JP4379496B2 - 蒸発燃料処理装置 - Google Patents

蒸発燃料処理装置 Download PDF

Info

Publication number
JP4379496B2
JP4379496B2 JP2007166846A JP2007166846A JP4379496B2 JP 4379496 B2 JP4379496 B2 JP 4379496B2 JP 2007166846 A JP2007166846 A JP 2007166846A JP 2007166846 A JP2007166846 A JP 2007166846A JP 4379496 B2 JP4379496 B2 JP 4379496B2
Authority
JP
Japan
Prior art keywords
passage
fuel
state quantity
detection
evaporated fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007166846A
Other languages
English (en)
Other versions
JP2009002315A (ja
Inventor
晋祐 高倉
政雄 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007166846A priority Critical patent/JP4379496B2/ja
Priority to US12/155,513 priority patent/US7610906B2/en
Publication of JP2009002315A publication Critical patent/JP2009002315A/ja
Application granted granted Critical
Publication of JP4379496B2 publication Critical patent/JP4379496B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/089Layout of the fuel vapour installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0809Judging failure of purge control system
    • F02M25/0827Judging failure of purge control system by monitoring engine running conditions

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関の噴射燃料と共に燃焼させる蒸発燃料を処理する蒸発燃料処理装置に関する。
従来、燃料タンク内にて発生した蒸発燃料をキャニスタの吸着材に一時的に吸着し、必要に応じて吸着材から脱離させた蒸発燃料を空気と混合させて内燃機関へパージすることにより、当該蒸発燃料を内燃機関の噴射燃料と共に燃焼させる蒸発燃料処理装置が知られている。こうした蒸発燃料処理装置の一種に、パージ通路から内燃機関へパージされる混合ガス中の蒸発燃料状態量として蒸発燃料濃度を検出することにより、パージを高精度に制御可能とした装置が、特許文献1に開示されている。
具体的に、特許文献1の蒸発燃料処理装置では、パージ通路に検出通路を連通させ、キャニスタの吸着材から脱離させた蒸発燃料と空気との混合ガスを検出通路へ流入させることにより、当該混合ガス中の蒸発燃料濃度を検出するようにしている。これにより、蒸発燃料濃度をパージ開始前に検出して、当該検出値をパージ開始時点からパージ制御に反映させることができるので、内燃機関における空燃比の乱れが抑制されることとなる。
特開2006−312925号公報
さて、特許文献1に開示の蒸発燃料処理装置では、蒸発燃料濃度の検出処理が設定時間毎に繰り返し実行されるようになっている。即ち、蒸発燃料濃度の検出インターバルは、一定値に設定されている。そのため、検出インターバルが長過ぎる場合、実際にパージされる混合ガス中の蒸発燃料濃度が検出処理での検出値から乖離して、空燃比を乱すおそれがある。一方、検出インターバルが短過ぎる場合、蒸発燃料濃度の検出に際してガス流の発生により混合ガスを検出通路へ流入させるポンプでは、作動頻度が増大することになるため、構成部品の劣化によって耐久性が低下するおそれがある。
本発明は、このような問題に鑑みてなされたものであって、その目的は、内燃機関における空燃比の乱れを抑制すると共に、耐久性を確保する蒸発燃料処理装置を提供することにある。
請求項1に記載の発明は、内燃機関の噴射燃料と共に燃焼させる蒸発燃料を処理する蒸発燃料処理装置であって、燃料タンク内において発生した蒸発燃料を脱離可能に吸着する吸着材を有するキャニスタと、吸着材から脱離した蒸発燃料が空気と混合してなる混合ガスを内燃機関側へ流通させるパージ通路と、パージ通路に連通する検出通路と、検出通路にガス流を発生させることにより、パージ通路から検出通路へ混合ガスを流入させるガス流発生手段と、検出通路へ流入した混合ガス中の蒸発燃料状態量を検出する検出手段と、検出手段により検出された蒸発燃料状態量を基準状態量として、パージ通路から内燃機関への混合ガスのパージを基準状態量に基づき制御する制御手段と、検出手段による蒸発燃料状態量の検出インターバルを、基準状態量の変化を考慮して設定する設定手段と、を備え、設定手段は、検出手段による蒸発燃料状態量の複数回の検出によって得られた複数の基準状態量から、混合ガス中の蒸発燃料状態量の時間変化率を算出し、当該算出変化率が小さくなるほど検出インターバルを長く設定することを特徴とする。
こうした請求項1に記載の発明において、ガス流の発生により検出通路へ流入する混合ガス中の蒸発燃料状態量は、キャニスタの吸着材からパージ通路へ脱離して空気と混合した状態で内燃機関へとパージされる蒸発燃料の状態量を表すことになる。故に、吸着材から蒸発燃料が脱離し易い状況では、混合ガス中の蒸発燃料状態量の変化が大きくなるため、仮に検出インターバルが長過ぎると、空燃比が乱れるおそれがある。しかし、請求項1に記載の発明によれば、混合ガス中の蒸発燃料状態量として検出される基準状態量の変化を考慮することにより、検出インターバルを短く設定して空燃比の乱れを抑制することが可能となる。しかも、吸着材から蒸発燃料が脱離し難い状況では、蒸発燃料状態量の変化が小さくなるため、空燃比の乱れを抑制する範囲にて検出インターバルを長く設定することも可能となる。このように、状況に応じて検出インターバルを長くすることによれば、ガス流発生手段の作動頻度を可及的に下げて耐久性を確保することができるのである。
また、設定手段は、検出手段による蒸発燃料状態量の複数回の検出によって得られた複数の基準状態量から、混合ガス中の蒸発燃料状態量の時間変化率を算出し、当該算出変化率が小さくなるほど検出インターバルを長く設定する。これによれば、検出インターバルを長く設定可能か否かの判断を複数の基準状態量から精確に下して、空燃比の乱れの抑制と耐久性の確保とのトレードオフバランスを適正に図ることができる。
請求項に記載の発明は、内燃機関へパージされた混合ガス中の蒸発燃料状態量を、内燃機関の運転状態量に基づき学習する学習手段を備え、パージの制御中において制御手段は、学習手段により学習された蒸発燃料状態量を学習状態量として、基準状態量を当該学習状態量により更新し、制御手段によるパージ後において設定手段は、学習状態量により更新された基準状態量を含む複数の基準状態量から、混合ガス中の蒸発燃料状態量の時間変化率を算出する。
こうした請求項に記載の発明によると、基準状態量に基づくパージ制御中は、実際にパージされる混合ガス中の蒸発燃料状態量がパージの進行により基準状態量から乖離したとしても、当該乖離時点の蒸発燃料状態量を学習して基準状態量に反映させることができる。故に、パージの進行により混合ガス中の蒸発燃料状態量が基準状態量から乖離して空燃比を乱す事態を、抑制できるのである。またさらに、パージ後においては、パージ制御中の蒸発燃料状態量の学習値により更新された基準状態量を含む複数の基準状態量から、蒸発燃料状態量の時間変化率を算出することになるので、検出インターバルを長く設定可能か否かの判断を当該パージ後においても精確に下すことができる。
燃料タンクの内圧が高くなると、燃料タンク内における蒸発燃料の発生量、ひいてはキャニスタの吸着材による蒸発燃料の吸着量が増加するため、当該吸着材からパージ通路へ脱離して内燃機関へとパージされる蒸発燃料の状態量には、大きな変化が現れる。そこで、請求項に記載の発明によると、設定手段は、基準状態量に基づく検出インターバルの設定値を燃料タンクの内圧に基づき補正するので、当該内圧の変化に対応した適正な検出インターバルを得ることができるのである。
燃料タンクの内圧の時間変化率が大きくなるときには、燃料タンク内における蒸発燃料の発生量、ひいてはキャニスタの吸着材による蒸発燃料の吸着量が増加するため、当該吸着材からパージ通路へ脱離して内燃機関へとパージされる蒸発燃料の状態量には、大きな変化が現れる。そこで、請求項に記載の発明によると、設定手段は、基準状態量に基づく検出インターバルの設定値を燃料タンクの内圧の時間変化率に基づき補正するので、当該時間変化率を反映した適正な検出インターバルを得ることができるのである。
燃料タンクの温度が上昇すると、燃料タンク内における蒸発燃料の発生量、ひいてはキャニスタの吸着材による蒸発燃料の吸着量が増加するため、当該吸着材からパージ通路へ脱離して内燃機関へとパージされる蒸発燃料の状態量には、大きな変化が現れる。そこで、請求項に記載の発明によると、設定手段は、基準状態量に基づく検出インターバルの設定値を燃料タンクの温度に基づき補正するので、当該温度の変化に対応した適正な検出インターバルを得ることができるのである。
上記特許文献1では、燃料タンク内で発生した蒸発燃料を吸着材により吸着する第一キャニスタとは別に、パージ通路から検出通路へ流入した混合ガス中の蒸発燃料を吸着材で吸着する第二キャニスタを設けている。そして、ポンプにより第二キャニスタを減圧して検出通路にガス流を発生させた状態下、蒸発燃料状態量としての蒸発燃料濃度を検出することにより、当該検出の精度を高めている。しかし、このような構成において、蒸発燃料濃度の検出が短いインターバルで繰り返されると、第二キャスタの吸着材による蒸発燃料の吸着量が増加して、当該吸着材の吸着能力を超える(以下、吸着能力を超えることを「破過」という)おそれがある。尚、吸着材の破過した第二キャニスタから検出通路へ蒸発燃料が戻されると、蒸発燃料濃度の検出精度の低下を招くおそれがあるので、当該破過を回避することは重要である。
そこで、請求項に記載の発明は、キャニスタとしての第一キャニスタと、パージ通路から検出通路へ流入した混合ガス中の蒸発燃料を脱離可能に吸着する吸着材を有する第二キャニスタと、第二キャニスタを減圧することにより検出通路にガス流を発生させるガス流発生手段と、を備える。このような構成において、仮に蒸発燃料状態量の検出が短いインターバルで繰り返されるとすると、第二キャニスタの吸着材が破過するおそれがある。しかし、上述したように状況に応じて検出インターバルを長く設定することによれば、第二キャニスタの吸着材の破過を回避して蒸発燃料状態量の検出精度を高精度に維持することが可能となるのである。
請求項に記載の発明によると、ガス流発生手段は、減圧側からの吸入ガスを大気中へ排出するポンプである。このようなポンプをガス流発生手段として用いた場合、第二キャニスタの吸着材が破過すると、蒸発燃料が第二キャニスタからポンプへ吸入されて大気中へ排出されるおそれがある。しかし、上述したように状況に応じて検出インターバルを長く設定することによれば、第二キャニスタの吸着材の破過を回避して蒸発燃料の大気中への排出を防止可能となる。
尚、「基準状態量」は、蒸発燃料の状態を表す物理量であればよく、例えば請求項に記載の発明のように混合ガス中の蒸発燃料濃度であってもよいし、それ以外の蒸発燃料流量、蒸発燃料密度等であってもよい。
以下、本発明の複数の実施形態を図面に基づいて説明する。尚、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する。
(第一実施形態)
図2は、本発明の第一実施形態による蒸発燃料処理装置10を車両の内燃機関1に適用した例を示している。
(内燃機関)
内燃機関1は、燃料タンク2内に収容されたガソリン燃料を用いて動力を発生させるガソリンエンジンである。内燃機関1の吸気通路3には、燃料噴射量を制御する燃料噴射弁4、吸気流量を制御するスロットル装置5、吸気流量を測定する吸気流量センサ6、吸気圧力を測定する吸気圧センサ7等が設置されている。また、内燃機関1の排気通路8には、空燃比を測定する空燃比センサ9等が設置されている。
(蒸発燃料処理装置)
蒸発燃料処理装置10は、燃料タンク2内において発生した蒸発燃料を処理して、当該処理燃料を燃料噴射弁4の噴射燃料と共に燃焼させるための装置である。具体的に、蒸発燃料処理装置10は、複数のキャニスタ12,13、ポンプ14、圧力センサ16、電子制御ユニット(ECU)18、複数の弁20〜23及び複数の通路25〜35及びフィルタ38,39を備えている。
第一キャニスタ12は、活性炭等の吸着材12aをキャニスタケース12b内に充填してなり、当該ケース12bには、燃料タンク2がタンク通路25を介して機械的に接続されている。これにより、燃料タンク2内にて発生した蒸発燃料は、タンク通路25を通じてキャニスタケース12b内へと流入することにより、吸着材12aに脱離可能に吸着されることとなる。
第一キャニスタ12のキャニスタケース12bには、さらに、吸気通路3がパージ通路26を介して機械的に接続されている。ここで、パージ通路26の中途部には、開度が可変のパージ制御弁20が設置されており、当該弁20の開閉に応じて、吸気通路3と第一キャニスタ12のキャニスタケース12b内との連通が制御される。
したがって、パージ制御弁20の開状態では、吸気通路3に発生する負圧がパージ通路26を通じてキャニスタケース12b内の吸着材12aに作用する。かかる負圧の作用によって吸着材12aから脱離の蒸発燃料は、空気との混合ガスとしてパージ通路26を吸気通路3側へ流通し、パージ通路26から吸気通路3へとパージされる。こうして吸気通路3へパージされた蒸発燃料は、吸気通路3の吸気流れに乗って燃料噴射弁4の燃料噴射位置に到達し、当該位置にて燃料噴射弁4の噴射燃料と混合された後、内燃機関1の気筒1a内で燃焼されることになる。尚、パージ制御弁20の閉状態では、吸気通路3と第一キャニスタ12との間においてパージ通路26が遮断されるため、吸気通路3への混合ガスのパージが停止することになる。
パージ制御弁20よりも第一キャニスタ12側においてパージ通路26の本流から分岐する分岐通路26aには、二位置作動する通路切換弁21が機械的に接続されている。ここで、通路切換弁21は、大気通路27と第一検出通路28とにも機械的に接続されている。このような接続形態の通路切換弁21は、第一検出通路28に連通する通路を、大気通路27とパージ通路26の分岐通路26aとの間で切り換える。
したがって、通路切換弁21が大気通路27を第一検出通路28と連通させる第一状態では、大気開放されている排出通路33から大気通路27へ導入された空気が第一検出通路28へと流入可能となる。また一方、通路切換弁21が分岐通路26aを第一検出通路28と連通させる第二状態では、蒸発燃料を含む混合ガスがパージ通路26から第一検出通路28へと流入可能となる。
第二キャニスタ13は、活性炭等の吸着材13aをキャニスタケース13b内に充填してなる。ここで、第二キャニスタ13の吸着材13aの総容積は、第一キャニスタ12の吸着材12aの総容積よりも小さく設定されている。
第二キャニスタ13のキャニスタケース13bには、第一検出通路28が通路切換弁21とは反対側において機械的に接続されている。ここで、第一検出通路28の中途部には、当該通路28の通路面積を絞る絞り28aが形成されている。また、第一検出通路28において通路切換弁21と絞り28aとの間には、オンオフ作動する通路開閉弁22が設置されており、当該弁22の開閉に応じて、パージ通路26又は大気通路27と第二キャニスタ13のキャニスタケース13b内との連通が制御される。
したがって、通路切換弁21の第二状態及び通路開閉弁22の開状態においてパージ制御弁20が閉じられると、パージ通路26から第一検出通路28へ流入した混合ガス中の蒸発燃料が、さらにキャニスタケース13b内へと流入することで、吸着材13aに脱離可能に吸着されることとなる。
また一方、通路切換弁21の第二状態及び通路開閉弁22の開状態においてパージ制御弁20が開かれると、吸気通路3の負圧がパージ通路26及び第一検出通路28を通じてキャニスタケース13b内の吸着材13aに作用する。かかる負圧の作用によって吸着材13aから脱離の蒸発燃料は、空気との混合ガスとして第一検出通路28及びパージ通路26を順次流通し、パージ通路26から吸気通路3へとパージされる。尚、こうして吸気通路3へパージされた蒸発燃料についても、燃料噴射弁4の噴射燃料と共に内燃機関1の気筒1a内で燃焼されることになる。
第一検出通路28において第二キャニスタ13と絞り28aとの間には、第一中継通路29が機械的に接続され、また当該通路29の第一検出通路28と反対側には、二位置作動する連通切換弁23が設置されている。ここで、連通切換弁23は、フィルタ38を通じて大気に開放されている開放通路30と、第二中継通路31とにも機械的に接続され、当該第二中継通路31に第一キャニスタ12のキャニスタケース12bが機械的に接続されている。このような接続形態の連通切換弁23は、第二中継通路31に連通する通路を、開放通路30と第一中継通路29との間で切り換える。
したがって、連通切換弁23が開放通路30を第二中継通路31と連通させる第一状態では、第一キャニスタ12のキャニスタケース12b内が大気に開放されることになる。また一方、連通切換弁23が第一中継通路29を第二中継通路31と連通させる第二状態では、各キャニスタ12,13のキャニスタケース12b,13b内同士が連通することになる。
ポンプ14は、例えば電動式のベーンポンプ等から構成されている。ポンプ14の吸入口14aは第二検出通路32に機械的に接続され、ポンプ14の排出口14bは排出通路33に機械的に接続されている。このような接続形態により、停止状態のポンプ14は、内部を通じて第二検出通路32と排出通路33とを連通させる。また一方、作動状態のポンプ14は、第二キャニスタ13のキャニスタケース13b内を第二検出通路32を通じて減圧することにより第一検出通路28にガス流を発生させつつ、第二検出通路32から吸入口14aを通じて吸入したガスを排出口14bを通じて排出通路33へと排出する。ここで、排出通路33は、大気通路27との連通部分を挟んでポンプ14と反対側において、フィルタ39を通じて大気に開放されている。これによりポンプ14の排出口14bは、常に大気開放された形となっており、作動状態においては、減圧側となる第二検出通路32からの吸入ガスを大気中へ放出することとなる。
圧力センサ16は、導圧通路34,35に機械的に接続されている。ここで、第一導圧通路34は、第二キャニスタ13と絞り28aとの間において第一検出通路28に機械的に接続されている。また、第二導圧通路35は、通路切換弁21と排出通路33との間において、大気通路27に機械的に接続されている。このような接続形態により圧力センサ16は、第一導圧通路34を通じて受ける第一検出通路28の圧力として、大気圧に対する差圧を測定する。
したがって、通路開閉弁22の開状態且つポンプ14の作動状態において圧力センサ16によって測定される圧力は、絞り28aの両端間の差圧(以下、「絞り両端差圧」という)と実質的に等しくなる。また、通路開閉弁22の閉状態且つポンプ14の作動状態において圧力センサ16によって測定される圧力は、ポンプ14の吸入口14a側を締め切ったときの締切圧と実質的に等しくなる。このように圧力センサ16は、絞り28aとポンプ14とによって決まる圧力を測定することができるのである。
ECU18は、メモリ18aを有するマイクロコンピュータを主体に構成されており、蒸発燃料処理装置のポンプ14、圧力センサ16及び弁20〜23並びに内燃機関1の各要素4〜7,9と電気的に接続されている。ECU18は、例えば各センサ16,6,7,9の測定値、内燃機関1の冷却水温度、車両の作動油温度、内燃機関1の回転数、車両のアクセル開度、イグニションスイッチのオンオフ状態等に基づき、ポンプ14及び弁20〜23の各作動を制御する。さらに本実施形態のECU18は、例えば燃料噴射弁4の燃料噴射量、スロットル装置5の開度、内燃機関1の点火時期等、内燃機関1を制御する機能も備えている。
(制御作動)
次に、メモリ18aに記憶のコンピュータプログラムをECU18が実行することによって実施される制御作動のフローを、図3に基づき説明する。尚、本制御作動は、車両のイグニションスイッチがオンされて内燃機関1が始動するに伴い、開始される。
ステップS101では、濃度検出条件が成立しているか否かを判定する。ここで、濃度検出条件の成立とは、内燃機関1の冷却水温度及び回転数、車両の作動油温度等、車両状態を表す物理量(以下、この内燃機関1の運転状態量を含む物理量を「車両状態量」という)が所定領域にあることを意味する。そして、かかる濃度検出条件は、例えば内燃機関1の始動直後に成立するように設定されて、メモリ18aに予め記憶されている。
ステップS101において肯定判定がなされると、ステップS102へ移行する。このステップS102では、混合ガスをパージ通路26から第一検出通路28へと流入させて当該混合ガス中の蒸発燃料濃度Dを検出する濃度検出処理を、実行する。具体的に濃度検出処理においては、まず、各弁20〜23を図4(a)の状態としてポンプ14を作動させることにより、空気の流入する第一検出通路28の絞り両端差圧を、第一圧力ΔPAirとして圧力センサ16に測定させる。次に、ポンプ14を作動させたまま各弁20〜23を図4(b)の状態とすることにより、ポンプ14の締切圧Pを圧力センサ16に測定させる。続いて、ポンプ14を作動させたまま各弁20〜23を図4(c)の状態とすることにより、パージ通路26の混合ガスが流入する第一検出通路28の絞り両端差圧を、第二圧力ΔPGasとして圧力センサ16に測定させる。尚、かかる第二圧力ΔPGasの測定時において、第一検出通路28へ流入した混合ガス中の蒸発燃料は、第二キャニスタ13の吸着材13aに随時吸着されることになるため、ポンプ14へ吸入されて排出通路33から大気中へ排出されることはない。
このような圧力ΔPAir,P,ΔPGasの測定後、濃度検出処理では、下記式(1)〜(4)に基づき蒸発燃料濃度Dを算出し、当該算出濃度Dを基準濃度Dとしてメモリ18aに記憶する。このとき本実施形態では、先にメモリ18aに記憶されている基準濃度Dを、今回の濃度検出処理にて算出の蒸発燃料濃度Dによって更新する。尚、下記の式(4)において、ρAirは空気の密度であり、ρHCは燃料を構成する炭化水素(HC)の密度である。
D=100・[1−P1・{P2・(1−ρ・D)}1/2] ・・・(1)
P1=(ΔPGas−P)/(ΔPAir−P) ・・・(2)
P2=ΔPAir/ΔPGas ・・・(3)
ρ=(ρAir−ρHC)/(100・ρAir) ・・・(4)
以上の後、ポンプ14の作動が停止してステップS102の濃度検出処理が終了すると、図3に示すように、ステップS103へと移行する。このステップS103では、検出インターバルΔTを設定する第一インターバル設定処理を実行する。具体的に第一インターバル設定処理では、メモリ18aに記憶されている最新の基準濃度D、即ち直前の濃度検出処理による蒸発燃料濃度Dの検出値から、第一キャニスタ12の吸着材12aによる蒸発燃料の吸着量Aを予測し、当該予測吸着量Aに基づいて検出インターバルΔTを設定する。
ここで、パージ通路26における蒸発燃料濃度Dは、図5に示すように、吸着材12aによる蒸発燃料の吸着量Aが減少するほど変化し難くなる。これは、吸着量Aが減少するほど、第一キャニスタ12の吸着材12aからパージ通路26へ蒸発燃料が脱離し難くなることによる。そこで、本実施形態の検出インターバルΔTは、図6に示すように、最新の基準濃度Dから予測される吸着量Aが小さくなるほど、長く設定されることとなる。尚、図6に示す吸着量Aと検出インターバルΔTとの相関については、例えばテーブル、マップ、関数式等の形態でメモリ18aに予め記憶されている。
そして、第一インターバル設定処理では、設定した検出インターバルΔTをメモリ18aに記憶する。このとき本実施形態では、メモリ18aに先に記憶されている検出インターバルΔTを、今回の第一インターバル設定処理にて設定の検出インターバルΔTによって更新するのである。
以上により、ステップS103の第一インターバル設定処理が終了すると、図3に示すようにステップS104へ移行して、パージ実行条件が成立しているか否かを判定する。ここで、パージ実行条件の成立とは、内燃機関1の冷却水温度及び回転数、車両の作動油温度等の車両状態量が上記濃度検出条件の場合とは異なる所定領域にあることを意味する。そして、かかるパージ実行条件は、例えば内燃機関1の冷却水温度が所定値以上となって内燃機関1の暖機が完了したとき成立するように設定されて、メモリ18aに予め記憶されている。
ステップS104において肯定判定がなされると、ステップS105へ移行する。このステップS105では、パージ通路26から吸気通路3への混合ガスのパージを制御するパージ制御処理を実行する。具体的にパージ制御処理においては、ポンプ14の作動を停止したまま各弁20〜23を図4(d)の状態とすることにより、両キャニスタ12,13の吸着材12a,13aから蒸発燃料を脱離させて、当該脱離燃料を含む混合ガスを内燃機関1の吸気通路3へとパージする。
ここで、パージ制御処理においては、メモリ18aに記憶されている最新の基準濃度Dに基づいて、所定時間の経過毎にパージ制御弁20の開度を設定する。これにより、吸気通路3へパージされる混合ガスの流量が基準濃度Dに応じた値に調整され、内燃機関1における空燃比の乱れ(以下、「空燃比乱れ」という)が抑制されることになる。
パージ制御処理では、また、実際に吸気通路3へパージされている混合ガス中の蒸発燃料濃度Dを、内燃機関1の運転状態量に基づいて所定時間の経過毎にフィードバック学習し、当該学習濃度Dを基準濃度Dとしてメモリ18aに記憶する。このとき本実施形態では、メモリ18aに先に記憶されている基準濃度Dを、今回のパージ制御処理にて学習された蒸発燃料濃度Dによって更新する。したがって、混合ガス中の蒸発燃料濃度Dがパージの進行によって基準濃度Dから乖離したとしても、当該乖離時点の蒸発燃料濃度Dを基準濃度Dとして、パージ制御弁20の開度に反映させることができるのである。
尚、蒸発燃料濃度Dのフィードバック学習において基準となる運転状態量は、燃料噴射弁4の燃料噴射量、吸気流量センサ6により測定される吸気流量、吸気圧センサ7により測定される吸気圧、空燃比センサ9により測定される空燃比、パージ制御弁20の開度等である。また、フィードバック学習により実際の蒸発燃料濃度Dを取得する際には、第二キャニスタ13からの蒸発燃料の脱離量が推定され、当該推定脱離量が考慮されることになる。
パージ制御処理では、さらに、パージ停止条件が成立したか否かを所定時間の経過毎に判定し、パージ停止条件が成立すると、本処理を終了させる。ここで、パージ停止条件の成立とは、例えば内燃機関1の回転数、アクセル開度等の車両状態量が上記濃度検出条件及び上記パージ実行条件とは異なる所定領域にあることを意味する。そして、かかるパージ停止条件は、例えばアクセル開度が所定値以下となって車両が減速したときに成立するように設定されて、メモリ18aに予め記憶されている。
以上により、ステップS105のパージ制御処理が終了すると、図3に示すように、ステップS106へと移行する。このステップS106では、検出インターバルΔTを設定する第二インターバル設定処理を実行する。具体的に第二インターバル設定処理では、メモリ18aに記憶されている最新の基準濃度D、即ち直前のパージ制御処理による蒸発燃料濃度Dの学習値から、第一キャニスタ12の吸着材12aによる蒸発燃料の吸着量Aを予測し、当該予測吸着量Aに基づいて検出インターバルΔTを設定する。ここで、第二インターバル設定処理では、第一インターバル設定処理の場合と同様、図6の相関に従って検出インターバルΔTを設定することになる。
そして、第二インターバル設定処理では、設定した検出インターバルΔTをメモリ18aに記憶する。このとき本実施形態では、メモリ18aに先に記憶されている検出インターバルΔTを、今回の第二インターバル設定処理にて設定の検出インターバルΔTによって更新するのである。
以上により、ステップS106の第二インターバル設定処理が終了すると、又はステップS104において否定判定がなされると、ステップS107へ移行する。このステップS107では、直近の濃度検出処理及び直近のパージ制御処理とのうち、より近い方の処理が終了した時点から、メモリ18aに記憶されている検出インターバルΔTが経過したか否かを判定する。
ステップS107において否定判定がなされると、ステップS104へと戻る。また一方、ステップS107において肯定判定がなされると、ステップS101へと戻る。したがって、濃度検出処理又はパージ制御処理の終了時点から検出インターバルΔTが経過した後においては、濃度検出条件の成立により濃度検出処理が再度実行されることになるのである。
以上、ステップS101において肯定判定がなされた場合の後続処理ステップについて説明した。これに対し、ステップS101において否定判定がなされた場合には、ステップS108へ移行して、イグニションスイッチがオフされたか否かを判定する。
ステップS108において否定判定がなされると、ステップS101へと戻る。また一方、ステップS108において肯定判定がなされると、本制御作動が終了する。
ここまで説明した第一実施形態によると、図1に示すように、パージ通路26において混合ガス中の蒸発燃料濃度Dの変化が大きいときには、当該蒸発燃料濃度Dを基準濃度Dとして検出するための検出インターバルΔTが短めに設定される。故に、基準濃度Dに基づくパージ制御処理の開始時点において、基準濃度Dに対する実際の蒸発燃料濃度Dのずれを、空燃比乱れを抑制可能な程度に抑えることができるのである。
また一方、図1に示すように、パージ通路26において蒸発燃料濃度Dの変化が小さいときには、検出インターバルΔTが長めに設定される。このように、蒸発燃料濃度Dの変化状況に応じて検出インターバルΔTを長く設定することによれば、空燃比乱れを抑制しつつも、ポンプ14の作動頻度を可及的に下げて耐久性を確保することができるのである。しかも、濃度検出処理において蒸発燃料を吸着材13aにより随時吸着することになる第二キャニスタ13では、当該検出処理についての検出インターバルΔTが長くなることで、吸着材13aの破過が予防される。したがって、破過した第二キャニスタ13から蒸発燃料が第一検出通路28へと戻って次の濃度検出処理に影響を及ぼす事態や、当該第二キャニスタ13から蒸発燃料がポンプ14へ吸入されて大気中へと排出される事態が、回避され得るのである。
尚、以上の第一実施形態では、第一検出通路28が特許請求の範囲に記載の「検出通路」に相当し、ポンプ14が特許請求の範囲に記載の「ガス流発生手段」に相当する。また、圧力センサ16及びECU18が共同して特許請求の範囲に記載の「検出手段」を構成し、ECU18及びパージ制御弁20が共同して特許請求の範囲に記載の「制御手段」を構成し、ECU18が特許請求の範囲に記載の「設定手段」及び「学習手段」に相当する。
(第二実施形態)
図7に示すように、本発明の第二実施形態は第一実施形態の変形例である。
第二実施形態の制御作動では、第一実施形態のステップS102,S103,S105,S106とは処理の詳細が異なるステップS201,S202,S203,S204を実行する。
具体的に、ステップS201の濃度検出処理では、第一実施形態と同様に圧力ΔPAir,P,ΔPGasを測定して蒸発燃料濃度Dを算出した後、当該算出濃度Dを第一の基準濃度Dとしてメモリ18aに記憶する。このとき、メモリ18aに先に記憶されていた第一の基準濃度Dについては、第二の基準濃度Dとしてメモリ18aに残されることになる。ここで、第二の基準濃度Dとしてメモリ18aに残される値は、図7に示す如きフローにより、前回の濃度検出処理による蒸発燃料濃度Dの検出値及び直近のパージ制御処理(後に詳述)による蒸発燃料濃度Dの学習値のうち、新しい方の値となる。また、制御作動の開始後、一回目の濃度検出処理においては、第二の基準濃度Dとしてメモリ18aに残される値が先に存在していないので、第一の基準濃度Dのみがメモリ18aに記憶されることになる。
続くステップS202の第一インターバル設定処理では、まず、メモリ18aに記憶されている第一の基準濃度D及び第二の基準濃度Dの絶対差である濃度変化量ΔDと、メモリ18aに記憶されている検出インターバルΔTとから、蒸発燃料濃度Dの時間変化率ΔD/ΔTを算出する。尚、制御作動の開始後、一回目の第一インターバル設定処理においては、メモリ18aに予め記憶されている時間変化率ΔD/ΔTの最大予想値を、今回の算出値として採用する。
次に、第一インターバル設定処理においては、算出した時間変化率ΔD/ΔTで蒸発燃料濃度Dが変化すると仮定したときに、濃度検出処理を実行しなくても空燃比乱れを抑制可能な最大時間ΔTmaxに、検出インターバルΔTを設定する。ここで、図8に示すように最大時間ΔTmaxは、傾きΔD/ΔTの一次関数にて表される蒸発燃料濃度Dの時間変化特性Sにおいて、空燃比乱れを抑制する上での最大許容変化量ΔDmaxに対応する時間となる。したがって、本実施形態の検出インターバルΔTは、時間変化率ΔD/ΔTが小さくなるほど、即ち時間変化特性Sの傾きが小さくなるほど長くなるように、設定されるのである。尚、図8に例示の如き時間変化特性Sについては、最大許容変化量ΔDmaxが代入された関数式の形態で、メモリ18aに予め記憶されている。
そして、第一インターバル設定処理では、こうして設定した検出インターバルΔTを、第一実施形態と同様にしてメモリ18aに記憶することになる。
さて、図7に示すステップS203のパージ制御処理では、所定時間が経過する毎に、パージ制御弁20の開度をメモリ18aに記憶の第一の基準濃度Dに基づき設定しつつ、当該第一の基準濃度Dを蒸発燃料濃度Dのフィードバック学習値によって更新する。尚、本パージ制御処理の終了については、第一実施形態と同様、パージ停止条件の成立の有無によって判断する。
続くステップS204では、メモリ18aに記憶の第一の基準濃度Dから吸着量Aを予測する以外は第一実施形態と同様な内容の第二インターバル設定処理を実行する。
以上説明した第二実施形態によると、検出インターバルΔTを長く設定可能な状況であるか否かが、現在の蒸発燃料濃度Dである第一の基準濃度Dと、過去の蒸発燃料濃度Dである第二の基準濃度Dとから、精確に判断されることになる。したがって、空燃比乱れの抑制と耐久性の確保とを適正にトレードオフバランスさせることができるのである。
(第三実施形態)
図9に示すように、本発明の第三実施形態は第一実施形態の変形例である。
第三実施形態の制御作動では、第一実施形態のステップS103,106の後に、検出インターバルΔTを補正するステップS301,S302が追加されている。
具体的に、ステップS301の第一補正処理では、直前の第一インターバル設定処理にて設定された検出インターバルΔTを、燃料タンク2の内圧Pに基づき補正する。これは、燃料タンク2の内圧Pが高くなると、燃料タンク2内における蒸発燃料の発生量、ひいては第一キャニスタ12の吸着材12aによる蒸発燃料の吸着量Aが増加して、パージ通路26における蒸発燃料濃度Dが変化し易くなるからである。
ここで、特に本実施形態の第一補正処理では、図10に示すように燃料タンク2の内圧Pが高くなるほど小さくなる補正係数Cを、現在の内圧Pに応じて導出する。そして、導出された補正係数Cをメモリ18aに記憶の検出インターバルΔTに乗算することで、当該インターバルΔTを補正更新するのである。尚、図10に示す内圧Pと補正係数Cとの相関については、例えばテーブル、マップ、関数式等の形態でメモリ18aに予め記憶されている。また、補正係数Cの算出に必要な現在の内圧については、燃料タンク2に設置された内圧センサ(図示しない)による測定値が用いられることになる。
以上に対し、図9に示すステップS302の第二補正処理では、直前の第二インターバル設定処理にて設定された検出インターバルΔTを、ステップS301の場合と同様な補正係数C(図10参照)の導出及び乗算により補正する。
このように第三実施形態によれば、燃料タンク2の内圧変化に起因する蒸発燃料濃度Dの変化をも考慮して、検出インターバルΔTを設定することができるので、空燃比乱れの抑制効果が高められることになる。
(第四実施形態)
図11に示すように、本発明の第四実施形態は第三実施形態の変形例である。
第四実施形態の制御作動では、第三実施形態のステップS301,S302とは処理の詳細が異なるステップS401,S402を実行する。
具体的に、ステップS401の第一補正処理では、直前の第一インターバル設定処理にて設定された検出インターバルΔTを、燃料タンク2の内圧Pの時間変化率(以下、「内圧変化率」という)Rに基づき補正する。これは、燃料タンク2の内圧変化率Rが大きくなるときには、燃料タンク2内における蒸発燃料の発生量、ひいては吸着材12aによる蒸発燃料の吸着量Aが増加して、蒸発燃料濃度Dが変化し易くなるからである。
ここで、特に本実施形態の第一補正処理では、図12に示すように燃料タンク2の内圧変化率Rが大きくなるほど小さくなる補正係数Cを、現在の内圧変化率Rに応じて導出する。そして、導出された補正係数Cをメモリ18aに記憶の検出インターバルΔTに乗算することで、当該インターバルΔTを補正更新するのである。尚、図12に示す内圧変化率Rと補正係数Cとの相関については、例えばテーブル、マップ、関数式等の形態でメモリ18aに予め記憶されている。また、補正係数Cの算出に必要な現在の内圧変化率Rについては、燃料タンク2に設置の内圧センサ(図示しない)により時間をあけて測定された複数の内圧測定値から、算出することになる。
以上に対し、図11に示すステップS402の第二補正処理では、直前の第二インターバル設定処理にて設定された検出インターバルΔTを、ステップS401の場合と同様な補正係数C(図12参照)の導出及び乗算により補正する。
このように第四実施形態によれば、燃料タンク2の内圧変化に起因する蒸発燃料濃度Dの変化をも考慮して、検出インターバルΔTを設定することができるので、空燃比乱れの抑制効果が高められることになる。
(第五実施形態)
図13に示すように、本発明の第五実施形態は第三実施形態の変形例である。
第五実施形態の制御作動では、第三実施形態のステップS301,S302とは処理の詳細が異なるステップS501,S502を実行する。
具体的に、ステップS501の第一補正処理では、直前の第一インターバル設定処理にて設定された検出インターバルΔTを、燃料タンク2の温度TPに基づき補正する。これは、燃料タンク2の温度TPが上昇すると、燃料タンク2内における蒸発燃料の発生量、ひいては吸着材12aによる蒸発燃料の吸着量Aが増加して、蒸発燃料濃度Dが変化し易くなるからである。
ここで、特に本実施形態の第一補正処理では、図14に示すように燃料タンク2の温度TPが上昇するほど小さくなる補正係数Cを、現在の温度TPに応じて導出する。そして、導出された補正係数Cをメモリ18aに記憶の検出インターバルΔTに乗算することで、当該インターバルΔTを補正更新するのである。尚、図14に示す温度TPと補正係数Cとの相関については、例えばテーブル、マップ、関数式等の形態でメモリ18aに予め記憶されている。また、補正係数Cの算出に必要な現在の温度TPとしては、燃料タンク2に設置された温度センサ(図示しない)による測定値を用いてもよいし、当該温度TPとの間に所定の相関がある温度、例えば外気温度や吸気通路3の吸気温度等からの推定値を用いてもよい。
以上に対し、図13に示すステップS502の第二補正処理では、直前の第二インターバル設定処理にて設定された検出インターバルΔTを、ステップS501の場合と同様な補正係数C(図14参照)の導出及び乗算により補正する。
このように第五実施形態によれば、燃料タンク2の温度変化に起因する蒸発燃料濃度Dの変化をも考慮して、検出インターバルΔTを設定することができるので、空燃比乱れの抑制効果が高められることになる。
(他の実施形態)
以上、本発明の複数の実施形態について説明したが、本発明はそれらの実施形態に限定して解釈されるものではなく、その要旨を逸脱しない範囲内において種々の実施形態に適用することができる。
例えば、第一〜第五実施形態においては、第二キャニスタ13を設けないで、第一キャニスタ12のみを設けるようにしてもよい。また、第一〜第五実施形態においては、第二インターバル設定処理を実行しないで、第一インターバル設定処理のみにより検出インターバルΔTを設定するようにしてもよい。尚、第三〜第五実施形態において第二インターバル設定処理を実行しない場合、それに継続する第二補正処理は不要となる。
第二実施形態においては、第三〜第五実施形態の第一補正処理を第一インターバル設定処理の後に実行してもよいし、第三〜第五実施形態の第二補正処理を第二インターバル設定処理の後に実行してもよい。また、第三〜第五実施形態の第一補正処理のうち少なくとも二つを組み合わせて実行してもよいし、第三〜第五実施形態の第二補正処理のうち少なくとも二つを組み合わせて実行してもよい。
第一〜第五実施形態の濃度検出処理では、パージ通路26における混合ガス中の蒸発燃料濃度Dを検出可能な方法であれば、上述したように絞り両端差圧に基づき蒸発燃料濃度Dを検出する以外の方法を採用してもよい。また、第一〜第五実施形態の濃度検出処理では、第一検出通路28にガス流を発生させる「ガス流発生手段」として、例えば吸気通路3の負圧を蓄積して第一検出通路28へ作用させるアキュムレータ等を採用してもよい。
第一〜第五実施形態のパージ制御処理では、吸気通路3へパージされた混合ガス中の蒸発燃料濃度Dを取得可能な方法であれば、上述したように内燃機関1の運転状態量に基づき蒸発燃料濃度Dをフィードバック学習する以外の方法を採用してもよい。また、第一〜第五実施形態のパージ制御処理では、蒸発燃料を各キャニスタ12,13の吸着材12a,13aから脱離させて吸気通路3まで搬送可能な方法であれば、上述したように吸気通路3の負圧を吸着材12a,13aへ同時に且つ個別に作用させる以外の方法を採用してもよい。
本発明の第一実施形態による蒸発燃料処理装置の特徴を説明するための特性図である。 本発明の第一実施形態による蒸発燃料処理装置を示す構成図である。 本発明の第一実施形態による制御作動を示すフローチャートである。 図3の制御作動について説明するための模式図である。 本発明の第一実施形態による検出インターバルの設定方法を説明するための特性図である。 本発明の第一実施形態による検出インターバルの設定方法を説明するための特性図である。 本発明の第二実施形態による制御作動を示すフローチャートである。 本発明の第二実施形態による検出インターバルの設定方法を説明するための特性図である。 本発明の第三実施形態による制御作動を示すフローチャートである。 本発明の第三実施形態による検出インターバルの補正方法を説明するための特性図である。 本発明の第四実施形態による制御作動を示すフローチャートである。 本発明の第四実施形態による検出インターバルの補正方法を説明するための特性図である。 本発明の第五実施形態による制御作動を示すフローチャートである。 本発明の第五実施形態による検出インターバルの設定方法を説明するための特性図である。
符号の説明
1 内燃機関、1a 気筒、2 燃料タンク、3 吸気通路、4 燃料噴射弁、5 スロットル装置、6 吸気流量センサ、7 吸気圧センサ、8 排気通路、9 空燃比センサ、10 蒸発燃料処理装置、12 第一キャニスタ、12a,13a 吸着材、12b,13b キャニスタケース、13 第二キャニスタ、14 ポンプ(ガス流発生手段)、14a 吸入口、14b 排出口、16 圧力センサ(検出手段)、18 ECU(検出手段・制御手段・設定手段・学習手段)、18a メモリ、20 パージ制御弁(制御手段)、21 通路切換弁、22 通路開閉弁、23 連通切換弁、25 タンク通路、26 パージ通路、26a 分岐通路、27 大気通路、28 第一検出通路(検出通路)、29 第一中継通路、30 開放通路、31 第二中継通路、32 第二検出通路、33 排出通路、34 第一導圧通路、35 第二導圧通路、38,39 フィルタ、A 吸着量、C,C,C 補正係数、D 基準濃度、P 内圧、R 内圧変化率、S 時間変化特性、TP 温度、ΔD 濃度変化量、ΔDmax 最大許容変化量、ΔD/ΔT 時間変化率、ΔT 検出インターバル、ΔTmax 最大時間

Claims (8)

  1. 内燃機関の噴射燃料と共に燃焼させる蒸発燃料を処理する蒸発燃料処理装置であって、
    燃料タンク内において発生した蒸発燃料を脱離可能に吸着する吸着材を有するキャニスタと、
    前記吸着材から脱離した蒸発燃料が空気と混合してなる混合ガスを前記内燃機関側へ流通させるパージ通路と、
    前記パージ通路に連通する検出通路と、
    前記検出通路にガス流を発生させることにより、前記パージ通路から前記検出通路へ前記混合ガスを流入させるガス流発生手段と、
    前記検出通路へ流入した前記混合ガス中の蒸発燃料状態量を検出する検出手段と、
    前記検出手段により検出された蒸発燃料状態量を基準状態量として、前記パージ通路から前記内燃機関への前記混合ガスのパージを前記基準状態量に基づき制御する制御手段と、
    前記検出手段による蒸発燃料状態量の検出インターバルを、前記基準状態量の変化を考慮して設定する設定手段と、を備え
    前記設定手段は、前記検出手段による蒸発燃料状態量の複数回の検出によって得られた複数の前記基準状態量から、前記混合ガス中の蒸発燃料状態量の時間変化率を算出し、当該算出変化率が小さくなるほど前記検出インターバルを長く設定することを特徴とする蒸発燃料処理装置。
  2. 前記内燃機関へパージされた前記混合ガス中の蒸発燃料状態量を、前記内燃機関の運転状態量に基づき学習する学習手段を備え、
    パージの制御中において前記制御手段は、前記学習手段により学習された蒸発燃料状態量を学習状態量として、前記基準状態量を前記学習状態量により更新し、
    前記制御手段によるパージ後において前記設定手段は、前記学習状態量により更新された前記基準状態量を含む複数の前記基準状態量から、前記混合ガス中の蒸発燃料状態量の時間変化率を算出することを特徴とする請求項1に記載の蒸発燃料処理装置。
  3. 前記設定手段は、前記基準状態量に基づく前記検出インターバルの設定値を前記燃料タンクの内圧に基づき補正することを特徴とする請求項1または2に記載の蒸発燃料処理装置。
  4. 前記設定手段は、前記基準状態量に基づく前記検出インターバルの設定値を前記燃料タンクの内圧の時間変化率に基づき補正することを特徴とする請求項1〜3のいずれか一項に記載の蒸発燃料処理装置。
  5. 前記設定手段は、前記基準状態量に基づく前記検出インターバルの設定値を前記燃料タンクの温度に基づき補正することを特徴とする請求項1〜のいずれか一項に記載の蒸発燃料処理装置。
  6. 前記キャニスタとしての第一キャニスタと、
    前記パージ通路から前記検出通路へ流入した前記混合ガス中の蒸発燃料を脱離可能に吸着する吸着材を有する第二キャニスタと、
    前記第二キャニスタを減圧することにより前記検出通路に前記ガス流を発生させる前記ガス流発生手段と、
    を備えることを特徴とする請求項1〜5のいずれか一項に記載の蒸発燃料処理装置。
  7. 前記ガス流発生手段は、減圧側からの吸入ガスを大気中へ排出するポンプであることを特徴とする請求項6に記載の蒸発燃料処理装置。
  8. 前記基準状態量は、前記混合ガス中の蒸発燃料濃度であることを特徴とする請求項1〜7のいずれか一項に記載の蒸発燃料処理装置
JP2007166846A 2007-06-25 2007-06-25 蒸発燃料処理装置 Expired - Fee Related JP4379496B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007166846A JP4379496B2 (ja) 2007-06-25 2007-06-25 蒸発燃料処理装置
US12/155,513 US7610906B2 (en) 2007-06-25 2008-06-05 Fuel vapor treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007166846A JP4379496B2 (ja) 2007-06-25 2007-06-25 蒸発燃料処理装置

Publications (2)

Publication Number Publication Date
JP2009002315A JP2009002315A (ja) 2009-01-08
JP4379496B2 true JP4379496B2 (ja) 2009-12-09

Family

ID=40135203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007166846A Expired - Fee Related JP4379496B2 (ja) 2007-06-25 2007-06-25 蒸発燃料処理装置

Country Status (2)

Country Link
US (1) US7610906B2 (ja)
JP (1) JP4379496B2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080016148A (ko) * 2006-08-17 2008-02-21 현대자동차주식회사 자동변속기의 학습값 전파 방법
DE102007046481B3 (de) * 2007-09-28 2009-04-09 Continental Automotive Gmbh Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
DE102007046489B3 (de) * 2007-09-28 2009-05-07 Continental Automotive Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
JP4893802B2 (ja) * 2009-11-02 2012-03-07 株式会社デンソー エンジン制御装置
JP4924694B2 (ja) * 2009-11-02 2012-04-25 株式会社デンソー エンジン制御装置
DE102010048313A1 (de) * 2010-10-14 2012-04-19 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben eines Tankentlüftungssystems
US20130160746A1 (en) * 2011-12-21 2013-06-27 Continental Automotive Systems, Inc. Method And System For Regulated Exhaust Heating Of A Charcoal Canister Of An Emissions System To Reduce Heel
US8924133B2 (en) * 2012-02-28 2014-12-30 Chrysler Group Llc Turbocharged engine canister system and diagnostic method
US9376991B2 (en) * 2012-07-24 2016-06-28 Ford Global Technologies, Llc Passive venturi pump for leak diagnostics and refueling
JP5582367B2 (ja) * 2012-07-25 2014-09-03 株式会社デンソー 蒸発燃料処理装置
US9316166B2 (en) * 2013-03-15 2016-04-19 GM Global Technology Operations LLC System and method for controlling an operating frequency of a purge valve to improve fuel distribution to cylinders of an engine
US9850832B2 (en) * 2015-09-21 2017-12-26 Ford Global Technologies, Llc System and methods for preventing hydrocarbon breakthrough emissions
JP2018017185A (ja) * 2016-07-28 2018-02-01 マツダ株式会社 蒸発燃料処理装置
DE102018112731A1 (de) * 2018-05-28 2019-11-28 Volkswagen Aktiengesellschaft Verfahren zur Ansteuerung eines Regelventils

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518326A (ja) 1991-07-05 1993-01-26 Honda Motor Co Ltd 内燃エンジンの蒸発燃料制御装置
JPH06101534A (ja) 1992-09-21 1994-04-12 Nissan Motor Co Ltd エンジンの蒸発燃料処理装置
EP0818621A1 (en) * 1996-01-23 1998-01-14 Toyota Jidosha Kabushiki Kaisha Evaporative fuel treating apparatus for multiple cylinder engine
JP3317121B2 (ja) 1996-01-25 2002-08-26 株式会社日立製作所 エバポシステムおよびその診断方法
US5957115A (en) * 1997-02-12 1999-09-28 Siemens Canada Limited Pulse interval leak detection system
JP3861446B2 (ja) 1998-03-30 2006-12-20 トヨタ自動車株式会社 希薄燃焼内燃機関の蒸発燃料濃度検出装置及びその応用装置
DE19834332B4 (de) * 1998-07-30 2005-06-02 Robert Bosch Gmbh Verfahren zur Prüfung der Funktionsfähigkeit eines Behältnisses
JP3788204B2 (ja) 1999-08-31 2006-06-21 スズキ株式会社 エンジンのパージ制御装置
JP4497293B2 (ja) * 2004-05-21 2010-07-07 スズキ株式会社 内燃機関の蒸発燃料制御装置
JP2006009743A (ja) 2004-06-29 2006-01-12 Toyota Motor Corp 内燃機関の蒸発燃料処理装置
JP4562191B2 (ja) 2005-04-08 2010-10-13 株式会社デンソー 燃料蒸気処理装置
JP4579166B2 (ja) 2006-02-08 2010-11-10 トヨタ自動車株式会社 蒸発燃料処理装置
JP2007218122A (ja) * 2006-02-14 2007-08-30 Denso Corp 漏れ診断装置
JP4719621B2 (ja) * 2006-05-22 2011-07-06 富士重工業株式会社 ハイブリッド車両の診断制御装置

Also Published As

Publication number Publication date
US20080314369A1 (en) 2008-12-25
US7610906B2 (en) 2009-11-03
JP2009002315A (ja) 2009-01-08

Similar Documents

Publication Publication Date Title
JP4379496B2 (ja) 蒸発燃料処理装置
JP4562191B2 (ja) 燃料蒸気処理装置
JP4361889B2 (ja) リーク検査装置及び燃料蒸気処理装置
JP4607770B2 (ja) 蒸発燃料処理装置
JP4260079B2 (ja) 内燃機関の燃料性状計測装置および内燃機関
JP2007231813A (ja) 燃料性状判定装置、漏れ検査装置、および燃料噴射量制御装置
US7484501B2 (en) Fuel vapor treatment apparatus
JP4570149B2 (ja) 気体密度比検出装置、濃度検出装置及び燃料蒸気処理装置
JP5257511B2 (ja) 可変動弁機構を有する内燃機関の制御装置
JP4471370B2 (ja) 燃料蒸気処理装置
JP2009062967A (ja) ハイブリッド自動車用制御装置
JP2019152169A (ja) 蒸発燃料処理装置及びそれを備えたエンジンの燃料噴射制御装置
US20070062495A1 (en) Evaporative fuel treatment system
JP4579166B2 (ja) 蒸発燃料処理装置
JP4786515B2 (ja) 蒸発燃料処理装置
JP4337730B2 (ja) 蒸発燃料処理装置のリーク診断装置
JP3703015B2 (ja) 燃料蒸散防止装置の異常検出装置
JP4239716B2 (ja) 内燃機関の蒸発燃料処理装置
JP4556667B2 (ja) 蒸発燃料処理装置のリーク診断装置
JP2007218148A (ja) 内燃機関の蒸発燃料処理装置
JP2007205322A (ja) 蒸発燃料処理装置の異常検出装置
JP4090952B2 (ja) 内燃機関における故障診断機能を有する燃料ガスパージシステム
JP4715426B2 (ja) 蒸発燃料処理システムのリーク診断装置
JP5935746B2 (ja) 燃料タンクの異常検知装置
JP2007085230A (ja) 蒸発燃料処理システムの給油口開放検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4379496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees