JP4372451B2 - Method for producing negative electrode active material for non-aqueous electrolyte secondary battery - Google Patents

Method for producing negative electrode active material for non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4372451B2
JP4372451B2 JP2003129704A JP2003129704A JP4372451B2 JP 4372451 B2 JP4372451 B2 JP 4372451B2 JP 2003129704 A JP2003129704 A JP 2003129704A JP 2003129704 A JP2003129704 A JP 2003129704A JP 4372451 B2 JP4372451 B2 JP 4372451B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
electrolyte secondary
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003129704A
Other languages
Japanese (ja)
Other versions
JP2004335271A (en
Inventor
貴之 中本
治成 島村
秀明 大山
靖彦 美藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Sumitomo Metal Industries Ltd
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Sumitomo Metal Industries Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Sumitomo Metal Industries Ltd, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003129704A priority Critical patent/JP4372451B2/en
Publication of JP2004335271A publication Critical patent/JP2004335271A/en
Application granted granted Critical
Publication of JP4372451B2 publication Critical patent/JP4372451B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は非水電解質二次電池用負極活物質の製造方法に関し、特に、高率放電特性の優れた非水電解質二次電池を与える負極活物質の製造方法に関する。
【0002】
【従来の技術】
移動体通信機器、携帯電子機器などの主電源として、従来、リチウム金属や黒鉛粉末を負極材料とする非水電解質二次電池、特にリチウム二次電池が汎用されている。リチウム二次電池は、ニッケル・カドミウム蓄電池、ニッケル・水素蓄電池などの従前のアルカリ蓄電池に比べて、高起電力、高エネルギー密度を有する。
【0003】
しかしながら、リチウム金属を負極材料とするリチウム二次電池には、充電時に負極に析出したデンドライトが、充放電の繰り返しにより成長して、セパレータを貫通し、内部短絡を引き起こす虞れがあり、それゆえ電池寿命が短いという欠点がある。また、黒鉛粉末を負極材料とするリチウム二次電池には、黒鉛粉末の理論容量(372mAh/g)が、リチウム金属単体の理論容量よりも10%程度小さいことから、近年における高エネルギー密度化の要請に充分に応えることができないという欠点がある。
【0004】
そこで、近年、新たな負極材料として、理論容量が黒鉛粉末のそれに比べて遙かに大きいケイ素粉末(理論容量:4199mAh/g)を用いることが検討されている。
【0005】
しかしながら、ケイ素粉末は、充放電を繰り返すと微粉化し易いため、優れた充放電サイクル特性を有するリチウム二次電池を得ることが困難であるという問題がある。この問題を低減するには、ケイ素を他の元素と合金化して安定化させることが有効であると報告されている。
【0006】
例えば、Ni、Fe、CoまたはMnからなる金属Mとケイ素とを所定のモル比(1−X:X)で混合し、大気中にて高周波溶解炉で溶融し、その溶融合金を単ロール法などで急冷凝固させることにより、M1-XSiX合金塊が得られる。その合金塊をジェットミルを用いて微粉砕したものを負極材料として用いることが提案されている(例えば、特許文献1参照。)。
【0007】
また、浮遊型高周波溶解装置を用いて、Ni−Si合金を作製し、得られたNi−Si合金塊を粉砕し、分級したものを負極材料として用いることが提案されている(例えば、特許文献2参照。)。
【0008】
【特許文献1】
特開平10−294112号公報(第4頁、〔0016〕、〔0017〕)
【特許文献2】
特開平11−86853号公報(第5頁、〔0030〕)
【0009】
【発明が解決しようとする課題】
しかしながら、特許文献1および2に記載の負極材料では、充放電サイクル特性については改善されるものの、優れた高率放電特性を有する非水電解質二次電池を得ることは困難である。
なお、特許文献1の合金粉末を負極活物質として用いても、高率放電特性の優れた電池が得られないのは、そのX線回折図および顕微鏡組織写真から判断されるように、合金粉末の最大結晶子サイズが1000nm以上と大きいためであると考えられる。
【0010】
本発明は、上記を鑑みたものであり、充放電サイクル特性はもとより、高率放電特性にも優れた非水電解質二次電池を与える負極活物質を短時間で製造する方法を提供するものである。
【0011】
【課題を解決するための手段】
すなわち、本発明は、(a)Siに、SbおよびPよりなる群から選ばれる少なくとも1種の元素またはB元素をドープする工程と、(b)工程(a)で得られたSb、PもしくはBがドープされたSiと、Ti、Co、Ni、Cu、Mg、Zr、V、Mo、W、MnおよびFeよりなる群から選ばれる少なくとも1種の元素とを混合し、混合物にせん断力をかけて合金粉末を作製する工程とを備えた非水電解質二次電池用負極活物質の製造方法に関する。以下、この製造方法を第一方法ともいう。
第一方法は、ボールミルを用いて原料混合物を、機械的に撹拌、混合し、原料混合物にエネルギーを与えて固相反応により合金粉末を作製する、いわゆるメカニカルアロイングを利用している。
【0012】
第一方法においては、広角X線回折法により得られるX線回折像において、Siの(111)面の回折ピークが存在しなくなるまで、合金粉末のメカニカルアロイングを行うことが好ましい。第一方法においては、前記合金粉末の最大結晶子サイズが200nm以下、さらには50nm以下になるまで、メカニカルアロイングを行うことが好ましい。
工程(a)では、1cm3あたりのSiに、SbおよびPよりなる群から選ばれる少なくとも1種の元素またはB元素の原子を1×1014〜1×1021個ドープすることが好ましい。
【0013】
また、本発明は、(a)Siに、SbおよびPよりなる群から選ばれる少なくとも1種の元素またはB元素をドープする工程と、(b)工程(a)で得られたSb、PもしくはBがドープされたSiと、Ti、Co、Ni、Cu、Mg、Zr、V、Mo、W、MnおよびFeよりなる群から選ばれる少なくとも1種の元素とを一緒に溶融し、冷却凝固させて合金塊を作製する工程と、(c)前記合金塊を粉砕し、粉砕合金にせん断力をかけて、合金粉末を作製する工程とを備えた非水電解質二次電池用負極活物質の製造方法に関する。以下、この製造方法を第二方法ともいう。
第二方法は、合金塊を粉砕し、ボールミルを用いて粉砕合金を、機械的に撹拌、混合し、粉砕合金にエネルギーを与えて合金粉末の結晶子サイズを減少させる、いわゆるメカニカルグライディングを利用している。合金塊は、溶融合金を冷却凝固させる溶解冷却法により作製される。
【0014】
第二方法においては、広角X線回折法により得られるX線回折像において、Siの(111)面の回折ピークが存在しなくなるまで、粉砕合金のメカニカルグライディングを行うことが好ましい。第二方法においては、前記合金粉末の最大結晶子サイズが200nm以下、さらには50nm以下になるまで、メカニカルグライディングを行うことが好ましい。
工程(a)では、1cm3あたりのSiに、SbおよびPよりなる群から選ばれる少なくとも1種の元素またはB元素の原子を1×1014〜1×1021個ドープすることが好ましい。
【0015】
本発明では、単結晶とみなせる微結晶を結晶子といい、結晶子サイズとは、この結晶子を透過型電子顕微鏡で観察した際の最大の長さのことをいう。
また、本発明では、広角X線回折法により得られるX線回折像において、Siの(111)面の回折ピークが存在しなくなるまで、メカニカルアロイングまたはメカニカルグライディングを行うことが好ましいが、本発明でいう「回折ピークが存在しない」とは、Siの結晶子サイズが10nm以下、またはSiが非晶質相であることをいう。
【0016】
【発明の実施の形態】
合金粉末を負極活物質とする非水電解質二次電池を充電すると、Li(リチウム)イオンは、まず、結晶粒界を経路として合金粒子の表面からその内部へと拡散し、次いで、結晶粒界から結晶子の内部へと拡散する。放電時には、充電時と逆の経路を辿ってLiイオンが拡散する。
【0017】
高率放電特性を改善するためには、Liイオンの拡散経路が多く、結晶子内部でのLiイオンの拡散距離が短い合金を用いる必要がある。Liイオンの拡散経路となる結晶粒界は、結晶子サイズが小さくなるほど、増加する。また、結晶子内部でのLiイオンの拡散距離も、結晶子サイズが小さくなるほど、短くなる。したがって、結晶子サイズの小さい合金粉末を用いれば、高率放電特性を改善することができるものと考えられる。特に、Liイオンを主に吸蔵・放出するSiの結晶子サイズが小さい合金粉末が望ましい。
【0018】
上記知見を背景として、本発明の好ましい態様においては、広角X線回折法により得られるX線回折像において、Siの(111)面の回折ピークが存在しなくなるまで、または、最大結晶子サイズが200nm以下の所定のサイズになるまで、合金粉末のメカニカルアロイングもしくはメカニカルグライディングを行うこととしている。特に、メカニカルアロイングまたはメカニカルグライディングを、合金粉末の最大結晶子サイズが50nm以下になるまで行うと、高率放電特性に極めて優れた非水電解質二次電池を与える合金粉末を得ることができる。
【0019】
第一方法では、所定のX線回折ピーク、または所定の最大結晶子サイズを有する合金粉末がメカニカルアロイングという一つの工程で得られる。メカニカルアロイングに用いるボールミルとしては、転動ボールミル、振動ボールミル、遊星ボールミル、アトライタが例示される。
【0020】
第二方法では、溶融合金を冷却凝固させることにより合金塊を予め作製し、次いで、その合金塊にメカニカルグライディングを施すことにより所定のX線回折ピーク、または所定の最大結晶子サイズを有する合金粉末が得られる。第二方法は、予め合金塊を作製する点が、第一方法と異なる。溶融合金を得るための溶解法としては、高周波溶解法、アーク溶解法が例示され、合金塊を作製するための冷却凝固法としては、自然冷却法、ロール法またはアトマイズ法が例示される。メカニカルグライディングに用いるボールミルとしては、先に挙げたメカニカルアロイングに用いるボールミルと同様のものを用いることができる。合金塊は、それを、直接、メカニカルグライディングしてもよく、必要に応じて、前処理としての荒粉砕を行った後に、メカニカルグライディングしてもよい。荒粉砕に用いるミルとしては、スタンプミル、ハンマーミルが例示される。
【0021】
本発明の製造方法においては、Siに、SbおよびPよりなる群から選ばれる少なくとも1種の元素またはB元素の原子をドープさせて得たSi材料を用いる。ドープ法としては、半導体分野において従来公知の母合金ドープ法、芯ドープ、ガスドープ法、熱拡散法、イオン注入法などを用いることができる。Siに、これらの元素を予めドープしておくのは、後のメカニカルアロイングまたはメカニカルグライディングの時間を短縮させるためである。ドープ量は、Siの1cm3あたり、SbおよびPよりなる群から選ばれる少なくとも1種の元素またはB元素の原子が1×1014〜1×1021個であることが好ましい。より好ましくは1×1017〜1×1020個である。ドープ量が1×1014個未満では、所定のX線回折ピーク、または所定の最大結晶子サイズを有する合金粉末を作製するのに長時間を要する。一方、ドープ量が1×1021個より多くなると、得られる合金粉末の容量が減少する。なお、用いるドープしたSiは単結晶、多結晶、非晶質いずれでもよい。
【0022】
本発明において、Siと、Ti、Co、Ni、Cu、Mg、Zr、V、Mo、W、MnおよびFeよりなる群から選ばれる少なくとも一種の元素とを合金化させるのは、負極活物質を安定化させ、充放電の繰り返しによる微粉化を抑制するためである。なお、Siと合金化させる元素の割合が多くなると、得られる合金粉末の容量が減少するので、必要以上にSiと合金化させる元素の割合を多くすることは好ましくない。黒鉛よりも高容量の合金粉末を得るためには、合金化させる元素M(CuとMgを除く)とSiとの原子比(M/Si)を0.5以下、Cu/Siを3以下、Mg/Siを2以下とする必要がある。
【0023】
本発明の製造方法は、その全工程を、窒素、アルゴンなどの非酸化性雰囲気中で行うことが好ましい。酸化性雰囲気中で行うと、電子伝導度の低い酸化物が生成し、それが合金粉末の粒子内部に取り込まれ、負極活物質の電子伝導度が低下する。その結果、本発明が企図する高率放電特性の改善効果を充分に達成することができなくなる虞れがある。
【0024】
本発明の好ましい態様においては、メカニカルアロイングまたはメカニカルグライディングを、合金粉末の広角X線回折法で得られるSiの(111)面の回折ピークが存在しなくなるまで、または、最大結晶子サイズが200nm以下の所定のサイズになるまで行うこととしているので、高率放電特性のよい非水電解質二次電池を与える合金粉末を得ることが可能になる。さらに、Siに、SbおよびPよりなる群から選ばれる少なくとも1種の元素、またはB元素を予めドープすることにより、広角X線回折法により得られるSiの(111)面の回折ピークが存在しない、または200nm以下の所定の最大結晶子サイズを有する合金粉末を、短時間で製造することができる。
【0025】
【実施例】
本発明を実施例に基づいてさらに詳細に説明するが、本発明は下記実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
【0026】
《実施例1》
表1のA1〜A44に、実施例1で用いたSiと合金化させた元素(合金化元素)と、Siにドープした元素(ドープ元素)の一覧を示す。表1に示す各元素を用いて、第一方法により、負極活物質として用いる合金粉末を作製した。以下に、A1の負極活物質の製造方法を例に挙げて説明する。
【0027】
【表1】

Figure 0004372451
【0028】
母合金ドープ法によりSiの1cm3あたりSb原子を1×1018個ドープしたSiウェハを、乳鉢で砕いて平均粒径1mmの粉末とした。この粉末1.5kgと、平均粒径500μmのTi粉末1kgと、1インチ径のステンレス鋼製ボール300kgとを、内容積95リットルのステンレス鋼製の振動ボールミル(商品コード:FV−30、中央加工機社製)の容器内に入れて蓋をした。容器内を減圧し、Arガスを容器内が1気圧になるまで導入した。次いで、振動ボールミルの振幅を8mm、駆動モータの回転数を1200rpmに、それぞれ設定して、20時間メカニカルアロイングを行い、負極活物質として用いる合金粉末を作製した。
【0029】
波長1.5405ÅのCuKα線を線源として、広角X線回折装置(商品コード:RINT−2500、理学電機社製)を用いて、回折角2θ=10°〜80°の範囲における回折強度を測定した。Siの(111)面に帰属する回折角付近におけるピークの有無を調べたところ、ピークは存在しなかった。また、得られた合金粉末をTEM(透過型電子顕微鏡)を用いて観察したところ、その最大結晶子サイズは40nmであった。合金粉末の平均結晶子サイズは10nmであった。
【0030】
以下に説明する実施例および比較例で求めた最大結晶子サイズも、全てTEMを用いて求めたものである。
【0031】
A2〜A44に示す合金化元素およびドープ元素を用いたこと以外、A1と同様にして、上述した方法を用いて、負極活物質としての合金粉末を作製した。Siへのドープ元素のドープ量はSiの1cm3あたり、1×1018個で統一した。なお、Siにドープする元素として、SbおよびPを併用したA34〜A44では、熱拡散法によりSiの1cm3あたりSb原子を0.5×1018個、P原子を0.5×1018個ドープしたSiを用いた。いずれの負極活物質も、広角X線回折法により得たX線回折像において、Siの(111)面の回折ピークは存在せず、また、その最大結晶子サイズは45nm以下であった。
【0032】
《実施例2》
表2のA45〜A88に、実施例2で用いた合金化元素とドープ元素の一覧を示す。表2に示す各元素を用いて、第二方法により、負極活物質として用いる合金粉末を作製した。以下に、A45の負極活物質の製造方法を例に挙げて説明する。
【0033】
【表2】
Figure 0004372451
【0034】
母合金ドープ法によりSiの1cm3あたりSb原子を1×1018個ドープしたSiウェハを、乳鉢で砕いて平均粒径1mmの粉末とした。この粉末1.5kgと、平均粒径500μmのTi粉末1kgとを、Ar雰囲気中でアーク溶解法により溶融させた後、自然冷却して、合金塊を作製した。次いで、その合金塊をAr雰囲気中でスタンプミルにて平均粒径1mmの合金粉末に粉砕した。この合金粉末の最大結晶子サイズは30μmであった。この合金粉末2.5kgと、1インチ径のステンレス鋼製ボール300kgとを、内容積95リットルのステンレス鋼製の振動ボールミル(商品コード:FV−30、中央加工機社製)の容器内に入れて蓋をした。容器内を減圧し、Arガスを容器内が1気圧になるまで導入した。次いで、振動ボールミルの振幅を8mm、駆動モータの回転数を1200rpmに、それぞれ設定して、15時間メカニカルグライディングを行い、負極活物質として用いる合金粉末を作製した。合金粉末の最大結晶子サイズは45nmであり、平均結晶子サイズは15nmであった。
【0035】
A46〜A88に示す合金化元素およびドープ元素を用いたこと以外、A45と同様にして、上述した方法を用いて、負極活物質としての合金粉末を作製した。Siへのドープ元素のドープ量はSiの1cm3あたり、1×1018個で統一した。なお、Siにドープする元素として、SbおよびPを併用したA78〜A88では、熱拡散法によりSi1cm3あたりSb原子を0.5×1018個、P原子を0.5×1018個ドープしたSiを用いた。いずれの負極活物質も、広角X線回折法により得たX線回折像において、Siの(111)面の回折ピークは存在せず、また、その最大結晶子サイズは45nm以下であった。
【0036】
《比較例1》
表3のX1に、比較例1で用いた合金化元素を示す。これらの元素を用いて、以下に示す方法により負極活物質として用いる合金粉末を作製した。
【0037】
【表3】
Figure 0004372451
【0038】
何もドープしていないSiウェハを、乳鉢で砕いて平均粒径1mmの粉末を作製した。SbをドープしたSi粉末に代えて、この何もドープしていないSi粉末1.5kgを用いたこと以外は、A1と同様にして、負極活物質としての合金粉末を作製した。広角X線回折法により得られたX線回折像において、Siの(111)面の回折ピークが存在し、また、その最大結晶子サイズは400nmであった。
【0039】
《比較例2》
表3のX2に、比較例2で用いた合金化元素を示す。これらの元素を用いて、以下に示す方法により負極活物質として用いる合金粉末を作製した。
何もドープしていないSiウェハを、乳鉢で砕いて平均粒径1mmの粉末を作製した。SbをドープしたSi粉末に代えて、この何もドープしていないSi粉末1.5kgを用いたこと以外は、A45と同様にして、負極活物質としての合金粉末を作製した。広角X線回折法により得られたX線回折像において、Siの(111)面の回折ピークが存在し、また、その最大結晶子サイズは450nmであった。
【0040】
《比較例3》
表3のX3に、比較例3で用いた合金化元素を示す。これらの元素を用いて、以下に示す方法により負極活物質として用いる合金粉末を作製した。
何もドープしていないSiウェハを、乳鉢で砕いて平均粒径1mmの粉末とし、この何もドープしていない粉末1.5kgと、平均粒径500μmのTi粉末1kgとを、Ar雰囲気中で高周波溶解法により溶融させた後、Ar雰囲気中でガスアトマイズ法により冷却して、負極活物質としての球状合金粉末を作製した。広角X線回折法により得られたX線回折像において、Siの(111)面の回折ピークは存在し、また、その最大結晶子サイズは1000nmであった。
【0041】
《比較例4》
表3のX4に、比較例4で用いた合金化元素とドープ元素を示す。これらの元素を用いて、以下に示す方法により負極活物質として用いる合金粉末を作製した。
熱拡散法により1cm3あたりのSiに、Sb原子を1×1018個ドープしたSiウェハを、乳鉢で砕いて平均粒径1mmの粉末とし、この粉末1.5kgと、平均粒径500μmのTi粉末1kgとを、Ar雰囲気中で高周波溶解法により溶融させた後、Ar雰囲気中でガスアトマイズ法により冷却して、負極活物質としての球状合金粉末を作製した。広角X線回折法により得られたX線回折像において、Siの(111)面の回折ピークは存在し、また、その最大結晶子サイズは700nmであった。
【0042】
[実験1]非水電解質二次電池の高率放電特性
負極活物質として上記の実施例1、2および比較例1〜4で作製した各合金粉末を用いて円筒型の非水電解質二次電池を作製し、それぞれの電池の高率放電特性を調べた。
【0043】
(i)正極板の作製
正極活物質としてのコバルト酸リチウム(LiCoO2)粉末85重量部と、導電剤としての炭素粉末10重量部と、結着剤としてのPVdF(ポリフッ化ビニリデン)5重量部との混合物を、脱水N−メチル−2−ピロリドンに分散させてスラリー状の正極合剤を調製した。この正極合剤をアルミニウム箔からなる正極集電体上に塗布し、乾燥後、圧延して、正極板を作製した。
【0044】
(ii)負極板の作製
上記の実施例又は比較例で作製した各合金粉末75重量部と、導電剤としての炭素粉末20重量部と、結着剤としてのPVdF5重量部との混合物を、脱水N−メチル−2−ピロリドンに分散させてスラリー状の負極合剤を調製した。この負極合剤を銅箔からなる負極集電体上に塗布し、乾燥後、圧延して、負極板を作製した。
【0045】
(iii)非水電解質の調製
エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合溶媒(体積比1:1)に、LiPF6を1.5mol/Lの濃度で溶かして非水電解質を調製した。
【0046】
(iv)円筒型電池の製造
直径18mm、高さ65mmの円筒型電池を作製した。その縦断面図を図1に示す。
正極板1と負極板2とをセパレータ3を介して渦巻き状に巻回して、電極体を作製した。この電極体を、電池ケース7内に収納した。正極板1からは正極リード4を引き出して、正極端子10に導通した封口板6の裏面に接続した。また、負極板2からは負極リード5を引き出して、電池ケース7の底部に接続した。電極体の上部には絶縁板8を、下部には絶縁板9をそれぞれ設けた。そして、所定の非水電解質を電池ケース7内に注液し、封口板6を用いて電池ケース7の開口部を密封した。
非水電解質二次電池の組立は、露点が−50°C以下に調節された乾燥空気の雰囲気下で行った。
【0047】
[高率放電特性の評価]
各電池を、充放電温度20°Cにて、0.6Aで4.2Vまで充電した後、0.4Aで2.5Vまで放電して、放電容量C1を求めた。次いで、0.6Aで4.2Vまで充電した後、4Aで2.5Vまで放電して、放電容量C2を求めた。放電容量C1に対する放電容量C2の比率P(%)を下式に基づいて算出し、各電池の高率放電特性を評価した。Pの値が大きい電池ほど、高率放電特性が良い電池である。結果を表1〜3に示す。
【0048】
P(%)=(C2/C1)×100
【0049】
表1および表2に示すように、本発明の製造方法による負極活物質を用いた電池A1〜A88の比率Pは、最も低い値で91.4%(電池A86)、最も高い値で96.8%(電池A5)であり、いずれの電池も高率充放電特性が優れていることが分かった。これは、先に述べたように、メカニカルアロイングまたはメカニカルグライディングを、合金粉末の広角X線回折法により得られるX線回折像において、Siの(111)面の回折ピークが存在しなくなるまで、または、合金粉末の最大結晶子サイズが充分に小さくなるまで行ったからである。
【0050】
一方、表3に示すように、電池X1、X2の比率Pは、それぞれ84.1%、83.2%であり、いずれの電池も、実施例の電池と比べると、高率放電特性が良くなかった。これは、何もドープしていないSiを用いたために、20時間のメカニカルアロイング(X1)や15時間のメカニカルグライディング(X2)では、広角X線回折法により得られるX線回折像において、Siの(111)面の回折ピークが存在し、また、最大結晶子サイズを充分に小さくすることができなかったからである。
【0051】
また、表3に示すように、電池X3、X4の比率Pは、それぞれ79.5%、82.3%であり、いずれの電池も高率放電特性が極めて良くなかった。これは、電池X3では、最大結晶子サイズが1000nmと極めて大きい球状合金粉末を、負極活物質として用いたからである。また、電池X4の高率放電特性は、SiにSb原子をドープしたために、電池X3の比率Pよりも若干高い値を得たものの、電池A1〜A88の比率Pに比べると、極めて低い値であった。これは、電池X4では、最大結晶子サイズが700nmとかなり大きい球状合金粉末を、負極活物質として用いたからである。
【0052】
表4に、ドープ量が異なるときの高率放電特性を示す。C1、C2は、ドープ量が異なること以外、A1と同様にして作製した電池の高率放電特性を評価したものである。また、C3、C4は、ドープ量が異なること以外、A45と同様にして作製した電池の高率放電特性を評価したものである。表4より、ドープ量が1×1014〜1×1021個の場合でも、比率Pは、90%以上の値を得ることができ、いずれの電池も、高率放電特性が優れていることが分かった。
【0053】
【表4】
Figure 0004372451
【0054】
[実験2]
最大結晶子サイズと高率放電特性の関係について調べた。
振動ボールミルによるメカニカルアロイングの時間を、20時間に代えて、0.5時間、1時間、3時間、10時間、50時間としたこと以外は、電池A1と同様にして負極活物質を作製した(B1〜B5)。このとき、各電池の最大結晶子サイズは、順に、400nm、200nm、80nm、50nm、20nmであった。
【0055】
上記の各合金粉末を負極活物質として用いたこと以外は上記方法と同様にして、円筒型の非水電解質二次電池(B1〜B5)を組み立て、それぞれの電池の比率Pを求めた。その結果を表5および図2に示す。図2は、最大結晶子サイズと高率放電特性の関係を示したグラフである。縦軸は、放電容量C1に対する放電容量C2の比率P(%)であり、横軸は、使用した負極活物質の最大結晶子サイズ(nm)である。表5および図2には、電池A1についての結果も表1より転記してある。
【0056】
【表5】
Figure 0004372451
【0057】
表5に示すように、メカニカルアロイングを長時間行うほど、最大結晶子サイズの小さい負極活物質が得られた。さらに、図2に示すように高率放電特性が極めてよい非水電解質二次電池を与える合金粉末を得るためには、最大結晶子サイズが50nm以下になるまでメカニカルアロイングを行うことが好ましいことが分かった。
最大結晶子サイズが200nmを超えると比率Pは極めて低い値であった。最大結晶子サイズが400nmでは、比率Pが79.5%であり、この値は、比較例の電池(X1〜X4)よりも低い値であった。
従って、最大結晶子サイズは200nm以下であることが好ましく、より好ましくは50nm以下であることが分かった。
【0058】
【発明の効果】
本発明によれば、Siに、SbおよびPよりなる群から選ばれる少なくとも1種の元素またはB元素をドープし、Sb、PもしくはBがドープされたSiと、金属元素とを混合して合金粉末を作製する非水電解質二次電池用負極活物質において、前記合金粉末の広角X線回折法により得られるX線回折像において、Siの(111)面の回折ピークが存在しなくなるまで、または、前記合金粉末の最大結晶子サイズが充分に小さくなるまで、メカニカルアロイングまたはメカニカルグライディングを行うことから、優れた高率放電特性を有する非水電解質二次電池を与える負極活物質を短時間で製造することができる。
【図面の簡単な説明】
【図1】本発明の実施例にかかる円筒型非水電解質二次電池の縦断面図である。
【図2】負極活物質の最大結晶子サイズと高率放電特性との関係を示したグラフである。
【符号の説明】
1 正極板
2 負極板
3 セパレータ
4 正極リード
5 負極リード
6 封口板
7 電池ケース
8、9 絶縁板
10 正極端子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery, and more particularly to a method for producing a negative electrode active material that provides a non-aqueous electrolyte secondary battery having excellent high rate discharge characteristics.
[0002]
[Prior art]
Conventionally, non-aqueous electrolyte secondary batteries using lithium metal or graphite powder as a negative electrode material, particularly lithium secondary batteries, have been widely used as main power sources for mobile communication devices, portable electronic devices, and the like. Lithium secondary batteries have higher electromotive force and higher energy density than conventional alkaline storage batteries such as nickel / cadmium storage batteries and nickel / hydrogen storage batteries.
[0003]
However, in a lithium secondary battery using lithium metal as a negative electrode material, dendrite deposited on the negative electrode during charging may grow by repeated charge and discharge, penetrate the separator, and cause an internal short circuit. There is a drawback that the battery life is short. In addition, in a lithium secondary battery using graphite powder as a negative electrode material, the theoretical capacity of graphite powder (372 mAh / g) is about 10% smaller than the theoretical capacity of lithium metal alone. There is a drawback that it is not possible to fully respond to the request.
[0004]
Therefore, in recent years, the use of silicon powder (theoretical capacity: 4199 mAh / g) whose theoretical capacity is much larger than that of graphite powder has been studied as a new negative electrode material.
[0005]
However, since silicon powder is easily pulverized when charge and discharge are repeated, there is a problem that it is difficult to obtain a lithium secondary battery having excellent charge and discharge cycle characteristics. In order to reduce this problem, it has been reported that it is effective to stabilize silicon by alloying with other elements.
[0006]
For example, a metal M made of Ni, Fe, Co, or Mn and silicon are mixed at a predetermined molar ratio (1-X: X) and melted in a high-frequency melting furnace in the atmosphere, and the molten alloy is processed by a single roll method. By rapidly cooling and solidifying with 1-X Si X An alloy lump is obtained. It has been proposed to use a material obtained by finely pulverizing the alloy lump using a jet mill as a negative electrode material (see, for example, Patent Document 1).
[0007]
In addition, it has been proposed to use a floating type high-frequency melting apparatus to produce a Ni—Si alloy, and pulverize and classify the obtained Ni—Si alloy lump as a negative electrode material (for example, Patent Documents). 2).
[0008]
[Patent Document 1]
JP-A-10-294112 (Page 4, [0016], [0017])
[Patent Document 2]
JP 11-86853 A (Page 5, [0030])
[0009]
[Problems to be solved by the invention]
However, in the negative electrode materials described in Patent Documents 1 and 2, although the charge / discharge cycle characteristics are improved, it is difficult to obtain a nonaqueous electrolyte secondary battery having excellent high rate discharge characteristics.
In addition, even if it uses the alloy powder of patent document 1 as a negative electrode active material, an alloy powder is that it is judged from the X-ray-diffraction figure and a microscopic structure photograph that the battery excellent in the high rate discharge characteristic is not obtained. This is probably because the maximum crystallite size is as large as 1000 nm or more.
[0010]
The present invention has been made in view of the above, and provides a method for producing in a short time a negative electrode active material that provides a non-aqueous electrolyte secondary battery excellent in high rate discharge characteristics as well as charge / discharge cycle characteristics. is there.
[0011]
[Means for Solving the Problems]
That is, the present invention comprises: (a) doping Si with at least one element selected from the group consisting of Sb and P or B element; and (b) Sb, P obtained in step (a), or B-doped Si is mixed with at least one element selected from the group consisting of Ti, Co, Ni, Cu, Mg, Zr, V, Mo, W, Mn, and Fe, and shear force is applied to the mixture. The manufacturing method of the negative electrode active material for nonaqueous electrolyte secondary batteries provided with the process of producing an alloy powder over a film. Hereinafter, this production method is also referred to as a first method.
The first method utilizes so-called mechanical alloying in which a raw material mixture is mechanically stirred and mixed using a ball mill, and energy is given to the raw material mixture to produce an alloy powder by a solid phase reaction.
[0012]
In the first method, it is preferable to mechanically alloy the alloy powder until there is no diffraction peak on the (111) plane of Si in the X-ray diffraction image obtained by the wide-angle X-ray diffraction method. In the first method, it is preferable to perform mechanical alloying until the maximum crystallite size of the alloy powder is 200 nm or less, and further 50 nm or less.
In step (a), 1 cm Three At least one element selected from the group consisting of Sb and P or an atom of B element is added to 1 × 10 14 ~ 1x10 twenty one It is preferable to dope.
[0013]
The present invention also includes: (a) doping Si with at least one element selected from the group consisting of Sb and P or B element; and (b) Sb, P obtained in step (a), or B-doped Si and at least one element selected from the group consisting of Ti, Co, Ni, Cu, Mg, Zr, V, Mo, W, Mn and Fe are melted together and cooled and solidified. Manufacturing a negative electrode active material for a non-aqueous electrolyte secondary battery, comprising: a step of producing an alloy lump; and (c) a step of crushing the alloy lump and applying a shearing force to the pulverized alloy to produce an alloy powder. Regarding the method. Hereinafter, this production method is also referred to as a second method.
The second method utilizes so-called mechanical gliding, which pulverizes the alloy lump, mechanically agitates and mixes the pulverized alloy using a ball mill, and gives energy to the pulverized alloy to reduce the crystallite size of the alloy powder. ing. The alloy lump is produced by a melting cooling method in which the molten alloy is cooled and solidified.
[0014]
In the second method, it is preferable to perform mechanical gliding of the pulverized alloy until there is no diffraction peak on the (111) plane of Si in the X-ray diffraction image obtained by the wide-angle X-ray diffraction method. In the second method, it is preferable to perform mechanical gliding until the maximum crystallite size of the alloy powder is 200 nm or less, and further 50 nm or less.
In step (a), 1 cm Three At least one element selected from the group consisting of Sb and P or an atom of B element is added to 1 × 10 14 ~ 1x10 twenty one It is preferable to dope.
[0015]
In the present invention, a microcrystal that can be regarded as a single crystal is referred to as a crystallite, and the crystallite size refers to the maximum length when the crystallite is observed with a transmission electron microscope.
In the present invention, it is preferable to perform mechanical alloying or mechanical gliding until there is no diffraction peak on the (111) plane of Si in the X-ray diffraction image obtained by the wide-angle X-ray diffraction method. “Diffraction peak does not exist” means that the crystallite size of Si is 10 nm or less or that Si is in an amorphous phase.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
When a non-aqueous electrolyte secondary battery using an alloy powder as a negative electrode active material is charged, Li (lithium) ions first diffuse from the surface of the alloy particles to the inside through the crystal grain boundaries, and then the crystal grain boundaries. Diffuses into the crystallite. At the time of discharging, Li ions diffuse along a path opposite to that at the time of charging.
[0017]
In order to improve the high rate discharge characteristics, it is necessary to use an alloy having many Li ion diffusion paths and a short Li ion diffusion distance inside the crystallite. The grain boundary that becomes the Li ion diffusion path increases as the crystallite size decreases. Also, the diffusion distance of Li ions inside the crystallite becomes shorter as the crystallite size becomes smaller. Therefore, it is considered that high rate discharge characteristics can be improved by using an alloy powder having a small crystallite size. In particular, an alloy powder having a small crystallite size of Si that mainly stores and releases Li ions is desirable.
[0018]
Against the background of the above findings, in a preferred embodiment of the present invention, in the X-ray diffraction image obtained by the wide-angle X-ray diffraction method, the diffraction peak of Si (111) plane does not exist or the maximum crystallite size is The alloy powder is mechanically alloyed or mechanically ground until it reaches a predetermined size of 200 nm or less. In particular, when mechanical alloying or mechanical gliding is performed until the maximum crystallite size of the alloy powder is 50 nm or less, an alloy powder that provides a non-aqueous electrolyte secondary battery with excellent high rate discharge characteristics can be obtained.
[0019]
In the first method, an alloy powder having a predetermined X-ray diffraction peak or a predetermined maximum crystallite size is obtained in one step called mechanical alloying. Examples of the ball mill used for mechanical alloying include a rolling ball mill, a vibrating ball mill, a planetary ball mill, and an attritor.
[0020]
In the second method, an alloy lump is prepared in advance by cooling and solidifying a molten alloy, and then alloy powder having a predetermined X-ray diffraction peak or a predetermined maximum crystallite size by mechanically gliding the alloy lump. Is obtained. The second method is different from the first method in that an alloy lump is prepared in advance. Examples of the melting method for obtaining a molten alloy include a high-frequency melting method and an arc melting method, and examples of the cooling and solidification method for producing an alloy lump include a natural cooling method, a roll method, and an atomizing method. As the ball mill used for mechanical gliding, the same ball mill used for the mechanical alloying mentioned above can be used. The alloy lump may be mechanically ground directly, or may be mechanically ground after rough pulverization as a pretreatment if necessary. Examples of the mill used for rough pulverization include a stamp mill and a hammer mill.
[0021]
In the production method of the present invention, Si material obtained by doping Si with atoms of at least one element selected from the group consisting of Sb and P or B element is used. As the doping method, a conventionally known mother alloy doping method, core doping, gas doping method, thermal diffusion method, ion implantation method and the like in the semiconductor field can be used. The reason why Si is pre-doped with these elements is to shorten the time for subsequent mechanical alloying or mechanical gliding. Dope amount is 1cm of Si Three The atom of at least one element or B element selected from the group consisting of Sb and P is 1 × 10 14 ~ 1x10 twenty one It is preferable that it is a piece. More preferably 1 × 10 17 ~ 1x10 20 It is a piece. Dope amount is 1 × 10 14 If the number is less than one, it takes a long time to produce an alloy powder having a predetermined X-ray diffraction peak or a predetermined maximum crystallite size. On the other hand, the dope amount is 1 × 10 twenty one When the number is larger, the volume of the obtained alloy powder decreases. The doped Si used may be single crystal, polycrystalline, or amorphous.
[0022]
In the present invention, Si is alloyed with at least one element selected from the group consisting of Ti, Co, Ni, Cu, Mg, Zr, V, Mo, W, Mn, and Fe. This is to stabilize and prevent pulverization due to repeated charge and discharge. In addition, since the capacity | capacitance of the alloy powder obtained will decrease when the ratio of the element alloyed with Si increases, it is not preferable to increase the ratio of the element alloyed with Si more than necessary. In order to obtain an alloy powder having a higher capacity than graphite, the atomic ratio (M / Si) of the element M to be alloyed (excluding Cu and Mg) and Si (M / Si) is 0.5 or less, Cu / Si is 3 or less, Mg / Si needs to be 2 or less.
[0023]
In the production method of the present invention, all the steps are preferably performed in a non-oxidizing atmosphere such as nitrogen or argon. When carried out in an oxidizing atmosphere, an oxide having a low electron conductivity is generated and taken into the particles of the alloy powder, and the electron conductivity of the negative electrode active material decreases. As a result, there is a possibility that the effect of improving the high rate discharge characteristic intended by the present invention cannot be sufficiently achieved.
[0024]
In a preferred embodiment of the present invention, mechanical alloying or mechanical gliding is performed until there is no diffraction peak on the (111) plane of Si obtained by wide-angle X-ray diffraction of the alloy powder, or the maximum crystallite size is 200 nm. Since the process is performed until the following predetermined size is reached, it is possible to obtain an alloy powder that provides a non-aqueous electrolyte secondary battery with good high rate discharge characteristics. Further, when Si is doped with at least one element selected from the group consisting of Sb and P or B element in advance, there is no diffraction peak on the (111) plane of Si obtained by wide-angle X-ray diffraction. Alternatively, an alloy powder having a predetermined maximum crystallite size of 200 nm or less can be produced in a short time.
[0025]
【Example】
The present invention will be described in more detail on the basis of examples. However, the present invention is not limited to the following examples, and can be appropriately modified and implemented without departing from the scope of the present invention.
[0026]
Example 1
A1 to A44 in Table 1 show a list of elements alloyed with Si used in Example 1 (alloying elements) and elements doped into Si (doped elements). Using each element shown in Table 1, an alloy powder used as a negative electrode active material was produced by the first method. Hereinafter, the method for producing the negative electrode active material A1 will be described as an example.
[0027]
[Table 1]
Figure 0004372451
[0028]
1cm of Si by mother alloy doping method Three 1 x 10 Sb atoms per 18 The individually doped Si wafer was crushed with a mortar to obtain a powder having an average particle diameter of 1 mm. 1.5 kg of this powder, 1 kg of Ti powder having an average particle diameter of 500 μm, and 300 kg of 1-inch diameter stainless steel balls were made into a vibration ball mill made of stainless steel having an internal volume of 95 liters (product code: FV-30, central processing). In a container manufactured by Kikai Co., Ltd. and covered. The inside of the container was depressurized, and Ar gas was introduced until the inside of the container reached 1 atm. Subsequently, the amplitude of the vibration ball mill was set to 8 mm and the rotational speed of the drive motor was set to 1200 rpm, respectively, and mechanical alloying was performed for 20 hours to prepare an alloy powder used as a negative electrode active material.
[0029]
Using a wide angle X-ray diffractometer (product code: RINT-2500, manufactured by Rigaku Corporation) using a CuKα ray having a wavelength of 1.5405 mm as a radiation source, the diffraction intensity in a range of diffraction angle 2θ = 10 ° -80 ° is measured. did. When the presence or absence of a peak near the diffraction angle attributed to the (111) plane of Si was examined, no peak was present. Moreover, when the obtained alloy powder was observed using TEM (transmission electron microscope), the maximum crystallite size was 40 nm. The average crystallite size of the alloy powder was 10 nm.
[0030]
The maximum crystallite sizes determined in the examples and comparative examples described below are all determined using TEM.
[0031]
An alloy powder as a negative electrode active material was produced using the method described above in the same manner as A1 except that the alloying elements and doping elements shown in A2 to A44 were used. The doping amount of the doping element into Si is 1 cm of Si Three Per 1 × 10 18 Standardized by individual. In addition, in A34-A44 which used Sb and P together as an element doped to Si, 1 cm of Si is obtained by a thermal diffusion method. Three Per Sb atom 0.5 × 10 18 Pieces, P atom 0.5 × 10 18 Individually doped Si was used. None of the negative electrode active materials had a diffraction peak on the (111) plane of Si in the X-ray diffraction image obtained by the wide-angle X-ray diffraction method, and the maximum crystallite size was 45 nm or less.
[0032]
Example 2
Tables A45 to A88 show a list of alloying elements and doping elements used in Example 2. Using each element shown in Table 2, an alloy powder used as a negative electrode active material was produced by the second method. Hereinafter, the method for producing the negative electrode active material of A45 will be described as an example.
[0033]
[Table 2]
Figure 0004372451
[0034]
1cm of Si by mother alloy doping method Three 1 x 10 Sb atoms per 18 The individually doped Si wafer was crushed with a mortar to obtain a powder having an average particle diameter of 1 mm. After 1.5 kg of this powder and 1 kg of Ti powder having an average particle diameter of 500 μm were melted by an arc melting method in an Ar atmosphere, they were naturally cooled to produce an alloy lump. Subsequently, the alloy lump was pulverized into an alloy powder having an average particle diameter of 1 mm in an Ar atmosphere by a stamp mill. The maximum crystallite size of this alloy powder was 30 μm. 2.5 kg of this alloy powder and 300 kg of 1-inch diameter stainless steel balls are placed in a container of a stainless steel vibrating ball mill (product code: FV-30, manufactured by Chuo Koki Co., Ltd.) having an internal volume of 95 liters. And put the lid on. The inside of the container was depressurized, and Ar gas was introduced until the inside of the container reached 1 atm. Next, the amplitude of the vibration ball mill was set to 8 mm and the rotational speed of the drive motor was set to 1200 rpm, respectively, and mechanical grinding was performed for 15 hours to produce an alloy powder used as the negative electrode active material. The maximum crystallite size of the alloy powder was 45 nm, and the average crystallite size was 15 nm.
[0035]
An alloy powder as a negative electrode active material was produced using the method described above in the same manner as in A45 except that the alloying elements and doping elements shown in A46 to A88 were used. The doping amount of the doping element into Si is 1 cm of Si Three Per 1 × 10 18 Standardized by individual. In addition, in A78-A88 which used Sb and P together as an element doped to Si, Si1 cm is obtained by a thermal diffusion method. Three Per Sb atom 0.5 × 10 18 Pieces, P atom 0.5 × 10 18 Individually doped Si was used. None of the negative electrode active materials had a diffraction peak on the (111) plane of Si in the X-ray diffraction image obtained by the wide-angle X-ray diffraction method, and the maximum crystallite size was 45 nm or less.
[0036]
<< Comparative Example 1 >>
X1 in Table 3 shows the alloying elements used in Comparative Example 1. Using these elements, an alloy powder used as a negative electrode active material was produced by the method described below.
[0037]
[Table 3]
Figure 0004372451
[0038]
An undoped Si wafer was crushed in a mortar to produce a powder having an average particle diameter of 1 mm. An alloy powder as a negative electrode active material was produced in the same manner as A1, except that 1.5 kg of the undoped Si powder was used instead of the Sb-doped Si powder. In the X-ray diffraction image obtained by the wide-angle X-ray diffraction method, there was a diffraction peak on the (111) plane of Si, and the maximum crystallite size was 400 nm.
[0039]
<< Comparative Example 2 >>
X2 in Table 3 shows the alloying elements used in Comparative Example 2. Using these elements, an alloy powder used as a negative electrode active material was produced by the method described below.
An undoped Si wafer was crushed in a mortar to produce a powder having an average particle diameter of 1 mm. An alloy powder as a negative electrode active material was produced in the same manner as A45 except that 1.5 kg of this undoped Si powder was used instead of the Sb-doped Si powder. In the X-ray diffraction image obtained by the wide-angle X-ray diffraction method, there was a diffraction peak on the (111) plane of Si, and the maximum crystallite size was 450 nm.
[0040]
<< Comparative Example 3 >>
X3 in Table 3 shows the alloying elements used in Comparative Example 3. Using these elements, an alloy powder used as a negative electrode active material was produced by the method described below.
An undoped Si wafer is crushed in a mortar to obtain a powder having an average particle diameter of 1 mm, and 1.5 kg of this undoped powder and 1 kg of Ti powder having an average particle diameter of 500 μm are placed in an Ar atmosphere. After being melted by the high frequency melting method, it was cooled by a gas atomizing method in an Ar atmosphere to produce a spherical alloy powder as a negative electrode active material. In the X-ray diffraction image obtained by the wide-angle X-ray diffraction method, there was a diffraction peak on the (111) plane of Si, and the maximum crystallite size was 1000 nm.
[0041]
<< Comparative Example 4 >>
X4 in Table 3 shows the alloying elements and doping elements used in Comparative Example 4. Using these elements, an alloy powder used as a negative electrode active material was produced by the method described below.
1cm by thermal diffusion method Three 1 x 10 Sb atoms in the surrounding Si 18 The individually doped Si wafer was crushed in a mortar to obtain a powder having an average particle diameter of 1 mm. After 1.5 kg of this powder and 1 kg of Ti powder having an average particle diameter of 500 μm were melted in a Ar atmosphere by a high-frequency melting method, It cooled by the gas atomization method in Ar atmosphere, and produced the spherical alloy powder as a negative electrode active material. In the X-ray diffraction image obtained by the wide-angle X-ray diffraction method, there was a diffraction peak on the (111) plane of Si, and the maximum crystallite size was 700 nm.
[0042]
[Experiment 1] High rate discharge characteristics of non-aqueous electrolyte secondary battery
Cylindrical non-aqueous electrolyte secondary batteries were produced using the alloy powders produced in Examples 1 and 2 and Comparative Examples 1 to 4 as the negative electrode active material, and the high rate discharge characteristics of each battery were examined. .
[0043]
(I) Preparation of positive electrode plate
Lithium cobaltate (LiCoO) as positive electrode active material 2 ) A slurry of 85 parts by weight of a powder, 10 parts by weight of carbon powder as a conductive agent, and 5 parts by weight of PVdF (polyvinylidene fluoride) as a binder is dispersed in dehydrated N-methyl-2-pyrrolidone. A positive electrode mixture was prepared. This positive electrode mixture was applied onto a positive electrode current collector made of an aluminum foil, dried and rolled to prepare a positive electrode plate.
[0044]
(Ii) Production of negative electrode plate
A mixture of 75 parts by weight of each of the alloy powders prepared in the above examples or comparative examples, 20 parts by weight of carbon powder as a conductive agent, and 5 parts by weight of PVdF as a binder was added to dehydrated N-methyl-2-pyrrolidone. A slurry-like negative electrode mixture was prepared. This negative electrode mixture was applied on a negative electrode current collector made of copper foil, dried and rolled to prepare a negative electrode plate.
[0045]
(Iii) Preparation of non-aqueous electrolyte
LiPF was mixed with a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (volume ratio 1: 1). 6 Was dissolved at a concentration of 1.5 mol / L to prepare a non-aqueous electrolyte.
[0046]
(Iv) Manufacture of cylindrical batteries
A cylindrical battery having a diameter of 18 mm and a height of 65 mm was produced. A longitudinal sectional view thereof is shown in FIG.
The positive electrode plate 1 and the negative electrode plate 2 were spirally wound through the separator 3 to produce an electrode body. This electrode body was accommodated in the battery case 7. The positive electrode lead 4 was pulled out from the positive electrode plate 1 and connected to the back surface of the sealing plate 6 conducted to the positive electrode terminal 10. Further, the negative electrode lead 5 was pulled out from the negative electrode plate 2 and connected to the bottom of the battery case 7. An insulating plate 8 was provided at the upper part of the electrode body, and an insulating plate 9 was provided at the lower part. A predetermined nonaqueous electrolyte was poured into the battery case 7, and the opening of the battery case 7 was sealed using the sealing plate 6.
The non-aqueous electrolyte secondary battery was assembled in an atmosphere of dry air with a dew point adjusted to -50 ° C or lower.
[0047]
[Evaluation of high rate discharge characteristics]
Each battery was charged to 4.2 V at 0.6 A at a charge / discharge temperature of 20 ° C., and then discharged to 2.5 V at 0.4 A to obtain a discharge capacity C1. Next, the battery was charged to 0.6 V at 0.6 A, and then discharged to 2.5 V at 4 A to obtain a discharge capacity C2. The ratio P (%) of the discharge capacity C2 to the discharge capacity C1 was calculated based on the following formula, and the high rate discharge characteristics of each battery were evaluated. A battery having a larger value of P is a battery having better high rate discharge characteristics. The results are shown in Tables 1-3.
[0048]
P (%) = (C2 / C1) × 100
[0049]
As shown in Table 1 and Table 2, the ratio P of the batteries A1 to A88 using the negative electrode active material according to the production method of the present invention is 91.4% (battery A86) at the lowest value and 96. 8% (battery A5), and it was found that all the batteries were excellent in high rate charge / discharge characteristics. As described above, mechanical alloying or mechanical gliding is performed until the diffraction peak on the (111) plane of Si does not exist in the X-ray diffraction image obtained by the wide-angle X-ray diffraction method of the alloy powder. Alternatively, the process is performed until the maximum crystallite size of the alloy powder becomes sufficiently small.
[0050]
On the other hand, as shown in Table 3, the ratios P of the batteries X1 and X2 are 84.1% and 83.2%, respectively, and both batteries have better high rate discharge characteristics than the batteries of the examples. There wasn't. This is because Si using undoped is used. In 20 hours mechanical alloying (X1) and 15 hours mechanical gliding (X2), in the X-ray diffraction image obtained by the wide angle X-ray diffraction method, This is because of the (111) plane diffraction peak of the above, and the maximum crystallite size could not be made sufficiently small.
[0051]
Further, as shown in Table 3, the ratios P of the batteries X3 and X4 were 79.5% and 82.3%, respectively, and neither battery had very good high rate discharge characteristics. This is because in the battery X3, a spherical alloy powder having a maximum crystallite size as large as 1000 nm was used as the negative electrode active material. Moreover, although the high rate discharge characteristic of the battery X4 obtained a value slightly higher than the ratio P of the battery X3 because Sb was doped in Si, it was extremely low compared to the ratio P of the batteries A1 to A88. there were. This is because, in the battery X4, spherical alloy powder having a maximum crystallite size as large as 700 nm was used as the negative electrode active material.
[0052]
Table 4 shows the high rate discharge characteristics when the doping amounts are different. C1 and C2 are obtained by evaluating the high rate discharge characteristics of the battery produced in the same manner as A1, except that the doping amount is different. C3 and C4 are obtained by evaluating the high rate discharge characteristics of the battery produced in the same manner as A45 except that the doping amount is different. From Table 4, the dope amount is 1 × 10 14 ~ 1x10 twenty one Even in the case of individual batteries, the ratio P was 90% or more, and it was found that all the batteries had excellent high rate discharge characteristics.
[0053]
[Table 4]
Figure 0004372451
[0054]
[Experiment 2]
The relationship between maximum crystallite size and high rate discharge characteristics was investigated.
A negative electrode active material was prepared in the same manner as the battery A1, except that the mechanical alloying time by the vibration ball mill was changed to 0.5 hours, 1 hour, 3 hours, 10 hours, and 50 hours instead of 20 hours. (B1-B5). At this time, the maximum crystallite size of each battery was 400 nm, 200 nm, 80 nm, 50 nm, and 20 nm in order.
[0055]
Cylindrical nonaqueous electrolyte secondary batteries (B1 to B5) were assembled in the same manner as in the above method except that each of the above alloy powders was used as the negative electrode active material, and the ratio P of each battery was determined. The results are shown in Table 5 and FIG. FIG. 2 is a graph showing the relationship between the maximum crystallite size and high rate discharge characteristics. The vertical axis represents the ratio P (%) of the discharge capacity C2 to the discharge capacity C1, and the horizontal axis represents the maximum crystallite size (nm) of the used negative electrode active material. In Table 5 and FIG. 2, the results for the battery A1 are also transferred from Table 1.
[0056]
[Table 5]
Figure 0004372451
[0057]
As shown in Table 5, a negative electrode active material having a smaller maximum crystallite size was obtained as mechanical alloying was performed for a longer time. Furthermore, in order to obtain an alloy powder that gives a non-aqueous electrolyte secondary battery with very good high rate discharge characteristics as shown in FIG. 2, it is preferable to perform mechanical alloying until the maximum crystallite size is 50 nm or less. I understood.
When the maximum crystallite size exceeded 200 nm, the ratio P was extremely low. When the maximum crystallite size was 400 nm, the ratio P was 79.5%, which was lower than the comparative batteries (X1 to X4).
Therefore, it has been found that the maximum crystallite size is preferably 200 nm or less, and more preferably 50 nm or less.
[0058]
【The invention's effect】
According to the present invention, Si is doped with at least one element selected from the group consisting of Sb and P or B element, and is mixed with Si doped with Sb, P or B and a metal element. In the negative electrode active material for a non-aqueous electrolyte secondary battery for producing the powder, in the X-ray diffraction image obtained by the wide-angle X-ray diffraction method of the alloy powder, or until the diffraction peak on the (111) plane of Si does not exist, or Since the mechanical alloying or mechanical gliding is performed until the maximum crystallite size of the alloy powder becomes sufficiently small, a negative electrode active material that provides a non-aqueous electrolyte secondary battery having excellent high rate discharge characteristics can be obtained in a short time. Can be manufactured.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a cylindrical nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
FIG. 2 is a graph showing the relationship between the maximum crystallite size of a negative electrode active material and high rate discharge characteristics.
[Explanation of symbols]
1 Positive electrode plate
2 Negative electrode plate
3 Separator
4 Positive lead
5 Negative lead
6 Sealing plate
7 Battery case
8, 9 Insulation plate
10 Positive terminal

Claims (12)

(a)Siに、SbおよびPよりなる群から選ばれる少なくとも1種の元素またはB元素をドープする工程と、
(b)工程(a)で得られたSb、PもしくはBがドープされたSiと、Ti、Co、Ni、Cu、Mg、Zr、V、Mo、W、MnおよびFeよりなる群から選ばれる少なくとも1種の元素とを混合し、混合物にせん断力をかけて合金粉末を作製する工程とを備えた非水電解質二次電池用負極活物質の製造方法。
(A) doping Si with at least one element or B element selected from the group consisting of Sb and P;
(B) selected from the group consisting of Si doped with Sb, P or B obtained in step (a) and Ti, Co, Ni, Cu, Mg, Zr, V, Mo, W, Mn and Fe The manufacturing method of the negative electrode active material for nonaqueous electrolyte secondary batteries provided with the process of mixing an at least 1 sort (s) of element and applying a shear force to a mixture and producing alloy powder.
工程(b)は、ボールミルを用いて前記混合物を撹拌、混合する工程からなる請求項1記載の非水電解質二次電池用負極活物質の製造方法。The method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the step (b) comprises a step of stirring and mixing the mixture using a ball mill. 工程(b)が、広角X線回折法により得られるX線回折像において、Siの(111)面の回折ピークが存在しなくなるまで、前記混合物を撹拌、混合する工程からなる請求項2記載の非水電解質二次電池用負極活物質の製造方法。The step (b) comprises a step of stirring and mixing the mixture until there is no diffraction peak on the (111) plane of Si in an X-ray diffraction image obtained by a wide-angle X-ray diffraction method. A method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery. 工程(b)が、前記合金粉末の最大結晶子サイズが200nm以下になるまで、前記混合物を撹拌、混合する工程からなる請求項2記載の非水電解質二次電池用負極活物質の製造方法。The method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery according to claim 2, wherein the step (b) includes a step of stirring and mixing the mixture until a maximum crystallite size of the alloy powder becomes 200 nm or less. 工程(b)が、前記合金粉末の最大結晶子サイズが50nm以下になるまで、前記混合物を撹拌、混合する工程からなる請求項2記載の非水電解質二次電池用負極活物質の製造方法。The method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery according to claim 2, wherein the step (b) comprises a step of stirring and mixing the mixture until the maximum crystallite size of the alloy powder is 50 nm or less. 工程(a)で、1cm3あたりのSiに、SbおよびPよりなる群から選ばれる少なくとも1種の元素またはB元素の原子を1×1014〜1×1021個ドープする請求項1記載の非水電解質二次電池用負極活物質の製造方法。2. The process according to claim 1, wherein in step (a), 1 × 10 14 to 1 × 10 21 atoms of at least one element selected from the group consisting of Sb and P or B element are doped into 1 cm 3 of Si. A method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery. (a)Siに、SbおよびPよりなる群から選ばれる少なくとも1種の元素またはB元素をドープする工程と、
(b)工程(a)で得られたSb、PもしくはBがドープされたSiと、Ti、Co、Ni、Cu、Mg、Zr、V、Mo、W、MnおよびFeよりなる群から選ばれる少なくとも1種の元素とを一緒に溶融し、冷却凝固させて合金塊を作製する工程と、
(c)前記合金塊を粉砕し、粉砕合金にせん断力をかけて、合金粉末を作製する工程とを備えた非水電解質二次電池用負極活物質の製造方法。
(A) doping Si with at least one element or B element selected from the group consisting of Sb and P;
(B) selected from the group consisting of Si doped with Sb, P or B obtained in step (a) and Ti, Co, Ni, Cu, Mg, Zr, V, Mo, W, Mn and Fe Melting at least one element together and cooling and solidifying to produce an alloy mass;
(C) The manufacturing method of the negative electrode active material for nonaqueous electrolyte secondary batteries provided with the process of grind | pulverizing the said alloy lump, applying a shearing force to a grind | pulverized alloy, and producing alloy powder.
工程(c)は、ボールミルを用いて前記粉砕合金を撹拌、混合する工程からなる請求項7記載の非水電解質二次電池用負極活物質の製造方法。The method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery according to claim 7, wherein the step (c) comprises a step of stirring and mixing the pulverized alloy using a ball mill. 工程(c)が、広角X線回折法により得られるX線回折像において、Siの(111)面の回折ピークが存在しなくなるまで、前記粉砕合金を撹拌、混合する工程からなる請求項8記載の非水電解質二次電池用負極活物質の製造方法。The step (c) comprises a step of stirring and mixing the pulverized alloy until there is no diffraction peak on the (111) plane of Si in an X-ray diffraction image obtained by a wide-angle X-ray diffraction method. The manufacturing method of the negative electrode active material for nonaqueous electrolyte secondary batteries. 工程(c)が、前記合金粉末の最大結晶子サイズが200nm以下になるまで、前記粉砕合金を撹拌、混合する工程からなる請求項8記載の非水電解質二次電池用負極活物質の製造方法。The method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery according to claim 8, wherein the step (c) comprises a step of stirring and mixing the pulverized alloy until the maximum crystallite size of the alloy powder is 200 nm or less. . 工程(c)が、前記合金粉末の最大結晶子サイズが50nm以下になるまで、前記粉砕合金を撹拌、混合する工程からなる請求項8記載の非水電解質二次電池用負極活物質の製造方法。The method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery according to claim 8, wherein the step (c) comprises a step of stirring and mixing the pulverized alloy until the maximum crystallite size of the alloy powder is 50 nm or less. . 工程(a)で、1cm3あたりのSiに、SbおよびPよりなる群から選ばれる少なくとも1種の元素またはB元素の原子を1×1014〜1×1021個ドープする請求項7記載の非水電解質二次電池用負極活物質の製造方法。8. The process according to claim 7, wherein in step (a), 1 × 10 14 to 1 × 10 21 atoms of at least one element selected from the group consisting of Sb and P or B element are doped into 1 cm 3 of Si. A method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery.
JP2003129704A 2003-05-08 2003-05-08 Method for producing negative electrode active material for non-aqueous electrolyte secondary battery Expired - Fee Related JP4372451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003129704A JP4372451B2 (en) 2003-05-08 2003-05-08 Method for producing negative electrode active material for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003129704A JP4372451B2 (en) 2003-05-08 2003-05-08 Method for producing negative electrode active material for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2004335271A JP2004335271A (en) 2004-11-25
JP4372451B2 true JP4372451B2 (en) 2009-11-25

Family

ID=33505426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003129704A Expired - Fee Related JP4372451B2 (en) 2003-05-08 2003-05-08 Method for producing negative electrode active material for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4372451B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5098192B2 (en) * 2005-06-29 2012-12-12 パナソニック株式会社 COMPOSITE PARTICLE FOR LITHIUM SECONDARY BATTERY, ITS MANUFACTURING METHOD, AND LITHIUM SECONDARY BATTERY USING THE SAME
WO2007114168A1 (en) * 2006-03-30 2007-10-11 Sanyo Electric Co., Ltd. Lithium rechargeable battery and method for manufacturing the same
JP5499649B2 (en) * 2009-11-12 2014-05-21 パナソニック株式会社 Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
US9634327B2 (en) 2013-03-30 2017-04-25 Tohoku University Negative electrode active material for lithium ion secondary battery, method for producing the same, negative electrode, and battery
CN104995772B (en) 2013-03-30 2018-06-12 国立大学法人东北大学 Lithium ion secondary battery cathode active material and its preparation method and cathode and battery
CN105375010B (en) * 2015-11-26 2018-09-18 长沙矿冶研究院有限责任公司 A kind of preparation method of high compacted density lithium ion positive electrode

Also Published As

Publication number Publication date
JP2004335271A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
JP5295564B2 (en) Dense mixed titanium lithium oxide powdery compound, method for producing the compound, and electrode comprising the compound
JP4865556B2 (en) Multiphase silicon-containing electrodes for lithium ion batteries
JP6230232B2 (en) Low energy grinding method, low crystalline alloy, and negative electrode composition
JP4368139B2 (en) Anode material for non-aqueous electrolyte secondary battery
US20100288077A1 (en) Method of making an alloy
TWI569497B (en) Negative electrode active material for lithium ion battery, and negative electrode for lithium ion battery using the same
JP6003996B2 (en) Electrode active material, method for producing electrode active material, electrode, battery, and method of using clathrate compound
TWI635645B (en) Si-based eutectic alloy for negative electrode active material of power storage device and method for producing same
WO2015041063A1 (en) Composite particles of silicon phase-containing substance and graphite, and method for producing same
JP4673287B2 (en) Spinel type lithium manganese oxide and method for producing the same
JP2011132095A (en) Method for producing olivine-type compound particle powder, and nonaqueous electrolyte secondary battery
JP2004185991A (en) Negative electrode material for lithium secondary battery, lithium secondary battery using the same, and negative electrode material manufcturing method
WO2012073418A1 (en) Hydrogen-storage alloy particles, alloy powder for electrode, and alkaline storage battery
JP2002124254A (en) Negative electrode material for lithium battery and its manufacturing method
WO2011030486A1 (en) Silicon oxide and anode material for lithium ion secondary cell
JP4069710B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP4491950B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
JP4372451B2 (en) Method for producing negative electrode active material for non-aqueous electrolyte secondary battery
JP4133116B2 (en) Negative electrode active material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
Guo et al. A novel SnxSbNi composite as anode materials for Li rechargeable batteries
JP2002117843A (en) Nonaqueous electrolyte secondary battery
JP2004071391A (en) Cathode active material and its manufacturing method and nonaqueous electrolytic solution battery
JP2004356054A (en) Negative electrode material for nonaqueous electrolyte secondary battery, its manufacturing method, negative electrode for nonaqueous electrolyte secondary battery using it, and nonaqueous electrolyte secondary battery
EP1207577A2 (en) Negative electrode material for non-aqueous electrolyte secondary battery and method for producing the same
JP4032893B2 (en) Anode material for non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090806

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees