JP4359670B2 - Freezing tool - Google Patents

Freezing tool Download PDF

Info

Publication number
JP4359670B2
JP4359670B2 JP2004054966A JP2004054966A JP4359670B2 JP 4359670 B2 JP4359670 B2 JP 4359670B2 JP 2004054966 A JP2004054966 A JP 2004054966A JP 2004054966 A JP2004054966 A JP 2004054966A JP 4359670 B2 JP4359670 B2 JP 4359670B2
Authority
JP
Japan
Prior art keywords
freezing
main body
frozen
holding
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004054966A
Other languages
Japanese (ja)
Other versions
JP2005239685A (en
Inventor
正二郎 笠
修二 上田
美幸 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuoka Prefectural Government
Original Assignee
Fukuoka Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuoka Prefectural Government filed Critical Fukuoka Prefectural Government
Priority to JP2004054966A priority Critical patent/JP4359670B2/en
Publication of JP2005239685A publication Critical patent/JP2005239685A/en
Application granted granted Critical
Publication of JP4359670B2 publication Critical patent/JP4359670B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

本発明は、卵子、胚や組織細胞などの生物学的標本を凍結保存する際に使用する凍結用具に関する。   The present invention relates to a freezing tool used when cryopreserving a biological specimen such as an egg, embryo or tissue cell.

産業として確立している牛の胚移植技術に用いられる胚は、受胚牛の発情周期に合わせて移植を行うのが一般的である。そのため、生産した胚を液体窒素である凍結物質の中で一定期間保存することが必要である。このような生物標本の生存性を維持したまま長期間保存する方法として、低温での凍結保存法が多く利用されている。   Embryos used for bovine embryo transfer technology, which has been established as an industry, are generally transferred in accordance with the estrous cycle of the recipient cow. Therefore, it is necessary to store the produced embryo in a frozen substance that is liquid nitrogen for a certain period of time. As a method for storing such a biological specimen for a long period of time while maintaining the viability, a cryopreservation method at a low temperature is often used.

凍結保存の従来法としては、保存液を氷結させて細胞内の自由水を脱水しながらゆっくりと冷却する緩慢冷却法と、高濃度耐凍剤を含んだ保存液を超急速に冷却してガラス化状に固化させることにより、種々の生物標本を高い生存性を維持したまま長期間保存することが可能なガラス化法とが知られている。   Conventional methods for cryopreservation include slow cooling, which freezes the preservation solution and slowly cools the free water in the cell while dehydrating it, and ultra-rapidly cools the preservation solution containing high-concentration antifreeze to vitrify it. There is known a vitrification method in which various biological specimens can be stored for a long period of time while maintaining high viability by solidifying into a shape.

例えば、特許文献1には、生物学的標本を移動用器具に置いて、この移動用器具を直接凍結物質の中に置くことにより、生物学的標本を直接凍結物質に暴露し、ガラス化することが記載されている。また、移動用器具として、ループ、ネットおよびヘラからなる群から選択すること、好ましくはループであることが記載されている。なお、ヘラについての詳細な記載はない。   For example, in Patent Document 1, a biological specimen is placed on a moving instrument, and the moving instrument is placed directly in a frozen substance, whereby the biological specimen is directly exposed to the frozen substance and vitrified. It is described. In addition, it is described that the moving device is selected from the group consisting of a loop, a net and a spatula, preferably a loop. There is no detailed description of the spatula.

また、特許文献2には、ガラス化に用いる用具として、耐寒性材料により形成された本体部と、本体部の一端に取り付けられ、可撓性かつ透明性かつ液体窒素耐性材料により形成された卵付着保持用ストリップと、卵付着保持用ストリップを被包可能に本体部に着脱自在に取り付けられる一端が封鎖され、かつ耐寒性材料により形成された筒状部材からなる卵凍結保存用具が記載されている。卵付着保持用ストリップは、本体部の一端の円柱状部の先端に形成された軸方向に延びる凹部に、真っ直ぐに取り付けられている。   Patent Document 2 discloses a main part formed of a cold-resistant material as a tool used for vitrification, and an egg formed of a flexible, transparent, liquid nitrogen-resistant material attached to one end of the main part. There is described an egg cryopreservation tool comprising an adhesion holding strip and a cylindrical member formed of a cold-resistant material sealed at one end, which is removably attached to the main body so as to encapsulate the egg adhesion holding strip. Yes. The egg attachment holding strip is straightly attached to an axially extending recess formed at the tip of the cylindrical portion at one end of the main body.

特表2002−543041号公報Special Table 2002-54341 特開2002−315573号公報JP 2002-315573 A

緩慢冷却法により牛胚を凍結すると、胚が凍結により障害を受けてしまうため、胚移植の融解時に生存率の減少が見られる。特に、体外受精胚は、従来の凍結による悪影響の感受性が高く、融解後72時間後の生存率が70%に達しない。そのため、移植後の受胎率も自ずと低い傾向にある。   When freezing bovine embryos by slow cooling, the embryos are damaged by freezing, so there is a decrease in survival rate when the embryo transfer is thawed. In particular, in vitro fertilized embryos are highly susceptible to the adverse effects of conventional freezing, and the survival rate after 72 hours after thawing does not reach 70%. Therefore, the conception rate after transplantation tends to be low.

そこで、別の保存法として高濃度耐凍剤を用いたガラス化法が考案され、牛胚移植技術においても、卵子および胚のガラス化技術が実験レベルで利用されているのであるが、商業レベルで利用するためには、ガラス化の費用が高いという問題がある。   Therefore, a vitrification method using a high-concentration antifreeze was devised as another preservation method, and in the embryo transfer technology, the vitrification technology of eggs and embryos is used at the experimental level, but at the commercial level. In order to use it, there is a problem that the cost of vitrification is high.

また、特許文献2に記載の用具にあっては、卵付着保持用ストリップが、本体部の一端の円柱状部の先端に真っ直ぐに取り付けられているため、本体部を手で保持して卵付着保持用ストリップの先端部を液体窒素に浸漬する際、この卵付着保持用ストリップの先端に付着させた卵子およびガラス化液が安定しにくい。   In addition, in the tool described in Patent Document 2, since the egg adhesion holding strip is attached straight to the tip of the cylindrical portion at one end of the main body, the egg is attached by holding the main body by hand. When the tip of the holding strip is immersed in liquid nitrogen, the egg and vitrification solution attached to the tip of the egg attachment holding strip are difficult to stabilize.

そこで、本発明においては、標本の長期保存において融解後の標本の生存性を維持しつつ、保存作業を確実かつ簡便に行うことが可能な凍結用具を提供することを目的とする。   Therefore, an object of the present invention is to provide a freezing tool that can perform the preservation work reliably and easily while maintaining the viability of the specimen after thawing in the long-term preservation of the specimen.

本発明の凍結用具は、卵子、胚や細胞組織などの生物学的標本を凍結液で包被して一端に保持し、凍結物質の中に浸漬することによりガラス化するための凍結用具であって、直線糸状の本体部と、この本体部の一端に勾配を設けて形成された平面状の保持部とを備えたものである。   The freezing tool of the present invention is a freezing tool for vitrifying a biological specimen such as an egg, embryo or cell tissue with a freezing solution, holding it at one end, and immersing it in a frozen substance. In addition, a linear thread-like main body portion and a planar holding portion formed with a gradient at one end of the main body portion are provided.

本発明の凍結用具では、本体部の一端に平面状の保持部が勾配を設けて形成されているため、この平面状の保持部の平面が略水平となるように本体部を斜め下向きに保持した状態を維持したまま、平面状の保持部の上面に凍結液で包被した生物学的標本を滴下して保持し、凍結物質の中へ浸漬することにより、生物学的標本のガラス化を行うことができる。   In the freezing tool of the present invention, since the flat holding portion is formed at one end of the main body portion with a gradient, the main body portion is held obliquely downward so that the plane of the flat holding portion is substantially horizontal. The biological specimen encapsulated with the freezing solution is dropped on the upper surface of the flat holding part, and is immersed in the frozen substance to keep the biological specimen vitrified. It can be carried out.

ここで、平面状の保持部の本体部に対する勾配は、20〜40°とするのが望ましい。この範囲とすることで、凍結液で包被した生物学的標本の滴下および保持並びに凍結物質の中への浸漬時の作業性を維持しつつ、凍結用具全体の幅を小さくすることができる。勾配が20°より小さい場合、保持部の平面を略水平とするためには本体部を水平に近く保持することになり、生物学的標本および凍結液の重量によってこれらの滴下時および保持時に本体部が斜めになってしまい、保持部の平面を略水平に維持するのが困難となることがある。一方、勾配が40°より大きい場合、保持部の平面を略水平とするためには本体部を垂直に近く保持することになり、顕微鏡下で生物学的標本および凍結液の滴下および保持を行う場合に、顕微鏡に干渉してしまい、これらの作業が困難となることがある。   Here, the gradient of the planar holding portion with respect to the main body is preferably 20 to 40 °. By setting this range, it is possible to reduce the width of the entire freezing tool while maintaining the workability at the time of dripping and holding the biological specimen encapsulated with the frozen liquid and immersing in the frozen substance. When the gradient is smaller than 20 °, the main body portion is held almost horizontal in order to make the plane of the holding portion substantially horizontal, and the main body at the time of dripping and holding due to the weight of the biological specimen and the frozen liquid. The part may be inclined, and it may be difficult to maintain the plane of the holding part substantially horizontal. On the other hand, when the gradient is larger than 40 °, the main body portion is held close to the vertical in order to make the plane of the holding portion substantially horizontal, and the biological specimen and the frozen liquid are dropped and held under the microscope. In some cases, it may interfere with the microscope, making these operations difficult.

また、本発明の凍結用具は、本体部の他端に磁力により引き寄せ可能な磁性体材料を備えたものとするのが望ましい。これにより、ガラス化後、凍結用具ごとそのまま細い標本保存筒内に入れて冷凍保存した生物学的標本を、この細い標本保存筒から取り出す際、磁力によって本体部の他端を引き寄せて容易に取り出すことができる。   In addition, the freezing tool of the present invention is preferably provided with a magnetic material that can be attracted by a magnetic force at the other end of the main body. Thereby, after vitrification, when the biological specimen frozen and stored in the thin specimen storage cylinder as it is with the freezing tool is taken out from the thin specimen storage cylinder, the other end of the main body portion is pulled by the magnetic force and easily removed. be able to.

また、この本体部の他端は、着色したものとするのが望ましい。これにより、ガラス化後、凍結用具ごとそのまま細い標本保存筒内に入れて冷凍保存した生物学的標本を、この着色によって識別することができる。   The other end of the main body is preferably colored. Thereby, after vitrification, a biological specimen that has been frozen and stored in a thin specimen storage cylinder together with the freezing tool can be identified by this coloring.

また、本体部および保持部は、有色透明とするのが望ましい。これにより、本体部および保持部が光を透過するため、凍結液で包被した生物学的標本をそのまま顕微鏡で確認することができるとともに、有色であることから、凍結物質の中に浸漬した際、凍結物質内で凍結用具を容易に視認することができる。   Further, it is desirable that the main body part and the holding part be colored and transparent. As a result, since the main body and the holding part transmit light, the biological specimen encapsulated with the frozen liquid can be confirmed as it is with a microscope, and since it is colored, when immersed in a frozen substance, The freezing tool can be easily visually recognized in the frozen substance.

また、本体部は、ポリアミド繊維製の糸とするのが望ましい。本体部がポリアミド繊維製の糸であれば、−190〜−200℃の凍結物質内に浸漬されても、可撓性を保持することができる。   Further, it is desirable that the main body is a polyamide fiber yarn. If the main body portion is a polyamide fiber yarn, flexibility can be maintained even when immersed in a frozen material at -190 to -200 ° C.

(1)直線糸状の本体部と、この本体部の一端に勾配を設けて形成された平面状の保持部とを備えたことにより、平面状の保持部の平面が略水平となるように本体部を斜め下向きに保持した状態を維持したまま、平面状の保持部の上面に凍結液で包被した生物学的標本を滴下して保持し、凍結物質の中へ浸漬することができる。これにより、ガラス化法による保存作業を確実かつ簡便に行うことができ、標本を高い生存性を維持したまま凍結保存することができる。また、保持部の上面に滴下した生物学的標本を含む凍結液が本体部と保持部との境界で堰き止められるため、少ない凍結液で確実に生物学的標本を包被することができる。さらに、この凍結用具は、主に直線糸状の本体部と、この本体部の一端に勾配を設けて形成された平面状の保持部とから構成され、簡単な構造であることから、安価に提供でき、ガラス化の費用を低廉とすることができる。 (1) By providing a linear thread-shaped main body portion and a planar holding portion formed with a gradient at one end of the main body portion, the main body so that the plane of the planar holding portion is substantially horizontal. While maintaining the state in which the part is held obliquely downward, the biological specimen encapsulated with the frozen liquid can be dropped and held on the upper surface of the planar holding part, and immersed in the frozen substance. Thereby, the preservation | save operation | work by vitrification method can be performed reliably and simply, and a specimen can be cryopreserved, maintaining high viability. Moreover, since the frozen liquid containing the biological specimen dripped onto the upper surface of the holding section is blocked at the boundary between the main body section and the holding section, the biological specimen can be reliably encapsulated with a small amount of frozen liquid. Furthermore, this freezing tool is mainly composed of a linear thread-shaped main body part and a planar holding part formed with a gradient at one end of the main body part, and is provided at low cost because of its simple structure. The cost of vitrification can be reduced.

(2)勾配を20〜40°とすることで、凍結液で包被した生物学的標本の滴下および保持並びに凍結物質の中への浸漬時の作業性を維持しつつ、凍結用具全体の幅を小さくすることができるため、細い標本保存筒からの出し入れ作業も容易となる。 (2) By setting the gradient to 20 to 40 °, the width of the entire freezing tool while maintaining the workability when dipping and holding the biological specimen encapsulated with the frozen liquid and immersing in the frozen substance Therefore, it is possible to easily take in and out the thin specimen storage cylinder.

(3)本体部の他端に磁力により引き寄せ可能な磁性体材料を備えたことにより、ガラス化後、凍結用具ごとそのまま細い標本保存筒内に入れて冷凍保存した生物学的標本を、この細い標本保存筒から取り出す際、磁力によって本体部の他端を引き寄せて容易に取り出すことができる。 (3) By providing a magnetic material that can be attracted by a magnetic force at the other end of the main body, a biological specimen that has been frozen and stored in a thin specimen storage cylinder together with the freezing tool after vitrification When taking out from the specimen storage cylinder, the other end of the main body can be pulled out easily by magnetic force.

(4)本体部の他端を着色したことにより、ガラス化後、凍結用具ごとそのまま細い標本保存筒内に入れて冷凍保存した生物学的標本を、着色によって識別することができ、生物学的標本を容易に管理することが可能となる。 (4) By coloring the other end of the main body, it is possible to identify biological specimens that have been frozen and stored in a thin specimen storage cylinder together with the freezing tool after vitrification, The specimen can be easily managed.

(5)本体部および保持部が、有色透明であることにより、凍結液で包被した生物学的標本をそのまま顕微鏡で確認することができるとともに、有色であることから、凍結物質の中に浸漬した際、凍結物質内で凍結用具を容易に視認することができ、作業性が向上する。 (5) Since the main body part and the holding part are colored and transparent, the biological specimen encapsulated with the frozen liquid can be confirmed as it is with a microscope, and since it is colored, it is immersed in a frozen substance. In this case, the freezing tool can be easily visually recognized in the frozen substance, and workability is improved.

(6)本体部が、ポリアミド繊維製の糸であることにより、−190〜−200℃の凍結物質内に浸漬されても、可撓性を保持することができるため、本体部に加わる力が保持部に保持された生物学的標本および凍結液に伝わることがなく、生物学的標本を損傷することがない。 (6) Since the main body portion is a polyamide fiber yarn, flexibility can be maintained even when immersed in a frozen material at −190 to −200 ° C., so that the force applied to the main body portion is increased. The biological specimen and the frozen liquid held in the holding portion are not transmitted to the biological specimen, and the biological specimen is not damaged.

図1は本発明の実施の形態における凍結用具1を示す図であって、(a)は側面図、(b)は平面図、(c)は凍結液で包被した生物学的標本を保持した状態を示す側面図、(d)は凍結液で包被した生物学的標本を保持した状態を示す平面図である。図1に示すように、本実施形態における凍結用具1は、卵子、胚や細胞組織などの生物学的標本(以下、「標本」と称す。)Eを凍結液Lで包被して一端に保持し、凍結物質の中に浸漬することによりガラス化するための用具であって、本体部2、保持部3および識別部4により構成される。   FIG. 1 is a view showing a freezing tool 1 according to an embodiment of the present invention, where (a) is a side view, (b) is a plan view, and (c) is holding a biological specimen encapsulated with a frozen solution. The side view which shows the state which carried out, (d) is a top view which shows the state which hold | maintained the biological specimen covered with the frozen liquid. As shown in FIG. 1, a freezing tool 1 according to this embodiment includes a biological specimen (hereinafter referred to as “specimen”) E such as an egg, an embryo, or a cell tissue, which is covered with a freezing liquid L at one end. A tool for vitrification by holding and dipping in a frozen substance, which is composed of a main body part 2, a holding part 3, and an identification part 4.

本体部2は、耐寒性、液体窒素耐性、耐伸縮性かつ耐変質性を有するポリアミド繊維(例えば、表面円滑ナイロン等)からなる直線糸状の線維素材である。この本体部2の全長は5〜40mm、直径は0.2〜0.4mmである。また、本体部2は有色透明とすることにより、凍結物質の中に浸漬した際、凍結物質内でその目視確認が容易となり、かつピンセットなどの把持具による把持および誘導が容易となるようにしている。   The main body 2 is a straight fiber-like fiber material made of polyamide fiber (for example, smooth surface nylon) having cold resistance, liquid nitrogen resistance, stretch resistance, and alteration resistance. The main body 2 has a total length of 5 to 40 mm and a diameter of 0.2 to 0.4 mm. Further, the main body 2 is colored and transparent so that when it is immersed in a frozen substance, the visual confirmation within the frozen substance is easy, and gripping and guiding with a gripping tool such as tweezers are facilitated. Yes.

保持部3は、本体部2の延長であり、本体部2の一端に20〜40°の勾配を設けて平面状に形成されたものである。保持部3の幅は、0.3〜0.6mm、長さは0.5〜2.0mmである。なお、少なくとも保持部3の内側(本体部2とのなす角が鈍角である面(以下、「上面」と称す。)の側)は、平面状とする。また、保持部3は、本体部2と同じ材質であり、保持部3の厚さは約0.1mmである。   The holding portion 3 is an extension of the main body portion 2 and is formed in a flat shape by providing a gradient of 20 to 40 ° at one end of the main body portion 2. The holding part 3 has a width of 0.3 to 0.6 mm and a length of 0.5 to 2.0 mm. Note that at least the inside of the holding portion 3 (the side of the surface (hereinafter referred to as “upper surface”) whose obtuse angle with the main body portion 2 is flat) is planar. Moreover, the holding | maintenance part 3 is the same material as the main-body part 2, and the thickness of the holding | maintenance part 3 is about 0.1 mm.

保持部3は、本体部2と同様、有色透明であるため、凍結液Lにより包被した標本Eを平面部の内側に滴下すると、標本がピペット内から保持部3に移行したことを容易に確認できる。また、この保持部3から凍結物質内へと浸漬していく際も、保持部3が凍結物質内へ挿入されていくのを容易に確認できる。   Since the holding part 3 is colored and transparent like the main body part 2, when the specimen E covered with the frozen liquid L is dropped inside the flat part, it is easy for the specimen to move from the pipette to the holding part 3. I can confirm. In addition, when the holder 3 is immersed in the frozen substance, it can be easily confirmed that the holder 3 is inserted into the frozen substance.

なお、本体部2および保持部3は、ポリアミド繊維製であるため、−190〜−200℃の凍結物質内に浸漬されても、可撓性を保持することができる。したがって、本体部2に外部から加わる力が保持部3に保持された標本Eおよび凍結液Lに伝わることがなく、標本Eを損傷することがない。   In addition, since the main-body part 2 and the holding | maintenance part 3 are the products made from a polyamide fiber, even if immersed in the frozen substance of -190-200 degreeC, flexibility can be hold | maintained. Therefore, the force applied from the outside to the main body 2 is not transmitted to the specimen E and the frozen liquid L held in the holding section 3, and the specimen E is not damaged.

また、このポリアミド繊維製の本体部2の全長が5〜40mmであるため、可撓性を有する本体部2自らの重量に耐えて直線状を保つことができ、過剰な振動も本体部2から保持部3へ伝わらないため、凍結液Lで包被した生物学的標本Eの保持部3への滴下が容易に行える。また、凍結物質内での凍結用具1の視認が容易である。   In addition, since the overall length of the polyamide fiber main body 2 is 5 to 40 mm, the main body 2 having flexibility can withstand the weight of the main body 2 itself and can maintain a linear shape. Since it is not transmitted to the holder 3, the biological specimen E encapsulated with the frozen liquid L can be easily dropped onto the holder 3. Further, it is easy to visually recognize the freezing tool 1 in the frozen substance.

なお、本体部2の全長が5mmより短い場合、凍結用具1の小型化による取り扱いが不便になり、凍結物質内での凍結用具1の存在確認が困難となる。また、全長が40mmより長い場合、可撓性を有する本体部2自らの重量で傾斜が起こり、また、過剰な振動が本体部2から保持部3へ伝わるようになるため、保持部3への凍結液Lで包被した生物学的標本Eの滴下が困難となる。   In addition, when the full length of the main-body part 2 is shorter than 5 mm, the handling by the miniaturization of the freezing tool 1 becomes inconvenient, and it becomes difficult to confirm the presence of the freezing tool 1 in the frozen substance. In addition, when the total length is longer than 40 mm, the body portion 2 having flexibility is inclined by its own weight, and excessive vibration is transmitted from the body portion 2 to the holding portion 3. It becomes difficult to drop the biological specimen E encapsulated with the frozen liquid L.

また、本体部2の直径が0.2mmよりも小さく過細な場合、凍結用具1の強度が減少してしまうため、凍結液Lで包被した生物学的標本Eの滴下が困難となるとともに、凍結物質内での凍結用具1の確認が困難となる。また、本体部2の直径が0.4mmよりも大きく過大な場合、凍結完了後に標本保存筒内へ多数保存するのが困難となる。   In addition, when the diameter of the main body 2 is smaller than 0.2 mm and is too thin, the strength of the freezing tool 1 is reduced, so that it is difficult to drop the biological specimen E encapsulated with the frozen liquid L, and It becomes difficult to confirm the freezing tool 1 in the frozen substance. If the diameter of the main body 2 is larger than 0.4 mm, it is difficult to store a large number in the specimen storage cylinder after completion of freezing.

また、保持部3の幅が0.3〜0.6mm、長さが0.5〜2.0mmであることによって、滴下量を少なくすることができ、滴下量が少ないことによって、生存性の高い凍結を行うことが可能となる。なお、保持部3の長さが0.5mmより短い場合、保持部3の長さが小さすぎることによって滴下作業が困難になるとともに、滴下量が少なすぎて生物学的標本Eの凍結が困難となる。また、2.0mmより長い場合、滴下量が過剰となり、高い生存性の凍結が困難となる。   Moreover, when the holding part 3 has a width of 0.3 to 0.6 mm and a length of 0.5 to 2.0 mm, the amount of dripping can be reduced, and the amount of dripping is small, so High freezing can be performed. When the length of the holding unit 3 is shorter than 0.5 mm, the dropping operation becomes difficult because the length of the holding unit 3 is too small, and the biological specimen E is difficult to freeze because the dropping amount is too small. It becomes. On the other hand, when the length is longer than 2.0 mm, the dripping amount becomes excessive, and it becomes difficult to freeze with high survivability.

識別部4は、本体部2に対して保持部3の反対側の他端に形成されている。識別部4は、外径0.5〜0.8mm、内径0.3〜0.5mmの1〜2mm長の着色鉄製管を、本体部2の末端部に包被装着したものである。また、装着した鉄製管は、振動や伸縮による本体部2からの脱落を防止する目的で、本体部2の反対側の保持部3の平面部と同じ側の面を軽度に押し潰して平面化している。   The identification unit 4 is formed at the other end opposite to the holding unit 3 with respect to the main body unit 2. The identification unit 4 is obtained by covering a terminal portion of the main body 2 with a colored iron pipe having an outer diameter of 0.5 to 0.8 mm and an inner diameter of 0.3 to 0.5 mm and having a length of 1 to 2 mm. In addition, the attached steel pipe is flattened by slightly crushing the same surface as the flat part of the holding part 3 on the opposite side of the main body part 2 for the purpose of preventing dropping from the main body part 2 due to vibration or expansion and contraction. ing.

なお、この識別部4は、磁性体材料としての強磁性体である鉄により形成されているため、磁力により引き寄せ可能である。そのため、磁石等の利用により、この識別部4を引き寄せることで、本実施形態における凍結用具1を容易に誘導することが可能である。   In addition, since this identification part 4 is formed with iron which is a ferromagnetic material as a magnetic material, it can be attracted by a magnetic force. Therefore, it is possible to easily guide the freezing tool 1 in the present embodiment by pulling the identification unit 4 by using a magnet or the like.

次に、上記構成の凍結用具1の使用法について、図2を参照して説明する。図2は本実施形態における凍結、保存および融解の工程を示す説明図である。なお、生物体を取り扱うにあたり、本凍結用具1は、清浄かつ滅菌用ガスや生物死活線等で滅菌処理したものを使用する。   Next, a method of using the freezing tool 1 having the above-described configuration will be described with reference to FIG. FIG. 2 is an explanatory diagram showing the steps of freezing, storing and thawing in this embodiment. In handling the living organism, the freezing tool 1 is a clean and sterilized gas using a sterilizing gas or a life / death line.

(凍結法)
標本の凍結方法は、図2に示すように、(ア)一またはそれ以上の標本Eを平衡液B1,B2で数段階平衡した後、凍結液Lに短時間浸漬する。その後、標本Eを凍結液Lとともにパスツールピペット5に吸引し、(イ)実体顕微鏡下で確認しながら、ピンセット6により把持する凍結用具1の保持部3に滴下し、(ウ)決められた時間に凍結用具1全体を液体窒素等の凍結物質Fに投入し凍結する。次に、(ウ)凍結した凍結用具1の識別部4側を保持し、既存の耐寒性の標本保存筒7に凍結物質Fとともに挿入し、(エ)閉蓋して保管器8で保存する。
(Freezing method)
As shown in FIG. 2, (a) one or more specimens E are equilibrated in several stages with the equilibration liquids B 1 and B 2 and then immersed in the freezing liquid L for a short time. Thereafter, the specimen E was sucked into the Pasteur pipette 5 together with the frozen liquid L, and (i) dropped onto the holding part 3 of the freezing tool 1 held by the tweezers 6 while being confirmed under a stereomicroscope. In time, the entire freezing tool 1 is put into a frozen substance F such as liquid nitrogen and frozen. Next, (c) holding the identification part 4 side of the frozen freezing tool 1 and inserting it into the existing cold-resistant specimen storage cylinder 7 together with the frozen substance F, and (d) closing the lid and storing it in the storage device 8 .

(融解法)
標本の融解方法は、図2に示すように、(オ)予め用意した凍結物質F内へ保管器8から取り出した標本保存筒7を入れ、標本保存筒7から凍結用具1を引き出し、(カ)識別部4を保持して、速やかに融解希釈液Wに保持部3を投入し、融解する。(キ)融解した標本Eは顕微鏡下で必要な段階希釈(希釈液W1,W2)を行い、保存液Mに投入後、種々の作業に利用する。
(Melting method)
As shown in FIG. 2, the specimen is thawed by placing the specimen storage cylinder 7 taken out from the storage device 8 into the frozen substance F prepared in advance, and pulling out the freezing tool 1 from the specimen storage cylinder 7, ) Holding the identification unit 4, quickly put the holding unit 3 into the melt dilution W and melt it. (G) The melted specimen E is subjected to necessary serial dilution (diluents W 1 and W 2 ) under a microscope, and after being put into the preservation solution M, it is used for various operations.

以上のように、本実施形態における凍結用具1は、直線糸状の本体部2と、この本体部2の一端に勾配を設けて形成された平面状の保持部3とを備えたことにより、平面状の保持部3の平面が略水平となるように本体部2を斜め下向きに保持した状態を維持したまま、平面状の保持部3の上面に凍結液Lで包被した標本Eを滴下して保持し、凍結物質Fの中へ浸漬することができる(図2(イ)、(ロ)参照。)。   As described above, the freezing tool 1 according to the present embodiment includes a linear thread-like main body portion 2 and a flat holding portion 3 formed with a gradient at one end of the main body portion 2. The specimen E encapsulated with the frozen liquid L is dropped on the upper surface of the planar holding part 3 while maintaining the state in which the main body part 2 is held obliquely downward so that the plane of the planar holding part 3 is substantially horizontal. And can be immersed in the frozen substance F (see FIGS. 2A and 2B).

したがって、本実施形態における凍結用具1を利用することで、ガラス化法による保存作業を確実かつ簡便に行うことができ、標本Eを高い生存性を維持したまま凍結保存することができる。また、本実施形態における凍結用具1では、保持部3の上面に滴下した標本Eを含む凍結液Lが本体部2と保持部3との境界で堰き止められるため、少ない凍結液で確実に標本Eを包被することができる。   Therefore, by using the freezing tool 1 in the present embodiment, the preservation work by the vitrification method can be performed reliably and simply, and the specimen E can be cryopreserved while maintaining high viability. Moreover, in the freezing tool 1 in this embodiment, since the frozen liquid L containing the sample E dripped on the upper surface of the holding part 3 is dammed up at the boundary between the main body part 2 and the holding part 3, the sample can be surely used with a small amount of frozen liquid. E can be encapsulated.

本実施形態における凍結用具1では、滴下に必要な液量は約0.3μlと極少量である。このように本実施形態における凍結用具1では、標本Eの凍結に必要な凍結液Lは微少量であるため、凍結物質Fに直接暴露することで、融解後の生存率の高い超急速冷却が可能である。   In the freezing tool 1 in this embodiment, the amount of liquid required for dripping is about 0.3 μl, which is a very small amount. Thus, in the freezing tool 1 according to the present embodiment, the amount of the freezing liquid L necessary for freezing the specimen E is very small. Is possible.

また、保持部3の本体部2に対する勾配を20〜40°とすることで、凍結液Lで包被した標本Eの滴下および保持並びに凍結物質Fの中への浸漬時の作業性を維持しつつ、凍結用具1全体の幅を小さくすることができるため、細い標本保存筒7であっても出し入れ作業が容易である。   Moreover, the workability at the time of dripping and holding of the specimen E encapsulated with the frozen liquid L and immersing in the frozen substance F is maintained by setting the gradient of the holding part 3 with respect to the main body 2 to 20 to 40 °. On the other hand, since the entire width of the freezing tool 1 can be reduced, it is easy to take in and out even with the thin specimen storage cylinder 7.

また、本体部2の保持部3と反対側の他端に磁力により引き寄せ可能な磁性体材料である鉄により形成された識別部5を備えたことにより、ガラス化後、凍結用具1ごとそのまま細い標本保存筒7内に入れて冷凍保存した標本Eを、この細い標本保存筒7から取り出す際、磁力によってこの識別部5を引き寄せて容易に取り出すことができる。   In addition, since the other end of the main body 2 opposite to the holding portion 3 is provided with an identification portion 5 made of iron, which is a magnetic material that can be attracted by magnetic force, the entire freezing tool 1 is thin as it is after vitrification. When the specimen E that has been frozen and stored in the specimen storage cylinder 7 is taken out from the thin specimen storage cylinder 7, it can be easily taken out by pulling the discriminating portion 5 by a magnetic force.

また、この識別部5を着色していることから、ガラス化後、凍結用具1ごとそのまま細い標本保存筒7内に入れて冷凍保存する場合に、この冷凍保存した標本Eを、この識別部5の着色によって識別することができ、標本Eを容易に管理することが可能となる。   In addition, since the identification unit 5 is colored, when the cryopreservation tool 1 is directly stored in the thin sample storage cylinder 7 and stored frozen after vitrification, the cryopreserved sample E is used as the identification unit 5. Therefore, the specimen E can be easily managed.

また、本体部2および保持部3が、有色透明であることにより、凍結液Lで包被した標本Eをそのまま顕微鏡で確認することができるとともに、有色であることから、凍結物質Fの中に浸漬した際、凍結物質F内で凍結用具1を容易に視認することができ、作業性が向上している。   In addition, since the main body 2 and the holding unit 3 are colored and transparent, the specimen E covered with the frozen liquid L can be confirmed with a microscope as it is, and since it is colored, When immersed, the freezing tool 1 can be easily visually recognized in the frozen substance F, and workability is improved.

また、本実施形態における凍結用具1は、その材質により常温において、過剰な圧力等を加えない限り、変性、伸縮、脆弱化することがないため、衛生的処理を行うことで再利用することも可能である。   In addition, the freezing tool 1 according to the present embodiment is not denatured, stretched or weakened at room temperature unless excessive pressure is applied depending on the material thereof. Therefore, the freezing tool 1 can be reused by performing hygienic treatment. Is possible.

本実施形態における凍結用具1を用いてウシ体外受精胚の超急速ガラス化を行い、その生存性を調査した。   Ultra-rapid vitrification of bovine in vitro fertilized embryos was performed using the freezing tool 1 in this embodiment, and the viability was investigated.

(1)卵子採取
と畜場でと畜された雌ウシから卵巣を切り取り、20℃の抗生物質を添加したビタミンB1加リンゲル液で洗浄後、と畜から6時間内に卵胞卵子を吸引した。吸引は、直径10mm以内の形態的に正常な卵胞から、18ゲージまたは20ゲージの鈍尖注射針を装着した注射筒に予め吸引しておいた0.3%ウシ血清アルブミン(BSA)を添加したダルベッコリン酸緩衝液(D−PBS)とともに、卵丘細胞卵子複合体(COCs)を吸引した。
(1) Egg collection The ovaries were cut out from cows slaughtered in a slaughterhouse, washed with vitamin B1 added Ringer's solution supplemented with 20 ° C. antibiotics, and then follicular ova were aspirated within 6 hours from the slaughterhouse. For aspiration, 0.3% bovine serum albumin (BSA) that had been aspirated in advance was added from a morphologically normal follicle having a diameter of 10 mm to a syringe equipped with an 18 gauge or 20 gauge blunt needle. Cumulus cell oocyte complexes (COCs) were aspirated together with Dulbecco's phosphate buffer (D-PBS).

(2)卵子成熟
形態的に良好なCOCsを、5%仔ウシ血清(CS)を添加したTCM199(卵子成熟液)で2回洗浄後、1ウェルあたり50個のCOCsを流動パラフィンで覆った卵子成熟液500μlで、5%CO2、95%空気および38.5℃の気相条件下で20時間から22時間成熟した。
(2) Oocyte maturation After morphologically good COCs were washed twice with TCM199 (egg maturation solution) supplemented with 5% calf serum (CS), 50 COCs per well were covered with liquid paraffin. Matured with 500 μl of mature solution for 20 to 22 hours under gas phase conditions of 5% CO 2 , 95% air and 38.5 ° C.

(3)体外受精
黒毛和種牛凍結***を38℃で融解後、融解***をテオフィリンおよびカフェインを添加したブラケットとオリファント液(BO液)で希釈して遠心分離を2回施して洗浄し、濃縮***を***濃度で107/mlにBSAおよびヘパリンを添加したBO液で***液を調製した。***液で200μlドロップを作成し、成熟卵子50個を導入し、流動パラフィンで覆い、5%CO2、95%空気および38.5℃の気相条件下で4時間媒精した。
(3) In vitro fertilization Frozen semen of Japanese Black cattle is thawed at 38 ° C, diluted with theophylline and caffeine-added bracket and orifant solution (BO solution), washed twice by centrifugation and concentrated A sperm solution was prepared with a BO solution to which BSA and heparin were added at a sperm concentration of 10 7 / ml. A 200 μl drop was made with the sperm solution, 50 mature eggs were introduced, covered with liquid paraffin, and vasculatured for 4 hours under 5% CO 2 , 95% air and 38.5 ° C. gas phase conditions.

(4)体外発生
媒精完了した卵子を、10%CSを添加したグルコース不含TCM199(初期発生培地)で洗浄後、1ウェルあたり50個の卵子を卵子成熟に用いた同じウェルに、初期発生培地500μl内で3日または4日培養し、その後10%CSを添加したTCM199(後期発生培地)に交換し、その後2日おきに新鮮な後期発生培地200μlを交換し、受精8日まで培養した。培養気相条件は5%CO2、95%空気および38.5℃で行った。
(4) In vitro development After sperm completion of ovum washing with glucose-free TCM199 (early development medium) supplemented with 10% CS, 50 eggs per well were used in the same well used for egg maturation. Cultivate in 500 μl of medium for 3 or 4 days, then replace with TCM199 (late development medium) supplemented with 10% CS, then replace with 200 μl of fresh late development medium every 2 days, and culture until 8 days of fertilization . The culture gas phase conditions were 5% CO 2 , 95% air and 38.5 ° C.

(5)供試胚
体外受精後7日または8日において、形態的に栄養膜細胞が単層で均一に発育した上、充実した内部細胞塊を有している拡張胚盤胞期胚を、20%CS添加D−PBS(保存液)で洗浄後、37℃の保存液中で保存して、緩慢冷却による凍結またはガラス化に供試した。
(5) Test embryo On the 7th or 8th day after in vitro fertilization, an expanded blastocyst stage embryo having a solid inner cell mass in addition to a morphologically uniform growth of trophoblast cells, After washing with 20% CS-added D-PBS (preservation solution), the solution was stored in a preservation solution at 37 ° C., and subjected to freezing by slow cooling or vitrification.

(6)胚の緩慢冷却凍結
発生胚を10%エチレングリコール、0.1Mシュクロースおよび20%CSを添加したD−PBS(10ES)に導入し、15分平衡し、0.25mlプラスチックストローに吸引封入した。プログラムフリーザを用い、−7℃の冷媒中にストローをセットし、2分経過後液体窒素で冷却した金属製ピンセットを用い強制植氷した。強制植氷して10分経過後、0.3℃/分で緩慢冷却して、−30℃に到達した後、液体窒素へ導入し保存した。
(6) Slow cooling and freezing of embryos The embryos were introduced into D-PBS (10ES) supplemented with 10% ethylene glycol, 0.1M sucrose and 20% CS, equilibrated for 15 minutes, and sucked into a 0.25 ml plastic straw. Enclosed. Using a program freezer, a straw was set in a refrigerant at −7 ° C., and forced ice planting was performed using metal tweezers cooled with liquid nitrogen after 2 minutes. After 10 minutes from forced ice planting, the mixture was slowly cooled at 0.3 ° C./min. After reaching −30 ° C., it was introduced into liquid nitrogen and stored.

(7)胚の超急速ガラス化
発生胚を2種類のガラス化液でガラス化した。1つは、10%グリセロール、0.1Mシュクロース、0.1Mキシロースおよび1%ポリエチレングリコールを添加したD−PBS(VS1)、および、10%グリセロール、10%エチレングリコール、0.2Mシュクロース、0.2Mキシロースおよび2%ポリエチレングリコールを添加したD−PBS(VS2)に順次5分前平衡し、20%グリセロール、20%エチレングリコール、0.3Mシュクロース、0.3Mキシロースおよび3%ポリエチレングリコールを添加したD−PBS(GESX)に浸漬した。
(7) Ultra-rapid vitrification of embryo The developing embryo was vitrified with two types of vitrification solutions. One is D-PBS (VS1) supplemented with 10% glycerol, 0.1M sucrose, 0.1M xylose and 1% polyethylene glycol, and 10% glycerol, 10% ethylene glycol, 0.2M sucrose, Sequentially equilibrate for 5 minutes in D-PBS (VS2) supplemented with 0.2M xylose and 2% polyethylene glycol, then 20% glycerol, 20% ethylene glycol, 0.3M sucrose, 0.3M xylose and 3% polyethylene glycol. It was immersed in D-PBS (GESX) to which was added.

もう一つのガラス化は、10%エチレングリコール、10%ジメチルスルホキシドおよび20%CSを添加したTCM199で5分前平衡を行い、20%ジメチルスルホキシド、20%エチレングリコールおよび20%CSを添加したTCM199(VS)に浸漬して、GESXも同様に胚をパスツールピペットで吸い上げ、実体顕微鏡下で凍結用具1の保持部3に滴下した。   Another vitrification was pre-equilibrated with TCM199 supplemented with 10% ethylene glycol, 10% dimethylsulfoxide and 20% CS for 5 minutes, and TCM199 (with 20% dimethylsulfoxide, 20% ethylene glycol and 20% CS added) VS), the embryo was similarly sucked up with a Pasteur pipette and dropped onto the holder 3 of the freezing tool 1 under a stereomicroscope.

胚をGESXまたはVSへ浸漬してから30秒後に凍結用具1を、素早く液体窒素に投入し、超急速ガラス化を行った。ガラス化した凍結用具1は、液体窒素中で市販の耐寒性サンプルチューブに導入後、封閉して液体窒素内で保存した。   30 seconds after the embryo was immersed in GESX or VS, the freezing tool 1 was quickly put into liquid nitrogen to perform ultra-rapid vitrification. The vitrified freezing tool 1 was introduced into a commercially available cold-resistant sample tube in liquid nitrogen, then sealed and stored in liquid nitrogen.

(8)緩慢冷却凍結胚の融解
凍結ストローを液体窒素から取り出し、室温で6秒保持し、その後30℃温湯中で20秒維持することで胚を融解した。次に融解したストローを室温で5分保持し、封印側をストローカッターで切断し、ストローの綿栓側から圧力をかけ、凍結液とともに胚を押し出した。次に胚を保存液に導入して凍結液を希釈した。
(8) Thawing of slow-cooled frozen embryos A frozen straw was taken out of liquid nitrogen, kept at room temperature for 6 seconds, and then kept in 30 ° C hot water for 20 seconds to thaw the embryo. Next, the thawed straw was kept at room temperature for 5 minutes, the sealed side was cut with a straw cutter, pressure was applied from the cotton plug side of the straw, and the embryo was extruded together with the frozen solution. Next, the embryo was introduced into a preservation solution to dilute the frozen solution.

(9)超急速ガラス化胚の加温
液体窒素からピンセットでガラス化した凍結用具1をつまみ、保持部3を素早く0.5Mシュクロースおよび20%CSを添加したD−PBSへ導入して、胚を凍結用具1から加温離脱した。この状態で5分浸漬し、次に胚を0.25Mシュクロースおよび20%CSを添加したD−PBSへ導入し、再び5分浸漬してガラス化液の希釈を行った。加温希釈は室温下で行い、ガラス化液希釈後は37℃の保存液に導入して保存した。
(9) Heating of ultra-rapid vitrified embryo The freezing tool 1 vitrified from liquid nitrogen is picked, the holding part 3 is quickly introduced into D-PBS to which 0.5 M sucrose and 20% CS are added, The embryo was removed from the freezing tool 1 by heating. This state was immersed for 5 minutes, and then the embryo was introduced into D-PBS supplemented with 0.25M sucrose and 20% CS, and immersed again for 5 minutes to dilute the vitrification solution. Warm dilution was performed at room temperature, and after diluting the vitrification solution, it was introduced into a storage solution at 37 ° C. and stored.

(10)融解または加温胚の培養
融解または加温した緩慢冷却凍結胚および超急速ガラス化胚は、100μMベータメルカプトエタノールおよび20%ウシ胎仔血清を添加したTCM199(培養液)で数回洗浄後、流動パラフィンで覆った1胚あたり20μlの培養液ドロップで72時間培養した。培養の気相条件は5%CO2、95%空気および38.5℃で行った。
(10) Culture of thawed or warmed embryos Thawed or warmed slowly cooled frozen embryos and ultra-rapid vitrified embryos were washed several times with TCM199 (culture medium) supplemented with 100 μM beta mercaptoethanol and 20% fetal calf serum. Then, the culture medium was cultured for 72 hours with a 20 μl culture medium drop per embryo covered with liquid paraffin. The culture gas phase conditions were 5% CO 2 , 95% air and 38.5 ° C.

(11)保存胚の生存性調査
融解または加温した胚は培養開始から24時間、48時間および72時間で生存、発育および状態を観察した。
(11) Survival investigation of preserved embryos Thawed or warmed embryos were observed for survival, development and state at 24, 48 and 72 hours from the start of culture.

(12)統計処理
保存胚の融解または加温後の生存胚数および透明帯脱出胚数を同系列内でカイ自乗検定を行った。
(12) Statistical processing Chi-square test was performed within the same series for the number of surviving embryos and the number of zona pelvic escaped embryos after thawing or heating the preserved embryos.

(13)保存胚の生存率
融解または加温後培養した体外受精胚の生存率は、24時間後で10ES:72%、VS:87%およびGESX:100%、48時間後で67%、86%および99%、72時間後で65%、83%および99%とガラス化液VSおよびGESXは80%以上の生存率を維持した。
(13) Survival rate of preserved embryos Viability of in vitro fertilized embryos cultured after thawing or warming was 10ES: 72% after 24 hours, VS: 87% and GESX: 100%, after 48 hours 67%, 86 % And 99%, after 72 hours 65%, 83% and 99% and vitrification solutions VS and GESX maintained over 80% viability.

しかし、緩慢冷却区は24時間後で生存率72%であり、その後も経時的に下降が見られ、両ガラス化液は緩慢冷却液より有意(p<0.05)に高い生存率を示した。また、両ガラス化液では加温後72時間後で99%の生存性を示したGESXがVSより有意(p<0.001)に高い生存率を示した。表1に保存胚の融解または加温後生存率を示す。表1から分かるように、aとbの有意差はp<0.05、cとdの有意差はp<0.01、eとfの有意差はp<0.005、gとhの有意差はp<0.001、iとjの有意差はp<0.0005であった。   However, the slow cooling zone had a survival rate of 72% after 24 hours, and continued to decline over time, and both vitrification solutions showed significantly higher survival rates (p <0.05) than the slow cooling solutions. It was. In both vitrification solutions, GESX, which showed 99% survival after 72 hours after heating, showed a significantly higher survival rate (p <0.001) than VS. Table 1 shows the survival rate after thawing or warming of preserved embryos. As can be seen from Table 1, the significant difference between a and b is p <0.05, the significant difference between c and d is p <0.01, the significant difference between e and f is p <0.005, and g and h. The significant difference was p <0.001, and the significant difference between i and j was p <0.0005.

Figure 0004359670
Figure 0004359670

(14)保存胚の透明帯脱出率
融解または加温後培養した体外受精胚の透明帯脱出率は、24時間後で10ES:15%、VS:10%およびGESX:62%、48時間後で33%、51%および96%、72時間後で48%、61%および97%と全ての試験区で経時的に上昇が見られた。48時間および72時間後ではガラス化が緩慢冷却より透明帯脱出率が高い傾向にあった。特に、ガラス化液GESXは加温後24時間後で62%、48時間後には96%が透明帯を脱出し、脱出した胚は細胞発育並びに内部細胞塊の形態等良好な発生経過を示した。表2に保存胚の融解または加温後透明帯脱出率を示す。表2から分かるように、aとbの有意差はp<0.05、cとdの有意差はp<0.0005であった。
(14) Zona pellucida escape rate of preserved embryos The zona pellucida escape rates of in vitro fertilized embryos cultured after thawing or warming were 10 ES: 15% after 24 hours, VS: 10% and GESX: 62%, 48 hours later There was an increase over time in all test sections, 33%, 51% and 96%, and 48%, 61% and 97% after 72 hours. After 48 hours and 72 hours, vitrification was slow and the zona pellucida escape rate tended to be higher than cooling. In particular, the vitrification solution GESX was 62% after heating and 96% after 48 hours and 96% escaped the zona pellucida, and the escaped embryo showed a good developmental process such as cell growth and internal cell mass morphology. . Table 2 shows the zona pellucida escape rate after thawing or heating of the preserved embryo. As can be seen from Table 2, the significant difference between a and b was p <0.05, and the significant difference between c and d was p <0.0005.

Figure 0004359670
Figure 0004359670

本発明の凍結用具は、卵子、胚や組織細胞などの生物学的標本を凍結保存する用具として有用である。特に、種々の生物標本を高い生存性を維持したまま長期間保存することが可能なガラス化法の凍結用具として好適である。   The freezing tool of the present invention is useful as a tool for cryopreserving biological specimens such as eggs, embryos and tissue cells. In particular, it is suitable as a freezing tool for vitrification, in which various biological specimens can be stored for a long period of time while maintaining high viability.

本発明の実施の形態における凍結用具1を示す図であって、(a)は側面図、(b)は平面図、(c)は凍結液で包被した生物学的標本を保持した状態を示す側面図、(d)は凍結液で包被した生物学的標本を保持した状態を示す平面図である。It is a figure which shows the freezing tool 1 in embodiment of this invention, Comprising: (a) is a side view, (b) is a top view, (c) is the state holding the biological specimen covered with the frozen liquid. The side view to show, (d) is a top view which shows the state holding the biological specimen encapsulated with the frozen liquid. 本実施形態における凍結、保存および融解の工程を示す説明図である。It is explanatory drawing which shows the process of freezing, preservation | save, and melting | fusing in this embodiment.

符号の説明Explanation of symbols

1 凍結用具
2 本体部
3 保持部
4 識別部
DESCRIPTION OF SYMBOLS 1 Freezing tool 2 Body part 3 Holding part 4 Identification part

Claims (5)

物学的標本を凍結液で包被して一端に保持し、凍結物質の中に浸漬することによりガラス化し、ガラス化後、そのまま標本保存筒内に入れて冷凍保存するための凍結用具であって、ポリアミド繊維からなる直径0.2mm〜0.4mmの直線糸状の本体部と、この本体部の一端に勾配を設けて形成された平面状の保持部とを備え、前記本体部の前記保持部に対して反対側の他端に磁力により引き寄せ可能な磁性体材料を備えた凍結用具。 Raw Monogaku specimens held at one end by envelope with freezing liquid, vitrified by being dipped into the freezing material, after vitrification, freezing tool for cryopreservation as it placed in the specimen storage cylinder A linear thread-shaped main body portion having a diameter of 0.2 mm to 0.4 mm made of polyamide fiber , and a planar holding portion formed with a gradient at one end of the main body portion, A freezing tool provided with a magnetic material that can be attracted by a magnetic force to the other end opposite to the holding portion . 前記勾配は、20〜40°である請求項1記載の凍結用具。   The freezing tool according to claim 1, wherein the gradient is 20 to 40 °. 前記磁性体材料は、鉄である請求項1または2に記載の凍結用具。 The freezing tool according to claim 1 or 2, wherein the magnetic material is iron. 前記本体部の前記保持部に対して反対側の他端を着色した請求項1からのいずれかに記載の凍結用具。 The freezing tool in any one of Claim 1 to 3 which colored the other end on the opposite side with respect to the said holding | maintenance part of the said main-body part. 前記本体部および保持部は、有色透明である請求項1からのいずれかに記載の凍結用具。 The freezing tool according to any one of claims 1 to 4 , wherein the main body portion and the holding portion are colored and transparent.
JP2004054966A 2004-02-27 2004-02-27 Freezing tool Expired - Fee Related JP4359670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004054966A JP4359670B2 (en) 2004-02-27 2004-02-27 Freezing tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004054966A JP4359670B2 (en) 2004-02-27 2004-02-27 Freezing tool

Publications (2)

Publication Number Publication Date
JP2005239685A JP2005239685A (en) 2005-09-08
JP4359670B2 true JP4359670B2 (en) 2009-11-04

Family

ID=35021790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004054966A Expired - Fee Related JP4359670B2 (en) 2004-02-27 2004-02-27 Freezing tool

Country Status (1)

Country Link
JP (1) JP4359670B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5939537B2 (en) * 2012-05-30 2016-06-22 国立大学法人九州工業大学 Fish egg cryopreservation method
JP6329468B2 (en) * 2014-09-16 2018-05-23 三菱製紙株式会社 Vitrification cryopreservation method of fibroblasts
US11246308B2 (en) 2016-12-20 2022-02-15 Tissue Testing Technologies Llc Ice-free preservation of large volume tissue samples for viable, functional tissue banking
EP3913046A4 (en) * 2019-01-17 2022-10-26 Nagase & Co., Ltd. Cell cryopreservation liquid
KR102278277B1 (en) * 2021-02-10 2021-07-15 의료법인마리아의료재단 The development of vitrification container for cryopreservation and vitrification method using the same

Also Published As

Publication number Publication date
JP2005239685A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
Hafez Preservation and cryopreservation of gametes and embryos
JP5278978B2 (en) Tubular for vitrification preservation of animal embryos or eggs
EP2605644B1 (en) Method of forming vitrification droplets
Kasai Cryopreservation of mammalian embryos
Michelmann et al. Cryopreservation of human embryos
JP6475493B2 (en) Germ cell preservation tool and germ cell preservation method
US20140308655A1 (en) Device for Manipulating Biological Materials in a Process of Cryopreservation and a Use of Such a Device
US6361934B1 (en) Method and apparatus for cryopreservation
JP3588303B2 (en) Egg or embryo vitrification tool and method
US20150313211A1 (en) A Method of Vitrification
JP4431754B2 (en) Vitrification preservation tool of embryo and vitrification preservation method of embryo using the same
Moore et al. Cryopreservation of mammalian embryos: the state of the art
JP3044323B1 (en) Cell cryopreservation method
Varago et al. Vitrification of in vitro produced Zebu embryos
JP4359670B2 (en) Freezing tool
JP2006149231A (en) Narrow tube for freeze preservation of biological specimen, freeze preservation method for biological specimen and method for melting after freeze preservation
JP6101992B2 (en) Mammalian embryo storage device, mammalian embryo transfer straw, and use thereof
CA2300633A1 (en) Cell-cryopreservation method
Nagy et al. The human embryo: vitrification
Glenister et al. Cryopreservation and rederivation of embryos and gametes
JP6734524B2 (en) Straws for preservation, thawing, dilution, and transplantation of vitrified mammalian embryos and methods of using the same
Do et al. Cryopreservation of in vitro-produced bovine embryos by vitrification: In pursuit of a simplified, standardized procedure that improves pregnancy rates to promote cattle industry use
Jones Cryopreservation of bovine embryos
JP2021029170A (en) Cryopreservation jig of cell or tissue
Shaw et al. Embryo cryopreservation for transgenic mouse lines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090714

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees