JP4366513B2 - Method and apparatus for recovering valuable metals from metal composite waste - Google Patents

Method and apparatus for recovering valuable metals from metal composite waste Download PDF

Info

Publication number
JP4366513B2
JP4366513B2 JP32163799A JP32163799A JP4366513B2 JP 4366513 B2 JP4366513 B2 JP 4366513B2 JP 32163799 A JP32163799 A JP 32163799A JP 32163799 A JP32163799 A JP 32163799A JP 4366513 B2 JP4366513 B2 JP 4366513B2
Authority
JP
Japan
Prior art keywords
metal
metal composite
suction
metals
composite waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32163799A
Other languages
Japanese (ja)
Other versions
JP2001137827A (en
Inventor
孝治 松田
寿 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Eco Systems Co Ltd
Original Assignee
Dowa Eco Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Eco Systems Co Ltd filed Critical Dowa Eco Systems Co Ltd
Priority to JP32163799A priority Critical patent/JP4366513B2/en
Publication of JP2001137827A publication Critical patent/JP2001137827A/en
Application granted granted Critical
Publication of JP4366513B2 publication Critical patent/JP4366513B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/23Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp
    • B03C1/24Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp with material carried by travelling fields
    • B03C1/247Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp with material carried by travelling fields obtained by a rotating magnetic drum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/30Combinations with other devices, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/20Magnetic separation whereby the particles to be separated are in solid form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、廃家電製品、廃OA機器およびその製造工程等から排出される廃電子基板等金属複合廃材に含有する有価金属、特に、銅を効率的に回収する処理方法に関する。
【0002】
【従来の技術】
廃電子基板類は、ガラス、熱硬化性樹脂、熱可塑性樹脂等の非金属と金属が分離が困難な状態で混在する金属複合廃材になっており、金属としては、非鉄金属特に導電性パターンとして銅材が多く含まれている。また、このような金属複合廃材からの有価金属回収方法においては、破砕した金属複合廃材から鉄金属分と非鉄金属分を分離するための磁力選別機と渦電流選別機(非鉄金属選別機)が多用されている。
【0003】
例えば、特開平8−19771号公報には、廃自動車、廃家電製品等の処理方法として、これらの金属複合廃材をシュレッダーで破砕し、磁力選別機で鉄分を回収した後、非鉄金属選別機または重液選別機によって非鉄金属を回収し、さらに、ロッドミル等押圧破砕機で処理して金属分を偏平にしてスクリーンにより金属分を篩別し、引き続き非鉄金属選別機により鉄金属粒子と非鉄金属粒子を分別する技術、また、特開平9−75853号公報には、廃自動車、家電製品等のシュレッダーダストを磁力選別機と非鉄金属選別機により金属分を分別した後、その残渣および集塵ダストを焼却処理し、押圧破砕機で処理して金属分を偏平にし、風力選別機を経由して得られた金属分をさらに磁力選別機と非鉄金属選別機により鉄粒子と非鉄金属粒子とに分離して回収する技術が開示されている。
【0004】
渦電流選別機は、例えば磁石を備えて回転するロータが絶縁性のドラムで褶動自在に外装されてローター部を構成し、このドラムと対をなして回転する駆動ローラとの間に処理原料を搬送するコンベアベルトが掛け渡されており、前記ロータが高速で回転することによりコンベアベルト上に強力な交番磁界を発生させるものである。したがって、コンベアベルトによって搬送されてきた導電性非鉄金属粒子はローター部上で交番磁界内におかれることにより該非鉄金属粒子の表面に渦電流が発生し、前記ロータの磁界がこの渦電流による磁界と反発して前記非鉄金属粒子を瞬時にはね飛ばすことになる。このような渦電流選別機は、前記のような自動車廃材や産業廃棄物等からの非鉄有価金属の回収のほか不燃ゴミからのアルミニウム缶の回収、電子部品廃棄物や石炭焼却灰からの非鉄有価金属の回収、さらには、ガラスカレットとアルミニウム・鉛等の分離等アルミニウムや銅等非鉄有価金属を鉄、ガラス、合成樹脂等から分別するために広範囲に利用されるようになってきている。
一方、金属複合廃材である廃電子基板を処理する場合、銅を回収するべく単体分離性を高めるため、粉砕度を上げて粒子を細かくする必要があり、少なくとも1〜2mm径以下にする必要があった。
【0005】
【発明が解決しようとする課題】
しかしながら、前記渦電流選別機においては、1〜2mm径以下のような微細な粉粒体材料を扱う場合には、搬送するコンベアベルトに粉体材料が付着しやすい、粉塵が発生しやすい、また、金属と非金属間の分離性が悪い等の問題があった。
このような細かい粉粒体材料に対しては、静電選別機や、揺動テーブル等の選別手段もあるが、静電選別機の場合には、処理量が限られ、かつ設備費が高く、また、操業管理が難しいという問題があり、揺動テーブルの場合には、排水処理設備が必要で、また、乾燥処理を必要とする等設備上の不利点が多いという問題があった。
【0006】
したがって、本発明は、上記の諸問題に鑑み、静電選別機や揺動テーブルによらない比較的簡単な手段により、1〜2mm径以下というような、細かい粉粒体材料にも適用でき、したがって、廃電子基板等金属複合廃材からの銅等重金属材の回収手段としても好適な金属複合廃材の処理方法の提供を目的としている。
【0007】
【課題を解決するための手段】
上記の目的を達成するため、本発明者等は鋭意検討した結果、渦電流選別機により、金属複合廃材の粉粒体を金属主体の粗粒精鉱と非金属を主体とする細粒尾鉱とに分別した後、落下途上の粉粒体に対して細粒尾鉱側から吸引操作を施すことにより、結果的に細粒尾鉱中の非金属を吸引できることが確認され、その結果金属の回収率を上げることが可能となるに至った。すなわち、本発明は、第1に、金属と非金属を含む金属複合廃材を破砕して得た篩下粉粒体から鉄系金属を除去した後、吸引装置を付設した渦電流選別機により、非鉄金属を含む粗粒精鉱と非金属を主体とする細粒尾鉱とに分別し、引き続き前記吸引装置において、前記細粒尾鉱からなる粉粒体を非鉄金属を含む非吸引精鉱と軽量部の非金属を主体とする吸引尾鉱とに分別することを特徴とする金属複合廃材からの有価金属の回収方法を、第2に、前記渦電流選別機は磁石を周設したロータにドラムを外装したローター部にコンベアベルトを掛け渡してなり、前記吸引装置は渦電流選別機の前記ローター部側の端部に近接した前方に仕切り板を配設して空間を構成し、該空間内に吸引ノズルを設けてなり、前記コンベアベルトから落下する粉粒体の軽量部を吸引させることを特徴とする前記第1に記載の金属複合廃材からの有価金属の回収方法を、第3に、前記金属複合廃材が廃電子基板であることを特徴とする前記第1または第2に記載の金属複合廃材からの有価金属の回収方法を、第4に、前記金属複合廃材から回収される非鉄金属が銅であることを特徴とする前記第1〜第3のいずれかに記載の金属複合廃材からの有価金属の回収方法を、第5に、磁石を周設したロータにドラムを外装してなるローター部にコンベアベルトを掛け渡してなり、金属複合廃材による粉粒体から非鉄金属を含む粗粒精鉱を分離する渦電流選別機と、該渦電流選別機のローター部前方の囲われた空間内に吸引ノズルを配設し、前記粗粒精鉱を分離して落下する粉粒体から軽量の非金属部を吸引して非吸引精鉱を分離する吸引装置と、該吸引装置の吸引経路内に介設され、前記非金属部を回収する集塵装置とからなることを特徴とする金属複合廃材からの有価金属の回収装置を、第6に、前記集塵装置が、サイクロン手段とバグフィルタ手段とからなることを特徴とする前記第5記載の金属複合廃材からの有価金属の回収装置を、第7に、前記金属複合廃材が廃電子基板であることを特徴とする前記第5または第6に記載の金属複合廃材からの有価金属の回収装置を提供するものである。
【0008】
【発明の実施の形態】
本発明では廃電子基板等非鉄金属と非金属からなる金属複合廃材から銅等非鉄有価金属を回収する。廃電子基板等を全量2mm径以下に粉砕し単体分離(銅等有価金属と他成分の分離)を高めたものを渦電流選別機の選別対象とする。2mm径以上では、基板に金属が着いているものが多く、殆ど金属は単体分離されない。この渦電流選別機は、前記したように非鉄金属選別機としても知られるベルト式のもので、交番磁界を発生させるロータ上における磁気反発による非鉄金属の分離作用を利用するものである。
【0009】
本発明では、吸引装置として渦電流選別機のロータ側の前方に仕切り板を設け、この仕切り板で区画された空間に吸引ノズルを配置する。すなわち、渦電流選別装置との連係作用で、渦電流選別処理後の細粒分について、空気吸引手段で細粒系中の質量や密度の小さい非金属分を吸引することにより金属分とのさらなる分離を図り、金属の回収率を向上させるものである。仕切り板は吸引ノズルの吸引効率を高め、また、粉体の飛散を抑制する。単体分離された金属部の嵩密度は銅の場合、4〜5g/cm3 あり、逆にガラス・プラスチック類は、1〜2g/cm3 で吸引力は、これと渦電流による反発力とを調整して決定するのが好ましい。なお、吸引装置内が全面囲われている場合は、この仕切り板を略することもできる。
渦電流選別機の運転条件は、処理原料に対応したベルトスピード、渦電流発生ロータ回転数等の組合わせにより選定されるが、また、これらの条件に、前記仕切り板の位置をもあわせ考慮する。
【0010】
渦電流選別で金属を含む粗粒系と分けられた細粒系は、廃電子基板の場合、微細なガラス、合成樹脂、プラスチック及び金属類の混合物である。この中で金属類は他に比べ比較的粒子が大きい。これは金属の性質によるものと思われる。したがって、高密度、高質量の金属は吸引され難く、低密度、低質量のガラス、合成樹脂、プラスチック等は吸引されやすく、吸引手段により金属と他の成分の分離が可能となるものである。
【0011】
廃基板からの銅の回収処理においては、銅の品位、回収率を高める必要から銅と他成分の単体分離度を高める必要がある。必然的に渦電流選別では細かくなり過ぎ、ベルト付着、粉塵発生、分離性の低下が問題となったが、本発明のように、渦電流選別機の仕切り板で分けられる空間内に吸引装置を設けることにより、従来、分離が難しかった細粒系の銅と他物質との分離が可能となった。且つ、粉塵発生やベルト付着物の防止も可能となった。
装置としても、仕切り板で分けられる空間内に吸引ノズルを設け、サイクロン等を介して吸引ブロワーで吸引させるだけなので、簡単であり、スペース、設備費も最小にできる。また、吸引物はサイクロン等により回収でき再資源化の用途もある。
【0012】
本発明の吸引装置を付設した選別装置を図1および図2によって具体的に説明する。図示しない架台に一対にロータ1と駆動ローラ2とがそれぞれ回転自在に取り付けられ、ロータ1は外周に極性が交互に変化するように複数の磁石1a,1bを配置してなり、さらにロータ1の外周にはドラム3を褶動自在に周接させ、ローター部4に構成してある。そして、駆動ローラ2とドラム3には、エンドレスにコンベアベルト5が掛け渡され、図示しないモータにより駆動ローラ2を介してコンベアベルト5が周回するようにしてある。そして、前記ロータ1は、別個の駆動モータによって前記ドラム3と、したがってコンベアベルト5とは、反対方向にも回転できるようにし、渦電流選別機Aを構成するようにしてある。
【0013】
すなわち、この渦電流選別機Aにあっては、ロータ1をコンベアベルト5と反対方向に回転させてコンベアベルト5上に交番磁界が形成されるようにしておき、フィーダ6によって駆動ローラ2側に導電性金属粉粒体を含む被処理粉粒体aを供給する。被処理粉粒体aは、コンベアベルト5により搬送され、ローター部4上に至って磁界を切ることによって被処理粉粒体a中の金属粉粒体表面に渦電流が発生する。この渦電流によって生ずる磁界は、常にロータ1の交番磁界と同極となるので、前記金属粉粒体は、瞬間的にコンベアベルト5からはじき飛ばされることになる。したがって、交番磁界により渦電流を生じない合成樹脂等非導電体と分離されることになる。
なお、被処理粉粒体aに鉄系磁性体が混入していると、この鉄系金属磁性体がローター部4に滞留して渦電流によって発熱し、コンベアベルト5やロータ1を損傷するので、鉄系金属磁性体はあらかじめ被処理粉粒体aから除いておく必要がある。
【0014】
本発明では、渦電流選別機Aのローター部4の前方下部に粉粒体の吸引装置Bを設ける。すなわち、ローター部4の前方に落下する金属粉粒体(粗粒精鉱b)の外方側に沿う形に仕切り板7を設けると共に、流下する粉粒体(細粒尾鉱c)の内方側に沿う形にすなわちローター部4のやや前方下部に粉粒体を吸引する吸引ノズル8を設ける。図2のように、この吸引装置Bの吸引ノズル8は長方形の開口を有し、その開口を落下する粉粒体流側に、すなわち前方に向けて固定する。その横幅はコンベアベルト5の幅より若干大とし、縦幅を狭くした長方形面で吸引させるようにする。この吸引装置Bにおいては、図示しない吸引ブロワーによって吸引が行われるが、その吸引経路にサイクロン9を介在させ、吸引した粉粒体からさらに金属分を回収できるようにしている。また、落下する粗粒精鉱bと細粒尾鉱cとの間に中間仕切り板12を設置し、両者の分離を図っている。この中間仕切り板12の高さは可変としてあるが、吸引ノズル8の吸引口より下部であれば粗粒精鉱bへの吸引効果が大きくなるので好ましい。
【0015】
このような吸引装置Bを付設した渦電流選別機Aによる選別処理によれば、フィーダ6により供給された被処理粉粒体aはコンベアベルト5により搬送されてローター部4上に至り、ローター部4上において渦電流作用を生じた含有金属粉粒体に前方に飛ばされ、仕切り板7に沿ってその内側を落下することになる。この仕切り板7に沿って落下する粉粒体には非金属分も含まれるが、金属分が比較的多く含まれ、また比較的粗粒分が多いので、粗粒精鉱bとして下方に設けた粗粒回収ホッパ10に蓄留される。
【0016】
ロータ1による交番磁界の影響を受けない非導電性の粉粒体は細粒尾鉱cとして通常の落下軌跡で内側に落下するが、ローター部4側を落下するこの細粒尾鉱cにはなお比較的細粒の金属分が巻き込まれており、比較的軽量で細かく落下速度が緩い非金属粉粒体を、吸引ノズル8に吸引させて分離させることにより、金属分を濃縮された形でそのまま落下する非吸引粉粒体を得ることができ、この非吸引粉粒体は非吸引精鉱dとして、下方に設けた細粒回収ホッパ11に蓄留させる。この非吸引精鉱dは前記粗粒精鉱bと共に金属回収処理に供する。吸引ノズル8によって吸引された軽量の吸引粉粒体は、さらに、サイクロン9で捕集されるものと、サイクロン9を経由して図示しないバグフィルタで捕集されるものとに分別される。サイクロン9で捕集されるものには、なお、若干の細かい金属分が含有されているので、資源として回収され別途処理される。バグフィルタで回収する粉体は、殆どがガラス粉等非金属である。
【0017】
前記吸引ノズル8の吸引は、微粒子等比較的ガラスやプラスチックが多く金属が少ないローター部4側すなわち落下粉粒体流の細粒尾鉱側からの吸引でありガラス・プラスチック類と金属類との効率的な分別が可能である。
また、この吸引装置Bを付設した渦電流選別機Aによれば、供給される被処理粉粒体aが細粉化している場合にあっても、従来のように、粉体がコンベアベルト5に付着したままで金属粉粒体の分離を妨げる、また、金属粉粒体と共に軽量の非導電体粉が粉塵状態に舞い上がって相互分離性が悪くなるといった問題がなくなった。
【0018】
【実施例】
以下、前記吸引装置Bを付設した渦電流選別機Aを適用した本発明の廃電子基板からの銅回収方法の実施例を図3のフロー図により説明する。
廃電子基板は、2mm目篩付オリエント社製竪型粉砕機にかけ、2mm径以下にまで破砕する。破砕し難い2mm目以上の異物があれば系外に除く。前記粉砕機からの2mm篩下粉粒体は磁選機にかけ、鉄系金属からなる磁着物を回収してリサイクル資源とする。ただし、本実施例では、処理対象の廃電子基板が鉄含有率の低い非実装廃基板であったので、前記粉砕機にかけ、2mm径以下の粉粒体とした後、磁選工程を省略し、直接、渦電流選別機にかけている。この渦電流選別機は図1と図2に示した吸引装置B付設の渦電流選別機Aであり、ロータ1の径が300mm、ロータ1の有効幅が300mm、コンベアベルト5の幅は400mmで、ベルト速度を40m/分に、ロータ1の回転数は2400回転/分に調整した。吸引装置Bの吸引ノズル8は開口部が35×450mmのものを用い、上縁位置を前記水平延長線から40mm下方でローター部4から10mm離間した位置とした。また、吸引ノズル8の吸引速度は25m/秒に設定した。
【0019】
渦電流選別機Aにより、ローター部4から離れて落下した銅分を多く含む粗粒体が仕切り板7の内方側に沿い、あるいは近接して落下し、粗粒精鉱bとして粗粒回収ホッパ10に回収された。この粗粒精鉱bと分離された状態のローター部側の細粉粒体は通常の落下軌跡にしたがって細粒尾鉱cとして落下し、その落下途上において引き続き吸引装置Bにかけられた。
この時、細粒尾鉱cの内、比較的銅分が多く含まれている粉粒体や、比較的重い粉粒体は、吸引ノズル8の吸引を免れ、非吸引精鉱dとしてそのまま落下し、細粒回収ホッパ11に蓄留された。この非吸引精鉱dは、前記粗粒精鉱bと併せて銅回収工程に供給した。
【0020】
落下時に吸引ノズル8により吸引された微粉粒体は、軽い樹脂等の非金属粉粒体を多く含み、吸引尾鉱として、さらに、サイクロン9を経由して、サイクロン9に捕集された含銅粉体とサイクロン9を逸出してバグフィルタに捕集された非金属粉体に分離された。前記含銅粉体は、なお若干の銅分を含むので回収のため、別途処理に供される。
【0021】
上記の処理による被処理廃電子基板と回収物の物量収支を図4に示した。
渦電流選別機による選別処理で、被処理廃電子基板による粉粒体から、被処理廃電子基板の含有銅の84.2%分が、48.9%の高品位で粗粒精鉱に回収された。
残部の銅を含む細粒尾鉱をさらに吸引選別処理にかけることにより銅品位が40.10%の非吸引精鉱が回収できた。すなわち、この吸引選別処理により、被処理廃電子基板の含有銅の内の10.4%を回収することができた。
【0022】
表1に、渦電流選別処理に続いて吸引選別処理を取り入れた場合の回収物すなわち精鉱(粗粒精鉱と非吸引精鉱を合わせたもの)と尾鉱(吸引尾鉱)の回収内容を示し、表2に渦電流選別処理のみで吸引選別処理を取り入れない場合の回収物すなわち精鉱(粗粒精鉱)と尾鉱(細粒尾鉱)の回収内容を示した。この表1と表2との比較から分かるように、吸引選別処理を行わない場合の銅の回収率は84.2%であったが、吸引選別を行うことにより、銅品位が殆ど変わらない精鉱態で銅が回収され、このまま銅精練工程に投入可能なものとなった。また、被処理廃電子基板からの銅の回収率は94.6%にも達した。
【0023】
【表1】
吸引選別処理を取り入れた場合の回収物

Figure 0004366513
【0024】
【表2】
吸引選別処理を取り入れない場合の回収物
Figure 0004366513
【0025】
【発明の効果】
渦電流選別機の前方に、仕切り板によって仕切った空間を設け、この空間に吸引ノズルを設けるという簡単な吸引装置手段を付設した渦電流選別機により、金属複合廃材を1〜2mm径以下にまで破砕した細粉粒体についても問題なく金属分の分別を進めることができ、廃材における金属の細粒化に伴う単体分離性の向上が期待できることと相俟って、廃材からの非鉄有価金属の回収率が向上するという効果が得られる。
また、本発明方法は、特に、従来細粒化が困難とみられた廃電子基板からの銅の回収に効果的に適用できるという効果が得られる。
【図面の簡単な説明】
【図1】本発明に係る吸引装置を付設した渦電流選別装置の略正面図である。
【図2】図1の渦電流選別機の略側面図である。
【図3】本発明の実施例による廃電子基板の処理方法を示したフロー図である。
【図4】図3のフロー図に従って処理した廃電子基板と回収物の物量収支を示したフロー図である。
【符号の説明】
A 渦電流選別機
B 吸引装置
1 ロータ
2 駆動ローラ
3 ドラム
4 ローター部
5 コンベアベルト
6 フィーダ
7 仕切り板
8 吸引ノズル
9 サイクロン
10 粗粒回収ホッパ
11 細粒回収ホッパ
12 中仕切り板
a 被処理粉粒体
b 粗粒精鉱
c 細粒尾鉱
d 非吸引精鉱[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a processing method for efficiently recovering valuable metals, particularly copper, contained in a metal composite waste material such as a waste electronic substrate discharged from a waste home appliance, a waste OA device, and a manufacturing process thereof.
[0002]
[Prior art]
Waste electronic boards are metal composite waste materials in which non-metals and metals such as glass, thermosetting resins, and thermoplastic resins are mixed in a state where separation is difficult, and as metals, non-ferrous metals, especially as conductive patterns It contains a lot of copper. Moreover, in such a valuable metal recovery method from metal composite waste, a magnetic separator and eddy current separator (non-ferrous metal separator) for separating ferrous metal and non-ferrous metal from crushed metal composite waste are provided. It is used a lot.
[0003]
For example, in Japanese Patent Laid-Open No. 8-19771, as a method for treating scrap automobiles, waste home appliances, etc., these metal composite waste materials are crushed with a shredder and the iron content is recovered with a magnetic separator, Nonferrous metal is collected with a heavy liquid sorter, further processed with a pressure crusher such as a rod mill, and the metal content is flattened and screened with a screen, followed by ferrous metal particles and nonferrous metal particles with a nonferrous metal sorter. In Japanese Patent Application Laid-Open No. 9-75853, shredder dust such as scrap automobiles and home appliances is separated into metal components by a magnetic separator and a non-ferrous metal separator, and the residue and dust collection dust are collected. Incineration treatment, processing with a pressure crusher to flatten the metal content, the metal content obtained via the wind sorter further ferrous particles and nonferrous metal with a magnetic separator and nonferrous metal sorter Technology for recovering separated into a child is disclosed.
[0004]
In the eddy current sorter, for example, a rotating rotor including a magnet is externally slidably covered with an insulating drum to form a rotor portion, and a processing raw material is disposed between the drum and a driving roller that rotates in a pair. A conveyor belt that transports the belt is stretched over and the rotor rotates at a high speed to generate a strong alternating magnetic field on the conveyor belt. Therefore, when the conductive non-ferrous metal particles conveyed by the conveyor belt are placed in an alternating magnetic field on the rotor portion, an eddy current is generated on the surface of the non-ferrous metal particles, and the magnetic field of the rotor is a magnetic field generated by the eddy current. And repels the non-ferrous metal particles instantaneously. Such an eddy current sorter can recover non-ferrous valuable metals from automobile waste materials, industrial waste, etc., as well as aluminum cans from non-combustible waste, non-ferrous valuable metals from electronic component waste and coal incineration ash. It has come to be used extensively to recover metals, and to separate nonferrous metals such as aluminum and copper from iron, glass, synthetic resin, etc., such as separation of glass cullet from aluminum and lead.
On the other hand, when processing a waste electronic substrate which is a metal composite waste material, it is necessary to increase the pulverization degree to make the particles finer in order to improve the single separability in order to recover copper, and it is necessary to make the diameter at least 1 to 2 mm or less. there were.
[0005]
[Problems to be solved by the invention]
However, in the eddy current sorter, when handling a fine granular material having a diameter of 1 to 2 mm or less, the powder material tends to adhere to the conveyor belt to be transported, dust is likely to be generated, There were problems such as poor separation between metal and non-metal.
For such fine powder materials, there are sorting means such as electrostatic sorters and swing tables, but in the case of electrostatic sorters, the amount of processing is limited and the equipment costs are high. In addition, there is a problem that operation management is difficult, and in the case of a swing table, there is a problem that there are many disadvantages on the equipment, such as a wastewater treatment facility and a need for a drying treatment.
[0006]
Therefore, in view of the above-mentioned problems, the present invention can be applied to fine granular materials such as a diameter of 1 to 2 mm or less by relatively simple means not using an electrostatic sorter or a swing table, Therefore, it aims at providing the processing method of metal composite waste materials suitable also as a collection | recovery means of heavy metal materials, such as copper, from metal composite waste materials, such as a waste electronic board | substrate.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors have conducted intensive studies, and as a result, the eddy current sorter was used to separate the metal composite waste material into fine-grain tailings mainly composed of metal-based coarse concentrate and non-metal. It is confirmed that the non-metal in the fine tailings can be sucked as a result by applying a suction operation from the fine tailings side to the falling powder particles. It became possible to increase the recovery rate. That is, in the present invention, firstly, after removing iron-based metal from the sieving granular material obtained by crushing a metal composite waste material containing metal and non-metal, an eddy current separator equipped with a suction device, Separating into coarse concentrate containing non-ferrous metal and fine-grained tailing mainly composed of non-metal, and subsequently in the suction device, the granular material comprising the fine-grained tailing is converted into non-suction concentrate containing non-ferrous metal and Secondly, a method for recovering valuable metals from metal composite waste, which is characterized by separating into lightweight tailings mainly composed of non-metals in the lightweight part. Secondly, the eddy current separator is applied to a rotor provided with magnets. A conveyor belt is stretched over a rotor portion having a drum mounted thereon, and the suction device is configured with a partition plate disposed in front of the end portion on the rotor portion side of the eddy current sorter to form a space. Powder that is provided with a suction nozzle inside and falls from the conveyor belt The method for recovering valuable metal from the metal composite waste material according to the first aspect, wherein the lightweight portion of the body is sucked, and third, the metal composite waste material is a waste electronic substrate The method for recovering valuable metal from the metal composite waste material according to the first or second aspect, fourth, the non-ferrous metal recovered from the metal composite waste material is copper, The method for recovering valuable metals from any of the metal composite waste materials according to any one of the above, fifth, a conveyor belt is hung on a rotor portion having a drum mounted on a rotor around which magnets are provided, An eddy current sorter that separates coarse concentrate containing non-ferrous metal from granules, and a suction nozzle in the enclosed space in front of the rotor part of the eddy current sorter to separate the coarse concentrate And suck the light non-metallic parts from the falling powder An apparatus for recovering valuable metals from metal composite waste, comprising: a suction device for separating suction concentrate; and a dust collector that is disposed in a suction path of the suction device and collects the non-metal part. Sixth, the apparatus for recovering valuable metal from the metal composite waste material according to the fifth aspect, wherein the dust collector comprises a cyclone means and a bag filter means, and seventh, the metal composite The waste metal is a waste electronic substrate, and the valuable metal recovery device from the metal composite waste material according to the fifth or sixth aspect is provided.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, non-ferrous valuable metals such as copper are recovered from a metal composite waste material composed of non-ferrous metals and non-metals such as waste electronic substrates. A waste electronic substrate or the like is crushed to a diameter of 2 mm or less and the single separation (separation of valuable metals such as copper and other components) is enhanced, which is selected by the eddy current sorter. When the diameter is 2 mm or more, there are many cases where the metal is attached to the substrate, and the metal is hardly separated. As described above, this eddy current sorter is a belt type that is also known as a nonferrous metal sorter, and uses the separation action of nonferrous metal by magnetic repulsion on a rotor that generates an alternating magnetic field.
[0009]
In the present invention, a partition plate is provided in front of the rotor side of the eddy current sorter as the suction device, and the suction nozzle is disposed in a space partitioned by the partition plate. That is, with the action of the eddy current sorting device, the fine particles after the eddy current sorting process are further separated from the metal content by sucking the non-metal content having a small mass or density in the fine grain system with the air suction means. Separation is intended to improve the metal recovery rate. The partition plate increases the suction efficiency of the suction nozzle and suppresses the scattering of the powder. Single volume density of the separated metal parts in the case of copper, there 4-5 g / cm 3, a glass-plastics are reversed, the suction force at 1 to 2 g / cm 3 has a repulsive force by which the eddy current It is preferable to make an adjustment. In addition, when the inside of the suction device is surrounded entirely, this partition plate can be omitted.
The operating conditions of the eddy current sorter are selected by a combination of the belt speed corresponding to the raw material to be processed, the eddy current generating rotor speed, etc., and the position of the partition plate is also considered in consideration of these conditions. .
[0010]
In the case of a waste electronic substrate, the fine-grain system separated from the coarse-grain system containing metal by eddy current sorting is a mixture of fine glass, synthetic resin, plastic, and metals. Among them, metals have relatively large particles compared to others. This is probably due to the nature of the metal. Therefore, high-density, high-mass metal is difficult to be sucked, and low-density, low-mass glass, synthetic resin, plastic, etc. are easily sucked, and the metal and other components can be separated by the suction means.
[0011]
In the process of recovering copper from waste substrates, it is necessary to increase the degree of separation of copper and other components from the need to increase the quality and recovery rate of copper. Inevitably, eddy current sorting becomes too fine, and belt adhesion, dust generation, and deterioration of separability become problems, but as in the present invention, a suction device is placed in the space divided by the partition plate of the eddy current sorting machine. By providing, it became possible to separate the fine-grained copper, which was conventionally difficult to separate, from other substances. In addition, dust generation and belt deposits can be prevented.
The apparatus is also simple because the suction nozzle is provided in the space divided by the partition plate and sucked by the suction blower through a cyclone or the like, and the space and equipment costs can be minimized. In addition, the aspirated material can be collected by a cyclone or the like and can be used for recycling.
[0012]
The sorting device provided with the suction device of the present invention will be described in detail with reference to FIGS. A pair of a rotor 1 and a drive roller 2 are rotatably attached to a gantry (not shown). The rotor 1 has a plurality of magnets 1a and 1b arranged on the outer periphery so that the polarities are alternately changed. The drum 3 is slidably contacted on the outer periphery, and the rotor portion 4 is configured. An endless conveyor belt 5 is wound around the driving roller 2 and the drum 3, and the conveyor belt 5 circulates via the driving roller 2 by a motor (not shown). The rotor 1 can be rotated in the opposite direction to the drum 3 and hence the conveyor belt 5 by a separate drive motor, thereby forming an eddy current sorter A.
[0013]
That is, in this eddy current sorter A, the rotor 1 is rotated in the opposite direction to the conveyor belt 5 so that an alternating magnetic field is formed on the conveyor belt 5, and the feeder 6 moves the drive roller 2 side. A treated granular material a containing conductive metal granular material is supplied. The to-be-processed granular material a is conveyed by the conveyor belt 5, reaches the rotor part 4, and cuts a magnetic field, and an eddy current generate | occur | produces on the metal granular material surface in the to-be-processed granular material a. Since the magnetic field generated by this eddy current is always the same polarity as the alternating magnetic field of the rotor 1, the metal powder particles are instantaneously blown off from the conveyor belt 5. Therefore, it is separated from a non-conductor such as a synthetic resin that does not generate an eddy current by an alternating magnetic field.
If the iron-based magnetic material is mixed in the particles a to be processed, the iron-based metal magnetic material stays in the rotor portion 4 and generates heat due to eddy currents, damaging the conveyor belt 5 and the rotor 1. It is necessary to remove the iron-based metal magnetic material from the treated granular material a in advance.
[0014]
In the present invention, a powder particle suction device B is provided at the lower front portion of the rotor portion 4 of the eddy current selector A. That is, the partition plate 7 is provided in a shape along the outer side of the metal granular material (coarse concentrate b) that falls in front of the rotor portion 4, and the inside of the granular material (fine-grained tailing c) that flows down A suction nozzle 8 for sucking powder particles is provided in a shape along the side, that is, slightly in the lower front part of the rotor portion 4. As shown in FIG. 2, the suction nozzle 8 of the suction device B has a rectangular opening, and the opening is fixed toward the falling side of the granular material, that is, toward the front. The lateral width is slightly larger than the width of the conveyor belt 5, and suction is performed on a rectangular surface having a narrow vertical width. In this suction device B, suction is performed by a suction blower (not shown), and a cyclone 9 is interposed in the suction path so that a metal component can be further recovered from the sucked powder particles. Further, an intermediate partition plate 12 is installed between the falling coarse grain concentrate b and the fine grain tailings c to separate them. Although the height of the intermediate partition plate 12 is variable, it is preferable that it is below the suction port of the suction nozzle 8 because the suction effect on the coarse concentrate b is increased.
[0015]
According to the sorting process by the eddy current sorter A provided with such a suction device B, the processed granular material a supplied by the feeder 6 is conveyed by the conveyor belt 5 and reaches the rotor unit 4, and the rotor unit 4 is blown forward by the contained metal granular material that has caused eddy current action, and falls along the partition plate 7. The granular material falling along the partition plate 7 includes a non-metal component, but includes a relatively large amount of metal component and a relatively large amount of coarse particle component. The coarse grain recovery hopper 10 is stored.
[0016]
The non-conductive particles that are not affected by the alternating magnetic field generated by the rotor 1 fall inward as a fine tailing c with a normal fall trajectory. In addition, relatively fine-grained metal components are entrained, and the non-metallic powder particles that are relatively light and fine and have a slow drop speed are sucked by the suction nozzle 8 to be separated, thereby concentrating the metal components. A non-suction powder granule falling as it is can be obtained, and this non-suction powder granule is stored as non-suction concentrate d in a fine-grain collection hopper 11 provided below. This non-suction concentrate d is subjected to a metal recovery process together with the coarse concentrate b. The lightweight suction powder particles sucked by the suction nozzle 8 are further classified into those collected by the cyclone 9 and those collected by the bag filter (not shown) via the cyclone 9. What is collected by the cyclone 9 still contains some fine metal, so it is recovered as a resource and processed separately. Most of the powder recovered by the bag filter is non-metallic such as glass powder.
[0017]
The suction of the suction nozzle 8 is suction from the rotor part 4 side, which is a relatively large amount of glass or plastic such as fine particles and a small amount of metal, that is, from the fine tailings side of the falling granular material flow. Efficient separation is possible.
Further, according to the eddy current sorter A provided with the suction device B, the powder is transferred to the conveyor belt 5 as in the prior art even when the supplied granular material a to be processed is finely divided. The problem of preventing separation of the metal powder particles while adhering to the metal particles, and the light non-conductive powder rising together with the metal powder particles to a dust state and worsening the mutual separation property disappeared.
[0018]
【Example】
Hereinafter, an embodiment of a method for recovering copper from a waste electronic substrate of the present invention to which an eddy current sorter A provided with the suction device B is applied will be described with reference to the flowchart of FIG.
The waste electronic substrate is crushed to a diameter of 2 mm or less by using a 2 mm sieve oriental type crusher. If there is a foreign object of 2mm or more that is difficult to crush, remove it outside the system. The 2 mm sieving granules from the pulverizer are subjected to a magnetic separator to collect magnetic deposits made of iron-based metal to be recycled resources. However, in this example, because the waste electronic substrate to be processed was a non-mounting waste substrate with a low iron content, after applying the pulverizer to a powder having a diameter of 2 mm or less, omitting the magnetic separation step, Directly applied to eddy current sorter. This eddy current sorter is the eddy current sorter A attached to the suction device B shown in FIGS. 1 and 2, and the rotor 1 has a diameter of 300 mm, the rotor 1 has an effective width of 300 mm, and the conveyor belt 5 has a width of 400 mm. The belt speed was adjusted to 40 m / min, and the rotational speed of the rotor 1 was adjusted to 2400 rpm. The suction nozzle 8 of the suction device B had an opening of 35 × 450 mm, and the upper edge position was 40 mm below the horizontal extension line and 10 mm away from the rotor part 4. The suction speed of the suction nozzle 8 was set to 25 m / second.
[0019]
By the eddy current sorter A, coarse particles containing a large amount of copper that has fallen away from the rotor section 4 fall along or close to the inner side of the partition plate 7, and collect coarse particles as coarse concentrate b It was collected in the hopper 10. The fine particles on the rotor side separated from the coarse concentrate b fell as fine tailings c according to the normal fall trajectory, and were subsequently applied to the suction device B during the fall.
At this time, among the fine-grained tailings c, the granular material containing a relatively large amount of copper and the relatively heavy granular material escape the suction of the suction nozzle 8 and fall as it is as the non-suction concentrate d. And stored in the fine-grain collection hopper 11. This non-suction concentrate d was supplied to the copper recovery step together with the coarse concentrate b.
[0020]
The fine particles sucked by the suction nozzle 8 at the time of dropping contain a lot of non-metallic particles such as light resin, and the copper-containing particles collected by the cyclone 9 via the cyclone 9 as the suction tailings. The powder and cyclone 9 escaped and were separated into non-metallic powder collected by the bag filter. Since the copper-containing powder still contains some copper, it is subjected to a separate process for recovery.
[0021]
FIG. 4 shows the amount balance of the waste electronic substrate to be processed and the recovered material by the above processing.
In the sorting process by the eddy current sorter, 84.2% of the copper contained in the waste electronic substrate to be treated is recovered in the coarse concentrate with a high quality of 48.9% from the powder particles from the waste electronic substrate to be treated. It was done.
By subjecting the fine-grained tailings containing the remaining copper to suction sorting, a non-suction concentrate with a copper grade of 40.10% could be recovered. That is, 10.4% of the copper contained in the waste electronic substrate to be processed could be recovered by this suction sorting process.
[0022]
Table 1 shows the recovered contents when suction sorting is applied following eddy current sorting, that is, concentrates (coarse and non-suction concentrates) and tailings (suction tailings). Table 2 shows the recovered contents of the concentrate (coarse concentrate) and tailing (fine tailings) when only the eddy current selection process is not performed and the suction selection process is not incorporated. As can be seen from the comparison between Table 1 and Table 2, the copper recovery rate when the suction sorting process was not performed was 84.2%, but the copper quality was hardly changed by the suction sorting. Copper was recovered in the mineral state, and it could be put into the copper refining process as it was. In addition, the recovery rate of copper from the waste electronic substrate to be processed reached 94.6%.
[0023]
[Table 1]
Collected material when suction sorting is used
Figure 0004366513
[0024]
[Table 2]
Collected material when suction sorting is not used
Figure 0004366513
[0025]
【The invention's effect】
In front of the eddy current sorter, a space partitioned by a partition plate is provided, and an eddy current sorter provided with a simple suction device means that a suction nozzle is provided in this space. Combined with the fact that it is possible to proceed with the separation of the metal components without any problem even for the crushed fine particles, and the improvement of the single separability associated with the metal fines in the waste materials can be expected, the nonferrous valuable metals from the waste materials The effect that the recovery rate is improved is obtained.
In addition, the method of the present invention is particularly effective in that it can be effectively applied to recovering copper from a waste electronic substrate that has been considered difficult to be refined conventionally.
[Brief description of the drawings]
FIG. 1 is a schematic front view of an eddy current sorting apparatus provided with a suction device according to the present invention.
FIG. 2 is a schematic side view of the eddy current sorter of FIG.
FIG. 3 is a flowchart illustrating a method for processing a waste electronic substrate according to an embodiment of the present invention.
FIG. 4 is a flowchart showing the amount balance of waste electronic substrates and recovered materials processed according to the flowchart of FIG. 3;
[Explanation of symbols]
A Eddy Current Sorter B Suction Device 1 Rotor 2 Drive Roller 3 Drum 4 Rotor 5 Conveyor Belt 6 Feeder 7 Partition Plate 8 Suction Nozzle 9 Cyclone 10 Coarse Grain Recovery Hopper 11 Fine Particle Recovery Hopper 12 Middle Partition Plate a Processed Granules Body b Coarse concentrate c Fine-grain tailings d Non-suction concentrate

Claims (7)

金属と非金属を含む金属複合廃材を破砕して得た篩下粉粒体から鉄系金属を除去した後、吸引装置を付設した渦電流選別機により、非鉄金属を含む粗粒精鉱と非金属を主体とする細粒尾鉱とに分別し、引き続き前記吸引装置において、前記細粒尾鉱からなる粉粒体を非鉄金属を含む非吸引精鉱と軽量部の非金属を主体とする吸引尾鉱とに分別することを特徴とする金属複合廃材からの有価金属の回収方法。  After removing ferrous metals from the sieved particles obtained by crushing metal composite waste containing metals and non-metals, the eddy current separator equipped with a suction device is used to remove coarse concentrates containing non-ferrous metals and non-ferrous metals. Separating into fine-grained tailings mainly composed of metal, and subsequently, in the suction device, the powders composed of the fine-grained tailings are suctioned mainly from non-suction concentrates containing non-ferrous metals and non-metals in lightweight parts. A method for recovering valuable metals from metal composite waste, characterized by being separated into tailings. 前記渦電流選別機は磁石を周設したロータにドラムを外装したローター部にコンベアベルトを掛け渡してなり、前記吸引装置は渦電流選別機の前記ローター部側の端部に近接した前方に仕切り板を配設して空間を構成し、該空間内に吸引ノズルを設けてなり、前記コンベアベルトから落下する粉粒体の軽量部を吸引させることを特徴とする請求項1に記載の金属複合廃材からの有価金属の回収方法。The eddy current sorter is formed by a conveyor belt around a rotor part having a drum mounted on a rotor around which a magnet is provided. The metal composite according to claim 1 , wherein a plate is provided to form a space, and a suction nozzle is provided in the space to suck a lightweight portion of the granular material falling from the conveyor belt. A method for recovering valuable metals from waste materials. 前記金属複合廃材が廃電子基板であることを特徴とする請求項1または2に記載の金属複合廃材からの有価金属の回収方法。The method for recovering valuable metals from a metal composite waste according to claim 1 or 2, wherein the metal composite waste is a waste electronic substrate. 前記金属複合廃材から回収される非鉄金属が銅であることを特徴とする請求項1〜3のいずれかに記載の金属複合廃材からの有価金属の回収方法。The method for recovering valuable metals from metal composite waste materials according to any one of claims 1 to 3, wherein the non-ferrous metal recovered from the metal composite waste materials is copper. 磁石を周設したロータにドラムを外装してなるローター部にコンベアベルトを掛け渡してなり、金属複合廃材による粉粒体から非鉄金属を含む粗粒精鉱を分離する渦電流選別機と、該渦電流選別機のローター部前方の囲われた空間内に吸引ノズルを配設し、前記粗粒精鉱を分離して落下する粉粒体から軽量の非金属部を吸引して非吸引精鉱を分離する吸引装置と、該吸引装置の吸引経路内に介設され、前記非金属部を回収する集塵装置とからなることを特徴とする金属複合廃材からの有価金属の回収装置。  An eddy current sorter for separating a coarse concentrate containing non-ferrous metal from powdered particles of a metal composite waste material; The suction nozzle is arranged in the enclosed space in front of the rotor part of the eddy current sorter, and the non-suction concentrate is obtained by sucking the light non-metallic part from the granular material falling after separating the coarse concentrate. An apparatus for recovering valuable metal from a metal composite waste material, comprising: a suction device that separates the waste metal; and a dust collector that is interposed in a suction path of the suction device and collects the non-metal part. 前記集塵装置が、サイクロン手段とバグフィルタ手段とからなることを特徴とする請求項5記載の金属複合廃材からの有価金属の回収装置。6. The apparatus for recovering valuable metals from a metal composite waste according to claim 5 , wherein the dust collector comprises a cyclone means and a bag filter means. 前記金属複合廃材が廃電子基板であることを特徴とする請求項5または6に記載の金属複合廃材からの有価金属の回収装置。The said metal composite waste material is a waste electronic substrate, The collection | recovery apparatus of the valuable metal from the metal composite waste material of Claim 5 or 6 characterized by the above-mentioned .
JP32163799A 1999-11-11 1999-11-11 Method and apparatus for recovering valuable metals from metal composite waste Expired - Lifetime JP4366513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32163799A JP4366513B2 (en) 1999-11-11 1999-11-11 Method and apparatus for recovering valuable metals from metal composite waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32163799A JP4366513B2 (en) 1999-11-11 1999-11-11 Method and apparatus for recovering valuable metals from metal composite waste

Publications (2)

Publication Number Publication Date
JP2001137827A JP2001137827A (en) 2001-05-22
JP4366513B2 true JP4366513B2 (en) 2009-11-18

Family

ID=18134736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32163799A Expired - Lifetime JP4366513B2 (en) 1999-11-11 1999-11-11 Method and apparatus for recovering valuable metals from metal composite waste

Country Status (1)

Country Link
JP (1) JP4366513B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103350030A (en) * 2013-07-09 2013-10-16 台州伟博环保设备科技有限公司 Strongly magnetic vortex sorter
CN105964399A (en) * 2016-06-28 2016-09-28 无锡市锡山区羊尖镇锦达商业设备厂 Hardware electric part sorting device
KR102169313B1 (en) * 2020-08-06 2020-10-23 박성민 Equipment for recycling waste pcb

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1025050C1 (en) * 2003-03-17 2004-09-21 Univ Delft Tech Process for recovering non-ferrous metal-containing particles from a particle stream.
BRPI0512666A (en) * 2005-04-28 2008-04-01 Hitachi Ltd apparatus and method of magnetic separation purification
JP5270934B2 (en) * 2008-03-14 2013-08-21 Dowaエコシステム株式会社 Method for recovering tantalum from electronic substrates
CN102397817B (en) * 2011-11-09 2014-05-07 山西太钢不锈钢股份有限公司 Method for sorting stainless steel slag
CN103464284B (en) * 2013-09-27 2016-02-10 宜昌力帝环保机械有限公司 Fine grained waste material non-ferrous metal sorting unit and method
CN105797846B (en) * 2016-04-15 2017-12-26 中山大学 A kind of vortex sorting machine for separating broken electron wastes small size non-ferrous metal
CN106000637B (en) * 2016-07-19 2018-06-26 湖北力帝机床股份有限公司 Metal sorting machine
CN107855214B (en) * 2017-11-23 2023-09-15 北京中科领向环保研究院有限公司 Dilute phase suspension dry magnetic separator
CN108146981A (en) * 2018-03-19 2018-06-12 无锡市稀土永磁厂 The closed refuse ore reclaiming machine of built-in permanent magnetic pulley
CN109530002A (en) * 2019-01-11 2019-03-29 人民电器集团上海有限公司 A kind of Copper fabrication production line
KR102121456B1 (en) * 2019-05-28 2020-06-10 정해수 Waste resource selector using eddy current drum
CN111282716B (en) * 2020-02-21 2022-04-12 哈尔滨工业大学 Intelligent sorting system for urban garbage
CN111957716B (en) * 2020-07-28 2022-05-17 成都和谐环保投资有限公司 Baking-free brick slag building device system
CN112090935B (en) * 2020-09-14 2021-08-31 上海建工四建集团有限公司 Building timber waste recovery device
JP2022066626A (en) * 2020-10-19 2022-05-02 新東工業株式会社 Separation device
CN113304883A (en) * 2021-06-04 2021-08-27 合肥泰禾智能科技集团股份有限公司 Metal recovery sorting machine
CN115301384B (en) * 2022-10-10 2023-04-25 南京博达环境科技有限公司 Tailing recycling equipment
CN116832925B (en) * 2023-07-12 2024-01-12 常州艾邦机械科技有限公司 Environment-friendly lightweight nonferrous metal waste treatment device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103350030A (en) * 2013-07-09 2013-10-16 台州伟博环保设备科技有限公司 Strongly magnetic vortex sorter
CN103350030B (en) * 2013-07-09 2015-09-09 台州伟博环保设备科技有限公司 A kind of strong magnetic vortex sorting machine
CN105964399A (en) * 2016-06-28 2016-09-28 无锡市锡山区羊尖镇锦达商业设备厂 Hardware electric part sorting device
KR102169313B1 (en) * 2020-08-06 2020-10-23 박성민 Equipment for recycling waste pcb

Also Published As

Publication number Publication date
JP2001137827A (en) 2001-05-22

Similar Documents

Publication Publication Date Title
JP4366513B2 (en) Method and apparatus for recovering valuable metals from metal composite waste
US9764361B2 (en) Processing a waste stream by separating and recovering wire and other metal from processed recycled materials
JP6465825B2 (en) Method and apparatus for recovering precious metals from incinerated ash
JP4514751B2 (en) Method for recovering non-ferrous metal-containing particles from a particle stream
JPH11253889A (en) Method and device for recovering metal from solid waste
JP6502274B2 (en) Incineration ash sorting method and apparatus
CN108356060A (en) All-metal sorting line
JP2002194448A (en) Method for recovering metal from electronic or electric parts with resin
JP3664586B2 (en) Method and apparatus for metal recovery from solid waste
AU2011336289A1 (en) Method for separating and recovering concentrated copper and other metal from processed recycled materials
JP3579883B2 (en) Waste home appliances processing equipment
JP6912234B2 (en) Valuable metal recovery method
CN107234002B (en) Combination magnetic separation process for domestic rubbish disposal process
JP6817127B2 (en) How to treat shredder dust
JP7076178B2 (en) How to dispose of scraps of electronic and electrical equipment parts
JP4355072B2 (en) Separation and collection method and apparatus for communication equipment
JP2018161615A (en) Method for processing component scrap of electronic and electrical equipment
JPH1057927A (en) Method for treating compound waste
JP3734624B2 (en) Method and apparatus for recovering copper from shredder dust, etc.
JP3276801B2 (en) Metal crushing separation method and system
JP6938414B2 (en) How to dispose of parts waste
JP2019025395A (en) Valuable metal recovery method and recovery system
JP2019055407A (en) Method and device for recovery of noble metal from burned ash
EP3810329A1 (en) Method, process, and system of using a mill to separate metals from fibrous feedstock
KR100307946B1 (en) Rejuvenation device and the method of disuse scrap

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090731

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090801

R150 Certificate of patent or registration of utility model

Ref document number: 4366513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term