIG. 2, and in the illustrated example of FIG. The plane seen from the upper surface has a thin plate shape with a rectangular or square shape.

ここで、真空断熱材の製造方法について概説する。内包材52となる2枚のフィルムをリールから送り出して2枚のフィルム間に芯材51を介在させ、押圧プレスで軽くフィルムを圧接して空気を抜き出した後に2枚のフィルムの4辺縁を熱溶着して芯材51を内包した内包材52を形成する。次に、外被材53として、矩形形状の同一サイズの2枚のフィルムの辺縁の3辺を熱溶着した袋状のものを準備する。袋状の外被材53の1つの辺には開口部が形成されている。   Here, the manufacturing method of a vacuum heat insulating material is outlined. Two films to be the inner packaging material 52 are fed out from the reel, the core material 51 is interposed between the two films, the film is lightly pressed with a press press to extract air, and then the four edges of the two films are removed. An inner packaging material 52 including the core material 51 is formed by heat welding. Next, as the covering material 53, a bag-like material in which three sides of the edges of two rectangular films having the same size are thermally welded is prepared. An opening is formed on one side of the bag-shaped outer covering material 53.

次に、芯材51を内包した内包材52を外被材53の開口部から挿入して、内包材52の一辺をカットした直後に外被材53を真空引きして(真空引きの直前に内包材一辺をカットして)、芯材51中の気体を吸い上げる。真空引きが完了した後に、外被材53の真空引きした側の一辺を熱溶着してシールする。外被材53の熱溶着シールの部分は、その4辺が図3に示すように折り曲げられて耳部折曲構造を形成して真空断熱材50を完成させる。図3に示す図示例で、真空断熱材50の下面は、冷蔵庫1の外箱21又は内箱22(図1参照)の貼付面に対向する貼り付け面を形成し、真空断熱材50の上面(耳部折曲構造側)は、発泡断熱材23に対向する発泡断熱材対向面を形成している。なお、真空断熱材は上述の製造方法に限らず、いずれの方法で製造されたものも本実施形態の真空断熱材に含まれる。また、上述の製造方法において、ガス及び水分を吸着する吸着材54については、後述する。   Next, the inner covering material 52 containing the core material 51 is inserted from the opening of the outer covering member 53, and the outer covering member 53 is evacuated immediately after cutting one side of the inner covering member 52 (immediately before the evacuation). Cut one side of the inner packaging material) and suck up the gas in the core material 51. After the evacuation is completed, one side of the envelope material 53 on the evacuated side is thermally welded and sealed. As shown in FIG. 3, four portions of the heat-sealed seal portion of the outer covering material 53 are bent to form an ear bent structure, and the vacuum heat insulating material 50 is completed. In the illustrated example shown in FIG. 3, the lower surface of the vacuum heat insulating material 50 forms a bonding surface opposite to the bonding surface of the outer box 21 or the inner box 22 (see FIG. 1) of the refrigerator 1, and the upper surface of the vacuum heat insulating material 50. (Ear part bent structure side) forms a foam heat insulating material facing surface facing the foam heat insulating material 23. In addition, a vacuum heat insulating material is not restricted to the above-mentioned manufacturing method, What was manufactured by any method is contained in the vacuum heat insulating material of this embodiment. The adsorbent 54 that adsorbs gas and moisture in the above manufacturing method will be described later.

ここで、本実施形態においては、芯材51についてはバインダ等で接着や結着していない繊維集合体の積層体として平均繊維径4μmのグラスウールを用いた。芯材51については、無機系繊維材料の積層体を使用することによりアウトガスが少なくなるため、断熱性能的に有利であるが、特にこれに限定するものではなく、例えばセラミック繊維やロックウール、グラスウール以外のガラス繊維等の繊維集合体等でもよい。   Here, in the present embodiment, for the core material 51, glass wool having an average fiber diameter of 4 μm is used as a laminate of fiber aggregates that are not bonded or bound by a binder or the like. The core material 51 is advantageous in terms of heat insulation performance because the outgassing is reduced by using a laminate of inorganic fiber materials, but is not particularly limited to this. For example, ceramic fibers, rock wool, glass wool, etc. Other than these, fiber aggregates such as glass fibers may be used.

本実施形態においては繊維集合体を用いているが、有機系樹脂繊維材料とすることも可能である。有機系樹脂繊維の場合、耐熱温度等をクリヤーしていれば特に使用に際しては制約されるものではない。具体的には、ポリスチレンやポリエチレンテレフタレート、ポリプロピレン等を公知のメルトブローン法やスパンボンド法等で1〜30μm程度の繊維径になるように繊維化するのが一般的であるが、繊維化できる有機系樹脂や繊維化方法であれば特に問うものではない。   In the present embodiment, a fiber assembly is used, but an organic resin fiber material can also be used. In the case of organic resin fibers, there are no particular restrictions on use as long as the heat resistant temperature is cleared. Specifically, it is common to fiberize polystyrene, polyethylene terephthalate, polypropylene, etc. so as to have a fiber diameter of about 1 to 30 μm by a known melt blown method or spun bond method. Any resin or fiberizing method may be used.

内包材52には低密度ポリエチレンから成るフィルムを用いているが、芯材を覆って袋形成のための熱溶着可能でシールできるものであればポリプロピレンやポリエステル等も使用可能であり、特に限定するものではない。   A film made of low-density polyethylene is used as the inner packaging material 52, but polypropylene, polyester, etc. can be used as long as they cover the core material and can be heat-welded and sealed for bag formation. It is not a thing.

外被材53の構成については、ガスバリヤ性を有し、熱溶着可能であれば特に限定するものではないが、本実施形態においては、表面保護層、ガスバリヤ層1、ガスバリヤ層2、熱溶着層の4層構成からなるラミネートフィルムとし、表面保護層は保護材の役割を持つ樹脂フィルムとし、ガスバリヤ層1は樹脂フィルムに金属蒸着層を設け、ガスバリヤ層2は酸素バリヤ性の高い樹脂フィルムに金属蒸着層を設け、ガスバリヤ層1とガスバリヤ層2は金属蒸着層同士が向かい合うように貼り合わせている。熱溶着層については表面保護層と同様に吸湿性の低いフィルムを用いた。   The configuration of the covering material 53 is not particularly limited as long as it has gas barrier properties and can be thermally welded. In the present embodiment, the surface protective layer, the gas barrier layer 1, the gas barrier layer 2, and the heat welding layer are used. The surface protective layer is a resin film having a role of a protective material, the gas barrier layer 1 is provided with a metal vapor deposition layer on the resin film, and the gas barrier layer 2 is formed on the resin film having a high oxygen barrier property. A vapor deposition layer is provided, and the gas barrier layer 1 and the gas barrier layer 2 are bonded so that the metal vapor deposition layers face each other. As the heat-welding layer, a film having low hygroscopicity was used as in the surface protective layer.

具体的には、表面保護層を二軸延伸タイプのポリプロピレン、ポリアミド、ポリエチレンテレフタレート等の各フィルムとし、ガスバリヤ層1をアルミニウム蒸着付きの二軸延伸ポリエチレンテレフタレートフィルムとし、ガスバリヤ層2をアルミニウム蒸着付きの二軸延伸エチレンビニルアルコール共重合体樹脂フィルム又はアルミニウム蒸着付きの二軸延伸ポリビニルアルコール樹脂フィルム、或いはアルミ箔とし、熱溶着層を未延伸タイプのポリエチレン、ポリプロピレン等の各フィルムとした。   Specifically, the surface protective layer is a biaxially stretched polypropylene, polyamide, polyethylene terephthalate film, the gas barrier layer 1 is a biaxially stretched polyethylene terephthalate film with aluminum vapor deposition, and the gas barrier layer 2 is with aluminum vapor deposition. A biaxially stretched ethylene vinyl alcohol copolymer resin film, a biaxially stretched polyvinyl alcohol resin film with aluminum vapor deposition, or an aluminum foil was used, and the heat-welded layer was an unstretched polyethylene, polypropylene, or other film.

この4層構成のラミネートフィルムの層構成や材料については特にこれらに限定するものではない。例えばガスバリヤ層1及び2として、金属箔、或いは樹脂系のフィルムに無機層状化合物、ポリアクリル酸等の樹脂系ガスバリヤコート材、DLC(ダイヤモンドライクカーボン)等によるガスバリヤ膜を設けたものや、熱溶着層には例えば酸素バリヤ性の高いポリブチレンテレフタレートフィルム等を用いても良い。表面保護層についてはガスバリヤ層1の保護材であるが、真空断熱材の製造工程における真空排気効率を良くするためにも、好ましくは吸湿性の低い樹脂を配置するのが良い。また、通常ガスバリヤ層2に使用する金属箔以外の樹脂系フィルムは、吸湿することによってガスバリヤ性が著しく悪化してしまうため、熱溶着層についても吸湿性の低い樹脂を配置することで、ガスバリヤ性の悪化を抑制すると共に、ラミネートフィルム全体の吸湿量を抑制するものである。   The layer structure and material of the four-layer laminate film are not particularly limited to these. For example, as the gas barrier layers 1 and 2, a metal foil or a resin film provided with a gas barrier film made of an inorganic layered compound, a resin gas barrier coating material such as polyacrylic acid, DLC (diamond-like carbon), or the like is thermally welded. For example, a polybutylene terephthalate film having a high oxygen barrier property may be used for the layer. The surface protective layer is a protective material for the gas barrier layer 1, but in order to improve the vacuum exhaust efficiency in the manufacturing process of the vacuum heat insulating material, it is preferable to dispose a resin having a low hygroscopic property. Further, since the resin-based film other than the metal foil normally used for the gas barrier layer 2 deteriorates the gas barrier property by absorbing moisture, the gas barrier property can be obtained by arranging a resin having a low hygroscopic property for the heat-welded layer. This suppresses the moisture absorption of the entire laminate film.

この吸湿量抑制により、真空断熱材50の真空排気工程においても、外被材53が持ち込む水分量を小さくできるため、真空排気効率が大幅に向上し、断熱性能の高性能化につながっている。尚、各フィルムのラミネート(貼り合せ)は、二液硬化型ウレタン接着剤を介してドライラミネート法によって貼り合わせるのが一般的であるが、接着剤の種類や貼り合わせ方法には特にこれに限定するものではなく、ウェットラミネート法、サーマルラミネート法等の他の方法によるものでも何ら構わない。   By suppressing the amount of moisture absorption, the amount of moisture brought into the jacket material 53 can be reduced even in the evacuation process of the vacuum heat insulating material 50, so that the vacuum evacuation efficiency is greatly improved and the heat insulation performance is improved. In addition, the lamination (bonding) of each film is generally performed by a dry lamination method through a two-component curable urethane adhesive, but the type of adhesive and the bonding method are particularly limited to this. It is not necessary to use any other method such as a wet laminating method or a thermal laminating method.

「実施例1」
本発明の実施例1に係る真空断熱材について、図3、図4、図5を参照しながら以下説明する。図3は本発明の実施例1に係る吸着材内包の真空断熱材の断面図である。図4は本発明の実施例1に係る真空断熱材における、芯材、粒状の吸着材、内包材及び外被材の配置構造を示す断面図である。ここで、本実施例1に係る真空断熱材50の上下面の内の一方の面(図3の例で下面、すなわち、外被材53の端部の耳折れ構造の反対側の面)は、図2に示す冷蔵庫1の外箱21又は内箱22の貼付面に対向する面であり、真空断熱材50の当該面(図3の図示例で下面)と外箱21又は内箱22の貼付面とは適宜の接着剤で固着されることとなる。接着剤による強固な固着と、外箱21又は内箱22の貼付面からの真空断熱材の剥落とを図る観点からも、真空断熱材50の下面表面の平滑性、平坦性が求められるのである。
"Example 1"
The vacuum heat insulating material according to the first embodiment of the present invention will be described below with reference to FIGS. 3, 4, and 5. FIG. 3 is a cross-sectional view of the vacuum heat insulating material included in the adsorbent according to the first embodiment of the present invention. FIG. 4 is a cross-sectional view showing an arrangement structure of the core material, the granular adsorbent, the inner packaging material, and the outer jacket material in the vacuum heat insulating material according to the first embodiment of the present invention. Here, one of the upper and lower surfaces of the vacuum heat insulating material 50 according to the first embodiment (the lower surface in the example of FIG. 3, that is, the surface on the opposite side of the edge folding structure of the end portion of the outer covering material 53). 2 is a surface opposite to the affixing surface of the outer box 21 or the inner box 22 of the refrigerator 1 shown in FIG. 2, and the surface of the vacuum heat insulating material 50 (the lower surface in the illustrated example of FIG. 3) and the outer box 21 or the inner box 22. The affixing surface is fixed with an appropriate adhesive. The smoothness and flatness of the lower surface of the vacuum heat insulating material 50 are also required from the viewpoint of strong fixation by the adhesive and peeling of the vacuum heat insulating material from the sticking surface of the outer box 21 or the inner box 22. .

真空断熱材50は、繊維集合体のグラスウール繊維からなる芯材51と、芯材51の一方の面に配置された、ガス及び水分を吸着する粒状の物理吸着剤(例えば、ゼオライト又は活性炭)からなる吸着剤54と、芯材51と吸着材54を包んだ低密度ポリエチレンからなる内包材52と、内包材52を収納した外被材53と、から構成されている。   The vacuum heat insulating material 50 is composed of a core material 51 made of glass wool fibers of a fiber assembly, and a granular physical adsorbent (for example, zeolite or activated carbon) that is disposed on one surface of the core material 51 and adsorbs gas and moisture. An adsorbent 54, a core material 51, an inner packaging material 52 made of low-density polyethylene that encloses the adsorbing material 54, and an outer jacket material 53 that houses the inner packaging material 52.

本実施例1においては繊維集合体グラスウールの目付量1155g/mを3層重ねて使用し、寸法は300mm×300mmを用いている。真空断熱材50は上述したように真空包装装置により真空引きをし、真空引きをした状態で外被材53の一辺をヒートシールにより熱溶着することで、真空断熱材50とすることができる。真空断熱材50の製造過程において、図4に示すように、芯材51の一方の面には目付により芯材凹部55が発生する。この芯材凹部55に粒状の吸着剤54を配設、設置することで、粒状の吸着剤54が芯材51の繊維集合体のグラスウール繊維と繊維の間に入り込むことによって、吸着剤54の内包材側の面が平坦形状となり、引いては真空断熱材としたときにその表面の凹凸を抑制することができる。この凹凸抑制で真空断熱材50の表面は平滑性を確保でき、当該真空断熱材の表面と外箱21又は内箱22の貼付面とは、接着剤で強固に固定関係を保持できる。換言すると、図4に示す粒状吸着材54が無いと、内包材52の表面形状は真空引きによって芯材51の凹凸形状になぞった形状となり、引いては外被材53の表面も同様に凹凸形状となってしまい、平滑性が失われることによって、真空断熱材50は、冷蔵庫外箱21又は内箱22(図2参照)との間で接着剤による強固な固着ができなくなるのである。本実施例1では芯材51の凹凸形状の部分に粒状の吸着剤54を埋め込むように配設して粒状吸着剤54の表面の平滑性を確保するのである。 In Example 1, the basis weight of the fiber assembly glass wool 1155 g / m 2 is used in three layers, and the dimensions are 300 mm × 300 mm. As described above, the vacuum heat insulating material 50 can be made into the vacuum heat insulating material 50 by evacuating with the vacuum packaging device and thermally welding one side of the outer jacket material 53 with heat sealing. In the process of manufacturing the vacuum heat insulating material 50, as shown in FIG. 4, a core material recess 55 is generated on one surface of the core material 51 due to the basis weight. By disposing and installing the granular adsorbent 54 in the core recess 55, the granular adsorbent 54 enters between the glass wool fibers of the fiber aggregate of the core 51, thereby including the adsorbent 54. The surface on the material side has a flat shape, and when it is used as a vacuum heat insulating material, unevenness of the surface can be suppressed. By suppressing the unevenness, the surface of the vacuum heat insulating material 50 can ensure smoothness, and the surface of the vacuum heat insulating material and the application surface of the outer box 21 or the inner box 22 can firmly hold a fixed relationship with an adhesive. In other words, without the granular adsorbent 54 shown in FIG. 4, the surface shape of the encapsulating material 52 becomes a shape that follows the uneven shape of the core material 51 by vacuuming, and the surface of the jacket material 53 is similarly uneven. Since the shape and the smoothness are lost, the vacuum heat insulating material 50 cannot be firmly fixed with the adhesive between the refrigerator outer box 21 or the inner box 22 (see FIG. 2). In the first embodiment, the granular adsorbent 54 is disposed so as to be embedded in the uneven portion of the core material 51 to ensure the smoothness of the surface of the granular adsorbent 54.

本実施例1に用いたグラスウールは平均4μmの繊維径を用いており、その繊維と繊維の間の距離は約50μm〜200μm(約0.05〜0.2mm)となる。そのため、吸着剤54の粒径を200μm以下とすることが好ましく、本実施例1では10μmとしている。本実施例1の吸着剤54の粒径は繊維と繊維の間の距離よりも小さく、繊維集合体のグラスウールよりも大きい径を用いているが、繊維集合体の径よりも小さい吸着剤54を用いる事も可能であるが、吸着剤54の粒径が小さくなるほど製造時に舞い易くなり取り扱い性が困難となる。また、粒径が小さいほどガスの吸着量は多くなるが、粒径が小さいほど周囲のガスとの接触面積が多くなることで、吸着速度も速くなり、真空断熱材の製造時に吸湿してしまう可能性がある。   The glass wool used in Example 1 has an average fiber diameter of 4 μm, and the distance between the fibers is about 50 μm to 200 μm (about 0.05 to 0.2 mm). Therefore, the particle size of the adsorbent 54 is preferably set to 200 μm or less, and is set to 10 μm in the first embodiment. The particle size of the adsorbent 54 of Example 1 is smaller than the distance between the fibers and larger than the glass wool of the fiber aggregate, but the adsorbent 54 smaller than the diameter of the fiber aggregate is used. Although it is possible to use it, the smaller the particle size of the adsorbent 54, the easier it is to move during manufacture and the handling becomes difficult. Also, the smaller the particle size, the greater the amount of gas adsorbed, but the smaller the particle size, the larger the contact area with the surrounding gas, the faster the adsorption speed, and moisture absorption during the manufacture of the vacuum heat insulating material. there is a possibility.

また、吸着剤54の粒径が100μm(0.1mm)よりも大きくなると、繊維と繊維の間に保持できなくなるだけではなく、真空断熱材としたときに表面に吸着剤54の凹凸がでてしまい、真空断熱材を平面にするために平滑ロールをかけた場合に破れや、運搬や貼り付け時における取り扱いで、吸着剤54の粒に対応して外被材53が凸形状となり、この凸部の表面が擦られることにより穴空きが発生し、リークしてしまう。   Further, when the particle size of the adsorbent 54 is larger than 100 μm (0.1 mm), not only the fiber cannot be held between fibers, but also the surface of the adsorbent 54 becomes uneven when used as a vacuum heat insulating material. Therefore, when the smooth roll is applied to make the vacuum heat insulating material flat, the outer covering material 53 becomes convex corresponding to the particles of the adsorbent 54 by handling during transportation or pasting, and this convexity When the surface of the part is rubbed, a hole is generated and leaks.

本実施例1においては繊維集合体のグラスウール繊維を用いているが、繊維集合体として樹脂繊維を用いることも可能である。樹脂繊維を用いた場合は繊維径が6〜8μmとなり、繊維と繊維の間の距離は50〜300μm(0.05〜0.3mm)となる。また、繊維径が太くなることで、真空断熱材50の表面には繊維の凹凸が顕著に発生するようになる。そこで、芯材51と内包材52の間に粒状の吸着剤54を配置することで表面の凹凸を抑制することができる。また、真空断熱材とすることで内部が減圧状態となることから、外部から圧力がかかる。このときに、外部からの圧力により繊維集合体のグラスウールは目付けのバラツキにより目付量が少ない部分が凹部となってしまうが、芯材51の表面に粒状の吸着剤54があることにより、凹部に吸着剤54が外部からの圧力で押されて集まることで吸着材の内包材側の面が平坦形状となり、真空断熱材の表面の凹凸を抑制することができる。   In Example 1, glass wool fibers of a fiber assembly are used, but it is also possible to use resin fibers as the fiber assembly. When resin fibers are used, the fiber diameter is 6 to 8 μm, and the distance between the fibers is 50 to 300 μm (0.05 to 0.3 mm). Further, as the fiber diameter is increased, the unevenness of the fibers is remarkably generated on the surface of the vacuum heat insulating material 50. Therefore, by arranging the granular adsorbent 54 between the core material 51 and the inner packaging material 52, surface irregularities can be suppressed. Moreover, since it becomes a pressure reduction state by setting it as a vacuum heat insulating material, a pressure is applied from the outside. At this time, the glass wool of the fiber assembly becomes a concave portion due to the variation in the basis weight due to the pressure from the outside. However, the granular adsorbent 54 on the surface of the core material 51 causes the concave portion to be in the concave portion. When the adsorbent 54 is pressed and collected by the pressure from the outside, the surface of the adsorbent on the side of the encapsulating material becomes a flat shape, and unevenness on the surface of the vacuum heat insulating material can be suppressed.

また、芯材51と内包材52の間に吸着剤54を配置することで、製造時において真空包装機で真空パックしたときに、粒状の吸着剤54が飛び出してくるのを抑制することができる。この理由は、本実施例1とは異なって吸着剤54を芯材51の繊維間に配置した場合においては、真空引きしたときに繊維層内の空気の流れと一緒に吸着剤54が飛び出してしまうが、本実施例1のように、芯材51と内包材52の間に吸着剤54を配置することで、内包材52が芯材51と吸着剤54を押さえ込むことで、吸着剤54が真空パック時に飛び出すのを抑制することができるからである。   Further, by disposing the adsorbent 54 between the core material 51 and the inner packaging material 52, it is possible to suppress the particulate adsorbent 54 from popping out when vacuum packed by a vacuum packaging machine at the time of manufacture. . This is because, unlike the first embodiment, when the adsorbent 54 is disposed between the fibers of the core material 51, the adsorbent 54 jumps out together with the air flow in the fiber layer when evacuated. However, as in the first embodiment, by arranging the adsorbent 54 between the core material 51 and the inner packaging material 52, the inner packaging material 52 presses the core material 51 and the adsorbent 54, so that the adsorbent 54 is It is because it can suppress jumping out at the time of vacuum packing.

本実施例1においては、芯材51の一方の面(外箱又は内箱の貼付面に対向する面:図3の例では芯材の下面)の全体に吸着剤54を配置しているが、吸着剤54を一部に配置することも可能であり、好ましくは、芯材51の端部から10mm内側に配置することで、より真空パック時に飛び出すのを抑制することができる。   In the first embodiment, the adsorbent 54 is arranged on the entire surface of one side of the core material 51 (the surface facing the sticking surface of the outer box or the inner box: the lower surface of the core material in the example of FIG. 3). Further, the adsorbent 54 can be disposed in a part, and preferably, the adsorbent 54 is disposed 10 mm inside from the end portion of the core material 51, so that it is possible to further prevent the adsorbent 54 from popping out during vacuum packing.

本実施例1は、芯材51と内包材52の間に吸着剤54を配置することで、製造時の水分吸湿も抑制することができる。この理由は、芯材51の一方の面上に吸着剤54を配置し、本実施例1とは異なり内包材を用いずに外被材53で覆った場合においては、真空パックするまでに時間がかかり、その間において吸着剤54が外気と接触するために吸湿をしてしまう。そこで、本実施例1では、芯材51の一方の面(外箱又は内箱の貼付面に対向する面)上に吸着剤54を配置し、芯材51と吸着材54を内包材52で包み込んでシールし、外被材54を真空引きする直前において内包材52の一辺のシールをカットすることで、吸着剤54が外気との接触が殆ど無くなるので、真空断熱材の製造時の水分吸湿を低減することができる。これにより水分吸湿の抑制された吸着剤を用いて吸着性能の良好な真空断熱材50を得ることができる。
図5は複数の吸着剤54に水が付着した場合のそれぞれの発熱温度を示したグラフである。吸着剤54としての化学吸着剤60(水分と化学反応する吸着剤)と疎水性物理吸着剤61に水が付着した時の発熱温度を示しており、それぞれの吸着剤5gに水を0.5mL滴下したときの温度推移を測定した。本実施例においては、化学吸着剤60として酸化カルシウム、疎水性物理吸着剤61としてシリカアルミナ比が2〜5の吸着剤を用いた。疎水性物理吸着剤61は、水を滴下直後に最大温度約102℃となり、その後は徐々に温度が低下していく。
In the first embodiment, by arranging the adsorbent 54 between the core material 51 and the inner packaging material 52, moisture absorption during production can be suppressed. This is because, in the case where the adsorbent 54 is disposed on one surface of the core material 51 and covered with the jacket material 53 without using the inner packaging material unlike the first embodiment, it takes time to vacuum pack. In the meantime, the adsorbent 54 comes into contact with the outside air and absorbs moisture. Therefore, in the first embodiment, the adsorbent 54 is disposed on one surface of the core material 51 (the surface facing the sticking surface of the outer box or the inner box), and the core material 51 and the adsorbent 54 are separated by the inner packaging material 52. By enclosing and sealing, and cutting the seal on one side of the inner packaging material 52 immediately before evacuating the outer jacket material 54, the adsorbent 54 is almost free from contact with the outside air. Can be reduced. Thereby, the vacuum heat insulating material 50 with favorable adsorption | suction performance can be obtained using the adsorption agent by which moisture absorption was suppressed.
FIG. 5 is a graph showing each heat generation temperature when water adheres to the plurality of adsorbents 54. It shows the exothermic temperature when water adheres to the chemical adsorbent 60 (adsorbent that chemically reacts with moisture) as the adsorbent 54 and the hydrophobic physical adsorbent 61, and 0.5 mL of water is added to 5 g of each adsorbent. The temperature transition when dropped was measured. In this example, calcium oxide was used as the chemical adsorbent 60, and an adsorbent having a silica-alumina ratio of 2 to 5 was used as the hydrophobic physical adsorbent 61. The hydrophobic physical adsorbent 61 reaches a maximum temperature of about 102 ° C. immediately after dropping water, and thereafter the temperature gradually decreases.

一方、化学吸着剤60に水を滴下した場合においては、水を滴下後徐々に温度が高くなり2分後に最大温度が180を超え、その後温度が低下していくが、疎水性物理吸着剤61よりも長時間高い温度が継続する。そのため、芯材51として用いている繊維集合体グラスウールは耐熱温度が高いことから、180℃では溶融等の変化は発生しないが、内包材52の低密度ポリエチレンにおいては、溶融温度が120℃前後であり、化学吸着剤60の熱により溶けてしまう虞がある。   On the other hand, when water is dropped on the chemical adsorbent 60, the temperature gradually increases after the water is dropped, the maximum temperature exceeds 180 after 2 minutes, and then the temperature decreases, but the hydrophobic physical adsorbent 61 High temperature continues for a longer time. Therefore, since the fiber aggregate glass wool used as the core material 51 has a high heat resistance temperature, no change such as melting occurs at 180 ° C. However, in the low-density polyethylene of the inner packaging material 52, the melting temperature is around 120 ° C. There is a possibility that the chemical adsorbent 60 is melted by heat.

また、外被材53についても、溶着層に用いているのは通常低密度ポリエチレンあるいは高密度ポリエチレンが用いられているため、溶融してしまう虞があった。   Also, the outer covering material 53 is usually used for the welded layer because low-density polyethylene or high-density polyethylene is used, which may cause melting.

一方、芯材51に樹脂繊維を用いた場合においては、耐熱温度がさらに低くなる。例えば、ポリスチレン繊維の繊維集合体を真空断熱材50の芯材51に用いた場合、ポリスチレンの耐熱温度は70〜90℃前後であり繊維化しているため、少ない熱容量でも軟化し、真空断熱材50として内部が減圧されていることから、外部から圧力がかかることでより耐熱温度は低くなってしまい、実際には約70℃以下でも軟化し繊維同士が溶着してしまう。繊維同士が溶着することで繊維から熱伝達してしまい真空断熱材50としての熱伝導率が劣化してしまう。   On the other hand, when resin fibers are used for the core material 51, the heat-resistant temperature is further lowered. For example, when a fiber aggregate of polystyrene fibers is used for the core material 51 of the vacuum heat insulating material 50, the heat resistance temperature of polystyrene is around 70 to 90 ° C., and the fiber is softened even with a small heat capacity. As the inside is depressurized, the heat-resistant temperature becomes lower when pressure is applied from the outside, and the fibers are actually softened even at about 70 ° C. or lower and the fibers are welded together. When the fibers are welded together, heat is transferred from the fibers, and the thermal conductivity as the vacuum heat insulating material 50 is deteriorated.

そこで、吸着剤54として、高シリカアルミナ比吸着剤61bのシリカアルミナ比の高い吸着剤54を用いることで、水を吸湿したときの発熱温度を抑制することが可能である。本実施例1においては、公知の形状を表すZSM−5型におけるシリカアルミナ比30の疎水性ゼオライトを用いた。本実施例1においては、ZSM−5型のシリカアルミナ比30の疎水性ゼオライトを用いているが、シリカアルミナ比が高いほど、水を吸湿できる量が少なくなることで、水との反応温度が低くなりより発熱温度を少なくすることも可能である。これにより、水を吸湿したときの最大温度は約40℃とすることができる。そのため、芯材51に樹脂繊維を用いた場合においても繊維が収縮することなく、真空断熱材の表面の平面性を向上することができる。   Therefore, by using the adsorbent 54 having a high silica alumina ratio of the high silica alumina specific adsorbent 61b as the adsorbent 54, it is possible to suppress the heat generation temperature when water is absorbed. In Example 1, a hydrophobic zeolite having a silica alumina ratio of 30 in the ZSM-5 type representing a known shape was used. In this Example 1, hydrophobic zeolite of ZSM-5 type having a silica alumina ratio of 30 is used. However, the higher the silica alumina ratio, the smaller the amount of water that can be absorbed, thereby reducing the reaction temperature with water. It is also possible to lower the heat generation temperature. Thereby, the maximum temperature when water is absorbed can be about 40 ° C. Therefore, even when resin fibers are used for the core material 51, the flatness of the surface of the vacuum heat insulating material can be improved without shrinking the fibers.

以上説明したように、本実施例1は、粒状の吸着剤54を芯材51の一方の面(外箱又は内箱の貼付面に対向する面)に配置し、真空断熱材の一方の面側の表面平滑性を向上した真空断熱材50を作製し、真空断熱材50の吸着剤54配置側の反対側面に外被材の耳部を折り曲げるようにしている。これにより、吸着剤54を配置した側の真空断熱材の表面は平面性、平滑性の良好な真空断熱材を得ることができる。真空断熱材の表面の平面性が良好である真空断熱材面(図3の図示例で真空断熱材50の下面:耳部折曲構造の反対側の面)を外箱21又は内箱22への貼り付け側とすることで、外箱21又は内箱22の貼り付け面との接触性が良くなって接着剤による強固な固着が可能となり、空気の空間層の少なく、熱伝導率が低く断熱性能の良好な断熱材とすることができる。また、表面が平面、平滑であることから、貼り付け面との接触面積が大きくなり、接着の張り付き力も高くなり、真空断熱材50を貼り付け後の落下を低減することが可能となる。   As described above, in the first embodiment, the granular adsorbent 54 is disposed on one surface of the core material 51 (the surface facing the pasting surface of the outer box or the inner box), and one surface of the vacuum heat insulating material. A vacuum heat insulating material 50 with improved surface smoothness on the side is prepared, and the ear portion of the outer cover material is bent on the opposite side surface of the vacuum heat insulating material 50 to the side where the adsorbent 54 is disposed. Thereby, the surface of the vacuum heat insulating material on the side where the adsorbent 54 is disposed can obtain a vacuum heat insulating material with good flatness and smoothness. The vacuum heat insulating material surface (the lower surface of the vacuum heat insulating material 50 in the illustrated example of FIG. 3: the surface on the opposite side of the ear bent structure) having a good surface flatness of the vacuum heat insulating material is directed to the outer box 21 or the inner box 22. By making it the affixing side, the contact property with the affixing surface of the outer box 21 or the inner box 22 is improved, and it is possible to firmly fix with an adhesive, the air space layer is small, and the thermal conductivity is low. It can be set as the heat insulating material with favorable heat insulation performance. Further, since the surface is flat and smooth, the contact area with the attachment surface is increased, the adhesion force of adhesion is increased, and it is possible to reduce the fall after the vacuum heat insulating material 50 is attached.

「実施例2」
本発明の実施例2に係る真空断熱材について、図6を参照しながら以下説明する。図6は、本発明の実施例2に係る真空断熱材における、芯材、芯材の一方面に設けられた粒状吸着剤、芯材の層間に設けられた吸着剤、内包材及び外被材の配置構造を示す断面図である。
"Example 2"
A vacuum heat insulating material according to Example 2 of the present invention will be described below with reference to FIG. FIG. 6 shows a core material, a granular adsorbent provided on one surface of the core material, an adsorbent provided between layers of the core material, an enveloping material, and a jacket material in the vacuum heat insulating material according to Example 2 of the present invention. It is sectional drawing which shows these arrangement | positioning structures.

図6において、本実施例2は、真空断熱材50の芯材51の一方の面に疎水性ゼオライト62を用いるとともに、芯材51の層間に疎水性ゼオライト61(疎水性ゼオライト62よりもより吸湿性のあるゼオライト)を用いたものである。芯材51の一方の面に疎水性ゼオライトを用いることで、真空断熱材の表面の凹凸を抑制することと、水を吸着したときの発熱温度を抑制することができるが、疎水性であるためゼオライトが吸湿する水分量は少なく、真空断熱材50として長期に使用した場合に、外部からの水分透過量を吸湿できず、真空断熱材内部の真空度が低下し、熱伝導率が高くなり断熱性能も劣化してしまう。   In FIG. 6, this Example 2 uses a hydrophobic zeolite 62 on one surface of the core material 51 of the vacuum heat insulating material 50 and a hydrophobic zeolite 61 (more hygroscopic than the hydrophobic zeolite 62) between the layers of the core material 51. A characteristic zeolite). By using hydrophobic zeolite on one surface of the core material 51, it is possible to suppress unevenness on the surface of the vacuum heat insulating material and to suppress the heat generation temperature when water is adsorbed. The amount of moisture absorbed by zeolite is small, and when used as a vacuum heat insulating material 50 for a long period of time, the amount of moisture permeation from the outside cannot be absorbed, the degree of vacuum inside the vacuum heat insulating material is lowered, and the heat conductivity is increased to increase heat insulation. Performance will also deteriorate.

そこで、本実施例2では、芯材51の内部、すなわち層間に疎水性ゼオライト61を設置することによって、外部から水分が浸入してもこれを吸湿し、断熱性能の劣化を抑制することができる。また、疎水性ゼオライト61を芯材51の中間層に配置することにより、外被材53の外部から進入してくる水分に対して徐々に反応するため発熱温度が一度に上がらずに保つことが可能である。これにより、芯材51に樹脂繊維を用いても吸着剤の水分反応熱により溶着することもなく、真空断熱材50の性能を保つことが可能である。なお、本実施例2では吸着剤として疎水性ゼオライトを用いることを説明したが、これに限らず実施例1で述べた吸着剤でもよい。   Therefore, in the second embodiment, by installing the hydrophobic zeolite 61 inside the core material 51, that is, between the layers, moisture can be absorbed even if moisture enters from the outside, and deterioration of the heat insulating performance can be suppressed. . Further, by disposing the hydrophobic zeolite 61 in the intermediate layer of the core material 51, it gradually reacts to moisture entering from the outside of the outer covering material 53, so that the heat generation temperature can be kept at a time without increasing. Is possible. Thereby, even if a resin fiber is used for the core material 51, it is possible to maintain the performance of the vacuum heat insulating material 50 without being welded by the moisture reaction heat of the adsorbent. In addition, although the present Example 2 demonstrated using hydrophobic zeolite as an adsorbent, not only this but the adsorbent described in Example 1 may be sufficient.

以上説明したように、本発明の実施例1,2では、芯材表面(一方の面)と内包材の間に粒状の吸着剤を配設することで、吸着剤が芯材である繊維集合体層の繊維と繊維の間に入り込むことにより、繊維集合体の凹部に吸着剤が保持され表面の凹凸を抑制することができる。また、真空断熱材を形成した後で、真空断熱材の平滑加工を施した場合、吸着剤の粒径が繊維と繊維の間の距離よりも小さいことから、繊維間に入り込み表面性、平坦性をさらに向上することができる。また、粒径が繊維間の距離よりも小さいことにより、平滑加工時に圧力をかけても、外被材への影響は少なく、破れ等のリーク原因とはならない。これにより真空断熱材をとしたときにその表面の凹凸が少なくなることから、真空断熱材の貼付け面と設置する設置面とを密着し易くすることができる。   As described above, in the first and second embodiments of the present invention, the fiber assembly in which the adsorbent is the core material is provided by disposing the granular adsorbent between the core material surface (one surface) and the inner packaging material. By entering between the fibers of the body layer, the adsorbent is held in the recesses of the fiber assembly, and the unevenness of the surface can be suppressed. In addition, when the vacuum heat insulating material is smoothed after the vacuum heat insulating material is formed, the particle size of the adsorbent is smaller than the distance between the fibers. Can be further improved. In addition, since the particle diameter is smaller than the distance between the fibers, even if pressure is applied during smooth processing, the influence on the jacket material is small, and it does not cause leakage such as tearing. Thereby, since the unevenness | corrugation of the surface reduces when it is set as a vacuum heat insulating material, it can make it easy to closely_contact | adhere the sticking surface of a vacuum heat insulating material, and the installation surface to install.

1 冷蔵庫
2 冷蔵室
3a 製氷室
3b 上段冷凍室
4 下段冷凍室
5 野菜室
6a 冷蔵室扉
6b 冷蔵室扉
7a 製氷室扉
7b 上段冷凍室扉
8 下段冷凍室扉
9 野菜室扉
10 扉用ヒンジ
11 パッキン
12,14 仕切断熱壁
13 仕切り部材
20 箱体
21 外箱
21a 天板
21b 後板
22 内箱
23 発泡断熱材
27 送風機
28 冷却器
30 圧縮機
31 凝縮機
33 発泡ポリスチレン
40 凹部
41 電気部品
42 カバー
50 真空断熱材
51 芯材
52 内包材
53 外被材
54 粒状吸着剤
55 芯材凹部
60 化学吸着剤
61 疎水性物理吸着剤
61b 高シリカアルミナ比吸着剤
62 疎水性ゼオライト
DESCRIPTION OF SYMBOLS 1 Refrigerator 2 Refrigerating room 3a Ice making room 3b Upper freezing room 4 Lower freezing room 5 Vegetable room 6a Refrigerating room door 6b Refrigerating room door 7a Ice making room door 7b Upper freezing room door 8 Lower freezing room door 9 Vegetable room door 10 Door hinge 11 Packing 12, 14 Partition heat insulating wall 13 Partition member 20 Box body 21 Outer box 21a Top plate 21b Rear plate 22 Inner box 23 Foam insulation 27 Blower 28 Cooler 30 Compressor 31 Condenser 33 Expanded polystyrene 40 Recess 41 Electrical component 42 Cover 50 Vacuum heat insulating material 51 Core material 52 Encapsulation material 53 Outer coating material 54 Granular adsorbent 55 Core material recess 60 Chemical adsorbent 61 Hydrophobic physical adsorbent 61b High silica alumina specific adsorbent 62 Hydrophobic zeolite

Claims (5)

繊維の集合した繊維集合体からなる芯材と、ガス及び水分を吸着する吸着剤と、前記芯材と前記吸着剤を内包する内包材と、前記内包材を収容する外被材と、を有する真空断熱材であって、
前記芯材は、前記繊維同士を結着させるバインダを含まない前記繊維集合体の積層体であり、
前記芯材と前記内包材との間に粒状の吸着剤が配設され、
前記粒状の吸着剤は、前記芯材の繊維と繊維の間に保持され、前記内包材と接する面が平坦形状を形成する
ことを特徴とした真空断熱材。
A core material composed of a fiber aggregate in which fibers are aggregated; an adsorbent that adsorbs gas and moisture; an inner packaging material that encloses the core material and the adsorbent; and an outer jacket material that houses the inner packaging material. Vacuum insulation,
The core material is a laminate of the fiber assembly that does not include a binder that binds the fibers together,
A granular adsorbent is disposed between the core material and the inner packaging material,
The granular adsorbent is held between fibers of the core material, and a surface in contact with the inner packaging material forms a flat shape.
請求項1において、
前記粒状の吸着剤は、前記真空断熱材を貼り付ける貼り付け面側のみにおいて前記芯材と前記内包材との間に配設される
ことを特徴とする真空断熱材。
In claim 1,
The granular adsorbent is disposed between the core material and the inner packaging material only on the attachment surface side to which the vacuum heat insulating material is attached.
請求項1または2において、
前記真空断熱材を貼り付ける貼り付け面とは反対の面側に、前記外被材の端部を折り曲げて耳部折り曲げ構造を形成することを特徴とする真空断熱材。
In claim 1 or 2,
A vacuum heat insulating material characterized in that an end portion bending structure is formed by bending an end portion of the jacket material on a surface opposite to a surface to which the vacuum heat insulating material is attached.
請求項1ないし3のいずれか1つの請求項において、
前記粒状の吸着剤に加えて、前記粒状の吸着材よりも吸湿性のある他の吸着剤が前記芯材の層間に配設される
ことを特徴とした真空断熱材。
In any one of claims 1 to 3,
In addition to the granular adsorbent, another adsorbent that is more hygroscopic than the granular adsorbent is disposed between the layers of the core material.
請求項1ないし4のいずれか1つの請求項に記載された真空断熱材を、外箱又は内箱の発泡断熱材充填側の貼付面に貼り付けた冷蔵庫。   The refrigerator which affixed the vacuum heat insulating material as described in any one of Claim 1 thru | or 4 on the sticking surface by the side of the foam heat insulating material filling of an outer box or an inner box.
JP2011178077A 2011-08-16 2011-08-16 Vacuum heat insulation material, and refrigerator using the same Withdrawn JP2013040717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011178077A JP2013040717A (en) 2011-08-16 2011-08-16 Vacuum heat insulation material, and refrigerator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011178077A JP2013040717A (en) 2011-08-16 2011-08-16 Vacuum heat insulation material, and refrigerator using the same

Publications (1)

Publication Number Publication Date
JP2013040717A true JP2013040717A (en) 2013-02-28

Family

ID=47889293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011178077A Withdrawn JP2013040717A (en) 2011-08-16 2011-08-16 Vacuum heat insulation material, and refrigerator using the same

Country Status (1)

Country Link
JP (1) JP2013040717A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015007450A (en) * 2013-06-25 2015-01-15 アキレス株式会社 Vacuum heat insulation material vacuum-packaged doubly
WO2018012402A1 (en) * 2016-07-11 2018-01-18 三菱瓦斯化学株式会社 Heat insulating material and method for producing same
US10030907B2 (en) 2013-05-09 2018-07-24 Arcelik Anonim Sirketi Refrigerator comprising a humidity-controlled crisper
CN111141100A (en) * 2018-11-06 2020-05-12 日立环球生活方案株式会社 Vacuum heat insulation member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10030907B2 (en) 2013-05-09 2018-07-24 Arcelik Anonim Sirketi Refrigerator comprising a humidity-controlled crisper
JP2015007450A (en) * 2013-06-25 2015-01-15 アキレス株式会社 Vacuum heat insulation material vacuum-packaged doubly
WO2018012402A1 (en) * 2016-07-11 2018-01-18 三菱瓦斯化学株式会社 Heat insulating material and method for producing same
CN111141100A (en) * 2018-11-06 2020-05-12 日立环球生活方案株式会社 Vacuum heat insulation member

Similar Documents

Publication Publication Date Title
JP5492685B2 (en) Vacuum heat insulating material and refrigerator using the same
US7210308B2 (en) Refrigerator
JP5798942B2 (en) Vacuum heat insulating material and refrigerator and equipment using the same
WO2003076855A1 (en) Refrigerator
JP5544338B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2017106526A (en) Vacuum heat insulation body, heat insulation equipment including the same, and manufacturing method of vacuum heat insulation body
JP2013002484A (en) Vacuum thermal insulation material and refrigerator using the same
JP2001165557A (en) Refrigerator
JP5372877B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2013119878A (en) Core material of vacuum heat insulator, vacuum heat insulator including same, and refrigerator applied the vacuum heat insulator
JP4778996B2 (en) Vacuum heat insulating material and refrigerator using the same
JP3478792B2 (en) refrigerator
JP2011153721A (en) Refrigerator
JP2013040717A (en) Vacuum heat insulation material, and refrigerator using the same
JP2009299764A (en) Vacuum heat insulation material and heat insulation vessel using the same
JP2004003534A (en) Vacuum heat insulating material and refrigerator using vacuum heat insulating material
JP2013053722A (en) Vacuum heat insulating material and heat insulating apparatus using the same
JP5548025B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2013024440A (en) Refrigerator
JP6535202B2 (en) Vacuum insulation material and insulation box using the same
JP2016089963A (en) Vacuum heat insulation material and refrigeration using vacuum heat insulation material
JP2013002580A (en) Vacuum thermal insulation material and refrigerator using the same
JP2012229849A (en) Refrigerator and freezer
JP2015001290A (en) Vacuum heat insulation material and refrigerator
JP2015055368A (en) Vacuum heat insulation material and refrigerator using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104