JP4360324B2 - 筒内直噴射式内燃機関における空燃比制御装置 - Google Patents

筒内直噴射式内燃機関における空燃比制御装置 Download PDF

Info

Publication number
JP4360324B2
JP4360324B2 JP2004368939A JP2004368939A JP4360324B2 JP 4360324 B2 JP4360324 B2 JP 4360324B2 JP 2004368939 A JP2004368939 A JP 2004368939A JP 2004368939 A JP2004368939 A JP 2004368939A JP 4360324 B2 JP4360324 B2 JP 4360324B2
Authority
JP
Japan
Prior art keywords
cylinder
intake air
air
amount
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004368939A
Other languages
English (en)
Other versions
JP2006177193A (ja
Inventor
真一郎 能川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004368939A priority Critical patent/JP4360324B2/ja
Publication of JP2006177193A publication Critical patent/JP2006177193A/ja
Application granted granted Critical
Publication of JP4360324B2 publication Critical patent/JP4360324B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本願発明は、燃焼室内へ直接に燃料を噴射する内燃機関、すなわち、筒内直噴射式内燃機関(以下、筒内直噴エンジンと称す)であってバルブオーバーラップを有する筒内直噴射式内燃機関の空燃比制御(A/F制御)に関する。
近年、ガソリンエンジンにおいて、筒内に直接に燃料としてガソリンを噴射すると共に火花点火をして燃焼させる筒内直噴エンジンの量産が開始されている。吸入ポートにおいて燃料を噴射し空気と燃料との混合気を燃焼室すなわち筒内に供給する通常のポート噴射式内燃機関(以下、ポート噴射エンジンと称す)においては、燃焼室に混合気が入るまでにポートの壁の部分に燃料が付着して、想定した空燃比にならないことが多い。それに対して筒内直噴エンジンは、空気と別々に直接筒内に燃料を入れることから空燃比のバラツキを大幅に小さくできる。空燃比を一定に保つことは、燃焼を良くする効果があるだけでなく、排気性能を良くするのにも有効である。
このようなメリットの一方で、バルブオーバーラップを有する、すなわち、吸気バルブと排気バルブとが共に開いている期間を有する筒内直噴エンジンにおいては、バルブオーバーラップ期間中に、吸気ポートから筒内に供給された空気の一部がそのまま、排気ポートに排出される「吹き抜け」が起り、筒内空燃比を排気空燃比センサから検出された排気空燃比あるいは酸素濃度のみに基づいて筒内空燃比を目標空燃比にすべく、燃料噴射量をフィードバック制御させる場合、燃焼に寄与しない「吹き抜け空気」を含む状態で空燃比が算出され、この空燃比に基づいて燃料噴射が制御されるため、筒内に必要以上の燃料が供給されてしまうことによる燃焼悪化と燃費悪化とが問題となる。
吸排気バルブを開閉する時期すなわちバルブタイミングは、適正な出力を得ると同時に広い回転域で吸排気効率を高めて燃費の改善を図るために、エンジンの運転状態に応じて通常調整され、バルブオーバーラップが制御される。エンジンの高負荷領域においては、大きな出力を必要とするために、吸入空気量を増すように制御すべく、バルブオーバーラップが広く設定される。また、クランク角で示したオーバーラップ量が同一であっても、エンジンの回転数が低いと、エンジン回転数が高い場合と比較して実際のバルブオーバーラップ時間は長くなる。このため、上記「吹き抜け」は、特に、吸入空気の吹き抜け量が大きくなる低回転高負荷領域で問題となると考えられる。
また、実用化されている筒内直噴エンジンは自然吸気式のものが多いが、出力を増大させるために今後は筒内直噴エンジンにおいても過給機付きのものが量産される可能性が高い。一般的に過給機付きエンジンは、特に低回転全負荷領域において吸気管圧力が正圧となり排気管圧力よりも高くなる。このため、バルブオーバーラップ期間中において、吸気管→筒内→排気管という流れが生じる。従がって、上記「吹き抜け」は、過給機付き筒内直噴エンジンにおいても問題となると考えられる。
従って、筒内直噴エンジン、特に過給機付き筒内直噴エンジンにおける低回転高負荷領域において、排気空燃比に基づく制御系により筒内空燃比を最適にするためには、バルブオーバーラップ期間中における吹き抜け空気量を把握することが重要になると考えられる。
更に、筒内直噴エンジンにおいて、筒内に直接に燃料を噴射する筒内直噴用インジェクタと併せて、吸入ポートにおいて燃料を噴射し空気と燃料との混合気を筒内に供給する通常のポート噴射用インジェクタを備えるもの(以下、Tシステムエンジンと称す)が開発されている。Tシステムエンジンは、ポート噴射および筒内直噴射のそれぞれのメリットを有効に活用して、燃費効率や吸気効率などを改善することを目的として開発されているエンジンであり、筒内直噴用インジェクタからの燃料噴射とポート噴射用インジェクタからの燃料噴射とを、状況に応じて制御可能なエンジンである。このようなTシステムエンジンにおいても、筒内空燃比を最適にするためには、バルブオーバーラップ期間中における吹き抜け空気量を把握することが重要になると考えられる。
特開2001ー164972号公報
バルブオーバーラップ期間中の吸入空気の吹き抜けを考慮した空燃比制御は、特許文献1等の文献に開示されているが、その正確性において改良の余地を多く残していると考える。
例えば、特許文献1においては、内燃機関の筒内の酸素濃度と排気系内の酸素濃度とに基づいて、筒内に供給された吸入空気のうち吹き抜けずに筒内に充填された吸入空気の割合を示す筒内トラップ率を算出し、筒内を目標空燃比に制御する制御装置が開示されている。
しかし、特許文献1に開示されているような制御装置では、内燃機関の筒内に供給された吸入空気の燃焼時の化学反応による体積変化にともなう筒内トラップ率に対する影響は考慮されていないため、その精度において改善の余地が残されていると考える。
本発明は上記問題に鑑み、バルブオーバーラップを有する筒内直噴エンジンにおける筒内空燃比を高精度に制御する空燃比制御装置を提供することを目的としている。
請求項1に記載の発明によれば、内燃機関の筒内へ燃料を噴射するための前記筒内に噴孔を開口する直噴用インジェクタと吸気系にポート噴射用インジェクタとを備え且つバルブオーバーラップを有する筒内直噴射式内燃機関の空燃比制御装置において、前記筒内に供給された吸入空気量を検出する吸入空気量検出手段と、前記筒内に供給された吸入空気のうち燃焼に寄与しない吹き抜け空気の割合を示す吸入空気の吹き抜け率を算出する吸入空気吹き抜け率算出手段と、前記直噴用インジェクタからの燃料噴射量を検出する直噴燃料噴射量検出手段と、前記ポート噴射用インジェクタからの燃料噴射量を検出するポート噴射燃料噴射量検出手段と、前記吸入空気吹き抜け率算出手段により算出された吸入空気の吹き抜け率と、前記ポート噴射燃料噴射量検出手段から検出された燃料噴射量とに基づいて、前記ポート噴射用インジェクタから供給された燃料のうち前記筒内に残留する燃料量を算出するポート噴射筒内残留燃料量算出手段とを有し、前記吸入空気量検出手段により検出された吸入空気量と、前記吸入空気吹き抜け率算出手段により算出された吸入空気の吹き抜け率と、前記直噴燃料噴射量検出手段から検出された燃料噴射量と、前記ポート噴射筒内残留燃料量算出手段から算出された前記筒内の残留燃料量とに基づいて、前記筒内の空燃比を算出し、前記直噴用インジェクタおよび前記ポート噴射用インジェクタの少なくとも一方からの燃料噴射量を制御することにより前記筒内を目標空燃比に制御する、ことを特徴とする空燃比制御装置が提供される。
すなわち、請求項1の発明では、内燃機関の筒内に供給された吸入空気量と、筒内に供給された吸入空気のうち燃焼に寄与しない吹き抜け空気の割合を示す吸入空気の吹き抜け率と、直噴用インジェクタからの燃料噴射量と、ポート噴射用インジェクタから供給された燃料のうちバルブオーバーラップ期間中に吹き抜けずに筒内に残留する燃料量とに、基づいて、筒内空燃比を算出する。そして、この算出された筒内空燃比に基づいて、直噴用インジェクタおよびポート噴射用インジェクタの少なくとも一方からの燃料噴射量を制御し、筒内を目標空燃比に制御する。例えば、算出された筒内空燃比が目標空燃比よりも大きい場合には、燃料噴射量は増量され、算出された筒内空燃比が目標空燃比よりも小さい場合には、燃料噴射量は減量される。
これにより、吸入空気の吹き抜けと、該吸入空気の吹き抜けによるポート噴射用インジェクタから供給された燃料量への影響とを考慮した筒内空燃比の把握が可能となり、バルブオーバーラップを有する筒内直噴エンジン、特に、直噴用インジェクタとポート噴射用インジェクタとを備える筒内直噴エンジンにおける筒内空燃比を高精度に制御することが可能となる。
請求項2に記載の発明によれば、前記吸入空気吹き抜け率算出手段は、前記筒内に供給された吸入空気中の酸素のモル数を算出する第一の酸素モル数算出手段と、前記筒内から排出された排気ガス中の酸素のモル数を算出する第二の酸素モル数算出手段と、を有し、前記第一の酸素モル数算出手段から算出された吸入空気中の酸素のモル数と、前記第二の酸素モル数算出手段から算出された排気ガス中の酸素のモル数とに基づいて、前記筒内に供給された吸入空気のうち燃焼に寄与しない吹き抜け空気の割合を示す吸入空気の吹き抜け率を算出する、ことを特徴とする請求項1に記載の空燃比制御装置が提供される。
すなわち、請求項2の発明では、筒内に供給された吸入空気のうち燃焼に寄与しない吹き抜け空気の割合を示す吸入空気の吹き抜け率を、筒内から供給された吸入空気中の酸素のモル数と、筒内から排出された排気ガス中の酸素のモル数とに基づいて算出する。
これにより、吸入空気および排気ガス中の酸素のモル数に基づいた筒内空燃比の把握が可能となり、筒内空燃比バルブオーバーラップを有する筒内直噴エンジンにおける筒内空燃比を高精度に制御することが可能となる。
請求項3に記載の発明によれば、前記第一の酸素モル数算出手段および前記第二の酸素モル数算出手段は、前記筒内に供給された吸入空気量を検出する吸入空気量検出手段と、前記筒内から排出された排気ガス中の酸素濃度を検出する排気ガス酸素濃度検出手段と、前記筒内から排気された排気ガスの体積を算出する排気ガス体積算出手段と、を有し、前記筒内に供給された吸気空気中の酸素のモル数は、前記吸入空気量検出手段から検出された吸入空気量に基づいて算出され、前記筒内から排出された排気ガス中の酸素モル数は、前記排気ガス体積算出手段から算出された排気ガスの体積と、前記排気ガス酸素濃度検出手段から検出された排気ガス中の酸素濃度と、に基づいて算出される、ことを特徴とする請求項2に記載の空燃比制御装置が提供される。
すなわち、請求項3の発明では、筒内に供給された吸入空気中の酸素のモル数を、吸入空気量検出手段から検出された吸入空気量に基づいて算出し、筒内から排出された排気ガス中の酸素モル数を、排気ガス体積算出手段から算出された排気ガス体積と、排気ガス酸素濃度検出手段から検出された排気ガス中の酸素濃度とに基づいて算出する。
これにより、筒内に供給された吸入空気中の酸素のモル数と、筒内から排出された排気ガス中の酸素モル数とを精度良く把握することができる。
請求項4に記載の発明によれば、前記排気ガス体積算出手段は、前記吸入空気量検出手段と、前記筒内から排出された排気ガス中の一酸化炭素と二酸化炭素と炭化水素とのそれぞれの濃度を検出する、一酸化炭素濃度検出手段と、二酸化炭素濃度検出手段と、炭化水素濃度検出手段と、を有し、前記吸入空気量検出手段から検出された吸入空気量と、前記一酸化炭素濃度検出手段と前記二酸化炭素濃度検出手段と前記炭化水素濃度検出手段とのそれぞれから検出された排気ガス中の一酸化炭素濃度と二酸化炭素濃度と炭化水素濃度とに基づいて、前記筒内から排出される排気ガスの体積を算出する、ことを特徴とする請求項3に記載の空燃比制御装置が提供される。
すなわち、請求項4の発明では、排気ガスの体積を、筒内に供給された吸入空気量と、筒内から排出された排気ガス中の、一酸化炭素濃度と二酸化炭素濃度と炭化水素濃度とに基づいて算出する。
これにより、筒内から排出される排気ガスの体積を精度良く把握することができる。
請求項5に記載の発明によれば、前記排気ガス体積算出手段は、前記吸入空気量検出手段から検出された吸入空気量と、吸入空気と排気ガスの体積比係数とに基づいて、前記筒内から排気された排気ガスの体積を算出する、ことを特徴とする請求項3に記載の空燃比制御装置が提供される。
すなわち、請求項5の発明では、排気ガスの体積を、筒内に供給された吸入空気量と、吸入空気と排気ガスの体積比係数とに基づいて算出する。
これにより、排気ガスの体積を、請求項4で示されたような一酸化炭素濃度検出手段と二酸化炭素濃度検出手段と炭化水素濃度検出手段とを必要とすることなく算出でき、当該空燃比制御装置の構造簡素化を可能とする。
ここで、吸入空気と排気ガスの体積比係数とは、筒内に供給された吸入空気の体積と筒内から排出された排気ガスの体積との比であり、予め実験などにより決定される。
請求項6に記載の発明によれば、前記吸入空気吹き抜け率算出手段は、前記筒内に供給された吸入空気量を検出する吸入空気量検出手段と、バルブオーバーラップ値を検出するバルブオーバーラップ検出手段と、エンジン回転数を検出するエンジン回転数検出手段と、を有し、吸入空気の吹き抜け率を、該吸入空気の吹き抜け率と吸入空気量とバルブオーバーラップ値とエンジン回転数との予め定められた関係に基づいて算出する、ことを特徴とする請求項1に記載の空燃比制御装置が提供される。
すなわち、請求項6の発明では、吸入空気量とバルブオーバーラップ値とエンジン回転数と吸入空気の吹き抜け率との関係を予め実験などで把握し、例えば、吸入空気量とバルブオーバーラップ値とエンジン回転数とをパラメータとして吸入空気の吹き抜け率の算出を可能とする吹き抜け率マップを用いて、筒内に供給された吸入空気のうち燃焼に寄与しない吹き抜け空気の割合を示す吸入空気の吹き抜け率算出を算出する。
これにより、筒内に供給された吸入空気の吹き抜けを考慮した筒内空燃比の把握が可能となり、バルブオーバーラップを有する筒内直噴エンジンにおける筒内空燃比を高精度に制御することが可能となる。
請求項7に記載の発明によれば、前記吸入空気吹き抜け率算出手段は、前記筒内に供給された吸入空気量を検出する吸入空気量検出手段と、前記筒内の圧力を検出する筒内圧センサを使用して前記筒内の空気量を算出する筒内空気量算出手段と、を有し、前記吸入空気量検出手段から検出された吸入空気量と、前記筒内空気量算出手段から算出された筒内空気量とに基づいて、前記筒内に供給された吸入空気のうち燃焼に寄与しない吹き抜け空気の割合を示す吸入空気の吹き抜け率を算出する、ことを特徴とする請求項1に記載の空燃比制御装置が提供される。
すなわち、請求項7の発明では、筒内に供給された吸入空気のうち燃焼に寄与しない吹き抜け空気の割合を示す吸入空気の吹き抜け率を、筒内に供給された吸入空気量と、筒内圧センサを使用して算出された筒内の空気量すなわちバルブオーバーラップ期間中に筒内に供給された吸入空気のうち吹き抜けずに筒内に残った空気量とに基づいて算出する。
これにより、筒内に供給された吸入空気の吹き抜けを考慮した筒内空燃比の把握が可能となり、バルブオーバーラップを有する筒内直噴エンジンにおける筒内空燃比を高精度に制御することが可能となる。
各請求項に記載の発明によれば、バルブオーバーラップを有する筒内直噴エンジンにおける筒内空燃比を高精度に制御することを可能にする共通の効果を奏する。
以下、添付図面を用いて本発明の実施形態について説明する。
図1は、本発明の内燃機関の空燃比制御装置の第一の実施形態の概略構成図であって、機関本体の気筒を示した部分断面図である。図1において、1は気筒、2は気筒に吸入空気を供給するための吸気ポート、3は気筒から排気ガスを排出するための排気ポート、4は筒内(燃焼室)、5は吸気バルブ、6は排気バルブである。また、18はバルブオーバーラップ時に吹き抜ける空気を示している。
本第一の実施形態の空燃比制御装置は、筒内に供給された吸入空気量を検出する吸入空気量検出用エアフロメータ11(以下、Ga検出用エアフロメータと称す)と、筒内に直接燃料を噴射する直噴用インジェクタ12と、筒内から排出される排気ガス中の、酸素(O2)濃度、一酸化炭素(CO)濃度、二酸化炭素(CO2)濃度および全炭化水素(TCH)濃度のそれぞれを検出する、酸素濃度検出センサ13(以下、O2濃度検出センサあるいはO2センサと称す)と、一酸化炭素濃度検出センサ15(以下、CO濃度検出センサあるいはCOセンサと称す)と、二酸化炭素濃度検出センサ16(以下、CO2濃度検出センサあるいはCO2センサと称す)、炭化水素濃度検出センサ17(以下、HC濃度検出センサあるいはHCセンサと称す)と、更に、演算器(ECU)14とを備える。
図1に示すように、演算器14は、Ga検出用エアフロメータ11、O2濃度検出センサ13、CO濃度検出センサ15、CO2濃度検出センサ16およびHC濃度検出センサ17の検出値を読み込むべく、Ga検出用エアフロメータ11、O2濃度検出センサ13、CO濃度検出センサ15、CO2濃度検出センサ16およびHC濃度検出センサ17に接続、例えば電気接続されている。更に、演算器14は、直噴用インジェクタ12からの燃料噴射量を制御すべく、直噴用インジェクタ12に接続、例えば電気接続されている。
図2は、本第一の実施形態の空燃比制御装置における空燃比制御方法を示したフローチャートである。
まずステップ21にて、INJ噴射すなわち直噴用インジェクタ12から燃料が筒内4に噴射される。
続いてステップ22にて、Ga検出用エアフロメータ11、CO濃度検出センサ15、CO2濃度検出センサ16およびHC濃度検出センサ17のそれぞれから検出され得られる、吸気ポート2を通して筒内4に供給された空気量すなわち吸入空気量と、排気ポート3を通して排出される排気ガス中の一酸化炭素濃度、二酸化炭素濃度および全炭化水素濃度とを演算器14に読み込む。尚、本ステップ22において、演算器14には、O2濃度検出センサ13から得られる排気ガス中の酸素濃度も併せて読み込まれる。
続いてステップ23にて、ステップ22にて得られた吸入空気量と、排気ガス中の一酸化炭素濃度、二酸化炭素濃度および全炭化水素濃度とに基づいて、演算器14により排気ガス体積を算出する。
続いてステップ24にて、ステップ23にて算出された排気ガス体積と、O2濃度検出センサ13から検出して得られた酸素濃度と、Ga検出用エアフロメータ11から検出された吸入空気量とに基づいて、演算器14により、筒内4に供給された吸入空気中の酸素モル数と、筒内4から排出された排気ガス中の酸素のモル数とを算出し、筒内4に供給された吸入空気のうち燃焼に寄与しない吹き抜け空気の割合を示す吸入空気の吹き抜け率を算出する。
ここで、筒内4に供給された吸入空気中の酸素モル数M1の算出は、下記に示す式1により算出される。
〔数1〕
M1=(Ga/Mair)×En(O2)
上記式1の中で、GaはGa検出用エアフロメータ11から得られる吸入空気量、Mairは大気の平均分子量、En(O2)は大気中に含まれる平均酸素濃度(20.99(%))である。
また、筒内4から排出された排気ガス中の酸素モル数M2の算出は、下記に示す式2により算出される。
〔数2〕
M2=Q×O2/V
上記式2の中で、Qはステップ23にて算出された排気ガス体積、O2はO2濃度検出センサ13から得られる排気ガス中の酸素(O2)濃度、Vはモル体積(22.4(L/mol))である。
更に、吸入空気の吹き抜け率Kは、下記に示す式3により算出される。
〔数3〕
K=M2/M1=Q×O2/En(O2)/V/(Ga/Mair)
続いてステップ25にて、ステップ24にて算出された吸入空気の吹き抜け率と、排気ガスの空燃比(排気A/F)とに基づいて筒内空燃比を算出する。本第一の実施形態においては、排気ガスの空燃比は、ステップ22にてCO濃度検出センサ15、CO2濃度検出センサ16およびHC濃度検出センサ17のそれぞれから検出された排気ガス中の一酸化炭素濃度、二酸化炭素濃度および全炭化水素濃度に基づいて算出される。
筒内空燃比S(A/F)の算出は、下記に示す式4により算出される。
〔数4〕
S(A/F)=(1−K)×E(A/F)
上記式4の中で、Kはステップ24にて算出された吸入空気の吹き抜け率、E(A/F)は排気ガスの空燃比である。
続いてステップ26にて、ステップ25にて算出された筒内空燃比が、予め設定された目標空燃比に比べて大きいか否かを判断する。例えば、算出された筒内空燃比が目標空燃比よりも大きい場合には、ステップ27に進み、直噴用インジェクタ12からの燃料噴射量(以下、D4噴射量と称す)を増量すべく、直噴用インジェクタ12の燃料噴射を制御する。また、算出された筒内空燃比が目標空燃比よりも小さい場合には、ステップ28に進み、D4噴射量を減量すべく、直噴用インジェクタ12の燃料噴射を制御する。
本第一の実施形態によれば、Ga検出用エアフロメータ11と、O2濃度検出センサ13と、CO濃度検出センサ15と、CO2濃度検出センサ16と、HC濃度検出センサ17と、演算器14とが協働して、筒内4に供給された吸入空気量を検出する吸入空気量検出手段と、筒内4から排出された排気ガス中の酸素濃度を検出する排気ガス酸素濃度検出手段と、筒内4から排気された排気ガスの体積を算出する排気ガス体積算出手段とを形成することで、筒内4に供給された吸入空気中の酸素のモル数と、筒内4から排出された排気ガス中の酸素のモル数とを算出することができ、算出された吸入空気中の酸素のモル数と排気ガス中の酸素のモル数とに基づいて、吸入空気の吹き抜け率を把握することが可能となる。
また、CO濃度検出センサ15、CO2濃度検出センサ16、HC濃度検出センサ17および演算器14とが協働して排気空燃比検出手段を形成することで、排気ガスの空燃比を把握でき、この排気ガスの空燃比と吸入空気の吹き抜け率とから筒内空燃比を算出することが可能となる。
更に、算出された筒内空燃比に基づいて、直噴インジェクタ12からの燃料噴射量を演算器14により制御することで、筒内4を目標空燃比に高精度に制御することが可能となる。
尚、排気ガス中に含まれる酸素には、厳密には、バルブオーバーラップ期間中に吸気ポート2から供給された空気のうちそのまま排気ポート3から排出される吹き抜け空気中に含まれる酸素と、筒内4で燃焼せずに残った酸素すなわち未燃焼酸素とが含まれることになるが、筒内4の目標空燃比を理論空燃比あるいはリッチ空燃比とする場合には、排気ガス中に含まれる未燃焼酸素はほとんど存在しないと考えられ、未燃焼酸素の存在による吸入空気の吹き抜け率の算出にあたっての影響はほとんど無視できると考えられる。
従って、本第一の実施形態においては、特に、筒内4の目標空燃比を、理論空燃比あるいはリッチ空燃比とする場合に有効となる。
但し、目標空燃比をリーン空燃比とする場合においても、図1には示していないが、例えば、未燃焼酸素の濃度を検出する酸素濃度検出センサを筒内4に備えることにより、排気ガス中の吹き抜け空気中のみの酸素濃度を算出することで、吸入空気の吹き抜け率の精度を向上させることができる。
以下、図3および図4を参照して本発明の内燃機関の空燃比制御装置の第二の実施形態について説明する。
図3は、本発明の内燃機関の空燃比制御装置の第二の実施形態の概略構成図であって、機関本体の気筒を示した部分断面図である。図1と同様に、図3において、1は気筒、2は吸気ポート、3は排気ポート、4は筒内(燃焼室)、5は吸気バルブ、6は排気バルブである。また、36はバルブオーバーラップ時に吹き抜ける空気を示している。
本第二の実施形態の空燃比制御装置は、筒内4に供給された吸入空気量を検出するGa検出用エアフロメータ31と、筒内4に直接燃料を噴射する直噴用インジェクタ32と、筒内4から排出される排気ガス中の酸素濃度を検出するO2濃度検出センサ33と、筒内から排出される排気ガスの空燃比を検出する排気A/F検出センサ35と、演算器(ECU)34とを備える。
図3に示すように、演算器34は、Ga検出用エアフロメータ31、O2濃度検出センサ33および排気A/F検出センサ35の検出値を読み込むべく、Ga検出用エアフロメータ31、O2濃度検出センサ33および排気A/F検出センサ35に接続、例えば電気接続されている。更に、演算器34は、直噴用インジェクタ32からの燃料噴射量を制御すべく、直噴用インジェクタ32に接続、例えば電気接続されている。
図4は、本第二の実施形態の空燃比制御装置における空燃比制御方法を示したフローチャートである。
まずステップ41にて、INJ噴射すなわち直噴用インジェクタ32から燃料が筒内4に噴射される。
続いてステップ42にて、Ga検出用エアフロメータ31から検出される、吸気ポート2を通して筒内4に供給された空気量すなわち吸入空気量を演算器34に読み込む。尚、本ステップ42において、演算器34には、O2濃度検出センサ33から得られる排気ガス中の酸素濃度と、排気A/F検出センサ35から得られる排気ガスの空燃比(排気A/F)も併せて読み込まれる。
続いてステップ43にて、ステップ42にて得られた吸入空気量と、吸入空気と排気ガスとの体積比係数とに基づいて、演算器34により排気ガス体積を算出する。ここで、吸入空気と排気ガスとの体積比係数とは、筒内4に供給された吸入空気の体積と、筒内4から排出された排気ガスの体積との比であり、予め実験などにより決定される。尚、バルブオーバーラップ期間中に吸気ポート2から供給された空気のうちそのまま排気ポート3から排出される吹き抜け空気が無いとした場合には、吸入空気と排気ガスとの体積比係数は、約1.11であることが実験等により判明した。厳密とは言えないまでも、吸入空気と排気ガスの体積比を約1.11として排気ガスの体積を算出し、この算出された排気ガスの体積を使用して、本ステップに続くステップ44による方法で吸入空気の吹き抜け率を算出することは、吸入空気の燃焼時の化学反応による体積変化を考慮せずに吸入空気の吹き抜け率を算出する場合と比較して、精度良い吸入空気の吹き抜け率の算出に寄与できると考える。
続いてステップ44にて、筒内4に供給された吸入空気のうち燃焼に寄与しない吹き抜け空気の割合を示す吸入空気の吹き抜け率を算出する。この吸入空気の吹き抜け率の算出方法については、本発明の第一の実施形態のステップ24と同様である。
続いてステップ45にて、ステップ44にて算出された吸入空気の吹き抜け率と、ステップ42にて得られた排気ガスの空燃比とに基づいて筒内空燃比を算出する。筒内空燃比の算出方法については、本発明の第一の実施形態のステップ25と同様である。
続いてステップ46からステップ48にて、筒内空燃比を目標空燃比、例えば理論空燃比にすべく、直噴用インジェクタ12の燃料噴射を制御する。この制御方法については、本発明の第一の実施形態のステップ26からステップ28と同様である。
本第二の実施形態によれば、Ga検出用エアフロメータ31と、O2濃度検出センサ33と、演算器34とが協働して、筒内4に供給された吸入空気量を検出する吸入空気量検出手段と、筒内4から排出された排気ガス中の酸素濃度を検出する排気ガス酸素濃度検出手段と、吸入空気と排気ガスの体積比係数とGa検出用エアフロメータ31から検出された吸入空気量とに基づいて筒内4から排気された排気ガスの体積を算出する排気ガス体積算出手段とを形成することで、筒内4に供給された吸入空気中の酸素のモル数と、筒内4から排出された排気ガス中の酸素のモル数とを算出することができ、算出された吸入空気中の酸素のモル数と排気ガス中の酸素のモル数とに基づいて、吸入空気の吹き抜け率を把握することが可能となる。
また、本第二の実施形態は、第一の実施形態で構成要件とされたCO濃度検出センサ15、CO2濃度検出センサ16およびHC濃度検出センサ17を構成要件とはせず、当該空燃比制御装置の構造の簡素化が可能となる。
更に、筒内空燃比の算出および筒内空燃比の制御に対する作用効果は、第一の実施形態と同様の作用効果を奏することができる。
尚、本第二の実施形態におけるステップ44にて示された吸入空気の吹き抜け率の算出方法は、第一の実施形態のステップ24に示された方法と同様であり、従って、排気ガス中に含まれる未燃焼酸素はほとんど存在しないと考えることができる、筒内空燃比を理論空燃比あるいはリッチ空燃比とする場合に、本第二の実施形態は特に有効となる。また、目標空燃比をリーン空燃比とする場合においても、第一の実施形態と同様に、例えば、未燃焼酸素の濃度を検出する酸素濃度検出センサを筒内4に備えることにより、排気ガス中の吹き抜け空気中のみの酸素濃度を算出することで、吸入空気の吹き抜け率の精度を向上させることができる。
以下、図5および図6を参照して本発明の内燃機関の空燃比制御装置の第三の実施形態について説明する。
図5は、本発明の内燃機関の空燃比制御装置の第三の実施形態の概略構成図であって、機関本体の気筒を示した部分断面図である。図1と同様に、図5において、1は気筒、2は吸気ポート、3は排気ポート、4は筒内(燃焼室)、5は吸気バルブ、6は排気バルブである。また、55はバルブオーバーラップ時に吹き抜ける空気を示している。
本第三の実施形態の空燃比制御装置は、筒内4に供給された吸入空気量を検出するGa検出用エアフロメータ51と、筒内4に直接燃料を噴射する直噴用インジェクタ52と、筒内4から排出される排気ガスの空燃比を検出する排気A/F検出センサ54と、バルブオーバーラップ値を検出するバルブオーバーラップ検出手段56、エンジン回転数を検出するエンジン回転数検出手段57と、演算器(ECU)53とを備える。
図5に示すように、演算器53は、Ga検出用エアフロメータ51、排気A/F検出センサ54、バルブオーバーラップ検出手段56およびエンジン回転数検出手段57の検出値を読み込むべく、Ga検出用エアフロメータ51、排気A/F検出センサ54、バルブオーバーラップ検出手段56およびエンジン回転数検出手段57に接続、例えば電気接続されている。更に、演算器53は、直噴用インジェクタ52からの燃料噴射量を制御すべく、直噴用インジェクタ52に接続、例えば電気接続されている。
図6は、本第三の実施形態の空燃比制御装置における空燃比制御方法を示したフローチャートである。
まずステップ61にて、INJ噴射すなわち直噴用インジェクタ52から燃料が筒内4に噴射される。
続いてステップ62にて、Ga検出用エアフロメータ51から検出される吸入空気量を演算器53に読み込む。尚、本ステップ62において、演算器53には、バルブオーバーラップ検出手段56およびエンジン回転数検出手段57から検出されるバルブオーバーラップ値およびエンジン回転数も併せて読み込まれる。
続いてステップ63にて、吸入空気の吹き抜け率を、該吸入空気の吹き抜け率と吸入空気量とバルブオーバーラップ値とエンジン回転数との予め定められた関係に基づいて算出する。吸入空気の吹き抜け率と吸入空気量とバルブオーバーラップ値とエンジン回転数との予め定められた関係は、実験等により把握され、例えば、吸入空気量とバルブオーバーラップ値とエンジン回転数とをパラメータとして吸入空気の吹き抜け率の算出を可能とするデータ−ベース化された吹き抜け率マップ(3次元マップ)として、演算器53のメモリーに記憶させることが考えられる。
続いてステップ64にて、ステップ63にて算出された吸入空気の吹き抜け率と、ステップ62にて得られた排気ガスの空燃比とに基づいて筒内空燃比を算出する。筒内空燃比の算出方法については、本発明の第一の実施形態のステップ25と同様である。
続いてステップ65からステップ67にて、筒内空燃比を目標空燃比、例えば理論空燃比にすべく、直噴用インジェクタ52の燃料噴射を制御する。この制御方法については、本発明の第一の実施形態のステップ26からステップ28と同様である。
本第三の実施形態によれば、Ga検出用エアフロメータ51とバルブオーバーラップ検出手段56とエンジン回転数検出手段57と演算器53とが協働して、筒内4に供給された吸入空気量を検出する吸入空気量検出手段を形成し、且つ、吸入空気の吹き抜け率と吸入空気量とバルブオーバーラップ値とエンジン回転数との予め定められた関係に基づいて、吸入空気の吹き抜け率を把握することを可能にする。
また、筒内空燃比の算出および筒内空燃比の制御に対する作用効果は、第一の実施形態と同様の作用効果を奏することができる。
以下、図7および図8を参照して本発明の内燃機関の空燃比制御装置の第四の実施形態について説明する。
図7は、本発明の内燃機関の空燃比制御装置の第四の実施形態の概略構成図であって、機関本体の気筒を示した部分断面図である。図1と同様に、図7において、1は気筒、2は吸気ポート、3は排気ポート、4は筒内(燃焼室)、5は吸気バルブ、6は排気バルブである。また、76はバルブオーバーラップ時に吹き抜ける空気を示している。
本第四の実施形態の空燃比制御装置は、筒内4に供給された吸入空気量を検出する吸入空気量検出用エアフロメータ71(以下、E(Ga)検出用エアフロメータと称す)と、筒内4に直接燃料を噴射する直噴用インジェクタ72と、筒内4から排出される排気ガスの空燃比を検出する排気A/F検出センサ74と、筒内圧力を検出する筒内圧センサであって、バルブオーバーラップ時に筒内から吹き抜けずに筒内に残った筒内空気量を算出できる筒内圧センサ75と、演算器73とを備える。
図7に示すように、演算器73は、E(Ga)検出用エアフロメータ71および排気A/F検出センサ74の検出値を読み込むべく、E(Ga)検出用エアフロメータ71および排気A/F検出センサ74に接続、例えば電気接続されている。更に、演算器73は、直噴用インジェクタ72からの燃料噴射量を制御すべく、直噴用インジェクタ72に接続、例えば電気接続されている。
図8は、本第四の実施形態の空燃比制御装置における空燃比制御方法を示したフローチャートである。
まずステップ81にて、INJ噴射すなわち直噴用インジェクタ72から燃料が筒内4に噴射される。
続いてステップ82およびステップ83にて、E(Ga)検出用エアフロメータ71から得られる吸入空気量と、筒内圧力センサ75から算出された筒内空気量とを、演算器73に読み込む。またこの際、演算器73には、排気A/F検出センサ74から得られる排気ガスの空燃比(排気A/F)も併せて読み込まれる。
続いてステップ84にて、E(Ga)検出用エアフロメータ71から検出された吸入空気量と、筒内圧力センサ75から算出された筒内空気量とに基づいて、演算器73により、筒内4に供給された吸入空気のうち燃焼に寄与しない吹き抜け空気の割合を示す吸入空気の吹き抜け率を算出する。
ここで、吸入空気の吹き抜け率Kの算出は、下記に示す式5により算出される。
〔数5〕
K=(E(Ga)−T(Ga))/E(Ga)
上記式5の中で、E(Ga)はE(Ga)検出用エアフロメータから得られる吸入空気量、T(Ga)は筒内圧センサ75から得られる筒内空気量である。
続いてステップ85にて、ステップ84にて算出された吸入空気の吹き抜け率と、排気A/Fセンサ74から得られた排気ガスの空燃比とに基づいて筒内空燃比を算出する。筒内空燃比の算出方法については、本発明の第一の実施形態のステップ25と同様である。
続いてステップ86からステップ88にて、筒内空燃比を目標空燃比、例えば理論空燃比にすべく、直噴用インジェクタ72の燃料噴射を制御する。この制御方法については、本発明の第一の実施形態のステップ26からステップ28と同様である。
本第四の実施形態によれば、E(Ga)検出用エアフロメータ71と筒内圧力センサ75と演算器73とが協働して、筒内4に供給された吸入空気量を検出する吸入空気量検出手段と、バルブオーバーラップ時に筒内から吹き抜けずに筒内4に残った筒内空気量を算出する筒内空気量算出手段とを形成し、算出された吸入空気量と筒内空気量とに基づいて、吸入空気の吹き抜け率を把握することが可能となる。
尚、筒内空燃比の算出および筒内空燃比の制御に対する作用効果は、第一の実施形態と同様の作用効果を奏することができる。
以下、図9および図10を参照して本発明の内燃機関の空燃比制御装置の第五の実施形態について説明する。
図9は、本発明の内燃機関の空燃比制御装置の第五の実施形態の概略構成図であって、機関本体の気筒を示した部分断面図である。図1と同様に、図9において、1は気筒、2は吸気ポート、3は排気ポート、4は筒内(燃焼室)、5は吸気バルブ、6は排気バルブである。また、95はバルブオーバーラップ時に吹き抜ける空気を示している。
本第五の実施形態の空燃比制御装置は、筒内4に供給された吸入空気量を検出するE(Ga)検出用エアフロメータ91と、筒内4に直接燃料を噴射する直噴用インジェクタ92と、吸気ポート2に燃料を噴射するポート噴射用インジェクタ93と、直噴用インジェクタ92からの燃料噴射量(直噴の燃料噴射量)を検出する直噴燃料噴射量検出手段96と、ポート噴射用インジェクタ93からの燃料噴射量(ポート噴射の全噴射量)を検出するポート噴射燃料噴射量検出手段97と、更に、演算器94とを備える。更に、本第五の実施形態の空燃比制御装置においては、図9には示されていないが、前述した第一の実施形態から第四の実施形態で示されたいずれか一つ実施形態に示した、吸入空気の吹き抜け率を算出するための構成要素を備える。例えば、本第五の実施形態において、第一の実施形態で示した吸入空気の吹き抜け率算出方法を適用する場合には、上記構成要素の他に、O2濃度検出センサとCO濃度検出センサとCO2濃度検出センサとHC濃度検出センサとが備えられることになる。
図9に示すように、演算器94は、E(Ga)検出用エアフロメータ91、直噴燃料噴射量検出手段96およびポート噴射燃料噴射量検出手段97の検出値を読み込むべく、E(Ga)検出用エアフロメータ91、直噴燃料噴射量検出手段96およびポート噴射燃料噴射量検出手段97に接続、例えば電気接続されている。また、演算器94は、吸入空気の吹き抜け率を算出するための各構成要素の検出値を読み込むべく、これらの各構成要素に接続、例えば電気接続されている。更に、演算器94は、直噴用インジェクタ92およびポート噴射用インジェクタ93からの燃料噴射量を制御すべく、直噴用インジェクタ92およびポート噴射用インジェクタ93に接続、例えば電気接続されている。
図10は、本第五の実施形態の空燃比制御装置における空燃比制御方法を示したフローチャートである。
まずステップ101にて、INJ噴射すなわち、直噴用インジェクタ92およびポート噴射用インジェクタの少なくとも一方から燃料を噴射する。
続いてステップ102にて、E(Ga)検出用エアフロメータ91から得られる吸入空気量を演算器94に読み込む。尚、本ステップ92において、演算器94には、吸入空気の吹き抜け率を算出するための各構成要素と、直噴燃料噴射量検出手段96と、ポート噴射燃料噴射量検出手段97とから得られる検出値も併せて読み込まれる。
続いてステップ103にて、前述した第一の実施形態から第四の実施形態に示した吸入空気吹き抜け率算出方法のうちのいずれか一つの方法により、筒内4に供給された吸入空気のうち燃焼に寄与しない吹き抜け空気の割合を示す吸入空気の吹き抜け率を算出する。
続いて、ステップ104にて、ポート噴射用インジェクタ93からの燃料噴射量とステップ103にて算出された吸入空気の吹き抜け率とに基づいて、バルブオーバーラップ期間中に吹き抜けずに筒内4に残ったポート噴射の燃料量を算出する。
ここで、筒内4の残ったポート噴射の燃料量T(Qpfi)の算出は、下記に示す式6により算出される。
〔数6〕
T(Qpfi)=E(Qpfi)×(1−K)
上記式6の中で、E(Qpfi)はポート噴射の全噴射量、Kは吸入空気の吹き抜け率である。
続いてステップ105にて、ステップ102にて検出された吸入空気量および直噴の燃料噴射量、ステップ103にて算出された吸入空気の吹き抜け率と、ステップ104にて算出された筒内4に残ったポート噴射の燃料量と、に基づいて筒内空燃比を算出する。
ここで、筒内空燃比S(A/F)の算出は、下記に示す式7により算出される。
〔数7〕
S(A/F)=(Ga×(1−K))/(Qd4+T(Qpfi))
上記式7の中で、GaはE(Ga)検出用エアフロメータ91から得られた吸入空気量、Kはステップ103で算出された吸入空気の吹き抜け率、Qd4は直噴インジェクタ92から噴射された直噴の燃料噴射量、T(Qpfi)はステップ104にて算出された筒内4に残ったポート噴射の燃料量である。
続いてステップ106にて、ステップ105にて算出された筒内空燃比が、予め設定された目標空燃比に比べて大きいか否かを判断する。例えば、筒内空燃比が目標空燃比よりも大きい場合には、ステップ107に進み、直噴用インジェクタ92からの燃料噴射量(D4の噴射量)およびポート噴射用インジェクタ93からの燃料噴射量(PFIの噴射量)の少なくとも一方の燃料噴射量を増量すべく、直噴用インジェクタ92およびポート噴射用インジェクタ93の少なくとも一方の噴射を制御する。また、筒内空燃比が目標空燃比よりも小さい場合には、ステップ108に進み、直噴用インジェクタ92からの燃料噴射量およびポート噴射用インジェクタ93からの燃料噴射量の少なくとも一方の燃料噴射量を減量すべく、直噴用インジェクタ92およびポート噴射用インジェクタ93の少なくとも一方の噴射を制御する。
本第五の実施形態によれば、E(Ga)検出用エアフロメータ91と、直噴燃料噴射量検出手段96と、ポート噴射燃料噴射量検出手段97と、第一の実施形態から第四の実施形態で示されたいずれか一つ実施形態に示した吸入空気の吹き抜け率を算出するための構成要素と、演算器94とが協働して、筒内4に供給された吸入空気量を検出する吸入空気量検出手段と、吸入空気の吹き抜け率を算出する吸入空気吹き抜け率算出手段と、バルブオーバーラップ期間中に吹き抜けずに筒内に残ったポート噴射の燃料を算出するポート噴射筒内残留燃料量検出手段と形成することで、筒内空燃比を算出することができる。具体的には、第一の実施形態から第四の実施形態に示されたいずれかの一つの方法で算出された吸入空気の吹き抜け率と、ポート噴射燃料噴射量検出手段96から得られたポート噴射用インジェクタ93からの燃料噴射量とに基づいて、ポート噴射の筒内残留分、すなわち、バルブオーバーラップ期間中に吹き抜けずに筒内に残ったポート噴射の燃料量を算出することができる。そして、算出されたポート噴射の筒内残留分と、直噴燃料噴射量検出手段から得られた直噴用インジェクタ92からの燃料噴射量と、E(Ga)検出用エアフロメータ91からの吸入空気量と、吸入空気吹き抜け率とに基づいて、筒内空燃比を算出することが可能となる。
更に、算出された筒内空燃比に基づいて、直噴インジェクタ92およびポート噴射用インジェクタ93の少なくとも一方からの燃料噴射量を演算器94により制御することで、筒内を目標空燃比、例えば理論空燃比に高精度に制御することが可能となる。
本発明の空燃比制御装置の第一の実施形態の概略構成図であって、機関本体の気筒を示した部分断面図である。 第一の実施形態の空燃比制御装置の空燃比制御方法を示したフローチャート図である。 本発明の空燃比制御装置の第二の実施形態の概略構成図であって、機関本体の気筒を示した部分断面図である。 第二の実施形態の空燃比制御装置の空燃比制御方法を示したフローチャート図である。 本発明の空燃比制御装置の第三の実施形態の概略構成図であって、機関本体の気筒を示した部分断面図である。 第三の実施形態の空燃比制御装置の空燃比制御方法を示したフローチャート図である。 本発明の空燃比制御装置の第四の実施形態の概略構成図であって、機関本体の気筒を示した部分断面図である。 第四の実施形態の空燃比制御装置の空燃比制御方法を示したフローチャート図である。 本発明の空燃比制御装置の第五の実施形態の概略構成図であって、機関本体の気筒を示した部分断面図である。 第五の実施形態の空燃比制御装置の空燃比制御方法を示したフローチャート図である。
符号の説明
1 気筒
2 吸気ポート
3 排気ポート
4 筒内
5 吸気バルブ
6 排気バルブ
11 Ga検出用エアフロメータ
12 直噴用インジェクタ
13 O2濃度検出用センサ
14 演算器
15 CO濃度検出センサ
16 CO2濃度検出センサ
17 HC濃度検出センサ

Claims (7)

  1. 内燃機関の筒内へ燃料を噴射するための前記筒内に噴孔を開口する直噴用インジェクタと吸気系にポート噴射用インジェクタとを備え且つバルブオーバーラップを有する筒内直噴射式内燃機関の空燃比制御装置において、
    前記筒内に供給された吸入空気量を検出する吸入空気量検出手段と、
    前記筒内に供給された吸入空気のうち燃焼に寄与しない吹き抜け空気の割合を示す吸入空気の吹き抜け率を算出する吸入空気吹き抜け率算出手段と、
    前記直噴用インジェクタからの燃料噴射量を検出する直噴燃料噴射量検出手段と、
    前記ポート噴射用インジェクタからの燃料噴射量を検出するポート噴射燃料噴射量検出手段と、
    前記吸入空気吹き抜け率算出手段により算出された吸入空気の吹き抜け率と、前記ポート噴射燃料噴射量検出手段から検出された燃料噴射量とに基づいて、前記ポート噴射用インジェクタから供給された燃料のうち前記筒内に残留する燃料量を算出するポート噴射筒内残留燃料量算出手段とを有し、
    前記吸入空気量検出手段により検出された吸入空気量と、前記吸入空気吹き抜け率算出手段により算出された吸入空気の吹き抜け率と、前記直噴燃料噴射量検出手段から検出された燃料噴射量と、前記ポート噴射筒内残留燃料量算出手段から算出された前記筒内の残留燃料量とに基づいて、前記筒内の空燃比を算出し、前記直噴用インジェクタおよび前記ポート噴射用インジェクタの少なくとも一方からの燃料噴射量を制御することにより前記筒内を目標空燃比に制御する、
    ことを特徴とする空燃比制御装置。
  2. 前記吸入空気吹き抜け率算出手段は、前記筒内に供給された吸入空気中の酸素のモル数を算出する第一の酸素モル数算出手段と、前記筒内から排出された排気ガス中の酸素のモル数を算出する第二の酸素モル数算出手段と、を有し、
    前記第一の酸素モル数算出手段から算出された吸入空気中の酸素のモル数と、前記第二の酸素モル数算出手段から算出された排気ガス中の酸素のモル数とに基づいて、前記筒内に供給された吸入空気のうち燃焼に寄与しない吹き抜け空気の割合を示す吸入空気の吹き抜け率を算出する、
    ことを特徴とする請求項1に記載の空燃比制御装置。
  3. 前記第一の酸素モル数算出手段および前記第二の酸素モル数算出手段は、前記筒内に供給された吸入空気量を検出する吸入空気量検出手段と、前記筒内から排出された排気ガス中の酸素濃度を検出する排気ガス酸素濃度検出手段と、前記筒内から排気された排気ガスの体積を算出する排気ガス体積算出手段と、を有し、
    前記筒内に供給された吸気空気中の酸素のモル数は、前記吸入空気量検出手段から検出された吸入空気量に基づいて算出され、
    前記筒内から排出された排気ガス中の酸素モル数は、前記排気ガス体積算出手段から算出された排気ガスの体積と、前記排気ガス酸素濃度検出手段から検出された排気ガス中の酸素濃度と、に基づいて算出される、
    ことを特徴とする請求項2に記載の空燃比制御装置。
  4. 前記排気ガス体積算出手段は、前記吸入空気量検出手段と、前記筒内から排出された排気ガス中の一酸化炭素と二酸化炭素と炭化水素とのそれぞれの濃度を検出する、一酸化炭素濃度検出手段と、二酸化炭素濃度検出手段と、炭化水素濃度検出手段と、を有し、
    前記吸入空気量検出手段から検出された吸入空気量と、前記一酸化炭素濃度検出手段と前記二酸化炭素濃度検出手段と前記炭化水素濃度検出手段とのそれぞれから検出された排気ガス中の一酸化炭素と二酸化炭素と炭化水素とに基づいて、前記筒内から排出される排気ガスの体積を算出する、
    ことを特徴とする請求項3に記載の空燃比制御装置。
  5. 前記排気ガス体積算出手段は、前記吸入空気量検出手段から検出された吸入空気量と、吸入空気と排気ガスの体積比係数とに基づいて、前記筒内から排気された排気ガスの体積を算出する、
    ことを特徴とする請求項3に記載の空燃比制御装置。
  6. 前記吸入空気吹き抜け率算出手段は、
    前記筒内に供給された吸入空気量を検出する吸入空気量検出手段と、
    バルブオーバーラップ値を検出するバルブオーバーラップ検出手段と、
    エンジン回転数を検出するエンジン回転数検出手段と、を有し、
    吸入空気の吹き抜け率を、該吸入空気の吹き抜け率と吸入空気量とバルブオーバーラップ値とエンジン回転数との予め定められた関係に基づいて算出する、
    ことを特徴とする請求項1に記載の空燃比制御装置。
  7. 前記吸入空気吹き抜け率算出手段は、
    前記筒内に供給された吸入空気量を検出する吸入空気量検出手段と、
    前記筒内の圧力を検出する筒内圧センサを使用して前記筒内の空気量を算出する筒内空気量算出手段と、を有し、
    前記吸入空気量検出手段から検出された吸入空気量と、前記筒内空気量算出手段から算出された筒内空気量とに基づいて、前記筒内に供給された吸入空気のうち燃焼に寄与しない吹き抜け空気の割合を示す吸入空気の吹き抜け率を算出する、
    ことを特徴とする請求項1に記載の空燃比制御装置。
JP2004368939A 2004-12-21 2004-12-21 筒内直噴射式内燃機関における空燃比制御装置 Expired - Fee Related JP4360324B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004368939A JP4360324B2 (ja) 2004-12-21 2004-12-21 筒内直噴射式内燃機関における空燃比制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004368939A JP4360324B2 (ja) 2004-12-21 2004-12-21 筒内直噴射式内燃機関における空燃比制御装置

Publications (2)

Publication Number Publication Date
JP2006177193A JP2006177193A (ja) 2006-07-06
JP4360324B2 true JP4360324B2 (ja) 2009-11-11

Family

ID=36731533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004368939A Expired - Fee Related JP4360324B2 (ja) 2004-12-21 2004-12-21 筒内直噴射式内燃機関における空燃比制御装置

Country Status (1)

Country Link
JP (1) JP4360324B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025511A (ja) * 2006-07-24 2008-02-07 Toyota Motor Corp 内燃機関の空燃比制御装置
CN102918242B (zh) * 2010-05-25 2013-09-18 丰田自动车株式会社 内燃机的燃料喷射装置
JP2012251535A (ja) * 2011-06-07 2012-12-20 Nissan Motor Co Ltd 内燃機関
JP5857678B2 (ja) * 2011-11-28 2016-02-10 日産自動車株式会社 内燃機関の制御装置及び内燃機関の制御方法
JP6202063B2 (ja) * 2015-09-15 2017-09-27 トヨタ自動車株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
JP2006177193A (ja) 2006-07-06

Similar Documents

Publication Publication Date Title
JP3521632B2 (ja) 内燃機関の制御装置
JP2008157044A (ja) 内燃機関の制御装置
JP2011027059A (ja) エンジンの制御装置
CN107489551B (zh) 内燃机的控制装置
JPH0996238A (ja) エンジン燃焼制御装置
JP4360324B2 (ja) 筒内直噴射式内燃機関における空燃比制御装置
JP5910651B2 (ja) 内燃機関の空燃比検出装置
JP2008231995A (ja) 火花点火機関の運転制御方法および運転制御装置
JP2000002157A (ja) 電子機関制御装置
JP5867441B2 (ja) 内燃機関の制御装置
JP2008025511A (ja) 内燃機関の空燃比制御装置
JP4412216B2 (ja) エンジンの制御装置及び制御方法
JP7323416B2 (ja) 内燃エンジンのシリンダー内に存在する再循環排気ガスの濃度を特定するための推定方法
KR101254673B1 (ko) 모터 차량에서 연료의 에탄올 비율을 결정하는 방법 및 장치
JP4883068B2 (ja) 燃料噴射制御装置
JP4894529B2 (ja) 触媒劣化検出装置
JP4232710B2 (ja) 水素添加内燃機関の制御装置
JP5644342B2 (ja) 多気筒内燃機関の制御装置
JP6536195B2 (ja) Cngエンジンにおける燃焼制御方法及び装置
JP5071271B2 (ja) 圧縮自着火式内燃機関
JP2008297922A (ja) 内燃機関の制御装置
JP2008045475A (ja) 内燃機関の適合方法
JP4321274B2 (ja) 内燃機関
JP2013119803A (ja) 内燃機関の故障検出装置
JP5260770B2 (ja) エンジンの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees