JP2012063023A - Vacuum heat insulating material and refrigerator equipped with same - Google Patents

Vacuum heat insulating material and refrigerator equipped with same Download PDF

Info

Publication number
JP2012063023A
JP2012063023A JP2010205032A JP2010205032A JP2012063023A JP 2012063023 A JP2012063023 A JP 2012063023A JP 2010205032 A JP2010205032 A JP 2010205032A JP 2010205032 A JP2010205032 A JP 2010205032A JP 2012063023 A JP2012063023 A JP 2012063023A
Authority
JP
Japan
Prior art keywords
laminated body
heat insulating
insulating material
vacuum heat
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010205032A
Other languages
Japanese (ja)
Inventor
Yasutaka Yamazaki
康位 山▲崎▼
Nobuaki Arakawa
展昭 荒川
Yushi Arai
祐志 新井
Takeshi Kubota
剛 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2010205032A priority Critical patent/JP2012063023A/en
Publication of JP2012063023A publication Critical patent/JP2012063023A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum heat insulating material capable of reducing the thermal effect of a heat radiation pipe, thereby contributing to energy saving, and to provide a refrigerator equipped with the vacuum heat insulating material.SOLUTION: The refrigerator includes a vacuum heat insulating material arranged inside an outer case, and a heat radiation pipe arranged between the vacuum heat insulating material and the outer case. The vacuum heat insulating material includes a core material of fiber aggregate and an outer wrapping material for storing the core material. The inside of the outer wrapping material is decompressed. In the core material, a first laminate and a second laminate are arranged on a third laminate with a predetermined space. The third laminate is bent toward the first laminate and the second laminate so as to fill the predetermined space, forming a recess on the third laminate side. A part of the third laminate is made thicker so that a protruding part is formed inside the recess, and the heat radiation pipe is arranged in the recess for supporting with the protruding part.

Description

本発明は、真空断熱材及びこれを備えた冷蔵庫に関するものである。   The present invention relates to a vacuum heat insulating material and a refrigerator including the same.

本技術分野の背景技術として、特開2004−11708号公報(特許文献1)がある。特許文献1には、繊維材料を成形した芯材と、前記芯材を覆い内部を減圧した外被材とを備え、前記芯材が表面層より内側層が柔らかく、前記外被材から前記芯材にわたって溝が形成されたことが記載されている。   As background art of this technical field, there is JP-A-2004-11708 (Patent Document 1). Patent Document 1 includes a core material obtained by molding a fiber material, and an outer cover material that covers the core material and whose inside is decompressed. The inner surface layer of the core material is softer than the surface layer. It is described that grooves were formed over the material.

特開2004−11708号公報JP 2004-11708 A

特許文献1では、溝に冷媒配管を配置することが記載されているが、溝と冷媒配管をどのように配置するかについて言及していない。   Patent Document 1 describes that the refrigerant pipe is arranged in the groove, but does not mention how the groove and the refrigerant pipe are arranged.

また、特許文献1では、真空断熱材を作成後、金型プレス等で溝を成形しているため、外被材が局部的に延ばされて損傷してしまうおそれがあった。   Moreover, in patent document 1, since the groove | channel was shape | molded by the die press etc. after creating a vacuum heat insulating material, there existed a possibility that a jacket material might be extended locally and damaged.

また、放熱パイプが真空断熱材に接触していると、外包材の金属層(例えばアルミニウム)を通して放熱パイプの熱が真空断熱材の発泡断熱材接触面に回り込む、いわゆるヒートブリッジを引き起こすおそれがある。   In addition, if the heat radiating pipe is in contact with the vacuum heat insulating material, there is a risk of causing a so-called heat bridge in which the heat of the heat radiating pipe passes around the foam heat insulating material contact surface of the vacuum heat insulating material through the metal layer (for example, aluminum) of the outer packaging material. .

そこで本発明は、放熱パイプの熱影響を低減して、省エネルギー化に寄与する真空断熱材及びこれを備えた冷蔵庫を提供することを目的とする。   Then, an object of this invention is to provide the vacuum heat insulating material which reduces the thermal influence of a thermal radiation pipe and contributes to energy saving, and a refrigerator provided with the same.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。一例として、外箱の内側に配置された真空断熱材と、該真空断熱材と前記外箱との間に配置された放熱パイプと、を備えた冷蔵庫において、前記真空断熱材は、繊維集合体の芯材と、該芯材を収納する外包材とを有し、前記外包材内を減圧して、前記芯材は第一の積層体及び第二の積層体を所定間隔を空けて第三の積層体上に配置して、前記第三の積層体は前記所定間隔を埋めるように前記第一の積層体及び前記第二の積層体側に曲がることで前記第三の積層体側に凹部が形成され、該凹部内に突部が形成されるように前記第三の積層体の一部を厚くして、前記突部で支持するように前記凹部に前記放熱パイプを配置する。   In order to solve the above problems, for example, the configuration described in the claims is adopted. As an example, in a refrigerator including a vacuum heat insulating material disposed inside an outer box and a heat radiating pipe disposed between the vacuum heat insulating material and the outer box, the vacuum heat insulating material is a fiber assembly. A core material and an outer packaging material for housing the core material, and the inside of the outer packaging material is depressurized so that the core material is separated from the first laminated body and the second laminated body at a predetermined interval. The concave portion is formed on the third laminated body side by bending the third laminated body to the first laminated body and the second laminated body side so as to fill the predetermined interval. Then, a part of the third laminate is thickened so that a protrusion is formed in the recess, and the heat radiating pipe is arranged in the recess so as to be supported by the protrusion.

本発明によれば、放熱パイプの熱影響を低減して、省エネルギー化に寄与する真空断熱材及びこれを備えた冷蔵庫を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the heat influence of a thermal radiation pipe can be reduced and the vacuum heat insulating material which contributes to energy saving and a refrigerator provided with the same can be provided.

本発明の実施形態に係る冷蔵庫の斜視図。The perspective view of the refrigerator which concerns on embodiment of this invention. 図1のA−A断面図。AA sectional drawing of FIG. 実施形態に係る冷蔵庫の発泡断熱材の発泡方法を示す斜視図。The perspective view which shows the foaming method of the foam heat insulating material of the refrigerator which concerns on embodiment. 図1のB−B断面図。BB sectional drawing of FIG. (a)は実施形態に係る冷蔵庫の側面における放熱パイプ及び真空断熱材の関係を示す正面図、(b)は(a)のC−C断面図、(c)は(a)のD−D断面図。(A) is a front view which shows the relationship between the heat radiating pipe and vacuum heat insulating material in the side surface of the refrigerator which concerns on embodiment, (b) is CC sectional drawing of (a), (c) is DD of (a). Sectional drawing. 真空断熱材の製造工程を説明する図であり、芯材を内袋に収納する工程を説明する図。It is a figure explaining the manufacturing process of a vacuum heat insulating material, and is a figure explaining the process of accommodating a core material in an inner bag. 真空断熱材の製造工程を説明する図であり、内袋を外包材に収納する工程を説明する図。It is a figure explaining the manufacturing process of a vacuum heat insulating material, and is a figure explaining the process of accommodating an inner bag in an outer packaging material. 真空断熱材に設ける凹部ピッチを説明する図であり、図4のP部拡大図。It is a figure explaining the recessed part pitch provided in a vacuum heat insulating material, and the P section enlarged view of FIG. 図8の凹部ピッチを選定するための真空断熱材の温度特性を示す図。The figure which shows the temperature characteristic of the vacuum heat insulating material for selecting the recessed part pitch of FIG. 図8,図9の結果を適用した一例を示す図4のP部拡大図。The P section enlarged view of FIG. 4 which shows an example which applied the result of FIG. 8, FIG. 図6,図7とは異なる真空断熱材の製造工程を説明する図である。It is a figure explaining the manufacturing process of the vacuum heat insulating material different from FIG. 6, FIG. 真空断熱材を側面板に適用した冷蔵庫の要部断面図。The principal part sectional drawing of the refrigerator which applied the vacuum heat insulating material to the side plate. (a)は図12の真空断熱材の正面図、(b)は(a)のE−E断面図、(c)は(a)のF−F断面図。(A) is a front view of the vacuum heat insulating material of FIG. 12, (b) is EE sectional drawing of (a), (c) is FF sectional drawing of (a).

以下、本発明の実施形態について、図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<冷蔵庫の全体構成>
図1は本発明に係る実施形態の冷蔵庫1を斜め前方から見た斜視図であり、図2は図1のA−A線断面図である。
<Overall configuration of refrigerator>
FIG. 1 is a perspective view of a refrigerator 1 according to an embodiment of the present invention as viewed obliquely from the front, and FIG. 2 is a cross-sectional view taken along line AA in FIG.

冷蔵庫1は、食品等の貯蔵物を冷蔵又は冷凍して収容する冷蔵庫本体1Hと、冷蔵庫本体1Hの前面開口1H1(図2参照)を開閉する複数のドア5,6(6a,6b,6c),7を備えている。   The refrigerator 1 includes a refrigerator main body 1H that stores refrigerated or frozen stored items such as food, and a plurality of doors 5 and 6 (6a, 6b, 6c) that open and close the front opening 1H1 (see FIG. 2) of the refrigerator main body 1H. , 7 are provided.

冷蔵庫本体1Hは、内部に上から冷蔵室2と、製氷室3a,第一冷凍室3b,第二冷凍室3cを含む冷凍室3と、野菜室4とを有している。これらの貯蔵室が開口される前面開口1H1に、それぞれドアが設けられている。   The refrigerator main body 1H has a refrigerator compartment 2, a freezer compartment 3 including an ice making compartment 3a, a first freezer compartment 3b, and a second freezer compartment 3c, and a vegetable compartment 4 from above. A door is provided in each front opening 1H1 in which these storage chambers are opened.

冷蔵室扉5は、冷蔵室2を開閉する扉であり、観音開き式の左右二枚の扉より構成されている。冷凍室扉6は、冷凍室3を開閉する扉であり、引き出し式の独立した三枚の扉、すなわち、製氷室扉6a,第一冷凍室扉6b,第二冷凍室扉6cより構成されている。最下段の野菜室扉7は野菜室4を開閉する扉であり、引き出し式の扉である。   The refrigerator compartment door 5 is a door that opens and closes the refrigerator compartment 2, and is composed of two doors of left and right of the double door type. The freezer compartment door 6 is a door that opens and closes the freezer compartment 3, and includes three independent drawer doors, that is, an ice making compartment door 6a, a first freezer compartment door 6b, and a second freezer compartment door 6c. Yes. The lowermost vegetable compartment door 7 is a door that opens and closes the vegetable compartment 4, and is a drawer-type door.

なお、引き出し式の扉は、貯蔵物が収容される収容ケースとともに引き出される扉である。   The drawer-type door is a door that is pulled out together with a storage case in which stored items are stored.

図2に示す冷却器室9内には、冷却器8が設置されており、冷却器8,圧縮機10,凝縮器,キャピラリチューブ等で冷凍サイクルを構成している。   A cooler 8 is installed in the cooler chamber 9 shown in FIG. 2, and the cooler 8, the compressor 10, a condenser, a capillary tube, and the like constitute a refrigeration cycle.

ここで、凝縮器として、冷媒が通流する放熱パイプ20を冷蔵庫本体1Hの外郭を構成する側面板11及び背面板12の内側(発泡断熱材17の側)に取り付け(図4参照)、放熱している。   Here, as the condenser, the heat radiating pipe 20 through which the refrigerant flows is attached to the inner side of the side plate 11 and the back plate 12 (the side of the foam heat insulating material 17) constituting the outer shell of the refrigerator main body 1H (see FIG. 4), and the heat is radiated. is doing.

冷媒としてはイソブタン(R600a)が用いられる。なお、冷媒として、他の冷媒を用いてもよいが、イソブタンは、廃棄した場合にオゾン層を破壊しない、温暖化係数が低いなどの利点がある。   Isobutane (R600a) is used as the refrigerant. In addition, although other refrigerants may be used as the refrigerant, isobutane has advantages such as not destroying the ozone layer when discarded and having a low global warming potential.

冷凍サイクルの冷却器8で冷却された冷気は、送風機13により、冷蔵室2,冷凍室3,野菜室4に強制循環させる。そして、各貯蔵室への冷気量は、各風路に設けた電動式の開閉ダンパで制御される。   The cold air cooled by the cooler 8 of the refrigeration cycle is forcedly circulated to the refrigerator compartment 2, the freezer compartment 3, and the vegetable compartment 4 by the blower 13. And the amount of cold air to each store room is controlled by the electric opening and closing damper provided in each air passage.

冷蔵庫1の庫内温度や運転の各種制御は、冷蔵庫本体1Hの上部後方に設けられた制御基板14(制御装置)によって制御されている。   Various controls of the internal temperature and operation of the refrigerator 1 are controlled by a control board 14 (control device) provided at the upper rear of the refrigerator body 1H.

次に、冷蔵庫箱体15内への発泡断熱材17(ウレタンフォーム)の発泡方法について説明する。   Next, a method for foaming the foam heat insulating material 17 (urethane foam) into the refrigerator box 15 will be described.

図2に示すように、冷蔵庫本体1Hを構成する冷蔵庫箱体15は、側面板11(図1参照),背面板12等を有する外郭をなす外箱19と、食品等の貯蔵物を入れる空間を形成する内箱18とを備える。   As shown in FIG. 2, the refrigerator box 15 constituting the refrigerator main body 1H has an outer box 19 that forms a shell including a side plate 11 (see FIG. 1), a back plate 12 and the like, and a space for storing stored items such as food. And an inner box 18 that forms

図3は、冷蔵庫1の発泡断熱材17の発泡方法を示す斜視図である。図3に示すように、冷蔵庫箱体15内、すなわち、外箱19と内箱18との間の空間へのウレタンフォーム原液を注入する場合、冷蔵庫箱体15の背面板12が上に位置するよう冷蔵庫箱体15を発泡装置(図示せず)内にセットする。そして、背面板12に設けた複数の注入口16(16a,16b)からウレタンフォーム原液を注入する。   FIG. 3 is a perspective view showing a foaming method of the foam heat insulating material 17 of the refrigerator 1. As shown in FIG. 3, when the urethane foam stock solution is injected into the refrigerator box 15, that is, the space between the outer box 19 and the inner box 18, the back plate 12 of the refrigerator box 15 is positioned above. The refrigerator box 15 is set in a foaming device (not shown). Then, a urethane foam stock solution is injected from a plurality of injection ports 16 (16a, 16b) provided on the back plate 12.

注入されたウレタンフォーム原液は、冷蔵庫箱体15の外箱19と内箱18との間の開口縁側全体に回り込み、その後、背面板12側に向けて発泡を開始し、内箱18と外箱19とで構成される冷蔵庫箱体15の空間を埋めるように充填される。   The injected urethane foam undiluted solution wraps around the entire opening edge side between the outer box 19 and the inner box 18 of the refrigerator box 15, and then starts to foam toward the back plate 12, and the inner box 18 and the outer box 19 is filled so as to fill the space of the refrigerator box 15 constituted by the

この際、後述する真空断熱材21は、予め外箱19の内面側にホットメルトやシール材等により仮固定しており、発泡断熱材17の発泡充填により冷蔵庫箱体15の外箱19の内側(発泡断熱材17側)に固着される。   Under the present circumstances, the vacuum heat insulating material 21 mentioned later is temporarily fixed to the inner surface side of the outer case 19 beforehand with hot melt, a sealing material, etc., and the inside of the outer case 19 of the refrigerator box 15 by foam filling of the foam heat insulating material 17 is carried out. It is fixed to the foam insulation 17 side.

次に、冷蔵庫箱体15について説明する。冷蔵庫箱体15は、上述したように、各貯蔵室を区画して構成する内箱18と、外郭を構成する側面板11,背面板12を有する外箱19との間の空間に発泡断熱材17を発泡充填させて構成される。   Next, the refrigerator box 15 will be described. As described above, the refrigerator box 15 has a foam heat insulating material in a space between the inner box 18 configured by partitioning each storage chamber, and the outer box 19 having the side plate 11 and the back plate 12 constituting the outer shell. 17 is formed by foam filling.

図4のように、外箱19を構成する側面板11,背面板12は0.4〜0.5mm厚程度の板厚が薄い鉄板で構成されている。   As shown in FIG. 4, the side plate 11 and the back plate 12 constituting the outer box 19 are made of a thin steel plate having a thickness of about 0.4 to 0.5 mm.

側面板11,背面板12には、冷凍サイクルの凝縮器の役割を果たす放熱パイプ20がW1の間隔(ピッチ)でアルミニウム製のテ−プ等で固定されている。放熱パイプ20の直径は4.0〜5.0mm程度である。   On the side plate 11 and the back plate 12, a heat radiating pipe 20 serving as a condenser of the refrigeration cycle is fixed with an aluminum tape or the like at an interval (pitch) of W1. The diameter of the heat radiating pipe 20 is about 4.0 to 5.0 mm.

冷蔵庫箱体15の前面開口部1H1側には、内箱18を外箱19に係止する係止部のR曲げ部19a(内箱係止部)が外箱19に形成されている。   On the front opening 1H1 side of the refrigerator box 15, an R bent portion 19 a (inner box locking portion) of a locking portion for locking the inner box 18 to the outer box 19 is formed in the outer box 19.

外箱19のR曲げ部19aが、内箱18の被係止部18aを、弾性変形してフランジ部19bとで挟着することにより、外箱19と内箱18とが取り付けられている。   The outer box 19 and the inner box 18 are attached by the R-bending portion 19a of the outer box 19 elastically deforming the locked portion 18a of the inner box 18 and pinching it with the flange portion 19b.

外箱19のR曲げ部19a近くの放熱パイプ20は、R曲げ部19aを保温しており、R曲げ部19aに続くフランジ部19b近傍が、冷却運転時に挟着する内箱18の被係止部18aを介して冷やされ露点温度以下となり、結露するのを防止している。   The heat dissipating pipe 20 near the R-bending portion 19a of the outer box 19 keeps the R-bending portion 19a warm, and the vicinity of the flange portion 19b following the R-bending portion 19a holds the inner box 18 that is sandwiched during the cooling operation. It is cooled through the portion 18a and becomes the dew point temperature or less, thereby preventing condensation.

図4及び図5に示すように、真空断熱材21,31は、予め側面板11,背面板12等にアルミニウム製のテ−プ等をもって貼り付けられた、例えば連続する4本の放熱パイプ20(直径4.0mm)を逃げるための凹部22,端部凹部22a,22b、凹部32,端部凹部32aをそれぞれ有している。   As shown in FIGS. 4 and 5, the vacuum heat insulating materials 21, 31 are previously attached to the side plate 11, the back plate 12, etc. with an aluminum tape or the like, for example, four continuous heat radiating pipes 20. A recess 22 for escaping (diameter: 4.0 mm), end recesses 22a and 22b, a recess 32, and an end recess 32a are provided.

真空断熱材21,31は、それぞれ側面板11,背面板12にW1の間隔(ピッチ)をもって取り付けられた放熱パイプ20を凹部22,端部凹部22a,22b、凹部32,端部凹部32a内に収納した状態で、ホットメルトや粘着テープ等を用いて側面板11,背面板12に貼り付けられている。   The vacuum heat insulating materials 21 and 31 include the heat radiating pipe 20 attached to the side plate 11 and the back plate 12 with a spacing (pitch) of W1 in the concave portion 22, the end concave portions 22a and 22b, the concave portion 32, and the end concave portion 32a, respectively. In the housed state, it is affixed to the side plate 11 and the back plate 12 using hot melt, adhesive tape or the like.

発泡断熱材17は、側面板11又は背面板12へ放熱パイプ20及び真空断熱材21,31を取り付けた後、外箱19と内箱18との間に形成される空間に充填される。そのため、側面板11又は背面板12への真空断熱材21,31の取り付けは、発泡断熱材17が、側面板11と真空断熱材21との間、及び、背面板12と真空断熱材31との間に侵入しないように固定する必要がある。   The foam heat insulating material 17 is filled in a space formed between the outer box 19 and the inner box 18 after attaching the heat radiating pipe 20 and the vacuum heat insulating materials 21 and 31 to the side plate 11 or the back plate 12. Therefore, attachment of the vacuum heat insulating materials 21 and 31 to the side plate 11 or the back plate 12 is performed by the foam heat insulating material 17 between the side plate 11 and the vacuum heat insulating material 21, and the back plate 12 and the vacuum heat insulating material 31. It is necessary to fix so as not to invade between.

図5は、図1,図4に示す冷蔵庫1の側面板11に放熱パイプ20及び真空断熱材21を取り付けた状態を示す図であり、図5(a)は側面板11に取り付けた放熱パイプ20,真空断熱材21を冷蔵庫1の外側から見た正面図であり、図5(b)は(a)のC−C線断面図であり、図5(c)は(a)のD−D線断面図である。   FIG. 5 is a view showing a state where the heat radiating pipe 20 and the vacuum heat insulating material 21 are attached to the side plate 11 of the refrigerator 1 shown in FIGS. 1 and 4, and FIG. 5 (a) is a heat radiating pipe attached to the side plate 11. 20 is a front view of the vacuum heat insulating material 21 viewed from the outside of the refrigerator 1, FIG. 5 (b) is a sectional view taken along the line CC of FIG. 5 (a), and FIG. It is D line sectional drawing.

真空断熱材21は、例えば直径4.0mmの銅パイプ等で作られる放熱パイプ20を収納するための凹部22と端部凹部22a,22bを有している。   The vacuum heat insulating material 21 has a recess 22 and end recesses 22a and 22b for housing a heat radiating pipe 20 made of, for example, a copper pipe having a diameter of 4.0 mm.

凹部22と端部凹部22a,22bは、真空断熱材21の縦方向に複数列、中心線の間隔がW1寸法をもって形成されている。換言すると、真空断熱材21の中央側の凹部22と端部側の端部凹部22aとは、側面板11の内面11nに対してW1寸法が180〜220mmの間隔で取り付けられている放熱パイプ20を覆う構成である。   The recesses 22 and the end recesses 22a and 22b are formed in a plurality of rows in the vertical direction of the vacuum heat insulating material 21 and with a center line interval of W1. In other words, the center-side recess 22 and the end-side end recess 22a of the vacuum heat insulating material 21 are attached to the inner surface 11n of the side plate 11 with a W1 dimension of 180 to 220 mm. It is the structure which covers.

凹部22は、放熱パイプ20を覆う左右両側に立ち上がり壁部を有する凹んだ形状(凹形状)を有しており、その深さ寸法D1は約5mm、幅寸法L3は40〜70mmである。   The concave portion 22 has a concave shape (concave shape) having rising wall portions on both the left and right sides covering the heat radiating pipe 20, and the depth dimension D1 is about 5 mm and the width dimension L3 is 40 to 70 mm.

すなわち、凹部22の幅寸法L3は、凹部22を形成する上での製造誤差、真空断熱材21を側面板11に取り付ける際の取り付け誤差や、放熱パイプ20が側面板11の平面上で多少曲がっていたり、放熱パイプ20の側面板11への取り付け誤差等があったりしても、放熱パイプ20を収納できる大きさとしている。   That is, the width dimension L3 of the concave portion 22 is a manufacturing error in forming the concave portion 22, an attachment error in attaching the vacuum heat insulating material 21 to the side plate 11, and the heat radiating pipe 20 is slightly bent on the plane of the side plate 11. Even if there is an error in attaching the heat radiating pipe 20 to the side plate 11, the size of the heat radiating pipe 20 can be accommodated.

また、凹部22の深さ寸法D1は、真空断熱材21を側面板11に取り付ける際、放熱パイプ20が側面板11側に押し付けられ、側面板11に押し圧痕が生じたり、真空断熱材21の外包材24に損傷が生じたりしないように、放熱パイプ20の直径以上、例えば5.0mmに設計されている。   The depth dimension D1 of the recess 22 is such that when the vacuum heat insulating material 21 is attached to the side surface plate 11, the heat radiating pipe 20 is pressed against the side surface plate 11, and a pressing impression is generated on the side surface plate 11. The outer packaging material 24 is designed to have a diameter equal to or greater than the diameter of the heat radiating pipe 20, for example, 5.0 mm so as not to be damaged.

他方、図5(a)に示す真空断熱材21に並列で複数列形成された溝のうち、真空断熱材21の左右両端に沿って設けられた溝の端部凹部22aは、凹部22のように放熱パイプ20を囲むようにその左右両側に立ち上がり壁部を有する溝形状でなく、真空断熱材21の縁部に沿って設けられ、外方が開放された横断面L字状を成す凹んだ形状としている。   On the other hand, among the grooves formed in a plurality of rows in parallel with the vacuum heat insulating material 21 shown in FIG. 5A, the end recessed portions 22 a of the grooves provided along the left and right ends of the vacuum heat insulating material 21 are like the recessed portions 22. Is not a groove shape having rising wall portions on both the left and right sides so as to surround the heat radiating pipe 20, but is provided along the edge of the vacuum heat insulating material 21, and has a concave shape that forms an L-shaped cross section with the outside open. It has a shape.

端部凹部22aの深さ寸法D1は、凹部22と同様に5.0mmであり、端部凹部22aの短手方向の幅寸法L4は、凹部22のL3寸法と同様に、40〜70mm前後である。   The depth dimension D1 of the end recessed part 22a is 5.0 mm as in the recessed part 22, and the width dimension L4 in the short direction of the end recessed part 22a is about 40 to 70 mm, similar to the L3 dimension of the recessed part 22. is there.

これは、真空断熱材21に複数列の凹部を形成する際、端部の凹部は、真空断熱材21の縁部に沿って、外方を開放した横断面L字状の形状の端部凹部22aの方が、単なる凹形状より形成し易いからである。また、外方が開放された端部凹部22aを用いることにより、放熱パイプ20を折り曲げる作業、放熱パイプ20を端部凹部22aに設置する作業、或いは機械室29(図2参照)側へ引き出す作業を行い易い。   This is because, when forming a plurality of rows of recesses in the vacuum heat insulating material 21, the end recesses are end recesses having an L-shaped cross section that is open outward along the edge of the vacuum heat insulating material 21. This is because 22a is easier to form than a simple concave shape. Further, by using the end recessed portion 22a that is open to the outside, the work of bending the heat radiating pipe 20, the work of installing the heat radiating pipe 20 in the end recessed portion 22a, or the work of drawing out to the machine room 29 (see FIG. 2) side. It is easy to do.

更に、真空断熱材21の左右両端(左右両縁部)に沿って位置する凹部の形状を、端部凹部22aのように外方開放の構成としたことで、真空断熱材21を側面板11に貼り付ける時、R曲げ部19aに近づけて配置できることになる。   Furthermore, the shape of the recess located along the left and right ends (both left and right edges) of the vacuum heat insulating material 21 is configured to be open outward as in the end recessed portion 22a, so that the vacuum heat insulating material 21 is placed on the side plate 11. When it is pasted on, it can be placed close to the R-bending portion 19a.

また、真空断熱材21の上下端部には、前記のように製造のし易さ及び放熱パイプ20の収納し易さを考慮して、端部凹部22bを有している。端部凹部22bは、凹部22のような放熱パイプ20を囲むようにその左右両側に立ち上がり壁部を有する形状でなく、真空断熱材21の縁部に沿って、外方が開放された横断面L字状を成す凹んだ形状としている。端部凹部22bは、真空断熱材21の長手方向の寸法L5が40〜80mm前後である。   Further, the upper and lower end portions of the vacuum heat insulating material 21 have end recessed portions 22b in consideration of the ease of manufacturing and the ease of storing the heat radiating pipe 20 as described above. The end recess 22b does not have a shape having rising wall portions on both the left and right sides so as to surround the heat radiating pipe 20 like the recess 22, but a cross section in which the outside is opened along the edge of the vacuum heat insulating material 21. It has a concave shape that forms an L shape. The end recess 22b has a longitudinal dimension L5 of the vacuum heat insulating material 21 of about 40 to 80 mm.

すなわち、外方が開放された端部凹部22b内では、放熱パイプ20を外方に自由に動かして自由な経路で配置できる。例えば、図5(a)に示すようにU字状に配置することもできる。   In other words, in the end recess 22b that is open to the outside, the heat radiating pipe 20 can be freely moved outward and disposed along a free path. For example, it can also be arranged in a U shape as shown in FIG.

<真空断熱材の構成>
次に、真空断熱材21の製造方法について、図6,図7を用いて説明する。図6は、真空断熱材21の芯材23を内袋に収納する製造工程を経時的に示す断面図であり、図7は、芯材23を外包材24に収納する製造工程を経時的に示す断面図である。なお、図6,図7における芯材23内の積層体25(符号25a,25b,25c,25d)の内部の横線は繊維の方向を示すものであり、そのピッチは厚みの変化を無視して示している。
<Configuration of vacuum insulation material>
Next, the manufacturing method of the vacuum heat insulating material 21 is demonstrated using FIG. 6, FIG. 6 is a cross-sectional view showing the manufacturing process for housing the core material 23 of the vacuum heat insulating material 21 in the inner bag over time, and FIG. 7 shows the manufacturing process for housing the core material 23 in the outer packaging material 24 over time. It is sectional drawing shown. 6 and 7, the horizontal lines inside the laminate 25 (reference numerals 25a, 25b, 25c, 25d) in the core member 23 indicate the direction of the fibers, and the pitch ignores the change in thickness. Show.

真空断熱材21は、図7(c)に示すように、内部の芯材23と、熱溶着用のプラスチック層を有する金属蒸着ラミネートフィルム等からなる外側の外包材24とを有して構成される。   As shown in FIG. 7C, the vacuum heat insulating material 21 includes an inner core material 23 and an outer outer packaging material 24 made of a metal-deposited laminated film having a plastic layer for heat welding. The

内部の芯材23は、無機繊維の積層体25(図6(a)では第一の積層体25a,第二の積層体25b,第三の積層体25c,第四の積層体25d)と積層体25を覆う内袋26とを有し構成されている。   The inner core member 23 is laminated with an inorganic fiber laminate 25 (in FIG. 6A, the first laminate 25a, the second laminate 25b, the third laminate 25c, and the fourth laminate 25d). And an inner bag 26 that covers the body 25.

積層体25は、一般にグラスウール,グラスファイバ,アルミナ繊維,シリカアルミナ繊維、或いは木綿等の天然繊維が用いられている。そして、積層体25を覆う内袋26は、厚さ20μmで柔軟性のあるポリエチレンフィルム等から構成されている。   The laminated body 25 is generally made of natural fibers such as glass wool, glass fiber, alumina fiber, silica-alumina fiber, or cotton. And the inner bag 26 which covers the laminated body 25 is comprised from the flexible polyethylene film etc. with a thickness of 20 micrometers.

内袋26に厚さ20μmの柔軟性のあるフィルムを用いる理由は、内袋26内を圧縮した時、このフィルムと積層体25の端部との間に、フィルムの柔軟性により、空間を作ることがないようにするためである。また、内袋26が柔軟性を有することで、外包材24の開口部の溶着部に、積層体25に混入する異物の大きさを吸収して内袋26が破けることなく、異物が外包材24から突出しないようにするためである。   The reason why a flexible film having a thickness of 20 μm is used for the inner bag 26 is that when the inside of the inner bag 26 is compressed, a space is created between the film and the end of the laminate 25 due to the flexibility of the film. This is so that there is no such thing. Further, since the inner bag 26 has flexibility, the size of the foreign matter mixed into the laminated body 25 is absorbed in the welded portion of the opening of the outer packaging material 24 and the inner bag 26 is not torn, so that the foreign matter can be encased. This is so as not to protrude from the material 24.

芯材23を製造するに際しては、予め作られたロール状の無機繊維を定められた寸法の積層体25(第一の積層体25a,第二の積層体25b,第三の積層体25c,第四の積層体25d)にカットする。そして、カットされた積層体25を内袋26内に収納する(図6(b)参照)。そして、内袋26に収納された積層体25をプレス機27により圧縮するとともに、熱溶着機100を使って内袋26の開口部を熱溶着で密封することで、仮圧縮状態の芯材23が作られる(図6(c)参照)。   When the core material 23 is manufactured, a laminated body 25 (a first laminated body 25a, a second laminated body 25b, a third laminated body 25c, a first laminated body 25c) having a predetermined size is formed using a roll-shaped inorganic fiber made in advance. Cut into four laminates 25d). And the cut laminated body 25 is accommodated in the inner bag 26 (refer FIG.6 (b)). And while pressing the laminated body 25 accommodated in the inner bag 26 with the press machine 27, and sealing the opening part of the inner bag 26 by heat welding using the heat welding machine 100, the core material 23 of a temporary compression state is carried out. Is created (see FIG. 6C).

以下、真空断熱材21の製作工程を、図6,図7を用いて詳細に説明する。   Hereafter, the manufacturing process of the vacuum heat insulating material 21 is demonstrated in detail using FIG. 6, FIG.

先ず、図6(a)に示すように、原綿の無機繊維を乾燥後、所定の寸法の第一の積層体25a,第二の積層体25b,第三の積層体25c,第四の積層体25dに切断して、3段に積層する。   First, as shown to Fig.6 (a), after drying the inorganic fiber of raw cotton, the 1st laminated body 25a of the predetermined dimension, the 2nd laminated body 25b, the 3rd laminated body 25c, the 4th laminated body Cut into 25d and stack in 3 layers.

ここで、第一の積層体25a及び第二の積層体25bは、第三の積層体25cの上に間隔L1を空けて配置する。また、第三の積層体25cは、さらに第四の積層体25dの上に配置される。また、第一の積層体25aは、第三の積層体25cの一端部から間隔L2を空けて配置する。また、第二の積層体25bは、第三の積層体25cの他端部から間隔L3を空けて配置する。このL1,L2,L3寸法を調整することにより、端部凹部22a,22b及び凹部22の幅を調整できるものである。 Here, the first laminate 25a and the second laminate 25b is spaced L 1 on the third laminate 25c. The third stacked body 25c is further disposed on the fourth stacked body 25d. Further, the first stack 25a is spaced L 2 from one end of the third laminate 25c. The second stack 25b is spaced L 3 from the other end of the third laminate 25c. By adjusting the L 1 , L 2 , and L 3 dimensions, the widths of the end recesses 22a and 22b and the recess 22 can be adjusted.

つまり、第一の積層体25a,第二の積層体25bを所定の幅寸法で切断し、かつ、それぞれを所定の寸法の間隔L1,L2,L3を空けて第三の積層体25cの上に設置し、その後の工程(図6(b)〜図7(c))を経ることで、凹部22と端部凹部22aとが形成されることとなる。なお、真空断熱材21の端部凹部22bも同様に形成される。 That is, the first laminated body 25a and the second laminated body 25b are cut with a predetermined width dimension, and intervals L 1 , L 2 , and L 3 are respectively separated from each other with predetermined dimensions, and the third laminated body 25c is cut. The recessed part 22 and the edge part recessed part 22a will be formed by passing through the subsequent process (FIG.6 (b)-FIG.7 (c)). In addition, the edge part recessed part 22b of the vacuum heat insulating material 21 is formed similarly.

なお、第一の積層体25aから第四の積層体25dは、それぞれ、例えばほぼ100mm厚であり、各積層体を重ねた状態で、全部で約300mmの厚さである。つまり、無機繊維の積層体25は、圧縮する前は約300mmの厚みを有している。   Each of the first stacked body 25a to the fourth stacked body 25d is, for example, approximately 100 mm thick, and is approximately 300 mm in total when the stacked bodies are stacked. That is, the laminated body 25 of inorganic fibers has a thickness of about 300 mm before being compressed.

続いて、図6(b)に示すように、積層体25を、内袋26の開口部(図6(b)の右側)から、図6(b)の白抜き矢印のように収納する。このとき、積層体25はバインダー(硬化剤)を含んでいないので柔軟性を有しており、内袋26の形状に沿って変形し、角部は丸みを帯びた形状となる。この際、積層体25は押圧されてないので、未だ全体で約300mmの厚さがある。   Subsequently, as shown in FIG. 6B, the laminated body 25 is stored from the opening of the inner bag 26 (on the right side of FIG. 6B) as indicated by the white arrow in FIG. 6B. At this time, since the laminated body 25 does not contain a binder (curing agent), the laminated body 25 has flexibility, is deformed along the shape of the inner bag 26, and has a rounded corner. At this time, since the laminate 25 is not pressed, the total thickness is still about 300 mm.

次いで、図6(c)に示すように、内袋26に収納された積層体25を、所定の減圧下で、プレス機27で白抜き矢印のように圧縮し、厚さ約300mmであった積層体25を約10〜15mmの厚さまで圧縮する。つまり、芯材23はその厚み方向に元の厚さから、プレス機27をもって例えば25分の1位迄に圧縮し、その厚みが約10〜15mmとなる。なお、この際、ガス,水分等を吸着する吸着剤(図示せず)は予め積層体25内(内袋26内)に入れておく。   Next, as shown in FIG. 6C, the laminated body 25 housed in the inner bag 26 was compressed as indicated by the white arrow with a press machine 27 under a predetermined reduced pressure, and the thickness was about 300 mm. The laminate 25 is compressed to a thickness of about 10-15 mm. That is, the core material 23 is compressed from the original thickness in the thickness direction to, for example, about 1 / 25th by the press machine 27, and the thickness becomes about 10 to 15 mm. At this time, an adsorbent (not shown) that adsorbs gas, moisture and the like is previously placed in the laminate 25 (inside the inner bag 26).

そして、内袋26の開口部を、溶着機100で熱溶着し密封する。この過程においても、積層体25は、内袋26の形状に沿って角部が丸みをもった形状の芯材23を構成する。そして、プレス機27を開放すると、芯材23の厚みは、10〜15mmから約30mmに復元する。   And the opening part of the inner bag 26 is heat-welded with the welding machine 100, and is sealed. Also in this process, the laminated body 25 constitutes the core member 23 having a shape with rounded corners along the shape of the inner bag 26. When the press machine 27 is opened, the thickness of the core material 23 is restored from 10 to 15 mm to about 30 mm.

こうして製造した芯材23であれば、積層体25を仮圧縮状態で一時保管することが可能となり、保管中に積層体25が内袋26内で移動しない。また、内袋26の開口部は熱溶着されているので、内袋26内に外側から塵埃が侵入しない。   If it is the core material 23 manufactured in this way, it will become possible to temporarily store the laminated body 25 in a temporary compression state, and the laminated body 25 will not move within the inner bag 26 during storage. Further, since the opening of the inner bag 26 is thermally welded, dust does not enter the inner bag 26 from the outside.

次に、図7(a)に示すように、真空断熱材21を覆う外包材24内に収納された芯材23は、図7(b)のプレス機127及び減圧装置を用いた圧縮及び減圧工程の前に、内袋26の一部が破られる。なお、内袋26が破れると、そこから空気が内袋26内に入り、芯材23の厚みが増加する。この状態で、図7(b)に示す真空チャンバ内の内袋26を含む積層体25を外包材24内で減圧、及び、所定厚さまでの圧縮がスムーズに行われる。   Next, as shown in FIG. 7A, the core material 23 housed in the outer packaging material 24 covering the vacuum heat insulating material 21 is compressed and decompressed using the press machine 127 and the decompression device of FIG. 7B. Before the process, a part of the inner bag 26 is broken. In addition, when the inner bag 26 is torn, air enters the inner bag 26 from there, and the thickness of the core member 23 increases. In this state, the laminated body 25 including the inner bag 26 in the vacuum chamber shown in FIG. 7B is smoothly decompressed and compressed to a predetermined thickness in the outer packaging material 24.

具体的には、図7(b)に示すように、内袋26内に収納された芯材23と芯材23を覆う外包材24とが、真空チャンバ内のプレス機127間に入れられ、形が崩れないようにプレス機127で約50mmの厚さに押圧されつつ、減圧され真空引きされる。   Specifically, as shown in FIG. 7B, the core material 23 housed in the inner bag 26 and the outer packaging material 24 covering the core material 23 are placed between the press machines 127 in the vacuum chamber, While being pressed to a thickness of about 50 mm by a press 127 so that the shape does not collapse, it is depressurized and evacuated.

真空チャンバ内の外包材24の内部が真空状態になった時点において、溶着機100によって外包材24の耳部24aを溶着する。   When the inside of the outer packaging material 24 in the vacuum chamber is in a vacuum state, the ear 24a of the outer packaging material 24 is welded by the welding machine 100.

この時、内袋26の耳部26aが外包材24の耳部24a内に重なり、耳部は4重構造になる。   At this time, the ear portion 26a of the inner bag 26 overlaps the ear portion 24a of the outer packaging material 24, and the ear portion has a quadruple structure.

ここで、外包材24はラミネート構造であり、その内側は熱溶着層のプラスチック層となっている。例えば、低密度ポリエチレンフィルム,鎖状低密度ポリエチレンフィルム,高密度ポリエチレンフィルム等の合成樹脂材で形成されている。そのため、内袋26のポリエチレンフィルムとの相性も良く、外包材24の耳部24aの4重部の熱溶着は可能となり、熱溶着された部分が一体化される場合もある。   Here, the outer packaging material 24 has a laminate structure, and the inside thereof is a plastic layer of a heat-welded layer. For example, it is formed of a synthetic resin material such as a low density polyethylene film, a chain-like low density polyethylene film, and a high density polyethylene film. Therefore, compatibility with the polyethylene film of the inner bag 26 is good, and the four-fold portion of the ear portion 24a of the outer packaging material 24 can be heat-welded, and the heat-welded portion may be integrated.

従って、もし芯材23の積層体25の収納時に外包材24の開口部24c(図7(a)参照)に塵埃が付着しても、この開口部24cは内袋26があることより、塵埃等の異物が外包材24の表面に突出しないようにでき、外包材24の耳部24aの溶着及び密封を確実に行うことができる。   Therefore, even if dust adheres to the opening 24c (see FIG. 7A) of the outer packaging material 24 when the laminated body 25 of the core material 23 is stored, the opening 24c has the inner bag 26. It is possible to prevent foreign substances such as the outer projection material 24 from protruding onto the surface of the outer packaging material 24, and to reliably weld and seal the ear portions 24 a of the outer packaging material 24.

こうして、図7(b)の耳部24aが溶着された真空断熱材21を大気圧下におくと、厚さ約50mmの真空断熱材21に大気圧が加わり瞬間的に潰れ、間隔L1,L2,L3を設けた反対側に、それぞれ図7(c)に示す凹部22と端部凹部22aが形成された厚さ約15mmの真空断熱材21となる。 Thus, when the vacuum heat insulating material 21 to which the ears 24a of FIG. 7 (b) are welded is placed under atmospheric pressure, atmospheric pressure is applied to the vacuum heat insulating material 21 having a thickness of about 50 mm, and the space L 1 , On the opposite side where L 2 and L 3 are provided, a vacuum heat insulating material 21 having a thickness of about 15 mm is formed, with a recess 22 and an end recess 22a shown in FIG.

ここで、図7(b)の耳部24aが溶着された真空断熱材21を大気圧においた場合、第一の積層体25a,第二の積層体25bと内袋26との摩擦力、及び内袋26と外包材24との摩擦力は、第一の積層体25a,第二の積層体25bに対向する箇所で部分的に働くことから、過大なものとなる。   Here, when the vacuum heat insulating material 21 to which the ear portion 24a of FIG. 7B is welded is at atmospheric pressure, the friction force between the first laminated body 25a, the second laminated body 25b and the inner bag 26, and The frictional force between the inner bag 26 and the outer wrapping material 24 is excessive because it partially works at a location facing the first laminated body 25a and the second laminated body 25b.

これに対して、間隔を設けていない反対側の第四の積層体25dと内袋26との摩擦力、及び内袋26と外包材24との摩擦力は、間隙がないことから、均等に摩擦力が働く。   On the other hand, the frictional force between the fourth laminated body 25d on the opposite side and the inner bag 26, and the frictional force between the inner bag 26 and the outer wrapping material 24, which are not spaced apart, are uniform because there is no gap. Frictional force works.

そのため、第四の積層体25dに対向する内袋26,外包材24、及び第三の積層体25c,第四の積層体25dが全体的に、間隔L1,L2,L3に引っ張り込まれて湾曲し、間隔L1,L2,L3の反対側に凹部22,端部凹部22aが形成されることとなる。 Therefore, the inner bag 26, the outer packaging material 24, the third laminated body 25c, and the fourth laminated body 25d facing the fourth laminated body 25d are pulled into the intervals L 1 , L 2 , and L 3 as a whole. It is rarely curved, and the recess 22 and the end recess 22a are formed on the opposite side of the intervals L 1 , L 2 , and L 3 .

なお、端部凹部22bも端部凹部22aと同様に形成される。   The end recess 22b is formed in the same manner as the end recess 22a.

このように、間隔L1,L2,L3(図6(a)参照)の反対側の外包材24は、一様に広い面積で反対側に引っ張り込まれることから、部分的に応力が集中せず、外包材24のガスバリア性の劣化が抑制される。 Thus, since the outer packaging material 24 on the opposite side of the distances L 1 , L 2 , and L 3 (see FIG. 6A) is pulled to the opposite side in a uniform wide area, the stress is partially applied. The concentration of the gas barrier property of the outer packaging material 24 is suppressed without being concentrated.

なお、外包材24のガスバリア性の劣化をさらに抑制するため、下記の方策をとることが可能である。   In order to further suppress the deterioration of the gas barrier property of the outer packaging material 24, the following measures can be taken.

図7(b)の減圧工程の前、又は減圧開始後から減圧途中までの積層体25と内袋26、及び内袋26と外包材24との各部材間の摩擦抵抗が大きくなる前に、外包材24の外側から、凹部22,端部凹部22a,22bが形成される方向に部分的に突出した型によって、最終的な凹部22,端部凹部22a,22bの深さよりも小さな寸法分、押し出すようにする。   Before the pressure reduction step of FIG. 7B or before the frictional resistance between the members of the laminate 25 and the inner bag 26 and the inner bag 26 and the outer packaging material 24 from the start of pressure reduction to the middle of pressure reduction increases. By a mold partially protruding from the outside of the outer packaging material 24 in the direction in which the concave portion 22 and the end concave portions 22a and 22b are formed, a size smaller than the depth of the final concave portion 22 and the end concave portions 22a and 22b, Try to extrude.

これにより、ある程度減圧工程が進んで積層体25と内袋26、及び内袋26と外包材24との摩擦抵抗が大きくなる前に、外包材24が事前に凹み部分(凹部22,端部凹部22a,22b)に近い形状に滑るように位置するので、外包材24のガスバリア層が引き伸ばされることを抑制できる。よって、金型によるプレス成形加工を実質的に必要とすることなく、目的に応じた形状の凹部を形成できることから、真空断熱材21の信頼性を低下させることなく、断熱性能の低下も抑制し、生産性も向上させた真空断熱材21を提供することができる。   Thereby, before the pressure reduction process proceeds to some extent and the friction resistance between the laminated body 25 and the inner bag 26 and between the inner bag 26 and the outer packaging material 24 becomes large, the outer packaging material 24 is previously recessed. 22a, 22b), so that the gas barrier layer of the outer packaging material 24 can be prevented from being stretched. Therefore, since it is possible to form a concave portion having a shape according to the purpose without substantially requiring press molding with a mold, the deterioration of the heat insulation performance is suppressed without reducing the reliability of the vacuum heat insulating material 21. The vacuum heat insulating material 21 with improved productivity can be provided.

溶着及び密封工程を経た真空断熱材21は、図7(c)に示す状態から、最後に内袋26の耳部26a及び外包材24の耳部24aが、それらの根元を基点として真空断熱材21の凹部22,端部凹部22a,22bが形成される側と反対側の面に折り曲げられ、粘着テープや接着剤等(図示せず)で整形され固定される。この真空断熱材21,31が、側面板11の内側(図4参照)又は背面板12の内側に取り付けられる。   From the state shown in FIG. 7C, the vacuum heat insulating material 21 that has undergone the welding and sealing process finally has the ear portion 26a of the inner bag 26 and the ear portion 24a of the outer packaging material 24 as the base points of the vacuum heat insulating material. 21 is bent to a surface opposite to the side where the concave portion 22 and the end concave portions 22a and 22b are formed, and is shaped and fixed with an adhesive tape, an adhesive or the like (not shown). The vacuum heat insulating materials 21 and 31 are attached to the inside of the side plate 11 (see FIG. 4) or the back plate 12.

この構成により、真空断熱材21の成形後(図7(c)参照)に形成される凹部22,端部凹部22a,22bの深さ寸法は、圧縮工程前の積層体25の厚みに応じて自由に変化させることができる。   With this configuration, the depth dimension of the recess 22 and the end recesses 22a and 22b formed after the vacuum heat insulating material 21 is formed (see FIG. 7C) depends on the thickness of the laminate 25 before the compression step. It can be changed freely.

また、凹部22,端部凹部22a,22bの短手方向の幅寸法は、切断した複数の積層体(第一の積層体25a,第二の積層体25b)の第三の積層体25c上への設置位置を変更することで、容易に調整できる。   Moreover, the width dimension of the transversal direction of the recessed part 22 and the edge part recessed parts 22a and 22b is on the 3rd laminated body 25c of the several laminated body (1st laminated body 25a, 2nd laminated body 25b) cut | disconnected. It can be easily adjusted by changing the installation position.

このように、本実施形態の真空断熱材21は、凹部22,端部凹部22a,22bが従来と異なり、真空断熱材21の成形後にプレス機や治具等を用いて強制的に外包材24等を伸ばしながら成形するものではない。   As described above, the vacuum heat insulating material 21 of the present embodiment is different from the conventional one in the concave portion 22 and the end concave portions 22a and 22b, and the outer packaging material 24 is forcibly used by using a press or a jig after the vacuum heat insulating material 21 is formed. It is not something that is shaped while stretching.

また、凹部22,端部凹部22a,22bは滑らかな曲線となるので、外包材24を損傷することがない。すなわち、凹部22,端部凹部22a,22b付近の外包材24は芯材23に沿って変形する。これにより、外包材24の損傷を防止できる。また、芯材23が切断されず、断熱性能が低下することがない。   Moreover, since the recessed part 22 and the edge part recessed parts 22a and 22b become a smooth curve, the outer packaging material 24 is not damaged. That is, the outer packaging material 24 near the recess 22 and the end recesses 22 a and 22 b is deformed along the core material 23. Thereby, damage to the outer packaging material 24 can be prevented. Moreover, the core material 23 is not cut, and the heat insulation performance does not deteriorate.

前記の如く、図6(a)に示す複数の積層体(第三の積層体25cよりも小さい第一の積層体25a,第二の積層体25b)を所定の間隔(間隔L1,L2,L3)を空けて第三の積層体25c上に配置しているため、外包材24内に芯材23を収納後、減圧させると、図7(c)に示すように、凹部22,端部凹部22a,22bがそれぞれ間隔L1,L2,L3に対応して形成される。なお、真空断熱材21における凹部22,端部凹部22a,22bの反対側(図7(b)の間隔L1,L2,L3の側)は、少しの筋状のくぼみ(深さ0.5〜1.0mm程度)が生じることがあるが、断熱性能には殆ど影響がない。むしろ、このくぼみが凹部22,端部凹部22aの位置を表示する機能を有するため、凹部22,端部凹部22aに放熱パイプ20を適切に配置することができ、組み立て作業性が向上する。 As described above, a plurality of laminated bodies (first laminated body 25a and second laminated body 25b smaller than the third laminated body 25c) shown in FIG. 6A are arranged at predetermined intervals (intervals L 1 and L 2). , L 3 ) are disposed on the third laminated body 25c so that when the core material 23 is housed in the outer packaging material 24 and then decompressed, as shown in FIG. End recesses 22a and 22b are formed corresponding to the intervals L 1 , L 2 and L 3 , respectively. Note that the opposite side of the recess 22 and the end recesses 22a and 22b (the sides of the intervals L 1 , L 2 , and L 3 in FIG. 7B) in the vacuum heat insulating material 21 is a slight streak (depth 0). (About 0.5 to 1.0 mm) may occur, but the thermal insulation performance is hardly affected. Rather, since the recess has a function of displaying the positions of the recess 22 and the end recess 22a, the heat radiation pipe 20 can be appropriately disposed in the recess 22 and the end recess 22a, and the assembly workability is improved.

なお、本実施例では積層体25の各厚み寸法が約100mmの場合を例示したが、これは一例であり、積層体25の各厚み寸法は任意に選択できるものである。   In addition, although the case where each thickness dimension of the laminated body 25 was about 100 mm was illustrated in the present Example, this is an example and each thickness dimension of the laminated body 25 can be selected arbitrarily.

<放熱パイプ20間の寸法W1>
次に、図8,図9,図10を用いて、側面板11に並列に配置されている放熱パイプ20(図4,図5(a)参照)の間の寸法をW1(例えば、200mm)とした理由を説明する。
<Dimension W1 between heat radiation pipes 20>
Next, referring to FIGS. 8, 9, and 10, the dimension between the heat radiating pipes 20 (see FIGS. 4 and 5A) arranged in parallel to the side plate 11 is set to W1 (for example, 200 mm). Explain why.

図8は、真空断熱材21に設ける溝ピッチを示す図4のP部拡大図である。図9は、図8の溝ピッチを選定するための真空断熱材の温度特性を示す図である。図10は、図8,図9の結果を適用した一例を示す図4のP部の要部拡大図である。   FIG. 8 is an enlarged view of part P in FIG. 4 showing the groove pitch provided in the vacuum heat insulating material 21. FIG. 9 is a diagram showing temperature characteristics of the vacuum heat insulating material for selecting the groove pitch in FIG. FIG. 10 is an enlarged view of a main part of the P part in FIG. 4 showing an example to which the results of FIGS. 8 and 9 are applied.

図8に示すように、放熱パイプ20は、厚さ40〜50μm程度のアルミニウムテープ28により、ほぼ全長を側面板11の内面11nに固定されている。なお、側面板11は、板厚0.4mm〜0.5mm程度の鋼板である。   As shown in FIG. 8, the heat radiating pipe 20 is substantially fixed to the inner surface 11 n of the side plate 11 with an aluminum tape 28 having a thickness of about 40 to 50 μm. The side plate 11 is a steel plate having a thickness of about 0.4 mm to 0.5 mm.

そして、真空断熱材21は、ホットメルトや接着剤等にて側面板11の内面11nに固定されている。   And the vacuum heat insulating material 21 is being fixed to the inner surface 11n of the side plate 11 with the hot melt, the adhesive agent, etc.

内箱18の被係止部18aは、外箱19の弾性変形するR曲げ部19aと、ドアに対向するフランジ部19bとで挟持している。すなわち、被係止部18aはR曲げ部19aとフランジ部19bとで気密的に係止している。   The locked portion 18a of the inner box 18 is sandwiched between an R-bending portion 19a that elastically deforms the outer box 19 and a flange portion 19b that faces the door. That is, the locked portion 18a is airtightly locked by the R bent portion 19a and the flange portion 19b.

ここで、外箱19のR曲げ部19aは、側面板11を形成する鉄板を曲げ加工してフランジ部19bを形成し、このフランジ部19bを折り返すことで形成されている。なお、R曲げ部19aは、フランジ部19b及び側面板11と別体に形成し、フランジ部19bに溶接して形成するように構成してもよい。   Here, the R-bending portion 19 a of the outer box 19 is formed by bending a steel plate forming the side plate 11 to form a flange portion 19 b and folding back the flange portion 19 b. The R-bending portion 19a may be formed separately from the flange portion 19b and the side plate 11 and welded to the flange portion 19b.

真空断熱材21は、外箱19のR曲げ部19aの近傍に配設される。そのため、寸法上の制約をクリアするため、従来の左右に壁部をもつ形状の凹部と異なり、真空断熱材21端部は横断面L字状を成すように、外方に開放された端部凹部22aとしている。   The vacuum heat insulating material 21 is disposed in the vicinity of the R bent portion 19 a of the outer box 19. Therefore, in order to clear the restrictions on dimensions, unlike the conventional concave portion having a wall portion on the left and right, the end portion of the vacuum heat insulating material 21 is an end portion opened outward so as to form an L-shaped cross section. A recess 22a is provided.

図5(a)に示す端部凹部22bも、端部凹部22aと同様に、真空断熱材21の縁部に沿って設けられ、外方が開放された凹んだ形状としている。   The end recessed part 22b shown to Fig.5 (a) is provided along the edge of the vacuum heat insulating material 21 similarly to the end recessed part 22a, and is made into the concave shape by which the outer side was open | released.

真空断熱材21に端部凹部22aを形成して、外箱19側のフランジ部19bに放熱パイプ20を近づける理由を以下説明する。   The reason why the end recessed portion 22a is formed in the vacuum heat insulating material 21 and the heat radiating pipe 20 is brought close to the flange portion 19b on the outer box 19 side will be described below.

冷蔵庫1の庫内空間を密閉するために、ドア5には外箱19開口とのシール用のパッキン33(図10参照)を備えている。このパッキン33を介して、内箱18内部の庫内1nからの熱伝導による熱漏洩、及び、庫内1nからのパッキン33が当接するフランジ部19bを介しての熱伝導による熱漏洩がある。このため、フランジ部19b近くに庫内1nと庫外1g(図8参照)との温度差により、露点温度以下になった箇所で露付き現象が発生することがある。これを防止するため、放熱パイプ20の熱で加熱保温して、露点温度より高くし、露付きを防止している。   In order to seal the interior space of the refrigerator 1, the door 5 is provided with a packing 33 (see FIG. 10) for sealing with the opening of the outer box 19. There are heat leakage due to heat conduction from the inside 1n inside the inner box 18 through the packing 33 and heat leakage due to heat conduction through the flange portion 19b with which the packing 33 from the inside 1n abuts. For this reason, the dew phenomenon may occur near the flange portion 19b due to a temperature difference between the inside 1n and the outside 1g (see FIG. 8). In order to prevent this, the heat of the heat radiating pipe 20 is heated and kept warmer than the dew point temperature to prevent dew condensation.

このために、真空断熱材21の端部凹部22aを設けたものである。すなわち、端部凹部22aを真空断熱材21の縁部に外方が開放された凹んだ形状に設けることで、端部凹部22aで覆われる放熱パイプ20を、フランジ部19bに近づけて配設することができる。これにより、有効な露付き対策が図れる。   For this purpose, an end recess 22a of the vacuum heat insulating material 21 is provided. That is, by providing the end recess 22a in a concave shape with the outer side opened to the edge of the vacuum heat insulating material 21, the heat radiating pipe 20 covered with the end recess 22a is disposed close to the flange portion 19b. be able to. Thereby, an effective dew countermeasure can be achieved.

次に、アルミニウムテープ28で側面板11に取り付けた放熱パイプ20と側面板11との温度関係について説明する。   Next, the temperature relationship between the heat radiating pipe 20 attached to the side plate 11 with the aluminum tape 28 and the side plate 11 will be described.

一般的に、側面板11は内容積450リットル以上の冷蔵庫の場合、奥行き寸法が500〜600mm、高さ寸法が1700〜1850mmである。   Generally, the side plate 11 has a depth dimension of 500 to 600 mm and a height dimension of 1700 to 1850 mm in a refrigerator having an internal volume of 450 liters or more.

図8に示すように、側面板11に貼り付けられる真空断熱材21には、W1間隔(例えば200mmピッチ)で凹形状の凹部22が2つ設けられており、端部凹部22aが2つ(図4参照)設けられている。端部凹部22a内の放熱パイプ20は、側面板11の端面(フランジ部19b)のA点までの寸法W2が50mm前後(40〜70mm)に設定されている。これは、放熱パイプ20の熱をフランジ部19bに伝達させることで、温度を露点温度より高く上げ、フランジ部19bに生じる結露対策を行うためである。   As shown in FIG. 8, the vacuum heat insulating material 21 attached to the side plate 11 is provided with two concave recesses 22 at intervals of W1 (for example, 200 mm pitch), and two end recesses 22a ( (See FIG. 4). In the heat radiating pipe 20 in the end recess 22a, the dimension W2 to the point A of the end surface (flange portion 19b) of the side plate 11 is set to about 50 mm (40 to 70 mm). This is because the heat of the heat radiating pipe 20 is transmitted to the flange portion 19b, thereby raising the temperature higher than the dew point temperature and taking measures against dew condensation occurring in the flange portion 19b.

図9は、側面板11の表面温度を測定しグラフ化したものであり、縦軸は測定点の温度(℃)を示し、横軸は側面板11のA点(図8参照)からの冷蔵庫1の奥行き方向(図1の冷蔵庫1の奥側方向)の距離を示している。なお、測定時の庫外(1g)温度は30℃であり、冷蔵庫1は通常運転状態である。   FIG. 9 is a graph obtained by measuring the surface temperature of the side plate 11, the vertical axis indicates the temperature (° C.) of the measurement point, and the horizontal axis is the refrigerator from the point A of the side plate 11 (see FIG. 8). 1 shows the distance in the depth direction 1 (the back side direction of the refrigerator 1 in FIG. 1). In addition, the outside (1g) temperature at the time of a measurement is 30 degreeC, and the refrigerator 1 is a normal driving | running state.

測定点は、図1に示すS1,S2部である。なお、S1,S2部とも同様な温度特性を示したので、ここでは、図9を用いてS1部に関する温度特性を説明する。   The measurement points are S1 and S2 shown in FIG. In addition, since the temperature characteristic similar to S1 and S2 part was shown, the temperature characteristic regarding S1 part is demonstrated using FIG. 9 here.

また、放熱パイプ20の側面板11への配設位置を示す冷蔵庫1の奥行き方向のW1,W2寸法は、W2寸法が50mm、W1寸法が200mmとした。   In addition, the W1 and W2 dimensions in the depth direction of the refrigerator 1 that indicate the position of the heat radiating pipe 20 on the side plate 11 were set to 50 mm for the W2 dimension and 200 mm for the W1 dimension.

更に、放熱パイプ20の側面板11(板厚0.45mmの鋼板)への取り付けには、厚さ50μmで幅40mmのアルミニウムテープ28を使用した。   Furthermore, the aluminum tape 28 having a thickness of 50 μm and a width of 40 mm was used for attaching the heat radiating pipe 20 to the side plate 11 (steel plate having a thickness of 0.45 mm).

この測定条件による測定結果は、図9に示すように、放熱パイプ20の温度影響を受けA点の温度が約33℃となり、湿度90%時の露点温度を上回ることが判明した。   As shown in FIG. 9, the measurement result under this measurement condition was found that the temperature at the point A was about 33 ° C. due to the temperature effect of the heat radiating pipe 20 and exceeded the dew point temperature when the humidity was 90%.

すなわち、A点とこのA点から最も近い位置の放熱パイプ20との間の距離W2を50mmにすることで、A点の温度を結露温度より高い温度の約33℃とすることができ、結露を防止できる。   That is, by setting the distance W2 between the point A and the heat radiating pipe 20 closest to the point A to 50 mm, the temperature at the point A can be about 33 ° C., which is higher than the dew condensation temperature. Can be prevented.

また、A点に最も近い放熱パイプ20と、それに隣り合って配置された放熱パイプ20との間の寸法W1の中間の温度は、庫外温度(30℃)とほぼ同じ温度(約30℃)になっていることが判った。   Moreover, the intermediate temperature of the dimension W1 between the heat radiating pipe 20 closest to the point A and the heat radiating pipe 20 disposed adjacent thereto is substantially the same temperature (about 30 ° C.) as the outside temperature (30 ° C.). It turned out that it became.

すなわち、放熱パイプ20を約200mmピッチの間隔で配設すると、隣り合う放熱パイプ20が互いの熱の影響を受けることなく、効率よく放熱を行うことができる。   That is, if the heat radiating pipes 20 are arranged at intervals of about 200 mm, the adjacent heat radiating pipes 20 can efficiently radiate heat without being affected by each other's heat.

このように、外方が開放された凹んだ形状の端部凹部22aにしたことにより、放熱パイプ20をフランジ部19bに近づけて配設できるとともに、放熱パイプ20を真空断熱材21の端部凹所22aで覆うことができる。   As described above, by forming the recessed concave end portion 22a with the outer side open, the heat radiating pipe 20 can be disposed close to the flange portion 19b, and the heat radiating pipe 20 is recessed at the end of the vacuum heat insulating material 21. It can be covered at the place 22a.

ここで、フランジ部19b近くの放熱パイプ20の位置を従来と同じとした場合、従来、真空断熱材の端部の凸形状部がR曲げ部19aにあたるので、真空断熱材でフランジ部19b近くの放熱パイプ20を覆うことは困難であった。そのため、真空断熱材の大きさを小さくして、フランジ部19b近くの放熱パイプ20を露出せざるを得なかった。   Here, when the position of the heat radiating pipe 20 near the flange portion 19b is the same as the conventional one, the convex portion at the end of the vacuum heat insulating material hits the R-bending portion 19a, so the vacuum heat insulating material near the flange portion 19b is used. It was difficult to cover the heat radiating pipe 20. Therefore, the size of the vacuum heat insulating material has to be reduced to expose the heat radiating pipe 20 near the flange portion 19b.

しかし、本構成の真空断熱材21は、外方が開放された凹んだ形状の端部凹部22aを形成することで、フランジ部19b近くの位置の放熱パイプ20を真空断熱材21で覆うことが可能となった。このように、従来と比較し、真空断熱材21を大きくできるので、発泡断熱材17が接する外箱19の面を覆う真空断熱材21のカバー率を向上させることができる。   However, the vacuum heat insulating material 21 of this structure can cover the heat radiating pipe 20 at a position near the flange portion 19b with the vacuum heat insulating material 21 by forming an end concave portion 22a having a concave shape that is open to the outside. It has become possible. Thus, since the vacuum heat insulating material 21 can be enlarged as compared with the conventional case, the coverage of the vacuum heat insulating material 21 covering the surface of the outer box 19 with which the foam heat insulating material 17 contacts can be improved.

なお、本実施形態においては、W2寸法が50mm、W1寸法を200mmとして説明したが、W2寸法は40mm〜70mmであればA点の温度を30℃以上に確保でき、結露の防止対策ができる。すなわち、図9において、W2を40mmとした場合、フランジ部19bの温度は約33.5℃となり、庫外温度30℃より高くる。また、W2を70mmとした場合、フランジ部19bの温度は庫外温度30℃に対して約30℃以上となる。これにより、フランジ部19bの結露対策は十分に行える。   In the present embodiment, the W2 dimension is 50 mm and the W1 dimension is 200 mm. However, if the W2 dimension is 40 mm to 70 mm, the temperature at the point A can be secured at 30 ° C. or more, and measures to prevent condensation can be taken. That is, in FIG. 9, when W2 is 40 mm, the temperature of the flange portion 19b is about 33.5 ° C., which is higher than the outside temperature of 30 ° C. Moreover, when W2 is 70 mm, the temperature of the flange part 19b will be about 30 degreeC or more with respect to 30 degreeC outside temperature. Thereby, the dew condensation countermeasure of the flange part 19b can fully be performed.

なお、W2寸法が40mm未満の場合、放熱パイプ20の熱が出過ぎて庫内の冷却効果に悪影響を及ぼす。一方、W2寸法が70mmより大きい場合、放熱パイプ20からの熱が足らず、フランジ部19bの温度が下り、露付きが発生する可能性が高まる。そのため、W2寸法は40mm〜70mmが望ましい。   In addition, when W2 dimension is less than 40 mm, the heat of the heat radiating pipe 20 is excessively generated and adversely affects the cooling effect in the warehouse. On the other hand, when the W2 dimension is larger than 70 mm, the heat from the heat radiating pipe 20 is insufficient, the temperature of the flange portion 19b is lowered, and the possibility of dew formation increases. Therefore, the W2 dimension is desirably 40 mm to 70 mm.

W1寸法は180mm〜220mmであれば、図9に示すように、放熱パイプ20の間の中間点の表面温度が庫外温度30℃より低くなり、放熱を十分に行うことが可能である。つまり、W1寸法を180〜220mmとすれば、放熱パイプ20の間の中間点の表面温度は、庫外温度30℃と同等以下となり、効率の良い放熱ができる。   If the W1 dimension is 180 mm to 220 mm, as shown in FIG. 9, the surface temperature of the intermediate point between the heat radiating pipes 20 becomes lower than the outside temperature of 30 ° C., and the heat can be sufficiently radiated. That is, if the W1 dimension is 180 to 220 mm, the surface temperature of the intermediate point between the heat radiating pipes 20 is equal to or lower than the outside temperature of 30 ° C., and efficient heat radiation can be performed.

なお、W1寸法を180mm未満とした場合、放熱パイプ20が隣りの放熱パイプ20の熱の影響を受けて、効率よく放熱できない。一方、W1寸法を220mmより大きくした場合、放熱パイプ20の長さが短くなり、効率のよい放熱が行えない。   If the W1 dimension is less than 180 mm, the heat radiating pipe 20 cannot be radiated efficiently due to the influence of the heat of the adjacent heat radiating pipe 20. On the other hand, when the W1 dimension is larger than 220 mm, the length of the heat radiating pipe 20 becomes short, and efficient heat radiation cannot be performed.

従って、W1寸法を180〜220mmとすることにより、隣り合う放熱パイプ20同士が熱干渉せず、効率よく放熱作用を行うことができるので、最も望ましい。   Therefore, by setting the W1 dimension to 180 to 220 mm, the adjacent heat radiating pipes 20 do not interfere with each other and can efficiently perform a heat radiating action, which is most desirable.

<内袋を用いない場合の真空断熱材の構成>
次に、図11において、上記説明とは異なる真空断熱材について説明する。異なる点は、内袋を用いない点である。図11(a)では、原綿を所定寸法に切断し、積層体としている。次に、図11(b)では、バインダー等の硬化剤を塗布した後、プレス機等をもって25分の1位迄に圧縮し、厚み8〜15mmの芯材を製造している。図11(c)では、芯材を外包材で包み、その外包材内を芯材の形状に合わせて減圧した後、開放部を溶着し、真空断熱材としている。
<Configuration of vacuum insulation material when inner bag is not used>
Next, in FIG. 11, a vacuum heat insulating material different from the above description will be described. The difference is that no inner bag is used. In Fig.11 (a), raw cotton is cut | disconnected to the predetermined dimension and it is set as the laminated body. Next, in FIG.11 (b), after apply | coating hardeners, such as a binder, it compresses to 1 / 25th with a press etc., and manufactures the core material of thickness 8-15mm. In FIG.11 (c), after wrapping a core material with an outer packaging material and decompressing the inside of the outer packaging material according to the shape of a core material, the open part is welded and it is set as a vacuum heat insulating material.

まず、図11(a)において、ロ−ル状に巻かれた積層体25′となる原綿を乾燥後、所定寸法に切断し、3段に積層する。積層体25′は、それぞれ厚さ100mmの第一の積層体25a′,第二の積層体25b′,第三の積層体25c′,第四の積層体25d′より構成されている。換言すると、積層体25′を圧縮する前は300mmの厚みを有している。そして、第一の積層体25a′,第二の積層体25b′は、第三の積層体25c′上に間隔L1′,L2′,L3′を空けて配置されている。間隔を空けて積層体25′を配置する理由は、溝状の凹部22′,端部凹部22a′を形成するためである。 First, in FIG. 11A, the raw cotton to be a laminated body 25 'wound in a roll shape is dried, cut into a predetermined size, and laminated in three stages. The laminated body 25 'is composed of a first laminated body 25a', a second laminated body 25b ', a third laminated body 25c', and a fourth laminated body 25d 'each having a thickness of 100 mm. In other words, the laminate 25 'has a thickness of 300 mm before being compressed. The first stacked body 25a ′ and the second stacked body 25b ′ are arranged on the third stacked body 25c ′ with intervals L 1 ′, L 2 ′, and L 3 ′. The reason why the stacked body 25 ′ is arranged with an interval is to form the groove-like recess 22 ′ and the end recess 22 a ′.

なお、溝状の凹部22′,端部凹部22a′は、積層体25′の厚みや間隔を適宜選定することで、所望の深さ及び幅を得られるものである。   The groove-like recess 22 'and the end recess 22a' can obtain desired depth and width by appropriately selecting the thickness and interval of the laminate 25 '.

次に、図11(b)において、積層体25にバインダー等の硬化剤を塗布した後、芯材となる積層体はプレス機等を用いて加熱圧縮成形する。プレス機27′には、積層体25′に溝状の凹部22′及び端部凹部22a′を形成する為の凸部27a′,27b′が設けてある。この凸部27a′,27b′は、先の間隔L1′,L2′,L3′に対向する部分に設けている。 Next, in FIG.11 (b), after apply | coating hardeners, such as a binder, to the laminated body 25, the laminated body used as a core material is heat compression-molded using a press etc. FIG. The press machine 27 'is provided with convex portions 27a' and 27b 'for forming a groove-like concave portion 22' and an end concave portion 22a 'in the laminate 25'. The convex portion 27a ', 27b' is previous interval L 1 ', L 2', is provided at a portion facing to L 3 '.

こうすることにより、図11(b)に示す積層体25′の形状が形成される。加熱圧縮成形時、第三の積層体25c′及び第四の積層体25d′は、第一の積層体25a′及び第二の積層体25b′の間隔L1′,L2′,L3′を埋めるように変形する。すなわち、間隔L1′,L2′,L3′に対向する第三の積層体25c′(第四の積層体25d′)の部分が間隔L1′,L2′,L3′部分に侵入していき、第一の積層体25a′及び第二の積層体25b′とは反対側の面に溝状の凹部22,端部凹部22aを形成するための凹部23a′,端部凹部23b′を形成する。 By doing so, the shape of the laminated body 25 ′ shown in FIG. 11B is formed. During the heat compression molding, the third laminated body 25c ′ and the fourth laminated body 25d ′ are arranged such that the distances L 1 ′, L 2 ′, L 3 ′ between the first laminated body 25a ′ and the second laminated body 25b ′. Transform to fill That is, the interval L 1 ', L 2', L 3 'third of the laminate 25c facing the' (fourth laminate 25d ') moiety distance L 1 of the', L 2 ', L 3' to the part The recess 23a 'and the end recess 23b are formed to form the groove-like recess 22 and the end recess 22a on the surface opposite to the first stack 25a' and the second stack 25b '. ′ Is formed.

このように、積層体25′に予め凹部23a′,端部凹部23b′を形成しておくと、積層体25′の原綿の密度が均一化した真空断熱材が得られる。   Thus, if the recessed part 23a 'and the edge part recessed part 23b' are previously formed in laminated body 25 ', the vacuum heat insulating material with which the density of the raw cotton of laminated body 25' was equalized will be obtained.

また、凹部22′,端部凹部22a′は滑らかな曲線となるので、外包材を損傷することを防止できる。   Further, since the concave portion 22 'and the end concave portion 22a' have smooth curves, it is possible to prevent the outer packaging material from being damaged.

次に図11(c)において、積層体25′を外包材24′内に収納した後、減圧機により外包材24′内の減圧が行われる。積層体25′は、予め加熱圧縮成形されているので、内袋を用いずとも外包材24′に容易に収納することができる。減圧終了後、外包材24′の開放部は溶着して密封する。   Next, in FIG.11 (c), after accommodating laminated body 25 'in outer packaging material 24', pressure reduction in outer packaging material 24 'is performed with a decompressor. Since the laminated body 25 'is preliminarily heat compression molded, it can be easily accommodated in the outer packaging material 24' without using an inner bag. After the decompression is completed, the open portion of the outer packaging material 24 'is welded and sealed.

以上の如き工程を経て得られる真空断熱材は、芯材23′を加熱圧縮成形する時に予め形成された凹部23a′、端部凹部23b′に、外包材24′が滑るように位置するので、外包材24′に局部的な応力が集中することを防止できる。   Since the vacuum heat insulating material obtained through the above steps is positioned so that the outer packaging material 24 ′ slides in the recessed portion 23 a ′ and the end recessed portion 23 b ′ formed in advance when the core material 23 ′ is heat compression molded, It is possible to prevent local stress from concentrating on the outer packaging material 24 '.

なお、外包材24′は気体透過を抑制するガスバリア層及び熱融着層を有するものである、そして、ガスバリア層としては、アルミニウム,ステンレス等の金属箔、或いは金属,無機酸化物、及び炭素等を蒸着したプラスチックフィルム等を用いる。また、バインダーとは有機バインダー,無機バインダー等、公知のバインダーが用いられる。   The outer packaging material 24 ′ has a gas barrier layer and a heat fusion layer for suppressing gas permeation. As the gas barrier layer, a metal foil such as aluminum or stainless steel, or a metal, inorganic oxide, carbon, etc. The plastic film etc. which vapor-deposited are used. Moreover, well-known binders, such as an organic binder and an inorganic binder, are used with a binder.

なお、上記説明ではバインダーを塗布して加熱圧縮成形する例を示したが、これに限るものではない。例えば、芯材にガラス繊維を用いて、その一部が絡み合った状態の積層体を、所定加熱温度で加圧成形することにより、ガラス繊維が軟化して、加圧状態で熱変形する。そして、加熱温度を低下させると、ガラス繊維の積層体は弾性変形が抑制されて、加圧成形時の状態で形状が保持される。ここで、所定加熱温度とは、ガラス繊維の自重で繊維が変形開始する温度、又はプレス成形時の加重によって繊維が変形可能となる温度であって、且つガラス繊維の断面形状が変化しない程度の温度である。よって、ガラス繊維の集合体からなる芯材は、バインダーを用いずとも、芯材を所定形状に保持することができる。   In the above description, an example in which a binder is applied and heat compression molding is shown, but the present invention is not limited to this. For example, a glass fiber is used as a core material, and a laminated body in a part of which is intertwined is subjected to pressure molding at a predetermined heating temperature, so that the glass fiber is softened and thermally deformed in a pressurized state. And if heating temperature is lowered | hung, elastic deformation will be suppressed and the shape will be hold | maintained in the state at the time of pressure molding of the laminated body of glass fiber. Here, the predetermined heating temperature is a temperature at which the fiber starts to be deformed by its own weight, or a temperature at which the fiber can be deformed by a load at the time of press molding, and the cross-sectional shape of the glass fiber does not change. Temperature. Therefore, the core material made of an aggregate of glass fibers can hold the core material in a predetermined shape without using a binder.

こうして得られた真空断熱材は、外箱と内箱によって形成される断熱空間に配設され、発泡断熱材と共に冷蔵庫箱体の断熱材として有効に働くものである。   The vacuum heat insulating material thus obtained is disposed in a heat insulating space formed by the outer box and the inner box, and works effectively as a heat insulating material for the refrigerator box together with the foam heat insulating material.

<放熱パイプの支持構成>
次に、図12,図13において、放熱パイプの支持構成について説明する。
<Support structure of heat radiation pipe>
Next, in FIG. 12 and FIG. 13, the support structure of the heat radiating pipe will be described.

まず、図12において、冷蔵庫箱体15を構成する内箱18と外箱19が形成する断熱空間は、発泡断熱材17と真空断熱材21で埋められている。真空断熱材21は、放熱パイプ20を覆うように側面板11に設けられている。放熱パイプ20は、真空断熱材21に設けられた溝状の凹部22(端部凹部22a)に位置している。   First, in FIG. 12, the heat insulating space formed by the inner box 18 and the outer box 19 constituting the refrigerator box 15 is filled with the foam heat insulating material 17 and the vacuum heat insulating material 21. The vacuum heat insulating material 21 is provided on the side plate 11 so as to cover the heat radiating pipe 20. The heat radiating pipe 20 is located in a groove-like recess 22 (end recess 22 a) provided in the vacuum heat insulating material 21.

ここで、図12では、放熱パイプ20と真空断熱材21とが突部30で接触している。   Here, in FIG. 12, the heat radiating pipe 20 and the vacuum heat insulating material 21 are in contact with each other at the protrusion 30.

すなわち、真空断熱材21の外包材(金属層を有する)と放熱パイプ20とが、全長に渡って接触しているのではなく、部分的に真空断熱材21の突部30によって放熱パイプ20を接触支持しており、大部分は真空断熱材21の凹部上面34と非接触となっている。   That is, the outer packaging material (having the metal layer) of the vacuum heat insulating material 21 and the heat radiating pipe 20 are not in contact with each other over the entire length, but the heat radiating pipe 20 is partially formed by the protrusion 30 of the vacuum heat insulating material 21. Most of them are in non-contact with the concave upper surface 34 of the vacuum heat insulating material 21.

すなわち、放熱パイプ20は溝状の凹部22内に設けた突部30に支持されており、外包材と放熱パイプ20とが接触しているのは、突部30の部分となる。   That is, the heat radiating pipe 20 is supported by the protrusion 30 provided in the groove-shaped recess 22, and the portion of the protrusion 30 is in contact with the outer packaging material and the heat radiating pipe 20.

図13において、凹部22,端部凹部22aの深さD1を5mmとした場合、突部30の高さD2は0.5〜1.0mmとする。図12の如く、放熱パイプ20を溝状の凹部22,端部凹部22a内に収納した時、凹部22,端部凹部22aの凹部上面34が放熱パイプ20となるべく接触しない様にしている。 13, when the recess 22, the depth D 1 of the end recesses 22a and 5 mm, the height D 2 of the projection 30 is set to 0.5 to 1.0 mm. As shown in FIG. 12, when the heat radiating pipe 20 is housed in the groove-shaped concave portion 22 and the end concave portion 22a, the concave surface 22 of the concave portion 22 and the end concave portion 22a is prevented from contacting the heat radiating pipe 20 as much as possible.

また、突部30は芯材の積層厚を変更することで形成可能である。すなわち、突部30となる部分の芯材の積層厚(第三の積層体25c″又は第四の積層体25d″)を、予め厚くなるように積層しておくことで、D2寸法分の突出高さが得られる。すなわち、第一の積層体25a″,第二の積層体25b″を、間隔を空けて第三の積層体25c″上に配置する。さらに、第三の積層体25c″は第四の積層体25d″上に重ねて配置する。 Moreover, the protrusion 30 can be formed by changing the lamination thickness of the core material. That is, by stacking the core material layer thickness (third layered body 25c ″ or fourth layered body 25d ″) of the portion to become the protrusion 30 so as to be thicker in advance, the portion corresponding to the dimension D 2 is obtained. Protrusion height is obtained. That is, the first stacked body 25a ″ and the second stacked body 25b ″ are arranged on the third stacked body 25c ″ with an interval. Further, the third stacked body 25c ″ is the fourth stacked body. 25d ″ is placed on top of each other.

なお、内袋を用いない場合、プレス機の型の形状によって芯材23に溝状の凹部22,端部凹部22aを形成する時に、突部30も併せて形成する構成であってもよい。   When the inner bag is not used, the protrusion 30 may be formed when the groove-like recess 22 and the end recess 22a are formed in the core member 23 according to the shape of the press machine.

次に、図13において、積層体25(第一の積層体25a″,第二の積層体25b″,第三の積層体25c″,第四の積層体25d″)を外包材24に収納した後、外包材24内の減圧を開始する。   Next, in FIG. 13, the laminated body 25 (the first laminated body 25 a ″, the second laminated body 25 b ″, the third laminated body 25 c ″, and the fourth laminated body 25 d ″) is stored in the outer packaging material 24. Then, pressure reduction in the outer packaging material 24 is started.

第三の積層体25c″,第四の積層体25d″及び外包材24は、第四の積層体25d″側に凹部22,端部凹部22aを形成するように、第一の積層体25a″,第二の積層体25b″の間隔を埋めるように曲線的に変形する。また、第四の積層体25d″側に形成される凹部22,端部凹部22a内には、突部30が形成される。   The third laminated body 25c ″, the fourth laminated body 25d ″, and the outer packaging material 24 have the first laminated body 25a ″ so as to form the concave portion 22 and the end concave portion 22a on the fourth laminated body 25d ″ side. , And the second laminated body 25b ″ is deformed in a curve so as to fill the gap. Further, a protrusion 30 is formed in the concave portion 22 and the end concave portion 22a formed on the fourth laminated body 25d ″ side. Is done.

すなわち、真空断熱材21には、冷蔵庫の外箱の側面板,背面板等に配設した放熱パイプ20を覆う溝状の凹部22,端部凹部22aを設けて、さらに凹部22,端部凹部22a内に放熱パイプ20と部分的に接触支持する突部30を設けたものである。これにより、真空断熱材の金属層を有する外包材と放熱パイプ間での、熱の授受が低減される。よって、庫内側への熱影響が低減されて、冷蔵庫自体の省エネルギー化に貢献できるものである。   That is, the vacuum heat insulating material 21 is provided with a groove-like recess 22 and an end recess 22a covering the heat radiating pipe 20 disposed on the side plate, the back plate, etc. of the outer box of the refrigerator. A protrusion 30 that partially contacts and supports the heat radiating pipe 20 is provided in 22a. Thereby, transfer of heat between the outer packaging material having the metal layer of the vacuum heat insulating material and the heat radiating pipe is reduced. Therefore, the thermal influence on the inner side of the refrigerator is reduced, which can contribute to energy saving of the refrigerator itself.

以上説明した構成を有するものであるから、次の効果が得られるものである。すなわち、繊維集合体の芯材と、該芯材を収納する外包材とを有し、前記外包材内を減圧した真空断熱材において、前記芯材は第一の積層体及び第二の積層体を所定間隔を空けて第三の積層体上に配置して、前記第三の積層体は前記所定間隔を埋めるように前記第一の積層体及び前記第二の積層体側に曲がることで前記第三の積層体側に凹部が形成され、該凹部内に突部が形成されるように前記第三の積層体の一部を厚くする。   Since it has the structure described above, the following effects can be obtained. That is, in a vacuum heat insulating material having a core material of a fiber assembly and an outer packaging material that houses the core material, and the inside of the outer packaging material is depressurized, the core material includes the first laminated body and the second laminated body. Are arranged on the third laminated body with a predetermined interval, and the third laminated body is bent toward the first laminated body and the second laminated body so as to fill the predetermined interval. A concave portion is formed on the third laminated body side, and a part of the third laminated body is thickened so that a protrusion is formed in the concave portion.

これにより、外包材と放熱パイプ間の熱の授受が低減されるので、庫内側への熱影響が低減されて、冷蔵庫自体の省エネルギー化に貢献できる。   Thereby, since transfer of the heat | fever between an outer packaging material and a heat radiating pipe is reduced, the heat influence to the warehouse inner side is reduced and it can contribute to the energy-saving of refrigerator itself.

1 冷蔵庫
5 冷蔵室扉(ドア)
11 側面板
12 背面板
15 冷蔵庫箱体
15a 前面フランジ部
16 注入口
17 発泡断熱材(ウレタンフォーム)
18 内箱
19 外箱
19a R曲げ部(内箱係止部)
19b フランジ部(屈曲部)
20 放熱パイプ
21,31 真空断熱材
22 凹部
22a,22b 端部凹部
23 芯材
24 外包材
25 積層体
25a 第一の積層体
25b 第二の積層体
25c 第三の積層体
25d 第四の積層体
26 内袋
30 突部
34 凹部上面
1 Refrigerator 5 Cold room door
DESCRIPTION OF SYMBOLS 11 Side plate 12 Back plate 15 Refrigerator box 15a Front flange part 16 Inlet 17 Foam heat insulating material (urethane foam)
18 Inner box 19 Outer box 19a R bending part (inner box locking part)
19b Flange part (bent part)
20 Heat radiating pipes 21, 31 Vacuum heat insulating material 22 Recess 22a, 22b End recess 23 Core material 24 Outer packaging material 25 Laminated body 25a First laminated body 25b Second laminated body 25c Third laminated body 25d Fourth laminated body 26 Inner bag 30 Projection 34 Recess top surface

Claims (3)

外箱の内側に配置された真空断熱材と、該真空断熱材と前記外箱との間に配置された放熱パイプと、を備えた冷蔵庫において、
前記真空断熱材は、繊維集合体の芯材と、該芯材を収納する外包材とを有し、前記外包材内を減圧して、
前記芯材は第一の積層体及び第二の積層体を所定間隔を空けて第三の積層体上に配置して、前記第三の積層体は前記所定間隔を埋めるように前記第一の積層体及び前記第二の積層体側に曲がることで前記第三の積層体側に凹部が形成され、該凹部内に突部が形成されるように前記第三の積層体の一部を厚くして、
前記突部で支持するように前記凹部に前記放熱パイプを配置したことを特徴とする冷蔵庫。
In a refrigerator comprising a vacuum heat insulating material disposed inside an outer box, and a heat radiating pipe disposed between the vacuum heat insulating material and the outer box,
The vacuum heat insulating material has a core material of a fiber assembly and an outer packaging material that stores the core material, and the inside of the outer packaging material is depressurized,
The core material includes a first laminated body and a second laminated body arranged on a third laminated body at a predetermined interval, and the third laminated body fills the predetermined interval with the first laminated body. By bending the laminate and the second laminate, a recess is formed on the third laminate, and a part of the third laminate is thickened so that a protrusion is formed in the recess. ,
The refrigerator, wherein the heat radiating pipe is disposed in the recess so as to be supported by the protrusion.
繊維集合体の芯材と、該芯材を収納する外包材とを有し、前記外包材内を減圧した真空断熱材において、
前記芯材は第一の積層体及び第二の積層体を所定間隔を空けて第三の積層体上に配置して、前記第三の積層体は前記所定間隔を埋めるように前記第一の積層体及び前記第二の積層体側に曲がることで前記第三の積層体側に凹部が形成され、該凹部内に突部が形成されるように前記第三の積層体の一部を厚くしたことを特徴とする真空断熱材。
In a vacuum heat insulating material having a core material of a fiber assembly, and an outer packaging material for storing the core material, wherein the inside of the outer packaging material is decompressed,
The core material includes a first laminated body and a second laminated body arranged on a third laminated body at a predetermined interval, and the third laminated body fills the predetermined interval with the first laminated body. A part of the third laminated body is made thick so that a concave portion is formed on the third laminated body side by bending to the laminated body and the second laminated body side, and a protrusion is formed in the concave portion. Vacuum insulation material characterized by
繊維集合体の芯材と、該芯材を収納する外包材とを有し、前記外包材内を減圧した真空断熱材において、
前記芯材は第一の積層体及び第二の積層体を所定間隔を空けて第三の積層体上に配置して、加熱圧縮成形によって前記第三の積層体は前記所定間隔を埋めるように前記第一の積層体及び前記第二の積層体側に曲がることで前記第三の積層体側に凹部が形成され、且つ該凹部内に突部が形成された状態で、前記外包材に収納して減圧したことを特徴とする真空断熱材。
In a vacuum heat insulating material having a core material of a fiber assembly, and an outer packaging material for storing the core material, wherein the inside of the outer packaging material is decompressed,
The core material is arranged such that the first laminated body and the second laminated body are arranged on the third laminated body with a predetermined interval, and the third laminated body fills the predetermined interval by heat compression molding. The concave portion is formed on the third laminated body side by being bent toward the first laminated body and the second laminated body side, and the protrusion is formed in the concave portion, and is stored in the outer packaging material. A vacuum heat insulating material characterized by being decompressed.
JP2010205032A 2010-09-14 2010-09-14 Vacuum heat insulating material and refrigerator equipped with same Withdrawn JP2012063023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010205032A JP2012063023A (en) 2010-09-14 2010-09-14 Vacuum heat insulating material and refrigerator equipped with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010205032A JP2012063023A (en) 2010-09-14 2010-09-14 Vacuum heat insulating material and refrigerator equipped with same

Publications (1)

Publication Number Publication Date
JP2012063023A true JP2012063023A (en) 2012-03-29

Family

ID=46058920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010205032A Withdrawn JP2012063023A (en) 2010-09-14 2010-09-14 Vacuum heat insulating material and refrigerator equipped with same

Country Status (1)

Country Link
JP (1) JP2012063023A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015040634A (en) * 2013-08-20 2015-03-02 日立アプライアンス株式会社 Vacuum heat insulation material and refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015040634A (en) * 2013-08-20 2015-03-02 日立アプライアンス株式会社 Vacuum heat insulation material and refrigerator

Similar Documents

Publication Publication Date Title
JP5608457B2 (en) Vacuum heat insulating material and refrigerator using the same
KR100617666B1 (en) Refrigerator
JP2009024922A (en) Refrigerator
JP2013050267A (en) Refrigerator
JP2012063038A (en) Refrigerator
JP2007009928A (en) Vacuum heat insulating material, its manufacturing method, and refrigerator
JP2012062905A (en) Vacuum heat insulating material and refrigerator equipped with the same
JP5620764B2 (en) refrigerator
JP5548076B2 (en) Refrigerator and vacuum insulation
JP5503478B2 (en) refrigerator
JP6002641B2 (en) Vacuum insulation and refrigerator
JP5568422B2 (en) refrigerator
JP2005299972A (en) Refrigerator
JP2004125394A (en) Refrigerator
JP5372878B2 (en) Vacuum heat insulating material and refrigerator equipped with the same
JP6469232B2 (en) refrigerator
JP5544254B2 (en) refrigerator
JP2012063023A (en) Vacuum heat insulating material and refrigerator equipped with same
JP5945708B2 (en) refrigerator
JP5401422B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2015148251A (en) Vacuum heat insulation material, refrigerator and process of manufacture of vacuum heat insulation material
JP5982276B2 (en) Refrigerator using vacuum heat insulating material and vacuum heat insulating material
JP4384232B2 (en) Vacuum heat insulating material and refrigerator using the same
JP6000922B2 (en) Vacuum heat insulating material and cooling / heating equipment using the same
JP6225324B2 (en) Heat insulation box

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120518

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131203