JP4377540B2 - Production method of fiber reinforced thermoplastic resin wire and pellet - Google Patents

Production method of fiber reinforced thermoplastic resin wire and pellet Download PDF

Info

Publication number
JP4377540B2
JP4377540B2 JP2000311152A JP2000311152A JP4377540B2 JP 4377540 B2 JP4377540 B2 JP 4377540B2 JP 2000311152 A JP2000311152 A JP 2000311152A JP 2000311152 A JP2000311152 A JP 2000311152A JP 4377540 B2 JP4377540 B2 JP 4377540B2
Authority
JP
Japan
Prior art keywords
fiber
resin
spun yarn
thermoplastic resin
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000311152A
Other languages
Japanese (ja)
Other versions
JP2002115173A (en
Inventor
藤井  透
敬 松岡
良策 門脇
達也 田中
正 熊切
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000311152A priority Critical patent/JP4377540B2/en
Publication of JP2002115173A publication Critical patent/JP2002115173A/en
Application granted granted Critical
Publication of JP4377540B2 publication Critical patent/JP4377540B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Moulding By Coating Moulds (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、強化繊維として天然植物繊維紡績糸を使用し、これを熱可塑性樹脂と複合してなる繊維強化熱可塑性樹脂線材と、該線材を切断してなるペレットに関し、特に、天然植物繊維紡績糸を熱可塑性樹脂と強固に接合一体化し、繊維強化複合材料として曲げ強度や曲げ弾性率、耐衝撃特性などの機械的特性を高めた繊維強化熱可塑性樹脂線材とペレットの製法に関するものである。
【0002】
【従来の技術】
最近、木材パルプや麻類、椰子、竹などの天然植物繊維を強化繊維として用いた繊維強化樹脂についての研究が盛んに進められている。ちなみに、廃棄物公害についての認識が高まっている昨今、天然繊維強化樹脂は、強化繊維としてガラス繊維を用いた強化樹脂製品を廃棄する際に見られる離脱ガラス繊維の飛散などによる人体等への影響に対する懸念がなく、また、焼却処理する場合でも全てを熱エネルギーとして回収することができ、更には、ガラス繊維やタルク等の無機フィラーに由来する残灰の発生や有害ガスの発生も起こさないからである。
【0003】
しかし天然植物繊維は、従来から繊維強化樹脂用の強化繊維として汎用されているガラス繊維や炭素繊維、金属繊維、各種合成繊維などの連続繊維に対して、繊維が非連続であることから、これを樹脂と複合し、長繊維の特徴を活かした繊維強化複合材料とするには特別の技術が必要となる。例えば、長繊維の連続ストランドであれば、これを溶融樹脂浴に連続的に含浸させて引き取り、冷却して樹脂を固化させることによって繊維強化樹脂線材を連続的に製造することができ、しかもこれを任意の長さに切断することによって繊維強化樹脂ペレットを生産性よく製造できる。しかし非連続の天然植物繊維では、これを撚り合わせ紡績糸として使用しなければならないため、特別の技術が必要となる。
【0004】
また通常の天然植物繊維の紡績糸には、紡糸工程を円滑に行なうための鉱物油処理によって鉱物油が付着しており、これが複合される樹脂との一体性を阻害することから、天然植物繊維をアルカリ処理、硫酸処理、アセチル化処理などに付して鉱物油を除去し、樹脂との接着性を改善して一体性を高める方法が検討されている。ところがこれらの方法では、接着性改善のための予備処理で大量の排液が生じるので、廃水処理に多大な手数と費用が必要になる。
【0005】
また、鉱物油の除去にシンナーを使用する方法(「第1回関西私立大学理工系ハイテクリサーチ・学術フロンティア合同シンポジウム講演集」1999)が提案されているが、廃液処理の問題を解消し得るものではなく、火災や人体に与える悪影響も懸念される。また、繊維表面に付着した鉱物油を除去する一般的な方法として、界面活性剤を含む洗浄水や水蒸気を使用する方法もあるが、水や水蒸気による処理では植物繊維が元々親水性であるため著しく吸水し、その乾燥に多大なエネルギーと時間を要する。しかも、洗浄に大量の水蒸気や水を使用し、且つ洗浄後は水分の除去に多量の熱エネルギーを要するので、資源やエネルギーの浪費が避けられない。
【0006】
他方、繊維製品にオゾン処理や放電プラズマ処理を加える方法については、例えば特開平7−11565号公報、同6−57660号公報、同9−4716号公報、同11−217766号公報など、多くの方法が提案されている。しかしながらこれらの方法は、いずれも繊維の精錬、漂白、防縮性、染色性、吸水性などの改善を目的とするものであり、本発明の如く、天然植物繊維紡績糸を対象として熱可塑性樹脂との接合一体性を高めることについては全く意図されていない。
【0007】
また、オゾン処理やプラズマ処理、コロナ処理などを、ポリオレフィン系樹脂などの合成樹脂フィルムや成形品、繊維などに施し、接着性や塗装性、染色性などを改善する方法も一般的に知られているが、天然植物繊維紡績糸に対して熱可塑性樹脂との複合一体性を高めるための処理に利用した例はない。
【0008】
【発明が解決しようとする課題】
本発明者らは上記の様な従来技術の下で、強化用繊維として最近その使用が注目されている天然植物繊維に注目し、これを強化用繊維として熱可塑性樹脂と複合して成形用の繊維強化樹脂線材およびペレットを製造する際に、前述した問題、特に連続生産性、成形材料としての品質安定性、成形品としての強度特性などを全て満たし得る様な繊維強化熱可塑性樹脂線材とペレットの開発を期して研究を進めてきた。従って本発明の課題は、主たる強化繊維として天然の植物繊維を有効に利用し、連続生産性、成形材料としての品質安定性、成形品としての強度特性などを全て満たし得る様な繊維強化熱可塑性樹脂線材とペレットの製法を提供することにある。
【0009】
【課題を解決するための手段】
上記課題を解決することのできた本発明の製法は、熱可塑性樹脂に強化繊維として天然植物繊維紡績糸を複合してなる繊維強化熱可塑性樹脂線材を製造するに当たり、前記紡績糸を熱可塑性樹脂に含浸する際、もしくは少なくともその前に、該紡績糸にプラズマ処理またはオゾン処理を施し、天然植物繊維と熱可塑性樹脂との接合力を高めることにより、複合強化材としての強度特性を高めるところに要旨を有している。
【0010】
上記方法を実施するに当たっては、前記プラズマ処理またはオゾン処理を施す際に、天然植物繊維紡績糸に撚り戻し方向の力を加え、該紡績糸をほぐす様にしてプラズマ処理またはオゾン処理を施せば、それらの処理効果を紡績糸の内部にまで及ぼすことができるので、本発明を実施する際の好ましい実施形態として推奨される。また、上記熱可塑性樹脂として酸変性ポリオレフィンを含むポリオレフィン系樹脂の場合は、天然植物性繊維と熱可塑性樹脂との接合一体化により物性をより向上させることができるので、本発明の特徴を一層有効に活用できるので好ましい。
【0011】
本発明によって得られる上記天然植物繊維強化熱可塑性樹脂線材は、該線材を長手方向に引き揃えて加熱再成形したり、金型の内面、もしくは外面に巻回してから加熱再成形し、あるいは更に不織布状や織編物状としてから任意の形状に加熱再成形することのできる成形材料として有効に使用できる他、該線材を適当な長さに切断してペレット状とし、押出し成形や射出成形などの成形材料として使用できる。
【0012】
【発明の実施の形態】
上記の様に本発明では、天然植物繊維紡績糸を熱可塑性樹脂と複合した繊維強化熱可塑性樹脂線材を製造する際に、該紡績糸を熱可塑性樹脂に含浸する際、もしくは少なくともその前に、該紡績糸にプラズマ処理またはオゾン処理を施し、該紡績糸を構成する繊維を活性化することによって熱可塑性樹脂との接合性を高め、それにより両者の複合一体性を高めるところに特徴を有するもので、以下、これらの処理を主体にして本発明の製法を詳細に説明していく。
【0013】
本発明で採用される上記プラズマ処理およびオゾン処理は、熱可塑性樹脂と複合される天然植物繊維紡績糸の表面を活性化すると共に該紡績糸に付着している油分などを分解し、熱可塑性樹脂との接合力を高めるために行なわれるもので、それらの処理により、熱可塑性樹脂と天然植物繊維紡績糸との接合一体性が著しく高められることから、該線材やペレットを原料とし二次加工して得られる成形体は、曲げ強度や曲げ弾性率或いは耐衝撃特性などにおいて卓越した性能を有するものとなる。
【0014】
該プラズマ処理やオゾン処理自体は新規な処理法ではなく、前述の如く繊維の精練や漂白、更には防縮性、染色性、吸水性などの向上に利用されている。しかしながら本発明者らが知る限りにおいては、上記のように天然植物繊維紡績糸を強化繊維として熱可塑性樹脂と複合する際に、該紡績糸の表面清浄化と共に表面活性を高めて熱可塑性樹脂との接合一体性を高めるのにプラズマ処理やオゾン処理を採用した例はなく、勿論それにより本発明で意図する如き卓越した強度特性の二次成形用材料(即ち、二次成形用の複合樹脂線材やペレット)を得た例はなく、繊維強化複合材料として極めて有用な技術を提供するものである。
【0015】
本発明で採用される上記プラズマ処理やオゾン処理の方法自体は格別特殊なものではなく、公知の方法に適宜の変更を加えて実施すればよいが、比較的耐熱性の低い天然植物繊維紡績糸を処理対象とする本発明においては、オゾン酸化による劣化抑制も考慮して処理条件を下記の様な観点から適正に制御することが望ましい。
【0016】
即ちプラズマ処理法としては低温プラズマ処理が採用されるが、天然植物繊維の熱劣化を可及的に防止しつつ十分な表面活性化効果を与えるため、処理は常温(0〜40℃程度)付近で行なうことが望ましい。
【0017】
またオゾン処理法としては、オゾン含有ガスを吹付ける方法、オゾン含有ガスを溶融した樹脂に吹込む方法などを採用できるが、最も一般的なのはオゾン含有ガス(放電により原料中の酸素をオゾン化することにより得られたオゾン含有気体)を吹付ける方法である。その際の温度条件は特に制限されないが、天然植物繊維のオゾン劣化を可及的に防止しつつ十分な表面活性化効果を与えるため、通常は常温(0〜40℃)付近で処理することが望ましい。
【0018】
上記プラズマ処理またはオゾン処理は、少なくとも天然植物繊維紡績糸を熱可塑性樹脂浴に浸漬する前に行なうべきであり、通常は、該紡績糸を複数本引き揃えたストランドを連続的に熱可塑性樹脂浴中に浸漬走行させて含浸を行なう際に、熱可塑性樹脂浴の直前位置もしくはその上流側にプラズマ処理またはオゾン処理のための装置を設けておき、その位置で連続的にそれらの処理が行われる。
【0019】
なお紡績糸は、短繊維状の天然植物繊維の集合体として張力を確保するためZ撚りやS撚りが掛けられており、中でもZ撚りが一般的であるが、上記プラズマ処理やオゾン処理を施す際に、連続走行に必要な張力を保証し得る範囲で該紡績糸の撚り方向に対して逆方向の撚りを与え、該紡績糸の繊維間隙間を広げる様にして処理を行なえば、プラズマ処理やオゾン処理の作用を紡績糸の内部にまで及ぼすことができるので好ましい。
【0020】
また、この様に撚りを解した状態で処理してからその直下流側で熱可塑性樹脂の含浸を行なえば、繊維間への熱可塑性樹脂の含浸も促進され、含浸不足による強度不足の問題も解消されるので好ましい。
【0021】
プラズマ処理またはオゾン処理の後、熱可塑性樹脂の含浸された連続ストランドは、熱可塑性樹脂が溶融状態を維持している高温状態でノズルを通して引き抜かれるが、該ノズルの部分で適度の絞りが加わって樹脂含浸量がコントロールされると共に、紡績糸内に巻き込まれた空気は外部へ押出される。従って、これを冷却固化すると、内部に空隙欠陥のない繊維強化熱可塑性樹脂線材を得ることができる。熱可塑性樹脂の繊維への含浸および連続ストランドの引き抜きは、例えば特開昭64-16612号公報、特開平1-263005号公報、同5-169445号公報などに記載された方法を採用できる。
【0022】
かくして得られる本発明の繊維強化熱可塑性樹脂線材は、強化繊維を構成する天然植物繊維紡績糸の表面がプラズマ処理またはオゾン処理により清浄化されると共に活性化され、熱可塑性樹脂との接合力が高められているので、両者の一体性が高められ、繊維強化複合材として卓越した強度特性を示すものとなる。
【0023】
本発明で使用する天然の植物繊維紡績糸としては、亜麻、苧麻、マニラ麻、サイザル麻、黄麻(ジュート)、***、ケナフ、カラムシ、ココナッツ繊維、綿、パンヤ綿、しゅろなどの紡績糸が例示され、これらは単独で使用し得る他、必要により複数種を組み合わせて用いることもできる。複数種を併用する場合には、複数種を組み合わせて紡績してもよいし、或いは、単独種の紡績糸を熱可塑性樹脂と複合(含浸)する際に、複数種引き揃えて組み合わせることもできる。天然植物繊維の選択は、最終的に得られる成形品に期待される物性に応じて適切なものを選べばよい。
【0024】
紡績糸の太さも特に制限されないが、JIS L 0101に規定されたジュート番手(恒長式)で表わすと5〜80番手(29,029mで1kgの重さの紡績糸を1番手という)のものを使用することが好ましい。紡績糸の太さが5番手より小さいと紡績糸全体としての強度が不足気味となって含浸・引取り時に切断を起こし易くなり、安定した連続操業が害されることがある。一方、80番手を超えて過度に太い紡績糸を使用すると、樹脂が含浸不足となって成形時の繊維の分散が悪くなり、成形品の機械的物性値が不均一且つ不十分となる傾向が生じてくる。
【0025】
更には、溶融樹脂を含浸・引取り後冷却して得られる繊維強化樹脂線材を切断し、更にこれをペレット状に切断して成形材料とする際に毛羽が発生し易くなり、作業環境を汚染する恐れが生じるばかりでなく、ペレットを射出成形機等のホッパーに投入する際に、生じた毛羽が原因となってホッパー部でブリッジを起し易くなり、連続成形の障害になることがある。こうした点も考慮して、紡績糸のより好ましい番手の下限は7番手以上、更に好ましくは10番手以上で、より好ましい番手の上限は70番手以下、更に好ましくは50番手以下である。
【0026】
強化繊維として使用される天然植物繊維紡績糸の含有量は、繊維強化樹脂線材全量中に占める比率で10質量%以上、より好ましくは12質量%以上で、65質量%以下、より好ましくは60質量%以下が好ましい。天然植物繊維紡績糸の含有量が10質量%未満では、強化繊維としての絶対量不足により繊維強化樹脂材の弾性率が不足気味となり、逆に65質量%を超えて過度に多くなると、紡績糸への樹脂の含浸が不十分となる傾向が生じてくる。
【0027】
本発明では、上記の様に強化繊維として天然植物繊維紡績糸を使用するところに特徴を有しているが、本発明の特徴を阻害しない範囲で該天然植物繊維紡績糸と共に少量の合成有機繊維や炭素繊維を併用することも可能である。これらの繊維は廃却の際に、合成有機繊維は熱エネルギーとして回収が可能であるし、合成繊維、炭素繊維共に焼却しても残灰の発生がなく、本発明による材料的メリットを損なうことがない。
【0028】
使用し得る合成有機繊維としては、用いる熱可塑性樹脂の溶融軟化温度と合成有機繊維の耐熱性との関係において最適のものを選択すればよく、成形温度域でダメージを受けない耐熱性を有するものであれば特に制限されないが、好ましいものとしては、例えば、ポリプロピレン系繊維、ポリアミド系繊維、ポリエステル系繊維、ポリイミド系繊維、ポリアリレート系繊維、ポリカーボネート系繊維、シンジオタクチックポリスチレン系繊維、ポリアルキレンパラオキシベンゾエート系繊維などが例示される。これらの合成繊維も、単独で使用し得るほか必要により複数種を組み合せて用いることができる。これら合成有機繊維や炭素繊維は、天然植物繊維紡績糸を溶融樹脂浴中に含浸走行させる際に、該紡績糸にかかる張力を補足して糸切れを防止する上で、連続繊維のマルチフィラメントロービングを使用することが望ましい。
【0029】
上記合成有機繊維の中でも、物性やコストの面から特に好ましいのはポリエチレンテレフタレート繊維、ポリブチレンテレフタレート繊維などのポリエステル系繊維、ポリアミド6やポリアミド6・6などのポリアミド系繊維であり、中でもポリエチレンテレフタレート繊維が最適である。
【0030】
ポリエチレンテレフタレートの場合、強度として4.44dtex(4g/デニール)以上、好ましくは6.7dtex(6g/デニール)以上の繊維を用いることが耐衝撃性を改善する上で特に好ましい。
【0031】
上記合成有機繊維の径は、繊維強化樹脂線材の製造時、もしくはこれを切断してペレットを製造する際の取扱い性、あるいは該線材やペレットを用いて得られる成形品の強度特性などを考慮して、0.5μm以上、より好ましくは1μm以上で、100μm以下、より好ましくは50μm以下であるのが好ましい。
【0032】
また炭素繊維としては、ピッチ系、PAN系の何れでもよく、径は特に制限されず、最終製品の用途・特性などに応じて適宜選定すればよいが、一般的には6〜20μm、より一般的には7〜15μmの範囲であり、これらを3,000〜100,000本引き揃え収束して使用される。
【0033】
なお、上記天然植物繊維紡績糸またはこれと合成有機繊維や炭素繊維を熱可塑性樹脂浴に通過させて含浸させる際には、これらを撚り合せた状態で樹脂浴に通過させ、その下流側でノズル等から引き抜く際に、溶融樹脂の絞り量を調整することにより、得られる含浸ストランドの樹脂含有量が20〜90質量%、より好ましくは30〜88質量%となる様にコントロールしながら引き抜きを行なう。
【0034】
本発明においてマトリックス成分となる熱可塑性樹脂としては、好ましくは溶融軟化温度が220℃程度以下、より好ましくは200℃程度以下、さらに好ましくは180℃程度以下のものを選択することが望ましい。その理由は、該熱可塑性樹脂の溶融軟化温度が高すぎると、溶融状態の該樹脂浴に天然植物繊維紡績糸を含浸走行させる際に、該紡績糸が高温に曝されて熱分解や熱劣化を起こし、強化繊維としての機能が損なわれることがあるからである。この様な観点から、好ましい熱可塑性樹脂としては、ポリプロピレン系やポリエチレンなどのポリオレフィン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリスチレン系樹脂、AS樹脂、あるいは、ポリ乳酸系の生分解性樹脂などの如き単独重合樹脂や共重合樹脂、更には、それらの2種以上を併用したブレンド樹脂などが好ましいものとして例示される。それら熱可塑性樹脂の選別に当たっては、最終製品として得られる繊維強化樹脂線材やペレット、更にはこれらを用いて得られる成形品の要求特性などを考慮して任意に選択される。
【0035】
上記熱可塑性樹脂の中でも、強度特性やコストなどのバランスを考慮して特に好ましいのは、ポリプロピレン、高密度ポリエチレン、直鎖低密度ポリエチレン、低密度ポリエチレン、ブテン−1、ヘキセン−1、オクテン−1などのα−オレフィンの重合体、あるいはそれらの共重合体の如きポリオレフィン系樹脂、不飽和カルボン酸やその誘導体で変性された変性ポリオレフィン樹脂、あるいはそれらの2種類以上のブレンド樹脂である。
【0036】
上記変性に用いられる不飽和カルボン酸あるいはその誘導体としては、アクリル酸、メタクリル酸、マレイン酸、イタコン酸、フマル酸、あるいはそれら酸のエステル、無水マレイン酸、無水イタコン酸などが挙げられるが、特に好ましいのは、無水マレイン酸とメタクリル酸グリシジルエステルである。
【0037】
更に本発明においては、前記天然植物繊維紡績糸に含まれていることのある前記リグニン成分などの熱分解によって生じる臭いを抑えるため、結晶性の熱可塑性樹脂を使用することが望ましく、結晶化度は高い方が好ましい。これは結晶化部分に臭気成分が取り込まれ、臭いを抑制する作用が期待されるからである。こうした観点から、前記樹脂の中でも、高結晶性プラスチックであるポリプロピレンや高密度ポリエチレンは好ましいものとして推奨される。
【0038】
また本発明においては、天然植物繊維中に含まれるリグニン質により紡績糸と熱可塑性樹脂の親和性が高められ、前述したプラズマ処理やオゾン処理とも相俟って均一で一体性の高いペレットを得ることができるが、強化繊維と熱可塑性樹脂の密着性を更に改善するため、繊維および樹脂の両者に対して親和性の良好な各種の変性樹脂を添加することも有効である。例えばポリオレフィン系樹脂に対しては、無水マレイン酸変性ポリオレフィン、オキサゾリン変性ポリオレフィン、メタクリル酸グリシジルエステル変性ポリオレフィン等を添加すると、複合材料としての一体性が一段と高められ、成形品の物性向上が期待できる。その際に添加される変性ポリオレフィン樹脂の量は、樹脂系やその変性度によっても異なるが、ポリプロピレン系樹脂の場合、酸価26mgKOH/gの無水マレイン酸変性ポリプロピレン樹脂の添加量は、ポリオレフィン系樹脂に対して0.1〜15質量%、より好ましくは0.2〜12質量%、更に好ましくは0.5〜10質量%である。
【0039】
またマトリックスとなる熱可塑性樹脂には、成形品に求められる物性や用途に応じて各種の添加剤を加えることができる。それらの添加剤としては、分散剤、滑剤、難燃剤、酸化防止剤、帯電防止剤、光安定剤、紫外線吸収剤、カーボンブラック、結晶化促進剤(増粘剤)、可塑剤、顔料、染料などが挙げられ、これらも必要に応じて2種類以上併用することができる。
【0040】
本発明に係る繊維強化熱可塑性樹脂線材は、マトリックスを構成する熱可塑性樹脂の特性によって優れた2次加工性を有しており、例えば該線材を多数本引き揃え、あるいは金型の内外面に巻回して加熱溶融して再成形する方法、該繊維を任意の長さに切断してペレット化し、押出し成形や射出成形用原料として使用し、あるいはチョップドストランドとしたり不織布状もしくは織編物状として2次加工用の成形材料として使用するなど、様々の成形材料として有効に利用できる。
【0041】
尚、ペレット状の成形材料として使用する際の好ましいペレット長は2〜24mmの範囲であり、2mm未満の短尺物では、強化繊維が短尺となるため十分な強度特性が得られ難くなり、逆に24mmを越えて過度に長尺になると、成形時に該ペレットがホッパーでブリッジを引き起こし、安定供給が阻害されてスムーズな成形ができなくなる。こうした観点から、ペレットとして使用する際のより好ましい長さは3mm以上、更に好ましくは4mm以上で、15mm以下、さらに好ましくは12mm以下である。
【0042】
ペレット径は、ペレット自体の生産性や該ペレットを用いた成形時のハンドリング性等を考慮すると1mm以上、5mm以下、より好ましくは、2mm以上、4mm以下である。
【0043】
ペレットの好ましい寸法を、上記ペレット長(L)とペレット径(D)の関係で表現すると、L/D(アスペクト比)が1以上、6以下であることが好ましい。該ペレットのL/Dが1未満では、含浸・引き抜き後の線材をペレット状に切断する際にペレットが割れを生じることがあり、強化用繊維の毛羽立ちが顕著となってハンドリング性が悪くなる。また、該ペレットのL/Dが6を越えて過度に細長いペレットになると、成形に際しスクリュー等ヘのペレットの噛込み時に強化繊維が破損し易く、強化用繊維長が短くなって十分な強度特性の成形品が得られ難くなる。こうした観点から、ペレットのより好ましいL/Dは2以上、5以下である。
【0044】
天然植物繊維は、その種類にもよるが、一般的に180℃を超える付近から熱劣化を起し易くなる傾向があるので、融点や軟化点の高い熱可塑性樹脂を用いる場合には、併用されることのある合成有機繊維の耐熱性を含めて強化繊維の劣化を配慮することが望まれる。強化繊維に樹脂を含浸させる際の溶融樹脂温度は低い方が好ましいが、強化繊維への樹脂の含浸度合いやストランド(樹脂が含浸された強化繊維束)の引取り速度に及ぼす樹脂粘度とのバランスを考慮して最適の温度を選択することになる。
【0045】
ちなみに、熱可塑性樹脂の選択に当たっては、強化繊維に含浸させるのに適切な溶融粘度となるものを選択し、可能な範囲で溶融粘度が十分低くなる温度に熱可塑性樹脂を加熱して溶融する。例えば、ポリプロピレン樹脂の場合には、目安としてメルトフローレート(MFR:230℃、2.16kgf)で5g/10分以上、より好ましくは15g/10分以上、更に好ましくは30g/10分以上で、200g/10分以下、より好ましくは150g/10分以下、更に好ましくは100g/10分以上のものを選択するのが良い。
【0046】
ポリプロピレン系樹脂のMFRが上記範囲未満では、天然植物繊維紡績糸を含む強化樹脂線材やペレットの生産性が低くなる傾向が現われ、製造できたとしても強化繊維への樹脂の含浸が不十分となり、得られるペレットから強化繊維の脱落が起こり易くなってハンドリング性に問題を生じたり、成形品としての強化繊維の分散性不良により強度特性値のバラツキが大きくなる傾向が生じてくる。一方、MFRが上記好適範囲を超えると、成形品の強度や弾性率、耐熱性といった特性が低下するため好ましくない。
【0047】
また、強化繊維として例えばジュート紡績糸を選択した場合には、ポリプロピレン樹脂の溶融樹脂温度として、200℃以上、280℃以下、より好ましくは220℃以上、260℃以下、更に好ましくは230℃以上、255℃以下が好ましい。
【0048】
この際、強化繊維の熱劣化を抑えるという観点から、強化繊維が溶融樹脂浴中に入りノズルを通してから取り出されるまでの時間が10秒以内、好ましくは5秒以内となる様にコントロールすることが好ましい。この時間が長くなり過ぎると強化繊維が熱劣化を起こす可能性が高くなる。一方、この時間が短か過ぎると、熱可塑性樹脂の含浸が不十分となるので、好ましくは浸漬時間を0.1秒以上、より好ましくは0.15秒以上確保することが望ましい。
【0049】
【実施例】
以下、実験例を挙げて本発明をより詳細に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。
【0050】
実験例
下記の素材および処理法により繊維強化熱可塑性樹脂線材を製造した。
【0051】
[ポリプロピレン系樹脂]
密度が0.91g/cm3、MFR(230℃、2.16kgf)が60g/10分、融点(DSC法)が165℃のホモポリプロピレン樹脂(PP)100質量部に、無水マレイン酸変性ポリプロピレン樹脂(三洋化成工業社製商品名「ユーメックス1001」、酸価:26mgKOH/g、密度:0.95g/cm3、分子量:40,000(GPC法による重量平均分子量))5質量部をブレンドした樹脂ペレットを使用した。
【0052】
[ポリアミド12樹脂]
密度が1.01g/cm3、融点(DSC法)が178℃のナイロン12樹脂(ダイセル・ヒュルス社製商品名「ダイアミドL1640」)を使用した。
【0053】
[天然植物繊維]
天然植物繊維紡績糸として、30番手の黄麻(ジュート糸)の紡績糸(Z撚り)を使用した。
【0054】
[プラズマ処理]
(株)キーエンス社製のプラズマ照射器(コントローラST−7000、ヘッドST−7010、大気プラズマ方式)を使用した。
【0055】
[オゾン含有気体処理]
(有)東洋化工機社製のオゾン発生器(「OZO−4」、オゾン発生量:400mg/h、濃度:300ppm)を用いて、発生したオゾンをガラス管の中に注入し、そこに強化用繊維紡績糸を撚りを解く方向に撚り(S撚り)を掛けながら通過させる。このオゾン含有気体処理を、直列して3回繰り返す。
【0056】
実施例1〜5、比較例1〜3
3本の上記天然植物繊維紡績糸に撚りを掛けながら溶融樹脂浴(250℃)に通して含浸し、15m/minのライン速度で引き抜く方法を採用する。この際、撚りを解く方向の撚り(S撚り)を掛けながら、前記プラズマ照射処理を行なった後、その直下流側で溶融した上記ポリプロピレン系樹脂浴(実施例1)またはポリアミド12樹脂浴(実施例2)中に浸漬走行させ、次いで吐出ノズルから引き抜いてから冷却固化させ、直径が約3mmで繊維含量が約40質量%の天然植物繊維強化樹脂線材を製造する。その後、該線材を長さ4mmに切断し、直径約3mm×長さ4mm、繊維含量が約40質量%の天然植物繊維強化樹脂ペレットを製造した。また、プラズマ照射処理に代えてオゾン含有気体処理を採用した以外は前記実施例1と全く同様にして、天然植物繊維強化樹脂線材を製造し、引き続いて長さ約4mmに切断することにより、上記と同じ寸法と含浸率の天然植物繊維強化樹脂ペレットを製造した(実施例3)。
【0057】
上記において、プラズマ処理またはオゾン処理を省略した以外は前記実施例1,2と同様にして天然植物繊維強化樹脂ペレットを製造した(比較例1,2)。
【0058】
また上記において、天然植物繊維紡績糸にZ撚り方向の撚りを掛けながら、該紡績糸にプラズマ照射を2方向(2台)から照射した以外は前記実施例1と同様にして樹脂浴(ポリプロピレン系樹脂)中を浸漬走行させ、天然植物繊維強化樹脂線材を製造し、引き続いて長さ約4mmに切断することにより、上記と同じ寸法と含浸率の天然植物繊維強化樹脂ペレットを製造した(実施例4)。
【0059】
また、ポリプロピレン系樹脂として、無水マレイン酸変性ポリプロピレン樹脂を配合していないポリプロピレン樹脂のみを使用した以外は前記実施例1と全く同様にして、天然植物繊維強化樹脂線材を製造し、引き続いて長さ約4mmに切断することにより、上記と同じ寸法と含浸率の天然植物繊維強化樹脂ペレットを製造した(実施例5)。
【0060】
更に、無水マレイン酸変性ポリプロピレン系樹脂配合無しのポリプロピレン系樹脂を使用し、且つプラズマ照射処理もオゾン含有気体処理も省略した以外は前記実施例1と同様にして天然植物繊維強化樹脂線材を製造し、引き続いて長さ約4mmに切断することにより、上記と同じ寸法と含浸率の天然植物繊維強化樹脂ペレットを製造した(比較例3)。
【0061】
[評価試験]
上記で得た各天然植物繊維強化樹脂ペレットを、100℃の送風乾燥機を用いて3時間乾燥し、これらを成形原料として成形実験を行なった。成形装置としては、住友−ネスタール社製の射出成形機「SG220U−SYCAP・MIIIA」を使用し、成形温度は、樹脂としてポリプロピレン系樹脂を用いたものは180℃、ポリアミド12樹脂を用いたものは200℃とし、金型温度を60℃として射出成形を行ない、曲げ試験片(25mm×130mm×厚さ3.2mm)および衝撃試験片(12.7mm×62mm×厚さ3.2mm)を製造し、それぞれについて下記の評価試験を行ない、表1に示す結果を得た。
【0062】
評価試験法:
曲げ強度及び曲げ弾性率:ASTM D790に準拠して測定、
衝撃値:ASTM D256に準拠して、ノッチ付アイゾット衝撃試験を実施。
【0063】
【表1】

Figure 0004377540
【0064】
表1より、次の様に解析できる。
【0065】
実施例1,3,4と比較例1の比較、および実施例5と比較例3の比較から、マトリックス成分としてポリプロピレン系樹脂を使用したものでは、紡績糸のプラズマ処理またはオゾン処理によって物性を大幅に改善し得ることが分かる。また、実施例1と実施例5の比較から、マトリックス樹脂として酸変性プロピレン系樹脂を添加すると、プラズマ処理またはオゾン処理との明らかな相乗効果が認められる。
【0066】
また、比較例1に対する実施例1(曲げ強度で13.9%、曲げ弾性率で18.4%の向上)および実施例4(曲げ強度で4.2%、曲げ弾性率で4.1%の向上)との物性向上効果から、樹脂浴含浸時における撚りの方向によって物性改善効果は異なり、撚りを解く方向に撚りを掛けながら含浸を行なった方が高い物性改善効果を得ることができる。
【0067】
更に、比較例2に対する実施例2(曲げ強度で4.8%、曲げ弾性率で6.1%の向上)との比較から、ポリアミド12樹脂を用いた場合でも物性改善効果は認められるが、上記比較例1に対する実施例1(曲げ強度で13.9%、曲げ弾性率で18.4%の向上)、比較例3に対する実施例5(曲げ強度で8.5%、曲げ弾性率で14.6%の向上)の比較からも明らかな様に、ポリプロピレン系樹脂を用いた場合に比べると改質効果は小さい。その理由としては、ポリアミドは元々天然繊維に対する接着性が良好であるのに対し、ポリプロピレン系樹脂は元々天然繊維に対する接着性が乏しいため、ポリプロピレン系樹脂と複合する際に、天然植物繊維に対する接着改質処理(オゾン処理やプラズマ処理)効果がより有効に発揮されたものと考えられる。即ち本発明においては、天然植物繊維紡績糸と複合される樹脂としてポリオレフィン系樹脂を使用した時により有効に活かされる。
【0068】
【発明の効果】
本発明は以上の様に構成されており、主たる強化繊維として天然植物繊維紡績糸を使用し、これを熱可塑性樹脂浴に含浸するに先立って、該紡績糸にプラズマ処理もしくはオゾン処理を施すことによって、該紡績糸と熱可塑性樹脂との接合一体性を高めることができ、曲げ強度や曲げ弾性率、衝撃特性などの物性を効果的に高めることができる。しかもこの方法であれば、従来の接着改善処理(水蒸気処理や洗剤処理、アルカリ処理や硫酸処理等の薬剤処理)に指摘される廃液処理の問題を解消できると共に処理コストも大幅に低減できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fiber reinforced thermoplastic resin wire obtained by using a natural vegetable fiber spun yarn as a reinforcing fiber and composited with a thermoplastic resin, and a pellet obtained by cutting the wire, and in particular, a natural plant fiber spun The present invention relates to a method for producing fiber-reinforced thermoplastic resin wire and pellets, in which yarns are firmly joined and integrated with a thermoplastic resin, and mechanical properties such as bending strength, flexural modulus, and impact resistance are improved as a fiber-reinforced composite material.
[0002]
[Prior art]
Recently, researches on fiber reinforced resins using natural plant fibers such as wood pulp, hemp, coconut, bamboo and the like as reinforcing fibers have been actively conducted. By the way, with the increasing awareness of waste pollution, natural fiber reinforced resin has an impact on the human body due to the scattering of detached glass fiber, which is seen when discarding reinforced resin products that use glass fiber as reinforcing fiber. There is no concern about it, and even when it is incinerated, all can be recovered as thermal energy. Furthermore, there is no generation of residual ash or generation of harmful gases derived from inorganic fillers such as glass fiber and talc. It is.
[0003]
However, natural plant fibers are not continuous with continuous fibers such as glass fibers, carbon fibers, metal fibers, and various synthetic fibers that have been widely used as reinforcing fibers for fiber reinforced resins. Special technology is required to make a fiber-reinforced composite material that combines the properties of long fibers with resin. For example, in the case of continuous strands of long fibers, a fiber-reinforced resin wire can be continuously produced by continuously impregnating the molten strands in a molten resin bath, and then cooling and solidifying the resin. The fiber reinforced resin pellets can be produced with high productivity by cutting the fiber into an arbitrary length. However, discontinuous natural plant fibers require special techniques because they must be used as twisted spun yarn.
[0004]
Also, the natural vegetable fiber spun yarn is attached with mineral oil by the mineral oil treatment for smooth spinning process, which inhibits the unity with the composite resin. A method for removing the mineral oil by subjecting the solution to alkali treatment, sulfuric acid treatment, acetylation treatment, etc., and improving the adhesion with the resin to enhance the integrity has been studied. However, in these methods, since a large amount of drainage is generated in the preliminary treatment for improving the adhesiveness, a great amount of work and cost are required for wastewater treatment.
[0005]
Also, a method of using thinner to remove mineral oil (“The 1st Kansai Private University Science and Technology High-Tech Research / Academic Frontier Symposium” 1999) has been proposed, but it can solve the problem of wastewater treatment. Rather, there are concerns about the negative impact on fire and the human body. In addition, as a general method for removing mineral oil adhering to the fiber surface, there is a method using washing water or water vapor containing a surfactant, but the plant fiber is originally hydrophilic in the treatment with water or water vapor. It absorbs water remarkably and requires a lot of energy and time to dry. Moreover, since a large amount of water vapor or water is used for cleaning, and a large amount of heat energy is required to remove the water after cleaning, waste of resources and energy is inevitable.
[0006]
On the other hand, there are many methods for adding ozone treatment and discharge plasma treatment to textile products, such as JP-A-7-11565, JP-A-6-57660, JP-A-9-4716, and JP-A-11-217766. A method has been proposed. However, all of these methods are aimed at improving the refining, bleaching, shrinkage resistance, dyeability, water absorption, etc. of the fiber, and as in the present invention, a natural vegetable fiber spun yarn is targeted as a thermoplastic resin. It is not intended at all to increase the joining integrity.
[0007]
It is also generally known that ozone treatment, plasma treatment, corona treatment, etc. are applied to synthetic resin films such as polyolefin resins, molded products, fibers, etc. to improve adhesion, paintability, dyeability, etc. However, there is no example of using it for the treatment for improving the composite unity with the thermoplastic resin for the natural vegetable fiber spun yarn.
[0008]
[Problems to be solved by the invention]
Under the conventional techniques as described above, the present inventors have focused on natural plant fibers that have recently been attracting attention as reinforcing fibers, and these are used as molding fibers in combination with thermoplastic resins for molding. Fiber-reinforced thermoplastic resin wires and pellets that can satisfy all of the above-mentioned problems, especially continuous productivity, quality stability as a molding material, strength properties as a molded product, etc. when manufacturing fiber-reinforced resin wires and pellets We have been researching for the development of. Therefore, the object of the present invention is to effectively use natural plant fibers as the main reinforcing fiber, and to satisfy all the requirements for continuous productivity, quality stability as a molding material, strength properties as a molded product, etc. It is providing the manufacturing method of a resin wire and a pellet.
[0009]
[Means for Solving the Problems]
The production method of the present invention that has been able to solve the above-mentioned problems is to produce a fiber-reinforced thermoplastic resin wire formed by combining a natural vegetable fiber spun yarn as a reinforcing fiber with a thermoplastic resin. At the time of impregnation, or at least before that, the spun yarn is subjected to plasma treatment or ozone treatment to increase the bonding strength between the natural plant fiber and the thermoplastic resin, thereby improving the strength characteristics as a composite reinforcing material. have.
[0010]
In carrying out the above-mentioned method, when performing the plasma treatment or ozone treatment, applying a force in the direction of twisting back to the natural plant fiber spun yarn, and performing the plasma treatment or ozone treatment to loosen the spun yarn, Since these treatment effects can be exerted up to the inside of the spun yarn, it is recommended as a preferred embodiment in carrying out the present invention. In the case of a polyolefin resin containing an acid-modified polyolefin as the thermoplastic resin, the physical properties can be further improved by joining and integrating natural vegetable fibers and the thermoplastic resin. It is preferable because it can be utilized for.
[0011]
The natural plant fiber reinforced thermoplastic resin wire obtained by the present invention is formed by heating and re-molding the wire in the longitudinal direction, or wound and re-molded on the inner surface or outer surface of the mold, or further It can be used effectively as a molding material that can be heated and reshaped into an arbitrary shape after it is made into a nonwoven fabric or woven or knitted fabric, and the wire is cut into an appropriate length to form a pellet, such as extrusion molding or injection molding. Can be used as a molding material.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
As described above, in the present invention, when producing a fiber-reinforced thermoplastic resin wire obtained by combining a natural vegetable fiber spun yarn with a thermoplastic resin, when impregnating the spun yarn into the thermoplastic resin, or at least before that, Characterized in that the spun yarn is subjected to plasma treatment or ozone treatment, and the fibers constituting the spun yarn are activated to improve the bondability with the thermoplastic resin, thereby enhancing the composite integrity of the two. In the following, the manufacturing method of the present invention will be described in detail based on these processes.
[0013]
The plasma treatment and ozone treatment employed in the present invention activates the surface of the natural vegetable fiber spun yarn combined with the thermoplastic resin and decomposes the oil adhering to the spun yarn, thereby producing the thermoplastic resin. These treatments are performed to increase the bonding integrity between the thermoplastic resin and the natural vegetable fiber spun yarn, so that the wire or pellet is used as a raw material for secondary processing. The molded body obtained in this way has excellent performance in bending strength, bending elastic modulus, impact resistance characteristics, and the like.
[0014]
The plasma treatment or the ozone treatment itself is not a novel treatment method, and is used for improving the scouring and bleaching of fibers as described above, as well as for improving shrinkage resistance, dyeability and water absorption. However, as far as the present inventors know, when a natural vegetable fiber spun yarn is combined with a thermoplastic resin as a reinforcing fiber as described above, the surface activity of the spun yarn is increased and the surface activity is increased to increase the thermoplastic resin. There is no example of adopting plasma treatment or ozone treatment to improve the joining integrity of the secondary molding material, and of course, by this, the secondary molding material having excellent strength characteristics as intended by the present invention (that is, the composite resin wire for secondary molding) No example has been obtained, and provides a very useful technique as a fiber-reinforced composite material.
[0015]
The plasma treatment and ozone treatment methods employed in the present invention are not particularly special, and may be carried out by appropriately modifying known methods, but natural vegetable fiber spun yarn having relatively low heat resistance. In the present invention that treats the above, it is desirable to appropriately control the treatment conditions from the following viewpoints in consideration of deterioration suppression due to ozone oxidation.
[0016]
That is, low-temperature plasma treatment is adopted as the plasma treatment method, but the treatment is performed at around room temperature (about 0 to 40 ° C.) in order to provide a sufficient surface activation effect while preventing thermal degradation of natural plant fibers as much as possible. It is desirable to do in.
[0017]
In addition, as an ozone treatment method, a method of spraying an ozone-containing gas, a method of blowing an ozone-containing gas into a molten resin, or the like can be adopted, but the most common is an ozone-containing gas (ozonization of oxygen in a raw material by discharge). This is a method of spraying the ozone-containing gas). Although the temperature conditions in that case are not particularly limited, in order to give a sufficient surface activation effect while preventing ozone degradation of natural plant fibers as much as possible, it is usually treated at around normal temperature (0 to 40 ° C.). desirable.
[0018]
The plasma treatment or the ozone treatment should be performed at least before immersing the natural vegetable fiber spun yarn in the thermoplastic resin bath. Usually, a strand in which a plurality of spun yarns are arranged is continuously formed in the thermoplastic resin bath. When impregnation is performed by dipping in, an apparatus for plasma treatment or ozone treatment is provided immediately before or upstream of the thermoplastic resin bath, and these treatments are continuously performed at that position. .
[0019]
The spun yarn is Z-twisted or S-twisted to ensure tension as an aggregate of short fiber-like natural plant fibers. Among them, Z twist is common, but the above-described plasma treatment or ozone treatment is performed. In this case, if the treatment is performed so as to give a twist in a direction opposite to the twist direction of the spun yarn within a range in which the tension necessary for continuous running can be guaranteed, and the gap between the fibers of the spun yarn is widened, And ozone treatment can be applied to the inside of the spun yarn.
[0020]
In addition, if the thermoplastic resin is impregnated immediately downstream from the untwisted state in this way, the impregnation of the thermoplastic resin between the fibers is promoted, and there is a problem of insufficient strength due to insufficient impregnation. Since it is eliminated, it is preferable.
[0021]
After the plasma treatment or ozone treatment, the continuous strand impregnated with the thermoplastic resin is drawn through the nozzle at a high temperature state in which the thermoplastic resin is maintained in a molten state, but a moderate restriction is applied to the nozzle portion. The amount of resin impregnation is controlled, and the air entrained in the spun yarn is pushed out. Therefore, when this is cooled and solidified, a fiber-reinforced thermoplastic resin wire having no void defect inside can be obtained. For example, the methods described in JP-A Nos. 64-16612, 1-263005, and 5-169445 can be employed for impregnating the thermoplastic resin into the fibers and drawing the continuous strand.
[0022]
The fiber-reinforced thermoplastic resin wire of the present invention thus obtained has a surface of the natural vegetable fiber spun yarn constituting the reinforcing fiber cleaned and activated by plasma treatment or ozone treatment, and has a bonding force with the thermoplastic resin. Since it is enhanced, the unity of the two is enhanced, and the strength characteristics are excellent as a fiber-reinforced composite material.
[0023]
Examples of natural vegetable fiber spun yarns used in the present invention include spun yarns such as flax, hemp, manila hemp, sisal hemp, jute, cannabis, kenaf, ramie, coconut fiber, cotton, panya cotton, and shiro. These can be used alone or in combination of a plurality of kinds as necessary. When a plurality of types are used in combination, a plurality of types may be combined for spinning, or when a single type of spun yarn is combined (impregnated) with a thermoplastic resin, a plurality of types may be combined and combined. . The natural plant fiber may be selected appropriately depending on the physical properties expected of the finally obtained molded product.
[0024]
The thickness of the spun yarn is not particularly limited, but it is 5 to 80 when expressed by the jute count (constant length type) defined in JIS L 0101 (a spun yarn of 29,029 m and 1 kg in weight is called the first count) Is preferably used. If the thickness of the spun yarn is smaller than the fifth, the strength of the spun yarn as a whole tends to be insufficient, and it becomes easy to cause cutting at the time of impregnation and take-up, which may impair stable continuous operation. On the other hand, if an excessively thick spun yarn exceeding 80 is used, the resin is insufficiently impregnated and fiber dispersion during molding tends to be poor, and the mechanical properties of the molded product tend to be uneven and insufficient. Will arise.
[0025]
Furthermore, when the fiber reinforced resin wire obtained by impregnating and taking out the molten resin is cooled and then cut, and further cut into pellets to form a molding material, fuzz is likely to occur, and the work environment is contaminated. When the pellets are put into a hopper of an injection molding machine or the like, bridging is likely to occur in the hopper due to the generated fluff, which may hinder continuous molding. Considering these points, the more preferable lower limit of the spun yarn is 7th or more, more preferably 10th or more, and the more preferable upper limit of the 70th or less, more preferably 50th or less.
[0026]
The content of the natural vegetable fiber spun yarn used as the reinforcing fiber is 10% by mass or more, more preferably 12% by mass or more, and 65% by mass or less, more preferably 60% by mass in the total amount of the fiber reinforced resin wire. % Or less is preferable. If the content of the natural vegetable fiber spun yarn is less than 10% by mass, the elastic modulus of the fiber reinforced resin material tends to be insufficient due to a lack of the absolute amount as a reinforcing fiber. Conversely, if the content exceeds 65% by mass, the spun yarn is excessively increased. There is a tendency that the resin is not sufficiently impregnated.
[0027]
The present invention is characterized in that a natural plant fiber spun yarn is used as a reinforcing fiber as described above, but a small amount of synthetic organic fiber is used together with the natural plant fiber spun yarn within a range not impairing the features of the present invention. It is also possible to use carbon fiber in combination. When these fibers are discarded, synthetic organic fibers can be recovered as thermal energy, and even if both synthetic fibers and carbon fibers are incinerated, no residual ash is generated, and the material merit of the present invention is impaired. There is no.
[0028]
As the synthetic organic fiber that can be used, an optimum one may be selected in relation to the melt softening temperature of the thermoplastic resin to be used and the heat resistance of the synthetic organic fiber, and it has heat resistance that is not damaged in the molding temperature range. Is not particularly limited, but preferred examples include polypropylene fiber, polyamide fiber, polyester fiber, polyimide fiber, polyarylate fiber, polycarbonate fiber, syndiotactic polystyrene fiber, polyalkylene paraoxy Examples include benzoate fibers. These synthetic fibers can also be used alone or in combination of a plurality of types as necessary. When these synthetic organic fibers and carbon fibers are impregnated and run with natural plant fiber spun yarns in a molten resin bath, multifilament roving of continuous fibers is used to supplement the tension applied to the spun yarn to prevent yarn breakage. It is desirable to use
[0029]
Among the synthetic organic fibers, polyester fibers such as polyethylene terephthalate fibers and polybutylene terephthalate fibers, and polyamide fibers such as polyamide 6 and polyamide 6/6 are particularly preferable from the viewpoint of physical properties and cost. Is the best.
[0030]
In the case of polyethylene terephthalate, it is particularly preferable to use fibers having a strength of 4.44 dtex (4 g / denier) or more, preferably 6.7 dtex (6 g / denier) or more in order to improve impact resistance.
[0031]
The diameter of the synthetic organic fiber takes into consideration the handling characteristics when producing a fiber reinforced resin wire or cutting the pellet to produce a pellet, or the strength characteristics of a molded product obtained using the wire or the pellet. The thickness is preferably 0.5 μm or more, more preferably 1 μm or more, and 100 μm or less, more preferably 50 μm or less.
[0032]
Further, the carbon fiber may be either pitch-based or PAN-based, and the diameter is not particularly limited, and may be appropriately selected according to the use and characteristics of the final product, but is generally 6 to 20 μm, more generally Specifically, it is in the range of 7 to 15 μm, and 3,000 to 100,000 of these are aligned and converged for use.
[0033]
When the above-mentioned natural vegetable fiber spun yarn or synthetic fiber and carbon fiber are impregnated by passing them through a thermoplastic resin bath, they are passed through a resin bath in a twisted state, and a nozzle is provided downstream thereof. When pulling out from the resin, etc., by adjusting the drawing amount of the molten resin, the resin content of the resulting impregnated strand is controlled so as to be 20 to 90% by mass, more preferably 30 to 88% by mass. .
[0034]
In the present invention, it is desirable to select a thermoplastic resin as a matrix component, preferably having a melt softening temperature of about 220 ° C. or lower, more preferably about 200 ° C. or lower, and further preferably about 180 ° C. or lower. The reason for this is that if the melt softening temperature of the thermoplastic resin is too high, the spun yarn is exposed to a high temperature when it is impregnated and run in the molten resin bath, causing thermal decomposition or thermal degradation. This is because the function as a reinforcing fiber may be impaired. From such a viewpoint, preferred thermoplastic resins include polyolefin resins such as polypropylene and polyethylene, polyamide resins, polyester resins, polystyrene resins, AS resins, or polylactic acid biodegradable resins. Such homopolymer resins and copolymer resins, and blend resins using two or more of them in combination are preferred. In selecting these thermoplastic resins, fiber reinforced resin wires and pellets obtained as a final product, as well as required characteristics of molded products obtained using these, are arbitrarily selected.
[0035]
Among the above thermoplastic resins, polypropylene, high-density polyethylene, linear low-density polyethylene, low-density polyethylene, butene-1, hexene-1, octene-1 are particularly preferable in consideration of the balance of strength characteristics and cost. A polyolefin-based resin such as an α-olefin polymer or a copolymer thereof, a modified polyolefin resin modified with an unsaturated carboxylic acid or a derivative thereof, or a blend resin of two or more of them.
[0036]
Examples of the unsaturated carboxylic acid or derivative thereof used for the modification include acrylic acid, methacrylic acid, maleic acid, itaconic acid, fumaric acid, or esters of these acids, maleic anhydride, itaconic anhydride, etc. Preference is given to maleic anhydride and glycidyl methacrylate.
[0037]
Furthermore, in the present invention, it is desirable to use a crystalline thermoplastic resin in order to suppress odor caused by thermal decomposition of the lignin component and the like that may be contained in the natural vegetable fiber spun yarn. Is preferably higher. This is because an odor component is taken into the crystallized portion and an effect of suppressing odor is expected. From such a viewpoint, among the resins, polypropylene and high-density polyethylene, which are highly crystalline plastics, are recommended as preferable ones.
[0038]
In the present invention, the affinity between the spun yarn and the thermoplastic resin is enhanced by the lignin contained in the natural plant fiber, and in combination with the above-described plasma treatment and ozone treatment, uniform and highly integrated pellets are obtained. However, in order to further improve the adhesion between the reinforcing fiber and the thermoplastic resin, it is also effective to add various modified resins having good affinity for both the fiber and the resin. For example, when a maleic anhydride-modified polyolefin, an oxazoline-modified polyolefin, a methacrylic acid glycidyl ester-modified polyolefin, or the like is added to a polyolefin-based resin, the integrity as a composite material can be further improved, and improvement in physical properties of a molded product can be expected. The amount of the modified polyolefin resin added at that time varies depending on the resin system and the degree of modification. In the case of a polypropylene resin, the addition amount of the maleic anhydride-modified polypropylene resin having an acid value of 26 mgKOH / g is the polyolefin resin. It is 0.1-15 mass% with respect to it, More preferably, it is 0.2-12 mass%, More preferably, it is 0.5-10 mass%.
[0039]
Moreover, various additives can be added to the thermoplastic resin used as a matrix according to the physical properties and applications required of the molded product. These additives include dispersants, lubricants, flame retardants, antioxidants, antistatic agents, light stabilizers, UV absorbers, carbon black, crystallization accelerators (thickeners), plasticizers, pigments, dyes These can also be used, and two or more of these can be used together as necessary.
[0040]
The fiber reinforced thermoplastic resin wire according to the present invention has excellent secondary processability due to the properties of the thermoplastic resin constituting the matrix. For example, a large number of the wire materials are aligned, or on the inner and outer surfaces of the mold. A method of winding and heat-melting and re-molding, cutting the fiber into an arbitrary length and pelletizing it, using it as a raw material for extrusion molding or injection molding, or making it into a chopped strand or as a nonwoven or woven or knitted fabric 2 It can be effectively used as various molding materials such as a molding material for subsequent processing.
[0041]
In addition, the preferable pellet length when used as a pellet-shaped molding material is in the range of 2 to 24 mm, and in a short product of less than 2 mm, it becomes difficult to obtain sufficient strength characteristics because the reinforcing fiber is short, and conversely If the length exceeds 24 mm, the pellets cause bridging by the hopper during molding, and the stable supply is hindered to prevent smooth molding. From such a viewpoint, a more preferable length when used as a pellet is 3 mm or more, more preferably 4 mm or more, 15 mm or less, and further preferably 12 mm or less.
[0042]
The pellet diameter is 1 mm or more and 5 mm or less, more preferably 2 mm or more and 4 mm or less in consideration of productivity of the pellet itself, handling property at the time of molding using the pellet, and the like.
[0043]
When a preferable dimension of the pellet is expressed by the relationship between the pellet length (L) and the pellet diameter (D), it is preferable that L / D (aspect ratio) is 1 or more and 6 or less. When the L / D of the pellet is less than 1, the pellet may be cracked when the impregnated / pulled wire is cut into a pellet, and the fuzz of the reinforcing fibers becomes remarkable and the handling property is deteriorated. Further, if the pellet has an L / D exceeding 6 and becomes an excessively long pellet, the reinforcing fiber is easily damaged when the pellet is bitten into a screw or the like during molding, and the reinforcing fiber length is shortened and sufficient strength characteristics are obtained. It becomes difficult to obtain a molded product. From such a viewpoint, the more preferable L / D of the pellet is 2 or more and 5 or less.
[0044]
Although natural plant fibers tend to be subject to thermal degradation generally from around 180 ° C., depending on the type, natural plant fibers are used in combination when using thermoplastic resins with high melting points and softening points. It is desirable to take into account the deterioration of the reinforcing fibers, including the heat resistance of the synthetic organic fibers that are sometimes present. The temperature of the molten resin when impregnating the reinforcing fiber with the resin is preferably low, but the balance between the resin impregnation degree into the reinforcing fiber and the resin viscosity that affects the take-up speed of the strand (reinforced fiber bundle impregnated with the resin) Therefore, the optimum temperature is selected.
[0045]
Incidentally, when selecting a thermoplastic resin, a resin having an appropriate melt viscosity to be impregnated into the reinforcing fiber is selected, and the thermoplastic resin is heated and melted to a temperature at which the melt viscosity is sufficiently low as much as possible. For example, in the case of polypropylene resin, the melt flow rate (MFR: 230 ° C., 2.16 kgf) is 5 g / 10 minutes or more, more preferably 15 g / 10 minutes or more, and further preferably 30 g / 10 minutes or more as a guideline. It is preferable to select those of 200 g / 10 min or less, more preferably 150 g / 10 min or less, and still more preferably 100 g / 10 min or more.
[0046]
If the MFR of the polypropylene resin is less than the above range, the productivity of reinforced resin wire rods and pellets containing natural plant fiber spun yarn tends to be low, and even if manufactured, the impregnation of the resin into the reinforced fiber becomes insufficient, The reinforcing fibers easily fall off from the resulting pellets, causing a problem in handling properties, and there is a tendency that the dispersion of the strength characteristic values increases due to poor dispersibility of the reinforcing fibers as a molded product. On the other hand, if the MFR exceeds the preferred range, properties such as strength, elastic modulus, and heat resistance of the molded product are deteriorated.
[0047]
When, for example, jute spun yarn is selected as the reinforcing fiber, the molten resin temperature of the polypropylene resin is 200 ° C. or higher and 280 ° C. or lower, more preferably 220 ° C. or higher and 260 ° C. or lower, more preferably 230 ° C. or higher. 255 degrees C or less is preferable.
[0048]
At this time, from the viewpoint of suppressing thermal deterioration of the reinforcing fiber, it is preferable to control the reinforcing fiber so that the time until the reinforcing fiber enters the molten resin bath and is taken out from the nozzle is within 10 seconds, preferably within 5 seconds. . If this time is too long, there is a high possibility that the reinforcing fiber will be thermally deteriorated. On the other hand, if this time is too short, the impregnation of the thermoplastic resin becomes insufficient, so it is desirable to ensure the immersion time of 0.1 seconds or more, more preferably 0.15 seconds or more.
[0049]
【Example】
Hereinafter, the present invention will be described in more detail with reference to experimental examples.However, the present invention is not limited by the following examples, but may be implemented with appropriate modifications within a range that can meet the purpose described above and below. Any of these may be included in the technical scope of the present invention.
[0050]
Experimental example
A fiber reinforced thermoplastic resin wire was produced by the following materials and processing method.
[0051]
[Polypropylene resin]
Density is 0.91 g / cm Three , MFR (230 ° C., 2.16 kgf) 60 g / 10 min, melting point (DSC method) 100 parts by mass of homopolypropylene resin (PP), 165 ° C., maleic anhydride modified polypropylene resin (trade name, manufactured by Sanyo Chemical Industries, Ltd.) “Yumex 1001”, acid value: 26 mgKOH / g, density: 0.95 g / cm Three , Molecular weight: 40,000 (weight average molecular weight according to GPC method) 5 resin parts blended were used.
[0052]
[Polyamide 12 resin]
Density is 1.01 g / cm Three Nylon 12 resin having a melting point (DSC method) of 178 ° C. (trade name “Daiamide L1640” manufactured by Daicel Huls Co., Ltd.) was used.
[0053]
[Natural plant fiber]
As natural vegetable fiber spun yarn, spun yarn (Z twist) of 30th jute (jute yarn) was used.
[0054]
[Plasma treatment]
A plasma irradiator (controller ST-7000, head ST-7010, atmospheric plasma system) manufactured by Keyence Corporation was used.
[0055]
[Ozone-containing gas treatment]
(Yes) Using ozone generator ("OZO-4", ozone generation amount: 400mg / h, concentration: 300ppm) manufactured by Toyo Koki Co., Ltd., the generated ozone is injected into a glass tube and reinforced there. The fiber spun yarn is passed through while twisting (S twist) in the direction of untwisting. This ozone-containing gas treatment is repeated three times in series.
[0056]
Examples 1-5, Comparative Examples 1-3
A method is adopted in which three natural plant fiber spun yarns are impregnated by passing through a molten resin bath (250 ° C.) while being twisted and drawn at a line speed of 15 m / min. At this time, the above-mentioned polypropylene resin bath (Example 1) or polyamide 12 resin bath (implemented) melted on the downstream side after performing the plasma irradiation treatment while applying twisting in the direction of untwisting (S twisting). Example 2) It is dipped in, then pulled out from the discharge nozzle and then cooled and solidified to produce a natural plant fiber reinforced resin wire having a diameter of about 3 mm and a fiber content of about 40% by mass. Thereafter, the wire was cut into a length of 4 mm to produce natural plant fiber reinforced resin pellets having a diameter of about 3 mm × length of 4 mm and a fiber content of about 40% by mass. Further, except for employing an ozone-containing gas treatment instead of the plasma irradiation treatment, a natural plant fiber reinforced resin wire was produced in the same manner as in Example 1 above, and subsequently cut to a length of about 4 mm. Natural plant fiber reinforced resin pellets having the same dimensions and impregnation rate as in Example 3 were produced.
[0057]
In the above, natural plant fiber reinforced resin pellets were produced in the same manner as in Examples 1 and 2 except that plasma treatment or ozone treatment was omitted (Comparative Examples 1 and 2).
[0058]
In addition, in the above, a resin bath (polypropylene type) was used in the same manner as in Example 1 except that the natural yarn was spun in the Z twist direction while the spun yarn was irradiated with plasma irradiation from two directions (two units). Resin) was immersed and run to produce a natural plant fiber reinforced resin wire, and subsequently cut to a length of about 4 mm, thereby producing a natural plant fiber reinforced resin pellet having the same dimensions and impregnation rate as above (Example) 4).
[0059]
Further, a natural plant fiber reinforced resin wire was produced in the same manner as in Example 1 except that only a polypropylene resin not blended with a maleic anhydride-modified polypropylene resin was used as the polypropylene-based resin. By cutting to about 4 mm, natural plant fiber reinforced resin pellets having the same dimensions and impregnation rate as described above were produced (Example 5).
[0060]
Further, a natural plant fiber reinforced resin wire was produced in the same manner as in Example 1 except that a polypropylene resin not containing a maleic anhydride-modified polypropylene resin was used and that neither plasma irradiation treatment nor ozone-containing gas treatment was omitted. Subsequently, natural plant fiber reinforced resin pellets having the same dimensions and impregnation rate as described above were produced by cutting to a length of about 4 mm (Comparative Example 3).
[0061]
[Evaluation test]
Each natural vegetable fiber reinforced resin pellet obtained above was dried for 3 hours using a 100 ° C. blower dryer, and a molding experiment was performed using these as pellets. As a molding device, an injection molding machine “SG220U-SYCAP · MIIIA” manufactured by Sumitomo-Nestal Co., Ltd. is used, and the molding temperature is 180 ° C. using a polypropylene resin as the resin, and using a polyamide 12 resin. Injection molding is performed at 200 ° C. and a mold temperature of 60 ° C. to produce a bending test piece (25 mm × 130 mm × thickness 3.2 mm) and an impact test piece (12.7 mm × 62 mm × thickness 3.2 mm). The following evaluation tests were conducted for each of the results, and the results shown in Table 1 were obtained.
[0062]
Evaluation test method:
Flexural strength and flexural modulus: measured according to ASTM D790,
Impact value: A notched Izod impact test was performed in accordance with ASTM D256.
[0063]
[Table 1]
Figure 0004377540
[0064]
From Table 1, it can be analyzed as follows.
[0065]
From the comparison between Examples 1, 3, and 4 and Comparative Example 1 and the comparison between Example 5 and Comparative Example 3, in the case of using a polypropylene resin as a matrix component, the physical properties are greatly improved by plasma treatment or ozone treatment of the spun yarn. It can be seen that it can be improved. From the comparison of Example 1 and Example 5, when an acid-modified propylene resin is added as a matrix resin, a clear synergistic effect with plasma treatment or ozone treatment is recognized.
[0066]
Moreover, Example 1 (an improvement of 13.9% in flexural strength and 18.4% in flexural modulus) and Example 4 (4.2% in flexural strength and 4.1% in flexural modulus) relative to Comparative Example 1 The effect of improving physical properties differs depending on the direction of twisting when impregnating the resin bath, and the effect of improving the physical properties can be obtained by performing the impregnation while twisting in the direction of untwisting.
[0067]
Furthermore, from the comparison with Example 2 (an increase in bending strength of 4.8% and a flexural modulus of 6.1%) relative to Comparative Example 2, even when polyamide 12 resin is used, an effect of improving physical properties is recognized. Example 1 for Comparative Example 1 (an improvement of 13.9% in flexural strength and 18.4% in flexural modulus), Example 5 for Comparative Example 3 (8.5% in flexural strength, 14 in flexural modulus) As is clear from the comparison of (.6% improvement), the modification effect is small as compared with the case of using the polypropylene resin. The reason for this is that polyamide has good adhesion to natural fibers, while polypropylene resin originally has poor adhesion to natural fibers. Therefore, when it is combined with polypropylene resin, it improves adhesion to natural plant fibers. It is considered that the quality treatment (ozone treatment or plasma treatment) effect was more effectively exhibited. That is, in the present invention, it is more effectively used when a polyolefin resin is used as a resin combined with natural vegetable fiber spun yarn.
[0068]
【The invention's effect】
The present invention is configured as described above, and natural plant fiber spun yarn is used as the main reinforcing fiber, and the spun yarn is subjected to plasma treatment or ozone treatment prior to impregnation of the spun yarn into the thermoplastic resin bath. As a result, the joint integrity between the spun yarn and the thermoplastic resin can be enhanced, and physical properties such as bending strength, bending elastic modulus, and impact characteristics can be effectively enhanced. In addition, this method can solve the problem of the waste liquid treatment pointed out in the conventional adhesion improving treatment (chemical treatment such as steam treatment, detergent treatment, alkali treatment, sulfuric acid treatment, etc.) and can greatly reduce the treatment cost.

Claims (5)

熱可塑性樹脂に強化繊維として天然植物繊維紡績糸を複合してなる繊維強化熱可塑性樹脂線材を製造するに当たり、前記紡績糸を熱可塑性樹脂に含浸する際、もしくは少なくともその前に、該紡績糸にプラズマ処理またはオゾン処理を施すことにより、該紡績糸の表面を活性化すると共に該紡績糸に付着している油分を分解し、熱可塑性樹脂との接合力を高めることを特徴とする繊維強化熱可塑性樹脂線材の製法。In producing a fiber-reinforced thermoplastic resin wire material obtained by combining a natural vegetable fiber spun yarn as a reinforcing fiber with a thermoplastic resin, when the spun yarn is impregnated into the thermoplastic resin, or at least before that, the spun yarn is impregnated with the spun yarn. A fiber-reinforced heat characterized by activating the surface of the spun yarn by performing a plasma treatment or an ozone treatment, decomposing oil adhering to the spun yarn, and increasing the bonding strength with the thermoplastic resin A manufacturing method for plastic resin wire. 前記プラズマ処理またはオゾン処理を施す際に、天然植物繊維紡績糸に撚り戻し方向の力を加える請求項1に記載の製法。 The method according to claim 1, wherein a force in a twisting direction is applied to the spun yarn of natural plant fiber when the plasma treatment or the ozone treatment is performed. 熱可塑性樹脂が、酸変性ポリオレフィンを含むポリオレフィン系樹脂である請求項1または2に記載の製法。 The process according to claim 1 or 2, wherein the thermoplastic resin is a polyolefin resin containing acid-modified polyolefin. 前記天然植物繊維紡績糸の太さがJISL 0101に規定されたジュート番手で表わすと5〜80番手であり、その含有量が繊維強化熱可塑性樹脂線材全量中に占める比率で10質量%以上、65質量%以下である請求項1〜3のいずれかに記載の製法。The thickness of the natural vegetable fiber spun yarn is 5 to 80 when represented by the jute count defined in JISL 0101. The manufacturing method according to any one of claims 1 to 3, wherein the content is not more than mass%. 請求項1〜のいずれかに記載の方法により製造された線材をペレット状に切断することを特徴とする繊維強化熱可塑性樹脂ペレットの製法。The manufacturing method of the fiber reinforced thermoplastic resin pellet characterized by cut | disconnecting the wire manufactured by the method in any one of Claims 1-4 to a pellet form.
JP2000311152A 2000-10-11 2000-10-11 Production method of fiber reinforced thermoplastic resin wire and pellet Expired - Lifetime JP4377540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000311152A JP4377540B2 (en) 2000-10-11 2000-10-11 Production method of fiber reinforced thermoplastic resin wire and pellet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000311152A JP4377540B2 (en) 2000-10-11 2000-10-11 Production method of fiber reinforced thermoplastic resin wire and pellet

Publications (2)

Publication Number Publication Date
JP2002115173A JP2002115173A (en) 2002-04-19
JP4377540B2 true JP4377540B2 (en) 2009-12-02

Family

ID=18790970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000311152A Expired - Lifetime JP4377540B2 (en) 2000-10-11 2000-10-11 Production method of fiber reinforced thermoplastic resin wire and pellet

Country Status (1)

Country Link
JP (1) JP4377540B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3687777A4 (en) * 2017-09-29 2021-10-20 Panelshake Corp. Natural fiber composite construction materials

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004035705A (en) * 2002-07-03 2004-02-05 Toray Ind Inc Polyamide resin composition, its manufacturing method, and molded article comprising it
US7682548B2 (en) 2003-07-30 2010-03-23 Mitsubishi Plastics, Inc. Injection molded article, production method thereof and pellets used for injection molded article
JP2006008995A (en) * 2004-05-24 2006-01-12 Sumitomo Chemical Co Ltd Fiber-reinforced polyolefin resin composition, its pellet, and its molded product
JP4403064B2 (en) * 2004-06-11 2010-01-20 株式会社マルヤス Pellet and string / pellet manufacturing method and manufacturing apparatus thereof
BRPI0602097B1 (en) * 2006-05-25 2017-04-04 Ge Plastic South America Ltda process for making natural fiber polyamide composites and natural fiber polyamide composites
JPWO2008105225A1 (en) * 2007-02-27 2010-06-03 日本電気株式会社 Carbon fiber roving, long fiber pellet and fiber reinforced resin molded body using the same
JP5564670B2 (en) * 2007-11-30 2014-07-30 株式会社神戸製鋼所 Natural fiber reinforced thermoplastic resin injection molded products
BR112013004513A2 (en) * 2010-09-03 2016-06-07 Aerazur Sa air vehicle thermoplastic hose and aircraft fuel system
JP2015227519A (en) * 2014-06-02 2015-12-17 株式会社フジックス Sewing thread coloring method using plasma treatment and sewing thread colored by the method
CN107614588B (en) * 2015-06-22 2020-07-24 星光Pmc株式会社 Modified plant fiber, additive for rubber, method for producing same, and rubber composition
JP6776849B2 (en) * 2016-11-29 2020-10-28 日産自動車株式会社 Manufacturing method and manufacturing equipment for carbon fiber reinforced plastic structure
CN114606772B (en) * 2022-04-13 2024-01-26 国际竹藤中心 Preparation method of interface-enhanced continuous plant fiber unit
CN114770804B (en) * 2022-04-28 2024-02-02 常州威材新材料科技有限公司 Processing technology of PP-LFT material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3687777A4 (en) * 2017-09-29 2021-10-20 Panelshake Corp. Natural fiber composite construction materials
US11408182B2 (en) 2017-09-29 2022-08-09 Panelshake Corp. Natural fiber composite construction materials

Also Published As

Publication number Publication date
JP2002115173A (en) 2002-04-19

Similar Documents

Publication Publication Date Title
JP4377540B2 (en) Production method of fiber reinforced thermoplastic resin wire and pellet
JP4476420B2 (en) Fiber reinforced thermoplastic resin pellets and process for producing the same
Snijder et al. Reinforcement of polypropylene by annual plant fibers: optimisation of the coupling agent efficiency
US11447892B2 (en) Processed oilseed flax fiber for use in biocomposite materials
JP7121663B2 (en) Hybrid fabrics for reinforcing composites
JP2006289714A (en) Method and apparatus for producing fiber-reinforced resin molding material
US20100320637A1 (en) Method of making polymer/natural fiber composite pellet and/or a coupling agent/natural fiber pellet and the pellet made by the method
JP2013091775A (en) Fiber-reinforced resin composition
JP3819286B2 (en) Manufacturing apparatus and manufacturing method of long fiber reinforced thermoplastic resin strand
US9650728B2 (en) Processing method for fiber material used to form biocomposite component
US9663636B2 (en) Processing method for fiber material used to form biocomposite component
Syduzzaman et al. Unveiling new frontiers: Bast fiber‐reinforced polymer composites and their mechanical properties
JP4330258B2 (en) Fiber reinforced thermoplastic resin pellets and process for producing the same
JP2015059274A (en) Composite fiber and method for producing the same
US11668022B2 (en) Apparatus for processing oilseed flax fiber for use in biocomposite materials
WO2011152439A1 (en) Polyolefin resin composition pellets and moldings obtained therefrom
Kim Hybrid composites with natural fibres
JP3982007B2 (en) -Direction reinforced thermoplastic resin structure manufacturing method and manufacturing apparatus
JP4510668B2 (en) Method for producing fiber-containing resin pellets
JP2621399B2 (en) Glass fiber reinforced plastic
JP7481108B2 (en) Method for producing carbon fiber composite material and carbon fiber composite material
JP2005028712A (en) Manufacturing method for fiber reinforced resin molding material
JP7002203B2 (en) Fiber reinforced plastic composition
JPH06116851A (en) Fiber-reinforced thermoplastic resin structure and its production
JPH11226948A (en) Filament-reinforced thermoplastic resin molding material, filament-reinforced thermoplastic resin molding, and manufacture of molding

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090911

R150 Certificate of patent or registration of utility model

Ref document number: 4377540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4