JP4363710B2 - Device for calculating performance of working machine with outrigger - Google Patents

Device for calculating performance of working machine with outrigger Download PDF

Info

Publication number
JP4363710B2
JP4363710B2 JP23794899A JP23794899A JP4363710B2 JP 4363710 B2 JP4363710 B2 JP 4363710B2 JP 23794899 A JP23794899 A JP 23794899A JP 23794899 A JP23794899 A JP 23794899A JP 4363710 B2 JP4363710 B2 JP 4363710B2
Authority
JP
Japan
Prior art keywords
outrigger
performance
length
telescopic boom
overhang length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23794899A
Other languages
Japanese (ja)
Other versions
JP2001063965A5 (en
JP2001063965A (en
Inventor
哲史 山ノ井
昌志 坂口
昌司 西本
和明 鏡原
洋 北山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tadano Ltd
Original Assignee
Tadano Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tadano Ltd filed Critical Tadano Ltd
Priority to JP23794899A priority Critical patent/JP4363710B2/en
Publication of JP2001063965A publication Critical patent/JP2001063965A/en
Publication of JP2001063965A5 publication Critical patent/JP2001063965A5/ja
Application granted granted Critical
Publication of JP4363710B2 publication Critical patent/JP4363710B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Jib Cranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アウトリガを備えた作業機の性能算出装置に関するものである。
【0002】
【従来の技術】
従来この種の作業車として図4に図示する移動式クレーン車Aがある。この移動式クレーン車Aは、車両1上に旋回台2を旋回自在に配置し、当該旋回台2に伸縮ブーム3を起伏自在に配置している。伸縮ブーム3は、基ブーム4に中ブーム5,先ブーム6を順次伸縮自在に嵌挿させ、各ブーム間には図示しないが適宜伸縮駆動手段を設けてある。旋回台2と基ブーム4の適所間には、起伏シリンダ7を配置して伸縮ブーム3を起伏駆動可能にすると共に、旋回台2と車両1間にも図示しないが旋回駆動装置を配置して旋回駆動可能にしてある。
【0003】
車両1前部には左右に一対前アウトリガ8,9を、車両後部には左右に一対後アウトリガ10,11を配置し、各アウトリガ8,9,10,11には車両1の側方に各スライドビーム8a,9a,10a,11aを張出してアウトリガの張出し長さを変更できる。各スライドビーム8a,9a,10a,11aの先端には地面にフロートを接地し車両を支持させるジャッキ8b,9b,10b,11bをそれぞれ備えている。
【0004】
このように構成している移動式クレーン車Aは、各アウトリガ8,9,10,11の各スライドビーム8a,9a,10a,11aの張出し量ならびに伸縮ブーム3の旋回位置により吊荷性能(以下単に性能として説明する。)が異なっている。すなわち、図6に図示するように、各スライドビーム8a,9a,10a,11aを最大に張出している場合は実線aで示す最大の全周同一性能になる。各スライドビーム8a,9a,10a,11aを最小に張出している場合は、図6に点線bで示すように前方領域X,後方領域Y,側方領域Zの領域別に性能が異なり、前方領域X,後方領域Yでは最大の性能で側方領域Zでは最小性能となる。
【0005】
各スライドビーム8a,9a,10a,11aを中間に張出している場合は、図6に一点鎖線cで示すように前方領域X,後方領域Yでは最大の性能で側方領域Zでは中間性能となる。そして前方領域X,後方領域Yでは少し領域が広くなりその分側方領域Zが狭くなっている。
【0006】
このように、各アウトリガ8,9,10,11の各スライドビーム8a,9a,10a,11aの張出し量によって領域と性能が変わるようになっている。
【0007】
ところで、アウトリガの張出し長さは、任意に変更できるものであるが、性能の記憶量を少なくするために一般に各アウトリガ8,9,10,11の張出量に対する性能記憶は、最大,中間,最小の3通りを記憶しており、その他の張出し量では次のようにして補間演算して求められる。
【0008】
例えば、各アウトリガ8,9,10,11の各スライドビーム8a,9a,10a,11aの張出し量を中間と最小の間に張出したとする。この時の性能は図5に図示する性能算出装置によって次のようにして求める。
【0009】
複数のアウトリガ張出長さに対する性能を、伸縮ブーム3の旋回領域である前方領域X,後方領域Y,側方領域Z別に伸縮ブーム3の状態毎に性能記憶手段15で記憶している。ここでは各アウトリガ8,9,10,11の張出し量を最大,中間,最小の3通りを前記記憶手段15で記憶している。
【0010】
各アウトリガ8,9,10,11の張出し長さを張出し長さ検出器12で検出し、記憶アウトリガ張出し長さ算出手段16に信号を出力する。記憶アウトリガ張出長さ算出手段16は、前記張出し長さ検出器12からの信号を受け実際のアウトリガ張出長さMに直近し前記性能記憶手段15に記憶されている実際のアウトリガ張出長さMより短いアウトリガ張出長さM1(この場合は最小張出しの時の張出し長さ)と長いアウトリガ張出長さM2(この場合は中間張出しの時の張出し長さ)の二つのアウトリガ張出長さを算出する。
【0011】
伸縮ブーム3の旋回角φを旋回角検出器13で検出し、伸縮ブーム3の伸縮長さL,起伏角θなどの伸縮ブーム状態を伸縮ブーム状態検出器14で検出する。
【0012】
前記記憶アウトリガ張出長さ算出手段16で算出された短いアウトリガ張出長さM1と、伸縮ブーム状態検出器14と旋回角検出器13の各検出器からの信号φ,L,θを受けて、前記性能記憶手段15から短いアウトリガ張出長さM1に対する性能値W1を第1性能算出手段17で算出する。
【0013】
前記記憶アウトリガ張出長さ算出手段16で算出された長いアウトリガ張出長さM2と、伸縮ブーム状態検出器14と旋回角検出器13の各検出器からの信号φ,L,θを受けて、前記性能記憶手段15から長いアウトリガ張出長さM2に対する性能値W2を第2性能算出手段18で算出する。
【0014】
前記第1性能算出手段17と第2性能算出手段18で算出した各性能値W1,W2を基に実際のアウトリガ張出長さMと短いアウトリガ張出長さM1と長いアウトリガ張出長さM2から実際のアウトリガ張出長さにおける性能値W0を下記式を用いて補間演算手段19で補間演算する。
【0015】
(M2−M1)/(W2−W1)=(M−M1)/(W0−W1)
W0=W1+((M−M1)/(M2−M1))×(W2−W1)
補間演算して求めた性能値W0は、図6に図示する2点鎖線dのようになる。
【0016】
この様にして求められた実際のアウトリガ張出長さにおける性能値W0は、次のようにして利用される。すなわち、図5に図示するように、負荷検出器20で実際に伸縮ブーム3に作用する負荷Wを検出して、当該負荷Wと性能値W0を比較手段21で比較し、W≧W0の時に警報又は停止手段22に信号を出力して、警報又は停止手段22により警報又は移動式クレーン車Aの作動を停止させる。
【0017】
【発明が解決しょうとする課題】
ところが、上記移動式クレーン車に備えた作業機の性能算出装置は、次のような課題を有していた。すなわち、補間演算して求めた性能値W0は、図6に図示する2点鎖線dのように伸縮ブーム3を前方領域X又は後方領域Yから側方領域Zへ旋回させると二度性能がダウンする階段状になっているために、上記のように伸縮ブーム3を旋回させて負荷W≧性能値W0の関係になった時に負荷Wを軽減させる(例えば伸縮ブーム3を縮小させたり、起仰させる。)ことの操作が2回行わなければならず煩わしいものであった。
【0018】
特に、一度負荷W≧性能値W0の関係になれば前方領域X又は後方領域Yを脱出したものと勘違いしてしまい以後旋回速度を速めるように操作しがちである。そのために、二回目に負荷W≧性能値W0の関係になった時に旋回速度を速めるように操作しているものであるから、伸縮ブーム3の作動を急に停止させて吊荷を揺らしてしまうことになり危険なクレーン作業となるものであった。
【0019】
本発明は、こうした課題を解決したアウトリガを備えた作業機の性能算出装置を提供することを目的とするものである。
【0020】
【課題を解決するための手段】
上記の目的を達成するため、請求項1に係る本発明のアウトリガを備えた作業機の性能算出装置は、
車両上に旋回ならびに起伏動可能な伸縮ブームを有するとともに、車両の前後左右に配置し側方に張出して車両を支持するアウトリガを備えた作業機において、
アウトリガの張出長さを検出する張出し長さ検出器と、
伸縮ブームの旋回角を検出する旋回角検出器と、
伸縮ブームの状態を検出する伸縮ブーム状態検出器と、
複数のアウトリガ張出長さに対する性能を伸縮ブームの旋回領域である前方領域,後方領域,側方領域別に伸縮ブームの状態毎に記憶している性能記憶手段と、
前記張出し長さ検出器からの信号を受け実際のアウトリガ張出長さに直近し前記性能記憶手段に記憶されている実際のアウトリガ張出長さより短いアウトリガ張出長さと長いアウトリガ張出長さの二つのアウトリガ張出長さを算出する記憶アウトリガ張出長さ算出手段と、
当該記憶アウトリガ張出長さ算出手段で算出された短いアウトリガ張出長さ信号と、伸縮ブーム状態検出器と旋回角検出器の各検出器からの信号、を受けて前記性能記憶手段から短いアウトリガ張出長さに対する性能値を算出する第1性能算出手段と、
前記第1性能算出手段から第1性能算出手段で採用した短いアウトリガ張出長さと同じ伸縮ブームの旋回領域とする旋回領域信号と、前記記憶アウトリガ張出長さ算出手段で算出された長いアウトリガ張出長さ信号と、伸縮ブーム状態検出器と旋回角検出器の各検出器からの信号、を受けて前記性能記憶手段から伸縮ブームの旋回領域を短いアウトリガ張出長さと同じ領域にした長いアウトリガ張出長さに対応する性能値を算出する第2性能算出手段と、
前記第1性能算出手段と第2性能算出手段で算出した各性能値を基に実際のアウトリガ張出長さと短いアウトリガ張出長さと長いアウトリガ張出長さから実際のアウトリガ張出長さにおける性能値を補間演算する補間演算手段を備えたことを特徴とするものである。
【0021】
請求項2に係る本発明のアウトリガを備えた作業機の性能算出装置は、
車両上に旋回ならびに起伏動可能な伸縮ブームを有するとともに、車両の前後左右に配置し側方に張出して車両を支持するアウトリガを備えた作業機において、
アウトリガの張出長さを検出する張出し長さ検出器と、
伸縮ブームの旋回角を検出する旋回角検出器と、
伸縮ブームの状態を検出する伸縮ブーム状態検出器と、
複数のアウトリガ張出長さに対する性能を伸縮ブームの旋回領域である前方領域,後方領域,側方領域別に伸縮ブームの状態毎に記憶している性能記憶手段と、
前記張出し長さ検出器からの信号を受け実際のアウトリガ張出長さに直近し前記性能記憶手段に記憶されている実際のアウトリガ張出長さより短いアウトリガ張出長さと長いアウトリガ張出長さの二つのアウトリガ張出長さを算出する記憶アウトリガ張出長さ算出手段と、
当該記憶アウトリガ張出長さ算出手段で算出された短いアウトリガ張出長さ信号と伸縮ブーム状態検出器と旋回角検出器の各検出器からの信号を受けて前記性能記憶手段から短いアウトリガ張出長さに対する性能値を算出する第1性能算出手段と、
前記第1性能算出手段から第1性能算出手段で採用した短いアウトリガ張出長さと同じ伸縮ブームの旋回領域とする旋回領域信号と、第1性能算出手段で採用した旋回角または伸縮ブームが位置する旋回領域の信号と、前記記憶アウトリガ張出長さ算出手段で算出された長いアウトリガ張出長さ信号と、伸縮ブーム状態検出器からの信号、を受けて前記性能記憶手段から伸縮ブームの旋回領域を短いアウトリガ張出長さと同じ領域にした長いアウトリガ張出長さに対応する性能値を算出する第2性能算出手段と、
前記第1性能算出手段と第2性能算出手段で算出した各性能値を基に実際のアウトリガ張出長さと短いアウトリガ張出長さと長いアウトリガ張出長さから実際のアウトリガ張出長さにおける性能値を補間演算する補間演算手段を備えたことを特徴とするものである。
【0022】
【発明の実施の形態】
以下本発明のアウトリガを備えた作業機の性能算出装置について、図1〜図3に基づいて以下に説明する。なお、本発明の実施形態を説明するに当たって、アウトリガを備えた作業機の性能算出装置として従来の技術で説明した移動式クレーン車に適用した場合を例に以下に説明する。
【0023】
図1に図示する本発明に係る移動式クレーン車に備えた性能算出装置は、図4〜図6に図示し説明したものと第1性能算出手段17,第2性能算出手段18,2点鎖線dが相違しているのみであるので、図4〜図6に図示し説明した符号17,18,d以外は、以下の説明においても同じものとして用い、詳細な説明は省略する。
【0024】
図1において、25は、第1性能算出手段であって、従来技術で説明した第1性能算出手段17と同じ機能を有し短いアウトリガ張出長さM1に対する性能値W1(図2に点線bで示す。)を算出するとともに、第1性能算出手段25で採用した短いアウトリガ張出長さと同じ伸縮ブーム3の旋回領域とする旋回領域信号を次に説明する第2性能算出手段26に出力するようになっている。
【0025】
26は、第2性能算出手段であって、前記第1性能算出手段25からの旋回領域信号と前記記憶アウトリガ張出長さ算出手段16で算出された長いアウトリガ張出長さ信号M2と伸縮ブーム状態検出器14と旋回角検出器13の各検出器からの信号φ,L,θを受けて前記性能記憶手段15から伸縮ブーム3の旋回領域を短いアウトリガ張出長さと同じ領域にした長いアウトリガ張出長さに対応する性能値W2(図2に太い1点鎖線c1で示めす。)を算出する。
【0026】
すなわち、従来の技術で説明した第2性能算出手段18は中間張出し時の性能(図2に細い1点鎖線cで示す。)を算出していたが、第2性能算出手段26は最小張出し時と同じ前方領域Xとし、従来の性能に対して前方領域Xを狭くしその分側方領域Zを広くする性能(図2に太い1点鎖線c1で示めす。)を算出するものである。
【0027】
このようにして求めたW1,W2を利用して従来の技術で説明した補間演算手段19で補間性能W0(図2に2点鎖線d1で示す。)を求める。このようにして補間演算して求めた性能値W0は、図2に図示する2点鎖線d1のようになる。すなわち、第2性能算出手段26では中間張出し性能を最小張出し性能と同じ前方領域X又は後方領域Yとなるように領域を設定するようにしてあるために、補間演算して求めた性能値W0は、従来のように伸縮ブーム3を前方領域X又は後方領域Yから側方領域Zへ旋回させると二度性能がダウンする階段状になっていない。よって上記のように伸縮ブーム3を旋回させて負荷W≧性能値W0の関係になった時に負荷Wを軽減させる(例えば伸縮ブーム3を縮小させたり、起仰させる。)操作を2回行うことはなく、煩わしさを可及的にすくなくすることができる。
【0028】
また、一度負荷W≧性能値W0の関係になって前方領域X又は後方領域Yを脱出すれば、二回目に負荷W≧性能値W0の関係になることはなく、以後旋回速度を速めるように操作しても旋回速度を速めたことによる伸縮ブーム3の作動を急に停止させて吊荷を揺らしてしまうと言ったことをなくすることができる。
【0029】
しかも前方領域X又は後方領域Yから側方領域Zへ旋回させ性能がダウンする領域では、もともと最大性能であるべき性能を中間の張出しにおける側方領域性能にまで落とした性能にしてあるものだから、急に性能がダウンすることによるショックが生じても性能にゆとりを持たせているので安全である。
【0030】
なお、上記実施形態では、第2性能算出手段26に旋回角検出器13から旋回角φの信号を直接送るようにしたが、図3に図示するように第2性能算出手段28は、前記第1性能算出手段27を介して第1性能算出手段27で採用した短いアウトリガ張出長さと同じ伸縮ブーム3の旋回領域とする旋回領域信号の他に、旋回角φの信号または第1性能算出手段27で採用した実際に伸縮ブーム3が位置している旋回領域の旋回領域信号を受けるようにしてもよい。この場合の実施形態は請求項2に対応するものであるが、上記相違する点は第2性能算出手段28で旋回角情報を第1性能算出手段27から受けるようにしたものでそれ以外は上記実施形態と同じであるので作用についての詳細な説明は省略する。
【0031】
また、上記実施形態では、移動式クレーンに性能算出装置を備えた場合を説明したが、高所作業車等のアウトリガを備えた作業機に備えてもよいこと勿論であり、この場合は移動式クレーンでは吊荷性能としたが、車両の転倒を防止する安定性能として採用される。
【0032】
【発明の効果】
以上の如く構成し作用する本発明のアウトリガを備えた作業機の性能算出装置は、補間演算して求めた性能値が二度性能がダウンする階段状になっていないので、従来のように伸縮ブームを前方又は後方から側方へ旋回させ、負荷≧性能値の関係になった時に負荷Wを軽減させる操作を2回行うことはなく、煩わしさを可及的になくすることができる。
【図面の簡単な説明】
【図1】本発明のアウトリガを備えた作業機の性能算出装置を説明する説明図である。
【図2】本発明の性能値を説明する説明図である。
【図3】本発明のアウトリガを備えた作業機の性能算出装置を説明する説明図で、他の実施形態を説明する説明図である。
【図4】移動式クレーン車を説明する説明図である。
【図5】従来のアウトリガを備えた作業機の性能算出装置を説明する説明図である。
【図6】従来の性能値を説明する説明図である
【符号の説明】
1 車両
3 伸縮ブーム
8 アウトリガ
9 アウトリガ
10 アウトリガ
11 アウトリガ
12 張出し長さ検出器
14 伸縮ブーム状態検出器
15 性能記憶手段
16 記憶アウトリガ張出長さ算出手段
19 補間演算手段
25 第1性能算出手段
26 第2性能算出手段
27 第1性能算出手段
28 第2性能算出手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a performance calculator for a working machine having an outrigger.
[0002]
[Prior art]
Conventionally, there is a mobile crane A shown in FIG. In this mobile crane A, a swivel base 2 is disposed on a vehicle 1 so as to be able to swivel, and an extendable boom 3 is disposed on the swivel base 2 so as to be raised and lowered. The telescopic boom 3 has a middle boom 5 and a front boom 6 inserted into the base boom 4 in such a manner that the base boom 4 can be telescopically retracted. Between position of the swivel deck 2 and group boom 4, thereby enabling undulation drive the telescopic boom 3 by placing the derricking cylinder 7, in between turning base 2 and the vehicle 1 by placing a not shown swing drive system It can be swiveled.
[0003]
A pair of front outriggers 8 and 9 are disposed on the left and right of the front portion of the vehicle 1, and a pair of rear outriggers 10 and 11 are disposed on the left and right of the rear of the vehicle, and each of the outriggers 8, 9, 10, and 11 The extension length of the outrigger can be changed by extending the slide beams 8a, 9a, 10a, and 11a. Jacks 8b, 9b, 10b, and 11b for grounding a float on the ground and supporting the vehicle are provided at the ends of the slide beams 8a, 9a, 10a, and 11a, respectively.
[0004]
The mobile crane A configured as described above has a suspended load performance (hereinafter, referred to as “hung load performance”) depending on the overhang amount of each slide beam 8a, 9a, 10a, 11a of each outrigger 8, 9, 10, 11 and the turning position of the telescopic boom 3. It is simply described as performance.) That is, as shown in FIG. 6, when the slide beams 8a, 9a, 10a, and 11a are extended to the maximum, the maximum perimeter performance is the same as indicated by the solid line a. When the slide beams 8a, 9a, 10a, and 11a are extended to the minimum, the performance differs depending on the area of the front area X, the rear area Y, and the side area Z as shown by the dotted line b in FIG. , The rear region Y has the maximum performance and the side region Z has the minimum performance.
[0005]
When the slide beams 8a, 9a, 10a, and 11a are extended in the middle, as shown by a one-dot chain line c in FIG. . And in the front area | region X and the back area | region Y, an area | region becomes a little wide and the side area | region Z becomes narrow by that much.
[0006]
As described above, the area and the performance change depending on the amount of extension of the slide beams 8a, 9a, 10a, and 11a of the outriggers 8, 9, 10, and 11.
[0007]
By the way, the overhang length of the outrigger can be arbitrarily changed. In order to reduce the storage amount of performance, generally, the performance memory for the overhang amount of each outrigger 8, 9, 10, 11 is maximum, intermediate, The minimum three patterns are stored, and the other overhang amounts can be obtained by interpolation as follows.
[0008]
For example, it is assumed that the amount of extension of each slide beam 8a, 9a, 10a, 11a of each outrigger 8, 9, 10, 11 is extended between the middle and the minimum. The performance at this time is obtained as follows by the performance calculation apparatus shown in FIG.
[0009]
The performance for a plurality of outrigger extension lengths is stored in the performance storage means 15 for each state of the telescopic boom 3 for each of the front region X, the rear region Y, and the side region Z, which are the swivel regions of the telescopic boom 3. In this case, the storage means 15 stores the maximum amount, the middle amount, and the minimum amount of the outriggers 8, 9, 10 and 11.
[0010]
The overhang length of each outrigger 8, 9, 10, 11 is detected by the overhang length detector 12, and a signal is output to the storage outrigger overhang length calculation means 16. The stored outrigger overhang length calculating means 16 receives the signal from the overhang length detector 12 and is close to the actual outrigger overhang length M and stored in the performance storage means 15. Two outrigger overhangs of an outrigger overhang length M1 (in this case, the overhang length at the minimum overhang) and a long outrigger overhang length M2 (in this case, the overhang length at the intermediate overhang) Calculate the length.
[0011]
The turning angle φ of the telescopic boom 3 is detected by the turning angle detector 13, and the telescopic boom state detector 14 detects the telescopic boom state such as the telescopic length L and the undulation angle θ of the telescopic boom 3.
[0012]
In response to the short outrigger overhang length M1 calculated by the storage outrigger overhang length calculating means 16 and the signals φ, L, θ from the detectors of the telescopic boom state detector 14 and the turning angle detector 13. The performance value W1 for the short outrigger extension length M1 is calculated by the first performance calculation unit 17 from the performance storage unit 15.
[0013]
In response to the long outrigger overhang length M2 calculated by the storage outrigger overhang length calculating means 16 and signals φ, L, θ from the detectors of the telescopic boom state detector 14 and the turning angle detector 13. The performance value W2 corresponding to the long outrigger extension length M2 is calculated by the second performance calculation means 18 from the performance storage means 15.
[0014]
The actual outrigger overhang length M, the short outrigger overhang length M1, and the long outrigger overhang length M2 based on the performance values W1 and W2 calculated by the first performance calculation means 17 and the second performance calculation means 18, respectively. The performance value W0 at the actual outrigger overhang length is interpolated by the interpolating means 19 using the following equation.
[0015]
(M2-M1) / (W2-W1) = (M-M1) / (W0-W1)
W0 = W1 + ((M−M1) / (M2−M1)) × (W2−W1)
The performance value W0 obtained by the interpolation calculation is as indicated by a two-dot chain line d shown in FIG.
[0016]
The performance value W0 at the actual outrigger extension length obtained in this way is used as follows. That is, as shown in FIG. 5, the load detector 20 detects the load W actually acting on the telescopic boom 3, and compares the load W with the performance value W0 by the comparison means 21, and when W ≧ W0 A signal is output to the alarm or stop means 22, and the alarm or the mobile crane A is stopped by the alarm or stop means 22.
[0017]
[Problems to be solved by the invention]
However, the work machine performance calculation device provided in the mobile crane has the following problems. In other words, the performance value W0 obtained by the interpolation calculation decreases twice when the telescopic boom 3 is turned from the front region X or the rear region Y to the side region Z as shown by a two-dot chain line d shown in FIG. Therefore, when the telescopic boom 3 is turned as described above and the relationship of load W ≧ performance value W0 is satisfied, the load W is reduced (for example, the telescopic boom 3 is reduced or lifted). This operation is troublesome because it has to be performed twice.
[0018]
In particular, once the relationship of load W ≧ performance value W0 is established, it is misunderstood that the vehicle has escaped from the front region X or the rear region Y, and the operation is apt to increase the turning speed thereafter. Therefore, since the operation is performed to increase the turning speed when the relationship of load W ≧ performance value W0 is established for the second time, the operation of the telescopic boom 3 is suddenly stopped and the suspended load is shaken. It was a dangerous crane work.
[0019]
An object of the present invention is to provide a performance calculation device for a working machine having an outrigger that solves these problems.
[0020]
[Means for Solving the Problems]
In order to achieve the above object, a performance calculator for a working machine including an outrigger according to the present invention according to claim 1 is provided.
In a working machine having an extendable boom that can turn and undulate on a vehicle, and that is disposed on the front, rear, left, and right sides of the vehicle and has an outrigger that supports the vehicle by projecting sideways,
An overhang length detector for detecting the outrigger overhang length;
A turning angle detector for detecting the turning angle of the telescopic boom;
A telescopic boom state detector for detecting the state of the telescopic boom;
Performance storage means for storing the performance for a plurality of outrigger extension lengths for each state of the telescopic boom for each of the front region, the rear region, and the side region that are the swivel region of the telescopic boom;
An outrigger overhang length that is shorter than the actual outrigger overhang length stored in the performance storage means and that is close to the actual outrigger overhang length is received by the signal from the overhang length detector. Memory outrigger overhang length calculating means for calculating two outrigger overhang lengths;
In response to the short outrigger extension length signal calculated by the storage outrigger extension length calculation means and the signals from the detectors of the telescopic boom state detector and the turning angle detector, the short outrigger is received from the performance storage means. First performance calculating means for calculating a performance value for the overhang length;
A turning area signal that is a turning area of the telescopic boom that is the same as the short outrigger extension length adopted by the first performance calculation means from the first performance calculation means, and a long outrigger extension calculated by the storage outrigger extension length calculation means. A long outrigger in which the swivel region of the telescopic boom is made the same region as the short outrigger extension length from the performance storage means in response to the length signal and signals from the telescopic boom state detector and the swivel angle detector. Second performance calculating means for calculating a performance value corresponding to the overhang length;
Based on the respective performance values calculated by the first performance calculating means and the second performance calculating means, the performance in the actual outrigger overhang length from the actual outrigger overhang length, the short outrigger overhang length, and the long outrigger overhang length. An interpolation calculation means for performing interpolation calculation of values is provided.
[0021]
A performance calculation device for a work machine including the outrigger according to claim 2 of the present invention,
In a working machine having an extendable boom that can turn and undulate on a vehicle, and that is disposed on the front, rear, left, and right sides of the vehicle and has an outrigger that supports the vehicle by projecting sideways,
An overhang length detector for detecting the outrigger overhang length;
A turning angle detector for detecting the turning angle of the telescopic boom;
A telescopic boom state detector for detecting the state of the telescopic boom;
Performance storage means for storing the performance for a plurality of outrigger extension lengths for each state of the telescopic boom for each of the front region, the rear region, and the side region that are the swivel region of the telescopic boom;
An outrigger overhang length that is shorter than the actual outrigger overhang length stored in the performance storage means and that is close to the actual outrigger overhang length is received by the signal from the overhang length detector. Memory outrigger overhang length calculating means for calculating two outrigger overhang lengths;
In response to the short outrigger extension length signal calculated by the storage outrigger extension length calculation means and signals from each of the telescopic boom state detector and the turning angle detector, the short outrigger extension from the performance storage means is received. First performance calculating means for calculating a performance value for the length;
The turning area signal that is the turning area of the telescopic boom that is the same as the short outrigger extension length adopted by the first performance calculating means from the first performance calculating means, and the turning angle or the telescopic boom adopted by the first performance calculating means are located. In response to the turning area signal, the long outrigger extension length signal calculated by the storage outrigger extension length calculation means, and the signal from the telescopic boom state detector, the turning area of the extension boom is received from the performance storage means. Second performance calculating means for calculating a performance value corresponding to a long outrigger overhang length, wherein
Based on the respective performance values calculated by the first performance calculating means and the second performance calculating means, the performance in the actual outrigger overhang length from the actual outrigger overhang length, the short outrigger overhang length, and the long outrigger overhang length. An interpolation calculation means for performing interpolation calculation of values is provided.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a performance calculation device for a working machine having an outrigger according to the present invention will be described with reference to FIGS. In the description of the embodiment of the present invention, a case where the present invention is applied to the mobile crane described in the prior art as a performance calculation device for a working machine having an outrigger will be described below.
[0023]
The performance calculation apparatus provided in the mobile crane according to the present invention shown in FIG. 1 is the same as that shown and described in FIGS. 4 to 6, the first performance calculation means 17, the second performance calculation means 18, and the two-dot chain line. Since only d is different, components other than the reference numerals 17, 18, and d illustrated and described in FIGS. 4 to 6 are used in the following description, and detailed description thereof is omitted.
[0024]
In FIG. 1, reference numeral 25 denotes first performance calculation means, which has the same function as the first performance calculation means 17 described in the prior art and has a performance value W1 corresponding to a short outrigger extension length M1 (dotted line b in FIG. 2). And a turning area signal for making the turning area of the telescopic boom 3 the same as the short outrigger extension length employed in the first performance calculating means 25 is output to the second performance calculating means 26 described below. It is like that.
[0025]
Reference numeral 26 denotes second performance calculation means, which is a turning area signal from the first performance calculation means 25, a long outrigger extension length signal M2 calculated by the storage outrigger extension length calculation means 16, and a telescopic boom. A long outrigger that receives the signals φ, L, θ from the detectors of the state detector 14 and the turning angle detector 13 and makes the turning area of the telescopic boom 3 the same as the short outrigger extension length from the performance storage means 15. A performance value W2 corresponding to the overhang length (indicated by a thick one-dot chain line c1 in FIG. 2) is calculated.
[0026]
That is, the second performance calculating means 18 described in the prior art calculates the performance at the time of intermediate overhang (indicated by a thin one-dot chain line c in FIG. 2), but the second performance calculation means 26 is at the time of minimum overhang. The front area X is the same as that in FIG. 2, and the performance (indicated by a thick one-dot chain line c1 in FIG. 2) for narrowing the front area X and widening the side area Z is calculated.
[0027]
The interpolation performance W0 (indicated by a two-dot chain line d1 in FIG. 2) is obtained by the interpolation calculation means 19 described in the prior art using W1 and W2 thus obtained. The performance value W0 obtained by the interpolation calculation in this way is as indicated by a two-dot chain line d1 shown in FIG. That is, since the second performance calculation means 26 sets the region so that the intermediate overhang performance is the same as the front region X or the rear region Y as the minimum overhang performance, the performance value W0 obtained by the interpolation calculation is When the telescopic boom 3 is turned from the front region X or the rear region Y to the side region Z as in the prior art, it does not have a stepped shape in which the performance is reduced twice. Therefore, when the telescopic boom 3 is turned as described above and the relation of load W ≧ performance value W0 is satisfied, the operation of reducing the load W (for example, contracting or raising the telescopic boom 3) is performed twice. However, it is possible to reduce the annoyance as much as possible.
[0028]
Further, once the load W ≧ performance value W0 is satisfied and the front region X or the rear region Y is escaped, the relationship of load W ≧ performance value W0 is not satisfied for the second time, and thereafter the turning speed is increased. Even if the operation is performed, it is possible to eliminate the fact that the operation of the telescopic boom 3 due to the increased turning speed is suddenly stopped and the suspended load is shaken.
[0029]
Moreover, in the region where the performance is lowered by turning from the front region X or the rear region Y to the side region Z, the performance that should have been the maximum performance is reduced to the side region performance in the middle overhang, Even if there is a shock due to a sudden drop in performance, it is safe because it has a margin in performance.
[0030]
In the above embodiment, the signal of the turning angle φ is directly sent from the turning angle detector 13 to the second performance calculating means 26. However, as shown in FIG. In addition to the turning area signal for the turning area of the telescopic boom 3 that is the same as the short outrigger extension length adopted by the first performance calculating means 27 via the first performance calculating means 27, the signal of the turning angle φ or the first performance calculating means The turning region signal of the turning region in which the telescopic boom 3 is actually used may be received. The embodiment in this case corresponds to claim 2, but the difference is that the second performance calculation means 28 receives the turning angle information from the first performance calculation means 27. Since it is the same as that of the embodiment, detailed description of the operation is omitted.
[0031]
Moreover, although the case where the performance calculation apparatus was provided in the mobile crane was demonstrated in the said embodiment, of course, you may provide in working machines provided with outriggers, such as an aerial work vehicle. The crane has a suspended load performance, but it is adopted as a stable performance to prevent the vehicle from toppling over.
[0032]
【The invention's effect】
The performance calculation device for a work machine having the outrigger according to the present invention configured and operated as described above does not have a step-like shape in which the performance value obtained by the interpolation calculation decreases twice. The operation of reducing the load W is not performed twice when the boom is swung from the front or the rear to the side and the relationship of load ≧ performance value is satisfied, and the troublesomeness can be minimized.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram for explaining a performance calculator for a working machine including an outrigger according to the present invention.
FIG. 2 is an explanatory diagram illustrating performance values of the present invention.
FIG. 3 is an explanatory view for explaining a performance calculation device for a working machine having an outrigger according to the present invention, and an explanatory view for explaining another embodiment.
FIG. 4 is an explanatory diagram for explaining a mobile crane vehicle.
FIG. 5 is an explanatory diagram for explaining a performance calculation device for a working machine having a conventional outrigger.
FIG. 6 is an explanatory diagram for explaining a conventional performance value.
DESCRIPTION OF SYMBOLS 1 Vehicle 3 Telescopic boom 8 Outrigger 9 Outrigger 10 Outrigger 11 Outrigger 12 Overhang length detector 14 Telescopic boom state detector 15 Performance storage means 16 Stored outrigger extension length calculation means 19 Interpolation calculation means 25 First performance calculation means 26 First 2 performance calculation means 27 1st performance calculation means 28 2nd performance calculation means

Claims (2)

車両上に旋回ならびに起伏動可能な伸縮ブームを有するとともに、車両の前後左右に配置し側方に張出して車両を支持するアウトリガを備えた作業機において、
アウトリガの張出長さを検出する張出し長さ検出器と、
伸縮ブームの旋回角を検出する旋回角検出器と、
伸縮ブームの状態を検出する伸縮ブーム状態検出器と、
複数のアウトリガ張出長さに対する性能を伸縮ブームの旋回領域である前方領域,後方領域,側方領域別に伸縮ブームの状態毎に記憶している性能記憶手段と、
前記張出し長さ検出器からの信号を受け実際のアウトリガ張出長さに直近し前記性能記憶手段に記憶されている実際のアウトリガ張出長さより短いアウトリガ張出長さと長いアウトリガ張出長さの二つのアウトリガ張出長さを算出する記憶アウトリガ張出長さ算出手段と、
当該記憶アウトリガ張出長さ算出手段で算出された短いアウトリガ張出長さ信号と、伸縮ブーム状態検出器と旋回角検出器の各検出器からの信号、を受けて前記性能記憶手段から短いアウトリガ張出長さに対する性能値を算出する第1性能算出手段と、
前記第1性能算出手段から第1性能算出手段で採用した短いアウトリガ張出長さと同じ伸縮ブームの旋回領域とする旋回領域信号と、前記記憶アウトリガ張出長さ算出手段で算出された長いアウトリガ張出長さ信号と、伸縮ブーム状態検出器と旋回角検出器の各検出器からの信号、を受けて前記性能記憶手段から伸縮ブームの旋回領域を短いアウトリガ張出長さと同じ領域にした長いアウトリガ張出長さに対応する性能値を算出する第2性能算出手段と、
前記第1性能算出手段と第2性能算出手段で算出した各性能値を基に実際のアウトリガ張出長さと短いアウトリガ張出長さと長いアウトリガ張出長さから実際のアウトリガ張出長さにおける性能値を補間演算する補間演算手段を備えたアウトリガを備えた作業機の性能算出装置。
In a working machine having an extendable boom that can turn and undulate on a vehicle, and that is disposed on the front, rear, left, and right sides of the vehicle and has an outrigger that supports the vehicle by projecting sideways,
An overhang length detector for detecting the outrigger overhang length;
A turning angle detector for detecting the turning angle of the telescopic boom;
A telescopic boom state detector for detecting the state of the telescopic boom;
Performance storage means for storing the performance for a plurality of outrigger extension lengths for each state of the telescopic boom for each of the front region, the rear region, and the side region that are the swivel region of the telescopic boom;
An outrigger overhang length that is shorter than the actual outrigger overhang length stored in the performance storage means and that is close to the actual outrigger overhang length is received by the signal from the overhang length detector. Memory outrigger overhang length calculating means for calculating two outrigger overhang lengths;
In response to the short outrigger extension length signal calculated by the storage outrigger extension length calculation means and the signals from the detectors of the telescopic boom state detector and the turning angle detector, the short outrigger is received from the performance storage means. First performance calculating means for calculating a performance value for the overhang length;
A turning area signal that is a turning area of the telescopic boom that is the same as the short outrigger extension length adopted by the first performance calculation means from the first performance calculation means, and a long outrigger extension calculated by the storage outrigger extension length calculation means. A long outrigger in which the swivel region of the telescopic boom is made the same region as the short outrigger extension length from the performance storage means in response to the length signal and signals from the telescopic boom state detector and the swivel angle detector. Second performance calculating means for calculating a performance value corresponding to the overhang length;
Based on the respective performance values calculated by the first performance calculating means and the second performance calculating means, the performance in the actual outrigger overhang length from the actual outrigger overhang length, the short outrigger overhang length, and the long outrigger overhang length. A performance calculation device for a work machine including an outrigger including an interpolation calculation means for performing interpolation calculation of values.
車両上に旋回ならびに起伏動可能な伸縮ブームを有するとともに、車両の前後左右に配置し側方に張出して車両を支持するアウトリガを備えた作業機において、
アウトリガの張出長さを検出する張出し長さ検出器と、
伸縮ブームの旋回角を検出する旋回角検出器と、
伸縮ブームの状態を検出する伸縮ブーム状態検出器と、
複数のアウトリガ張出長さに対する性能を伸縮ブームの旋回領域である前方領域,後方領域,側方領域別に伸縮ブームの状態毎に記憶している性能記憶手段と、
前記張出し長さ検出器からの信号を受け実際のアウトリガ張出長さに直近し前記性能記憶手段に記憶されている実際のアウトリガ張出長さより短いアウトリガ張出長さと長いアウトリガ張出長さの二つのアウトリガ張出長さを算出する記憶アウトリガ張出長さ算出手段と、
当該記憶アウトリガ張出長さ算出手段で算出された短いアウトリガ張出長さ信号と伸縮ブーム状態検出器と旋回角検出器の各検出器からの信号を受けて前記性能記憶手段から短いアウトリガ張出長さに対する性能値を算出する第1性能算出手段と、
前記第1性能算出手段から第1性能算出手段で採用した短いアウトリガ張出長さと同じ伸縮ブームの旋回領域とする旋回領域信号と、第1性能算出手段で採用した旋回角または伸縮ブームが位置する旋回領域の信号と、前記記憶アウトリガ張出長さ算出手段で算出された長いアウトリガ張出長さ信号と、伸縮ブーム状態検出器からの信号、を受けて前記性能記憶手段から伸縮ブームの旋回領域を短いアウトリガ張出長さと同じ領域にした長いアウトリガ張出長さに対応する性能値を算出する第2性能算出手段と、
前記第1性能算出手段と第2性能算出手段で算出した各性能値を基に実際のアウトリガ張出長さと短いアウトリガ張出長さと長いアウトリガ張出長さから実際のアウトリガ張出長さにおける性能値を補間演算する補間演算手段を備えたアウトリガを備えた作業機の性能算出装置。
In a working machine having an extendable boom that can turn and undulate on a vehicle, and that is disposed on the front, rear, left, and right sides of the vehicle and has an outrigger that supports the vehicle by projecting sideways,
An overhang length detector for detecting the outrigger overhang length;
A turning angle detector for detecting the turning angle of the telescopic boom;
A telescopic boom state detector for detecting the state of the telescopic boom;
Performance storage means for storing the performance for a plurality of outrigger extension lengths for each state of the telescopic boom for each of the front region, the rear region, and the side region that are the swivel region of the telescopic boom;
An outrigger overhang length that is shorter than the actual outrigger overhang length stored in the performance storage means and that is close to the actual outrigger overhang length is received by the signal from the overhang length detector. Memory outrigger overhang length calculating means for calculating two outrigger overhang lengths;
In response to the short outrigger extension length signal calculated by the storage outrigger extension length calculation means and signals from each of the telescopic boom state detector and the turning angle detector, the short outrigger extension from the performance storage means is received. First performance calculating means for calculating a performance value for the length;
The turning area signal that is the turning area of the telescopic boom that is the same as the short outrigger extension length adopted by the first performance calculating means from the first performance calculating means, and the turning angle or the telescopic boom adopted by the first performance calculating means are located. In response to the turning area signal, the long outrigger extension length signal calculated by the storage outrigger extension length calculation means, and the signal from the telescopic boom state detector, the turning area of the extension boom is received from the performance storage means. Second performance calculating means for calculating a performance value corresponding to a long outrigger overhang length, wherein
Based on the respective performance values calculated by the first performance calculating means and the second performance calculating means, the performance in the actual outrigger overhang length from the actual outrigger overhang length, the short outrigger overhang length, and the long outrigger overhang length. A performance calculation device for a work machine including an outrigger including an interpolation calculation means for performing interpolation calculation of values.
JP23794899A 1999-08-25 1999-08-25 Device for calculating performance of working machine with outrigger Expired - Fee Related JP4363710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23794899A JP4363710B2 (en) 1999-08-25 1999-08-25 Device for calculating performance of working machine with outrigger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23794899A JP4363710B2 (en) 1999-08-25 1999-08-25 Device for calculating performance of working machine with outrigger

Publications (3)

Publication Number Publication Date
JP2001063965A JP2001063965A (en) 2001-03-13
JP2001063965A5 JP2001063965A5 (en) 2006-09-14
JP4363710B2 true JP4363710B2 (en) 2009-11-11

Family

ID=17022847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23794899A Expired - Fee Related JP4363710B2 (en) 1999-08-25 1999-08-25 Device for calculating performance of working machine with outrigger

Country Status (1)

Country Link
JP (1) JP4363710B2 (en)

Also Published As

Publication number Publication date
JP2001063965A (en) 2001-03-13

Similar Documents

Publication Publication Date Title
KR19980702711A (en) Moving range indicator of mobile crane vehicle
KR102096930B1 (en) Safety device of mobile crane
JP2009269759A (en) Moving crane and operating method of the moving crane
EP3239092B1 (en) Hydraulic crane
JP5374037B2 (en) Total gravity center display device for work vehicles
JP4363710B2 (en) Device for calculating performance of working machine with outrigger
JP3303953B2 (en) Work vehicle fall warning device and fall prevention method
JP3447410B2 (en) Truck overload protection device with crane
US11174138B2 (en) Mobile working machine and method for supervising the manoeuvring of stabilizer legs included in a mobile working machine
JPH06263394A (en) Control device for working vehicle incorporating boom
JP3252007B2 (en) Control device for work vehicle with boom
JP3634010B2 (en) Control device for work machine with outrigger
JP5410716B2 (en) Control device for mobile crane
JPH0618120U (en) Boom work vehicle safety device
JP5087243B2 (en) Counterweight weight detection device for work vehicles
JP3252019B2 (en) Safety device for working machine with telescopic boom
JP4953500B2 (en) Control device for work equipment
JP2011020839A (en) Control device of working machine with outrigger
JPH0626550Y2 (en) Boom turning control device for work vehicle
JP7132450B2 (en) Moment limiter device for boom working machine and boom working machine equipped with the same
JPH0729111Y2 (en) Crane truck fall prevention device
JP2873498B2 (en) Boom-type work vehicle safety device
JPH0721512Y2 (en) Boom operation control device for aerial work vehicles
JPH075103Y2 (en) Crane safety equipment
JP3255535B2 (en) Crane overload prevention device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060731

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees