JP4357236B2 - Sputtering target - Google Patents

Sputtering target Download PDF

Info

Publication number
JP4357236B2
JP4357236B2 JP2003294604A JP2003294604A JP4357236B2 JP 4357236 B2 JP4357236 B2 JP 4357236B2 JP 2003294604 A JP2003294604 A JP 2003294604A JP 2003294604 A JP2003294604 A JP 2003294604A JP 4357236 B2 JP4357236 B2 JP 4357236B2
Authority
JP
Japan
Prior art keywords
sputtering
sputtering target
lattice constant
sintered body
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003294604A
Other languages
Japanese (ja)
Other versions
JP2005060798A (en
Inventor
直紀 尾野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2003294604A priority Critical patent/JP4357236B2/en
Priority to KR1020040063507A priority patent/KR100660589B1/en
Priority to TW093124501A priority patent/TWI302168B/en
Publication of JP2005060798A publication Critical patent/JP2005060798A/en
Application granted granted Critical
Publication of JP4357236B2 publication Critical patent/JP4357236B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

本発明は、スパッタリングターゲットに関し、ノジュールの発生を抑制するように工夫したものである。   The present invention relates to a sputtering target and is devised to suppress generation of nodules.

一般的に、薄膜を成膜する方法の1つとしてスパッタリング法が知られている。スパッタリング法とは、スパッタリングターゲットをスパッタリングすることにより薄膜を得る方法であり、大面積化が容易であり、高性能の膜が効率よく成膜できるため、工業的に利用されている。また、近年、スパッタリングの方式として、反応性ガスの中でスパッタリングを行う反応性スパッタリング法や、ターゲットの裏面に磁石を設置して薄膜形成の高速化を図るマグネトロンスパッタリング法なども知られている。   In general, a sputtering method is known as one of methods for forming a thin film. The sputtering method is a method of obtaining a thin film by sputtering a sputtering target, is easy to increase in area, and can be efficiently formed into a high-performance film, and is used industrially. In recent years, as sputtering methods, there are known a reactive sputtering method in which sputtering is performed in a reactive gas, and a magnetron sputtering method in which a magnet is placed on the back surface of a target to increase the speed of thin film formation.

このようなスパッタリング法で用いられる薄膜のうち、特に、酸化インジウム−酸化錫(In−SnOの複合酸化物、以下、「ITO」という)膜は、可視光透過性が高く、かつ導電性が高いので透明導電膜として液晶表示装置やガラスの結露防止用発熱膜、赤外線反射膜等に幅広く用いられている。 Among the thin films used in such a sputtering method, in particular, an indium oxide-tin oxide (In 2 O 3 —SnO 2 composite oxide, hereinafter referred to as “ITO”) film has high visible light transmittance, and Because of its high conductivity, it is widely used as a transparent conductive film for liquid crystal display devices, heat generation films for preventing condensation of glass, infrared reflective films, and the like.

このため、より効率よく低コストで成膜するために、現在においてもスパッタ条件やスパッタ装置などの改良が日々行われており、装置を如何に効率的に稼働させるかが重要となる。   For this reason, in order to form a film more efficiently and at a lower cost, improvement of sputtering conditions and a sputtering apparatus are carried out every day, and it is important how to operate the apparatus efficiently.

このようなITOスパッタリングにおいては、新しいスパッタリングターゲットをセットしてから初期アーク(異常放電)がなくなって製品を製造できるまでの時間が短いことと、一度セットしてからどれくらいの期間使用できるか(積算スパッタリング時間:ターゲットライフ)が問題となる。   In such ITO sputtering, the time from when a new sputtering target is set until the initial arc (abnormal discharge) disappears and the product can be manufactured is short, and how long it can be used after being set (integrated) Sputtering time: target life) is a problem.

従来、スパッタリングターゲットの初期アークは、ターゲット表面を研磨して平滑にすればするほど低減するといわれており、表面を平滑にした表面研磨ターゲットが主流となっている。   Conventionally, it is said that the initial arc of a sputtering target is reduced as the target surface is polished and smoothed, and a surface polished target having a smooth surface has become the mainstream.

また、スパッタリングを連続的に行っていくと、ターゲット表面にノジュールという黒色の付着物が生じ、これが異常放電の原因となったり、パーティクルの発生源となったりするといわれている。従って、薄膜欠陥を防止するためには、定期的なノジュール除去が必要となり、生産性の低下につながるという問題がある。   Further, it is said that when sputtering is continuously performed, black deposits called nodules are generated on the target surface, which causes abnormal discharge or a source of particles. Therefore, in order to prevent thin film defects, periodic nodule removal is required, leading to a problem that productivity is reduced.

例えば、ターゲットの表面粗さを所定の範囲内とすると共に、密度とバルク抵抗を所定の範囲とすることでアーキングやノジュールの発生を防止しようとする技術が開発されている(特許文献1参照)。また、表面粗さを所定の範囲に設定することでアーキングやノジュールの発生を防止しようとする技術も開発されている(特許文献2参照)。しかしながら、このような所定の表面粗さを有するITOスパッタリングターゲットを製造するためには、焼結後、研削により厚さを調整した後、徐々に細かい研磨砥石を用いて3〜4回の研磨工程が必要となり、製造時間及びコストが嵩むという問題があった。   For example, a technique has been developed for preventing the occurrence of arcing and nodules by setting the surface roughness of the target within a predetermined range and setting the density and bulk resistance within a predetermined range (see Patent Document 1). . In addition, a technique for preventing the occurrence of arcing and nodules by setting the surface roughness within a predetermined range has been developed (see Patent Document 2). However, in order to produce an ITO sputtering target having such a predetermined surface roughness, after sintering, the thickness is adjusted by grinding, and then gradually 3 to 4 polishing steps using a fine polishing wheel There is a problem that manufacturing time and cost increase.

一方、X線回折により面間隔が所定の範囲にある回折面を持つ相が形成され且つこれらの相の回折ピークの積分強度を所定の範囲に記載したITOターゲットが提案されている(特許文献3参照)が、基板温度が低い条件においても比抵抗値が低いITO膜を成膜できるというものである。   On the other hand, there has been proposed an ITO target in which a phase having a diffractive surface whose surface interval is in a predetermined range is formed by X-ray diffraction and the integrated intensity of diffraction peaks of these phases is described in a predetermined range (Patent Document 3). However, an ITO film having a low specific resistance value can be formed even under conditions where the substrate temperature is low.

特許第2750483号公報Japanese Patent No. 2750483 特許第3152108号公報Japanese Patent No. 3152108 特許第2979648号公報Japanese Patent No. 2997648

本発明は、酸化物焼結体の密度及び電気伝導度がノジュールの発生と関係するが、特にアルキメデス密度AD(g/cm)とX線回折により求めた格子定数から算出される理論密度TDとの比がノジュールの発生と強い相関を示すことを知見し、ノジュールの発生を抑制して初期安定性を著しく向上させ、且つ低コストで製造できるスパッタリングターゲットを提供することを課題とする。 In the present invention, the density and electrical conductivity of the oxide sintered body are related to the generation of nodules. In particular, the theoretical density TD calculated from the Archimedes density AD (g / cm 3 ) and the lattice constant determined by X-ray diffraction. It is an object of the present invention to provide a sputtering target that can be produced at a low cost by suppressing the generation of nodules and significantly improving the initial stability.

前記課題を解決する本発明の第1の態様は、酸化インジウムを主成分とする酸化物焼結体からなるスパッタリングターゲットにおいて、前記酸化物焼結体のアルキメデス密度AD(g/cm)とX線回折により求めた格子定数から算出される理論密度TD(g/cm)とがAD/TD>0.998の関係にあり、前記酸化物焼結体のバルク抵抗が、1.5×10 −4 Ω・cm以上であり、前記格子定数が、1.01285nm以下であることを特徴とするスパッタリングターゲットにある。 According to a first aspect of the present invention for solving the above-mentioned problems, in a sputtering target comprising an oxide sintered body containing indium oxide as a main component, Archimedes density AD (g / cm 3 ) and X of the oxide sintered body are described. near the relationship of the theoretical density TD (g / cm 3) and is AD / TD> 0.998 calculated from the lattice constant obtained by ray diffraction is, the bulk resistance of the sintered oxide, 1.5 × The sputtering target is characterized by being 10 −4 Ω · cm or more and the lattice constant being 1.01285 nm or less .

かかる第1の態様では、アルキメデス密度ADとX線回折により求めた格子定数から算出される理論密度TDとの比が所定の値より大きく、バルク抵抗が所定の値より大きく、格子定数が所定の値より小さいので、ノジュールの発生が抑制される。 In the first aspect, Archimedes ratio of the theoretical density TD is calculated from the density AD and the lattice constant obtained by X-ray diffraction is rather larger than the predetermined value, the bulk resistance is greater than a predetermined value, the lattice constant is predetermined Generation of nodules is suppressed because the value is smaller than .

本発明の第の態様は、第の態様において、前記格子定数が、1.01280nm以下であることを特徴とするスパッタリングターゲットにある。 A second aspect of the present invention is the sputtering target according to the first aspect, wherein the lattice constant is 1.01280 nm or less.

かかる第の態様では、格子定数が1.01280nm以下であるので、ノジュールの発生がさらに抑制される。 In the second aspect, since the lattice constant is 1.01280 nm or less, the generation of nodules is further suppressed.

本発明の第の態様は、第1又は2の態様において、前記酸化物焼結体が、さらに、酸化錫を含むことを特徴とするスパッタリングターゲットにある。 A third aspect of the present invention is the sputtering target according to the first or second aspect, wherein the oxide sintered body further contains tin oxide.

かかる第の態様では、酸化物焼結体が酸化錫を含むITOターゲットであるので、ノジュールの発生が抑制される。
In the third aspect, since the oxide sintered body is an ITO target containing tin oxide, generation of nodules is suppressed.

本発明で、アルキメデス密度AD(g/cm)とは、実際の酸化物焼結体について、置換法、すなわち、アルキメデス法により測定される密度をいい、本発明では、室温で水を使用して測定した。一方、理論密度TD(g/cm)は、X線回折により求めた格子定数から算出されるもので、例えば、鉄マンガン鉱構造の(In0.905Sn0.095において酸素欠損などの格子欠陥がないと仮定して算出したものである。具体的には、例えば、(622)、(662)、(840)、(761)、(844)、(864)面からの回折ピークデータを用いて精密化計算を実施することより、格子定数の計算を行うことができる。 In the present invention, the Archimedes density AD (g / cm 3 ) refers to the density measured by the substitution method, that is, the Archimedes method, for an actual oxide sintered body. In the present invention, water is used at room temperature. Measured. On the other hand, the theoretical density TD (g / cm 3 ) is calculated from the lattice constant determined by X-ray diffraction. For example, in (In 0.905 Sn 0.095 ) 2 O 3 having an ferromanganese structure, oxygen It is calculated on the assumption that there are no lattice defects such as defects. Specifically, for example, by performing refinement calculation using diffraction peak data from the (622), (662), (840), (761), (844), and (864) planes, a lattice constant is obtained. Can be calculated.

本発明では、AD/TD>0.995、好ましくは、AD/TD>0.998となる。   In the present invention, AD / TD> 0.995, preferably AD / TD> 0.998.

このような密度比を有する酸化物焼結体を得るためには、後で例示する製造工程において、酸素分圧ができるだけ高い雰囲気下で焼結する必要があるが、密度比は、原料粉末の種類、粒径、原料粉末のプレス圧、焼結時の雰囲気、焼結温度等の種々の条件によって変化し得るものである。何れにしても、製造後、アルキメデス法による密度の測定及びX線回折による理論密度の算出を行うことにより、ノジュールが抑制されたものであるか否かを判断することができる。   In order to obtain an oxide sintered body having such a density ratio, it is necessary to sinter in an atmosphere where the oxygen partial pressure is as high as possible in the manufacturing process exemplified later. It can vary depending on various conditions such as type, particle size, raw material press pressure, sintering atmosphere, and sintering temperature. In any case, it is possible to determine whether or not nodules are suppressed by performing density measurement by Archimedes method and calculation of theoretical density by X-ray diffraction after production.

また、本発明のスパッタリングターゲットでは、酸化物焼結体のバルク抵抗が、1.5×10−4Ω・cm以上であることが好ましい。すなわち、バルク抵抗が大きいほどノジュールが抑制される。一方、上述したように、高い酸素分圧の雰囲気下で焼結するほど、バルク抵抗が低下する傾向にあるので、バルク抵抗を付加的な指標とする必要がある。また、バルク抵抗が小さくなると、DCマグネトロンによるスパッタリングを行う際に好ましくなくなる。 In the sputtering target of the present invention, the bulk resistance of the oxide sintered body is preferably 1.5 × 10 −4 Ω · cm or more. That is, nodules are suppressed as the bulk resistance increases. On the other hand, as described above, since the bulk resistance tends to decrease as the sintering is performed under an atmosphere having a high oxygen partial pressure, it is necessary to use the bulk resistance as an additional index. Further, when the bulk resistance is small, it is not preferable when performing sputtering by a DC magnetron.

さらに、酸化物焼結体中の酸素濃度が大きくなるほど、格子定数が低くなることが知られており、従って、格子定数が所定の値より小さいという点も付随的な指標となる。すなわち、本発明においては、格子定数が、1.01285nm以下、好ましくは、1.01280nm以下であるのが望ましく、これにより、ノジュールの発生がさらに抑制される。   Furthermore, it is known that the larger the oxygen concentration in the oxide sintered body, the lower the lattice constant. Therefore, the fact that the lattice constant is smaller than a predetermined value is also an accompanying indicator. That is, in the present invention, the lattice constant is desirably 1.01285 nm or less, and preferably 1.01280 nm or less, thereby further suppressing the generation of nodules.

ここで、本発明に係るスパッタリングターゲットの製造方法の一例をセラミックスターゲットを例として説明する。   Here, an example of the manufacturing method of the sputtering target which concerns on this invention is demonstrated taking a ceramic target as an example.

まず、原料となる粉末を、所望の配合率で混合し、従来から公知の各種湿式法又は乾式法を用いて成形し、焼成する。   First, the raw material powder is mixed at a desired blending ratio, molded using various conventionally known wet methods or dry methods, and fired.

乾式法としては、コールドプレス(Cold Press)法やホットプレス(Hot Press)法等を挙げることができる。コールドプレス法では、混合粉を成形型に充填して成形体を作製し、大気雰囲気下または酸素雰囲気下で焼成・焼結させる。ホットプレス法では、混合粉を成形型内で直接焼結させる。   Examples of the dry method include a cold press method and a hot press method. In the cold press method, a mixed powder is filled in a mold to produce a molded body, which is fired and sintered in an air atmosphere or an oxygen atmosphere. In the hot press method, the mixed powder is directly sintered in a mold.

湿式法としては、例えば、濾過成形法(特開平11−286002号公報参照)を用いるのが好ましい。この濾過成形法は、セラミックス原料スラリーから水分を減圧排水して成形体を得るための非水溶性材料からなる濾過式成形型であって、1個以上の水抜き孔を有する成形用下型と、この成形用下型の上に載置した通水性を有するフィルターと、このフィルターをシールするためのシール材を介して上面側から挟持する成形用型枠からなり、前記成形用下型、成形用型枠、シール材、およびフィルターが各々分解できるように組立てられており、該フィルター面側からのみスラリー中の水分を減圧排水する濾過式成形型を用い、混合粉、イオン交換水と有機添加剤からなるスラリーを調製し、このスラリーを濾過式成形型に注入し、該フィルター面側からのみスラリー中の水分を減圧排水して成形体を製作し、得られたセラミックス成形体を乾燥脱脂後、焼成する。   As the wet method, for example, a filtration molding method (see JP-A-11-286002) is preferably used. This filtration molding method is a filtration molding die made of a water-insoluble material for obtaining a compact by draining water from a ceramic raw material slurry under reduced pressure, and a molding lower die having one or more drain holes, The filter comprises a water-permeable filter placed on the molding lower mold and a molding mold sandwiched from the upper surface side through a sealing material for sealing the filter. The mold, sealing material, and filter are each assembled so that they can be disassembled, and the mixed powder, ion-exchanged water, and organic additive are added using a filtration mold that drains the water in the slurry under reduced pressure only from the filter surface side. A slurry made of an agent is prepared, this slurry is poured into a filtration mold, and the molded body is produced by draining the water in the slurry under reduced pressure only from the filter surface side. After 燥脱 butter, baking.

各方法において、焼成温度は、例えば、ITOターゲットの場合には、1300〜1600℃が好ましく、さらに好ましくは、1450〜1600℃である。その後、所定寸法に成形・加工のための機械加工を施しターゲットとする。   In each method, the firing temperature is preferably 1300 to 1600 ° C., more preferably 1450 to 1600 ° C., for example, in the case of an ITO target. Thereafter, machining for forming / processing is performed to a predetermined dimension to obtain a target.

本発明のスパッタリングターゲットは、アルキメデス密度ADとX線回折により求めた格子定数から算出される理論密度TDとの比が所定の値より大きいので、ノジュールの発生が抑制され、特に、比抵抗が所定の値より大きいと、また、格子定数が所定の値以下であると、さらにノジュールが低減されるという効果を奏する。   In the sputtering target of the present invention, since the ratio between Archimedes density AD and theoretical density TD calculated from the lattice constant determined by X-ray diffraction is larger than a predetermined value, generation of nodules is suppressed, and in particular, specific resistance is predetermined. When the value is larger than the above value, and when the lattice constant is not more than a predetermined value, there is an effect that nodules are further reduced.

以下、本発明を実施例に基づいて説明するが、これに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, it is not limited to this.

(試験品1〜5)
酸化インジウム粉末と酸化錫粉末とをIn:SnO=90:10wt%の割合で混合し、バインダーを添加後、140mmφの金型でプレス成形した。プレス成形された成形体を自然乾燥し、バインダーの脱脂を行った後、酸素雰囲気下で0.1MPa(ゲージ圧)、焼成温度1550℃、保持時間8時間で焼成を行うことにより得た量産品5種類を用意した。
(Test products 1-5)
Indium oxide powder and tin oxide powder were mixed in a ratio of In 2 O 3 : SnO 2 = 90: 10 wt%, and after adding a binder, press molding was performed with a 140 mmφ mold. Mass-produced product obtained by air-drying the press-molded compact and degreasing the binder, followed by firing in an oxygen atmosphere at 0.1 MPa (gauge pressure), firing temperature 1550 ° C., holding time 8 hours Five types were prepared.

これらの板材から、直径101.6mmに切り出し、表面をダイヤモンド砥石#1000にて平面研削盤で仕上げ、5mmの厚みとした。   These plates were cut to a diameter of 101.6 mm, and the surface was finished with a diamond grindstone # 1000 with a surface grinder to a thickness of 5 mm.

研削後のターゲットをInにて銅製バッキングプレートにボンディングし試験品1〜5のターゲットとした。   The target after grinding was bonded to a copper backing plate with In and used as the targets of test samples 1 to 5.

(試験例1)
試験品1〜5のターゲットをスパッタ装置に装着し、下記条件にてスパッタを行い、ランドマークテクノロジー社のアークカウンターにて、スパッタ時に発生するアーキングの累積発生回数を、アーキングモニターでカウントした。この結果を表1に示す。
(Test Example 1)
The targets of test products 1 to 5 were mounted on a sputtering apparatus, and sputtering was performed under the following conditions. The number of arcing occurrences that occurred during sputtering was counted with an arcing monitor using an arc counter of Landmark Technology. The results are shown in Table 1.

スパッタ条件:
プロセス圧力(Ar)=0.4Pa
酸素分圧(O)=2.7mPa
投入電力=2W/cm
投入積算電力量=60Whr/cm
Sputtering conditions:
Process pressure (Ar) = 0.4 Pa
Oxygen partial pressure (O 2 ) = 2.7 mPa
Input power = 2 W / cm 2
Integrated power consumption = 60 Whr / cm 2

アーキングモニター:ランドマークテクノロジー社製のμArcMonitor(MAM Genesis)
アークモニター条件:
検出モード:エネルギー
アーク検出電圧:100V
大−中エネルギー境界:50mJ
ハードアーク最低時間:100μs
Arcing Monitor: μArcMonitor (MAM Genesis) manufactured by Landmark Technology
Arc monitor conditions:
Detection mode: Energy Arc detection voltage: 100V
Large-medium energy boundary: 50 mJ
Hard arc minimum time: 100 μs

(試験例2)
スパッタ後の各ターゲットをバッキングプレートから剥離した後、X線回折法による格子定数及び密度、さらに、アルキメデス法による密度及びバルク抵抗を測定した。X線回折装置にはマックサイエンス社製のMXP18を用い、格子定数の計算には、(622)、(662)、(840)、(761)、(844)、(864)面からの回折ピークデータを用いて精密化計算を実施した。また、バルク抵抗はHall計測器(東陽テクニカ社製のResitest8200)で測定した。これらの結果も併せて表1に示す。
(Test Example 2)
Each target after sputtering was peeled off from the backing plate, and then the lattice constant and density by the X-ray diffraction method, and further the density and bulk resistance by the Archimedes method were measured. For the X-ray diffractometer, MXP18 manufactured by Mac Science Co., Ltd. was used, and for calculating the lattice constant, diffraction peaks from the (622), (662), (840), (761), (844), and (864) planes. Refinement calculations were performed using the data. Bulk resistance was measured with a Hall measuring instrument (Resist 8200 manufactured by Toyo Corporation). These results are also shown in Table 1.

Figure 0004357236
Figure 0004357236

以上の結果、密度比が0.995より大きい、好ましくは0.998より大きい場合には、ノジュールが抑制されるため、累積アーク回数が低減され、また、そのなかでも、比抵抗が0.15mΩ・cmより小さいと、アーク回数が多少多くなり、さらに、格子定数が1.01285以下、好ましくは1.01280以下であると、アーク回数が多少少なくなることがわかった。
As a result, when the density ratio is larger than 0.995, preferably larger than 0.998, nodules are suppressed, so that the number of accumulated arcs is reduced, and among them, the specific resistance is 0.15 mΩ. It has been found that when it is smaller than cm, the number of arcs is somewhat increased, and when the lattice constant is 1.01285 or less, preferably 1.01280 or less, the number of arcs is slightly decreased.

Claims (3)

酸化インジウムを主成分とする酸化物焼結体からなるスパッタリングターゲットにおいて、前記酸化物焼結体のアルキメデス密度AD(g/cm)とX線回折により求めた格子定数から算出される理論密度TD(g/cm)とがAD/TD>0.998の関係にあり、前記酸化物焼結体のバルク抵抗が、1.5×10 −4 Ω・cm以上であり、前記格子定数が、1.01285nm以下であることを特徴とするスパッタリングターゲット。 In a sputtering target composed of an oxide sintered body containing indium oxide as a main component, a theoretical density TD calculated from the Archimedes density AD (g / cm 3 ) of the oxide sintered body and a lattice constant determined by X-ray diffraction. (g / cm 3) and is Ri near relationship AD / TD> 0.998, the bulk resistance of the oxide sintered body, it is 1.5 × 10 -4 Ω · cm or more, the lattice constant 1.01285 nm or less, sputtering target characterized by the above-mentioned. 請求項において、前記格子定数が、1.01280nm以下であることを特徴とするスパッタリングターゲット。 The sputtering target according to claim 1 , wherein the lattice constant is 1.01280 nm or less. 請求項1又は2において、前記酸化物焼結体が、さらに、酸化錫を含むことを特徴とするスパッタリングターゲット。 The sputtering target according to claim 1 , wherein the oxide sintered body further contains tin oxide.
JP2003294604A 2003-08-18 2003-08-18 Sputtering target Expired - Fee Related JP4357236B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003294604A JP4357236B2 (en) 2003-08-18 2003-08-18 Sputtering target
KR1020040063507A KR100660589B1 (en) 2003-08-18 2004-08-12 Spattering target
TW093124501A TWI302168B (en) 2003-08-18 2004-08-16 Sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003294604A JP4357236B2 (en) 2003-08-18 2003-08-18 Sputtering target

Publications (2)

Publication Number Publication Date
JP2005060798A JP2005060798A (en) 2005-03-10
JP4357236B2 true JP4357236B2 (en) 2009-11-04

Family

ID=34371123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003294604A Expired - Fee Related JP4357236B2 (en) 2003-08-18 2003-08-18 Sputtering target

Country Status (3)

Country Link
JP (1) JP4357236B2 (en)
KR (1) KR100660589B1 (en)
TW (1) TWI302168B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101244092B1 (en) 2005-09-01 2013-03-18 이데미쓰 고산 가부시키가이샤 Transparent conductive film, transparent electrode, and electrode base plate and manufacturing method of the same

Also Published As

Publication number Publication date
KR100660589B1 (en) 2006-12-21
TW200508410A (en) 2005-03-01
JP2005060798A (en) 2005-03-10
KR20050020941A (en) 2005-03-04
TWI302168B (en) 2008-10-21

Similar Documents

Publication Publication Date Title
JP5403390B2 (en) Oxides containing indium, gallium and zinc
WO2007034733A1 (en) Sputtering target, transparent conductive film and transparent electrode
JPWO2003014409A1 (en) Sputtering target, transparent conductive film and method for producing them
TWI334857B (en) Sintered body of oxides and the manufacturing method of the same, sputtering target and transparent electroconductive film
JP4481239B2 (en) Sputtering target for high resistance transparent conductive film, high resistance transparent conductive film and method for producing the same
JP2016056065A (en) Oxide sintered compact, sputtering target, thin film and method for producing oxide sintered compact
JP6705526B2 (en) Shield layer, method for manufacturing shield layer, and oxide sputtering target
JP4357236B2 (en) Sputtering target
JP6453528B1 (en) Sputtering target for transparent conductive film
JP2003183820A (en) Sputtering target
JP4457669B2 (en) Sputtering target and manufacturing method thereof
WO2020044798A1 (en) Oxide sputtering target and production method for oxide sputtering target
JP7086080B2 (en) Oxide sintered body and sputtering target
JP2007009268A (en) Method for manufacturing sputtering target
JP2003089869A (en) Sputtering target, and production method therefor
JP6233233B2 (en) Sputtering target and manufacturing method thereof
JP6155919B2 (en) Composite oxide sintered body and oxide transparent conductive film
WO2019187269A1 (en) Oxide sintered body, sputtering target, and transparent conductive film
JP2007238365A (en) Oxide sintered compact, its manufacturing method, sputtering target and transparent conductive film
JP2003055760A (en) Ito sputtering target and its manufacturing method
TWI710650B (en) Spattering target for transparent conductive film
JP6419397B1 (en) Sputtering target for transparent conductive film
JP2020033639A (en) Oxide sputtering target and method for manufacturing the same
JP2021091963A (en) Oxide sputtering target, and method for producing oxide sputtering target
JP2004359982A (en) Ito sputtering target and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090804

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4357236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees