JP4355436B2 - Method for forming wiring pattern, method for manufacturing circuit board, and method for manufacturing translucent body having light-shielding pattern formed thereon - Google Patents

Method for forming wiring pattern, method for manufacturing circuit board, and method for manufacturing translucent body having light-shielding pattern formed thereon Download PDF

Info

Publication number
JP4355436B2
JP4355436B2 JP2000326114A JP2000326114A JP4355436B2 JP 4355436 B2 JP4355436 B2 JP 4355436B2 JP 2000326114 A JP2000326114 A JP 2000326114A JP 2000326114 A JP2000326114 A JP 2000326114A JP 4355436 B2 JP4355436 B2 JP 4355436B2
Authority
JP
Japan
Prior art keywords
pattern
metal fine
metal
manufacturing
fine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000326114A
Other languages
Japanese (ja)
Other versions
JP2002134878A (en
Inventor
壽彦 小口
敬喜 菅波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morimura Chemicals Ltd
Original Assignee
Morimura Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morimura Chemicals Ltd filed Critical Morimura Chemicals Ltd
Priority to JP2000326114A priority Critical patent/JP4355436B2/en
Publication of JP2002134878A publication Critical patent/JP2002134878A/en
Application granted granted Critical
Publication of JP4355436B2 publication Critical patent/JP4355436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、配線パターンの形成方法に係り、特に、基体上に、インクジェットヘッドを用いて、金属微粒子含有インクにより直接回路パターンを描画するようにした配線パターンの形成方法に関する。
【0002】
【従来の技術】
従来から、回路基板の製造方法として、例えば、次のような方法が知られている。
(1)銅張り積層板上に、レジストを被覆し、フォトリソグフィ法により、回路パターンの露光、未露光レジストの溶解除去、レジスト除去部のエッチングにより導体パターンを形成する方法。
(2)セラミックス基板上にスクリーン印刷により導電ペーストを所望の回路パターンに印刷し、非酸化雰囲気中で熱処理して導電ペースト中の金属微粒子を焼結して導体パターンを形成する方法。
(3)絶縁基板上に、導電金属の蒸着により薄膜の導電層を形成し、この導電層上に、レジストを被覆し、フォトリソグフィ法により、回路パターンの露光、未露光レジストの溶解除去、レジスト除去部のエッチングにより導体パターンを形成する方法。
【0003】
しかしながら、(1)の銅張り積層板を用いる方法は、幅広の配線パターンを形成する目的には適しているが、ファインパターンの形成には不向きであり、しかもレジストの溶解や銅箔のエッチングが必要なため廃液処理の必要があり、環境上の問題が派生する虞れがある。また、工程数が多いため設備費や生産コストがかさむという問題もある。
【0004】
(2)のスクリーン印刷による方法は、スクリーンのメッシュを細かくするには強度の点から制約があり、このためファインパターンの形成には不向きである、という問題がある。
【0005】
さらに、(3)の蒸着薄膜をエッチングする方法では、薄膜の導電層のエッチングが必要なため廃液処理の必要があり、環境上の問題が派生する虞れがある。また、工程数が多いため設備費や生産コストがかさむという問題もある。
【0006】
【発明が解決しようとする課題】
前述した通り、従来から、回路基板の製造方法として、銅張り積層板を用いる方法、スクリーン印刷による方法、蒸着薄膜をエッチングする方法等が知られているが、銅張り積層板を用いる方法やスクリーン印刷による方法には、ファインパターンの形成ができない、廃液処理の必要がある、設備費や生産コストがかさむという問題があり、蒸着薄膜をエッチングする方法には、廃液処理の必要があり、設備費や生産コストがかさむという問題があった。
【0007】
本発明はかかる従来の問題を解消するためになされたもので、ファインパターンの形成が容易で、廃液処理の必要がなく、生産工程が単純で設備費や生産コストが少なくて済む配線パターンの形成方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の配線パターンの形成方法は、 基体上に、インクジェット装置を用いて、平均粒子径が100nm以下の金属微粒子を保護コロイドとしての重合体又は界面活性剤を含有する水または有機溶剤中に分散させた粘度が3〜30センチポイズの金属微粒子インクにより、回路パターンを描画する工程と、前記基体を150〜300℃の温度で熱処理するか、もしくは光線により処理して前記回路パターンに含まれる重合体または界面活性剤を分解揮散させて金属微粒子パターンを形成する工程と、前記金属微粒子パターンをメッキ核として導電金属によるメッキを施し所望の膜厚の導体パターンとする工程と、を含むことを特徴とする。
【0009】
本発明において導体パターンを形成する基体としては、用途に応じて任意のものを使用することができる。
【0010】
回路基板を製造する場合には、後述する熱処理に耐え得る材質の基体であれば特に制限はない。
【0011】
すなわち、本発明に用いられる基体としては、ポリイミドフィルム、ポリアミドイミドフィルム、ポリアミドフィルム、ポリエステルフィルム、ガラス−エポキシ基板、紙−フェノール基板、シリコン基板、セラミックス基板、ガラス基板等が例示される。
【0012】
基体として有機質材料からなるフィルムや基板を使用する場合には、金属微粒子インクの重合体としては、この基材の軟化点より低い温度で分解揮散する、例えばウレタン系の重合体が適している。
【0013】
回路基板を製造する場合には、特に、耐熱性、電気絶縁性の優れたポリイミドフィルム、ポリアミドイミドフィルム、ガラス−エポキシ基板、紙−フェノール基板、セラミックス基板、ガラス基板等が適している。
【0014】
また、OHPのような画像投射装置に用いる遮光パターンの形成された透光体を製造する場合には、無色で透明度の高いポリエステルフィルムやガラス基板等が適している。
【0015】
本発明に用いられる金属微粒子としては、Au、Pt、Ag、Cu、Ni、Cr、Rh、Pd、Zn、Co、Mo、Ru、W、Os、Ir、Fe、Mn、Ge、Sn、Ga、In等があげられるが、特に、Au、Ag、Cuのような金属の微粒子を用いると、電気抵抗が低く、かつ腐食に強い回路パターンを形成することができるので好ましい。
【0016】
本発明において、金属微粒子インクに用いられる重合体または界面活性剤は、金属微粒子の保護コロイドとして作用するものであり、特に、ポリエステル、ポリアクリルニトリル、ポリウレタンとアルカノールアミンとのブロック共重合体が好適している。
【0017】
本発明の金属微粒子インクは、水系用インクと油系用インクがある。
【0018】
金属微粒子を、水を主体とする分散媒に分散せしめてなる水性インクは、例えば、次のような方法で調整することができる。
【0019】
すなわち、塩化金酸や硝酸銀のような金属イオンソース水溶液に水溶性の重合体を溶解させ、撹拌しながらジメチルアミノエタノールのようなアルカノールアミンを添加する。数10秒〜数分で金属イオンが還元され、平均粒系100nm以下の金属微粒子が析出する。塩素イオンや硝酸イオンを限外ろ過などの方法で除去した後、濃縮・乾燥することにより濃厚な金属微粒子インクが得られる。この金属微粒子インクは、水やアルコール系溶媒、テトラエトキシシランやトリエトキシシランのようなゾルゲルプロセス用バインダーに安定に溶解・混合することが可能である。
【0020】
金属微粒子を油を主体とする分散媒に分散せしめてなる油性インクは、例えば、次のような方法で調整することができる。
【0021】
すなわち、油溶解性のポリマーをアセトンのような水混和性有機溶媒に溶解させ、この溶液を金属イオンソース水溶液と混合する。混合物は不均一系であるが、これを撹拌しながらアルカノールアミンを添加すると金属微粒子は重合体中に分散した形で油相側に析出してくる。これを洗浄・濃縮・乾燥させると水系と同様の濃厚な金属微粒子インクが得られる。この金属微粒子インクは、芳香族系、ケトン系、エステル系などの溶媒やポリエステル、エポキシ樹脂、アクリル樹脂、ポリウレタン樹脂等に安定に溶解・混合することが可能である。
【0022】
金属微粒子インクの分散媒中における金属微粒子の濃度は、最大80重量%とすることが可能であるが、用途に応じて適宜稀釈して使用する。
【0023】
通常、金属微粒子インクにおける金属微粒子の含有量は2〜50重量%、界面活性剤および樹脂の含有量は0.3〜30重量%、粘度は3〜30センチポイズが適当である。
【0024】
本発明に使用するインクジェット装置としては、サーマル方式、ピエゾ方式のいずれも使用可能である。ただ、前者は分散媒の突沸現象を利用して金属微粒子インクを噴射するので、使用する金属微粒子インクとしては、油性インクよりも水系性インクの方が適している。
【0025】
現在、公知のインクジェット装置の解像度は、2000DPIに達しているので、本発明によれば6μmの線幅のパターンを形成することが可能である。
【0026】
次に本発明において回路パターンを導体パターンとして用いて回路基板を形成する方法について説明する。
【0027】
まず、用途に応じて選択された正常な絶縁基板上に、インクジェット装置を用いて所定の厚さの回路パターンを形成する。
【0028】
次に、例えば100℃のオーブン中で3分間程度加熱して乾燥させ、さらに150〜300℃のオーブン中に15〜30分間程度置いて重合体を分解揮散させるとともに金属微粒子を焼結させて金属微粒子パターンを形成する。
【0029】
上記工程で得られた金属微粒子パターンをメッキ核として、導電金属によるメッキを施せば、厚膜の導電回路パターンを形成することが可能である。このようにして得られる導体パターンの比抵抗値は10-5〜10-6Ωcmであり、回路基板として十分使用することが可能である。
【0030】
【発明の実施の形態】
次に本発明の実施例について説明する。
【0031】
実施例1
平均粒径20nmのAg微粒子5重量%(保護コロイド1.5重量%を含む)、平均粒径50nmのPd微粒子15重量%(保護コロイド3重量%を含む)を含む水系インクをサーマル式インクジェット装置を用いてポリイミドフィルム上に線幅10μm、膜厚0.5μmの回路パターンを形成し、100℃で15分間乾燥させた。得られたパターンに紫外線を照射して保護コロイド樹脂を分解揮散させたのち、銅の無電解メッキ浴に浸漬して銅膜厚5μmの配線パターンを形成したところ、配線回路の電気抵抗が3×10-5Ωcmの配線パターンを形成できた。
【0032】
実施例
この実施例は、本発明を多層配線基板のスルーホールに適用した例である。
【0033】
図1に示すように、ポリイミド絶縁層1内に実施例1 で使用した水系インクおよび方法を用いて多層に線幅10μm、膜厚0.5μmの回路パターン2を形成したのち、各回路パターン2の層間接続部が露出するように逆円錐状の透孔3を形成し、この透孔内に同じ水系インクを用いて、サーマル式インクジェット装置により膜厚0.5μmの塗膜4を形成し、100℃で15分間乾燥させた。
【0034】
得られた塗膜4に紫外線を照射して保護コロイド樹脂を分解揮散させたのち、銅の無電解メッキ浴に浸漬して膜厚5μmの銅膜からなるスルーホール5が得られた。
【0035】
なお、以上の実施例では、回路パターンを、Ag微粒子とPd微粒子とを含む水系インクを用いて回路パターンを形成したが、例えば、以下の例に示すような金属微粒子を含むインクを用いる方法によって回路パターンを形成してもよい。
例1
Ag含有率20重量%のAg微粒子インク(Agの平均粒系10nm、保護コロイド樹脂5重量%含有のイソプロピルアルコール分散体)をプロピレングリコールモノメチルアセテートに固形分濃度が15重量%となるように溶解し、ピエゾ方式のインクジェット装置を用いてポリイミドフィルム上に線幅20μm、膜厚3μmの回路パターンを描画し、150℃で15分間乾燥させた。
【0036】
次に、200℃で40分間の焼き付けを行って導体パターンを形成した。得られた導体パターンの抵抗値は2×10-5Ωcmであり、回路基板として使用可能であることが確認できた。
【0037】
例2
Ag微粒子インクに変えてAu粒子インク(Au粒子平均系100nm、Au粒子含有率30重量%護コロイド含有率10重量%の水分散体)を用いて同様にピエゾ方式インクジェットによりガラス板上に線幅50μm、膜厚1μmの導電性回路パターンを作製し、同様に乾燥・焼き付けを行ったところ、配線回路の電気抵抗が3×10-4Ωcmの配線パターンを形成できた。
【0038】
【発明の効果】
以上説明したように本発明によれば、基板等の上に従来達成出来なかった導電性のファインパターンをきわめて高精度にかつ迅速に形成することができる。本発明はまた、従来必要とされていた、レジスト膜の塗布や露光、現像、エッチングなどのプロセスを経ずに廃液処理を必要とせずに導電性の回路を形成できる。さらに本発明は、廃液処理などの問題を大幅に軽減できるので、設備費や生産コストの低減に著しく寄与するものである。
【図面の簡単な説明】
【図1】 本発明を用いて形成された回路基板のスルーホールの部分を模式的に示す断面図である。
【符号の説明】
1……ポリイミド絶縁層、2……回路パターン、3………逆円錐状の透孔、4……塗膜、5……スルーホール
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming a wiring pattern , and more particularly to a method for forming a wiring pattern in which a circuit pattern is directly drawn on a substrate with an ink containing metal fine particles using an ink jet head.
[0002]
[Prior art]
Conventionally, as a circuit board manufacturing method, for example, the following method is known.
(1) A method in which a resist is coated on a copper-clad laminate, and a conductor pattern is formed by exposure of a circuit pattern, dissolution removal of unexposed resist, and etching of a resist removal portion by a photolithography method.
(2) A method in which a conductive paste is printed on a ceramic substrate by screen printing in a desired circuit pattern, heat treated in a non-oxidizing atmosphere, and metal fine particles in the conductive paste are sintered to form a conductor pattern .
(3) A thin conductive layer is formed on the insulating substrate by vapor deposition of a conductive metal, and a resist is coated on the conductive layer, and exposure of the circuit pattern, dissolution and removal of the unexposed resist by the photolithography method, resist A method of forming a conductor pattern by etching a removed portion.
[0003]
However, the method (1) using the copper-clad laminate is suitable for the purpose of forming a wide wiring pattern, but is not suitable for forming a fine pattern, and resist dissolution and copper foil etching are not suitable. Since it is necessary, it is necessary to treat the waste liquid, which may lead to environmental problems. There is also a problem that equipment costs and production costs increase due to the large number of processes.
[0004]
The method (2) by screen printing has a problem that there is a limitation in terms of strength in order to make the screen mesh fine, and therefore, it is not suitable for forming a fine pattern.
[0005]
Furthermore, in the method (3) for etching a deposited thin film, the conductive layer of the thin film needs to be etched, so that waste liquid treatment is necessary, which may lead to environmental problems. There is also a problem that equipment costs and production costs increase due to the large number of processes .
[0006]
[Problems to be solved by the invention]
As described above, conventionally, as a circuit board manufacturing method, a method using a copper-clad laminate, a method by screen printing, a method for etching a deposited thin film, and the like are known. The printing method has the problems that fine patterns cannot be formed, waste liquid treatment is necessary, and equipment costs and production costs are high. The method for etching a deposited thin film requires waste liquid treatment, and equipment costs are high. There was a problem that production cost was increased .
[0007]
The present invention has been made to solve such a conventional problem, and it is easy to form a fine pattern, does not require waste liquid treatment , forms a wiring pattern with a simple production process, and requires less equipment and production costs. It aims to provide a method .
[0008]
[Means for Solving the Problems]
In the method for forming a wiring pattern of the present invention, a metal fine particle having an average particle size of 100 nm or less is dispersed on a substrate in water or an organic solvent containing a polymer or a surfactant as a protective colloid using an ink jet device. A step of drawing a circuit pattern with a metal fine particle ink having a viscosity of 3 to 30 centipoise and a polymer contained in the circuit pattern by heat-treating the substrate at a temperature of 150 to 300 ° C. or treating with a light beam Or a step of decomposing and volatilizing a surfactant to form a metal fine particle pattern, and a step of plating with a conductive metal using the metal fine particle pattern as a plating nucleus to form a conductor pattern having a desired film thickness. To do.
[0009]
In the present invention, any substrate may be used as the substrate on which the conductor pattern is formed depending on the application.
[0010]
When a circuit board is manufactured, there is no particular limitation as long as it is a base material that can withstand heat treatment described later.
[0011]
That is, as the substrate used in the present invention, a polyimide film, polyamideimide film, polyamide film, polyester film, glass - epoxy substrate, a paper - phenol substrate, a silicon substrate, a ceramic substrate, a glass substrate, and the like.
[0012]
When a film or substrate made of an organic material is used as the substrate, the polymer of the metal fine particle ink is suitable, for example, a urethane polymer that decomposes and volatilizes at a temperature lower than the softening point of the substrate.
[0013]
In the case of manufacturing a circuit board, a polyimide film, a polyamideimide film, a glass-epoxy board, a paper-phenol board, a ceramic board, a glass board, etc. having excellent heat resistance and electrical insulation are particularly suitable.
[0014]
In the case of manufacturing a translucent body having a light shielding pattern used for an image projection apparatus such as OHP, a colorless and highly transparent polyester film or glass substrate is suitable.
[0015]
The metal fine particles used in the present invention include Au, Pt, Ag, Cu, Ni, Cr, Rh, Pd, Zn, Co, Mo, Ru, W, Os, Ir, Fe, Mn, Ge, Sn, Ga, In particular, it is preferable to use fine metal particles such as Au, Ag, and Cu because a circuit pattern with low electrical resistance and resistance to corrosion can be formed.
[0016]
In the present invention, the polymer or surfactant used in the metal fine particle ink acts as a protective colloid for the metal fine particles, and in particular, a block copolymer of polyester, polyacrylonitrile, polyurethane and alkanolamine is preferred. Is suitable.
[0017]
The metal fine particle ink of the present invention includes water-based ink and oil-based ink.
[0018]
A water-based ink in which metal fine particles are dispersed in a dispersion medium mainly composed of water can be prepared by the following method, for example.
[0019]
That is, a water-soluble polymer is dissolved in an aqueous metal ion source solution such as chloroauric acid or silver nitrate, and an alkanolamine such as dimethylaminoethanol is added with stirring. Metal ions are reduced in several tens of seconds to several minutes, and fine metal particles having an average grain size of 100 nm or less are precipitated. After removing chloride ions and nitrate ions by a method such as ultrafiltration, a concentrated metal fine particle ink is obtained by concentration and drying. The metal fine particle ink can be stably dissolved and mixed in water, an alcohol solvent, a sol-gel process binder such as tetraethoxysilane or triethoxysilane.
[0020]
An oil-based ink obtained by dispersing metal fine particles in a dispersion medium mainly composed of oil can be prepared, for example, by the following method.
[0021]
That is, an oil-soluble polymer is dissolved in a water-miscible organic solvent such as acetone, and this solution is mixed with an aqueous metal ion source solution. The mixture is heterogeneous, but when alkanolamine is added while stirring the mixture, the metal fine particles are precipitated on the oil phase side in a form dispersed in the polymer. When this is washed , concentrated, and dried, a thick metal fine particle ink similar to that of an aqueous system can be obtained. This metal fine particle ink can be stably dissolved and mixed in an aromatic solvent, ketone solvent, ester solvent or the like, polyester, epoxy resin, acrylic resin, polyurethane resin or the like.
[0022]
The concentration of the metal fine particles in the dispersion medium of the metal fine particle ink can be a maximum of 80% by weight, but is appropriately diluted depending on the application.
[0023]
Usually, the metal fine particle content in the metal fine particle ink is 2 to 50% by weight, the surfactant and resin content is 0.3 to 30% by weight, and the viscosity is 3 to 30 centipoise.
[0024]
As the ink jet device used in the present invention, either a thermal method or a piezo method can be used. However, since the former uses the bumping phenomenon of the dispersion medium to eject the metal fine particle ink, the water-based ink is more suitable as the metal fine particle ink to be used than the oil-based ink.
[0025]
At present, the resolution of a known ink jet apparatus has reached 2000 DPI, so that according to the present invention, a pattern having a line width of 6 μm can be formed.
[0026]
Next, a method for forming a circuit board using a circuit pattern as a conductor pattern in the present invention will be described.
[0027]
First, a circuit pattern having a predetermined thickness is formed on a normal insulating substrate selected according to the application using an inkjet apparatus.
[0028]
Next, for example, it is dried by heating for about 3 minutes in an oven at 100 ° C., and further placed in an oven at 150 to 300 ° C. for about 15 to 30 minutes to decompose and volatilize the polymer and sinter metal fine particles to sinter the metal. A fine particle pattern is formed.
[0029]
A thick conductive circuit pattern can be formed by performing plating with a conductive metal using the metal fine particle pattern obtained in the above step as a plating nucleus. The specific resistance value of the conductor pattern thus obtained is 10 @ -5 to 10 @ -6 .OMEGA.cm, and can be sufficiently used as a circuit board.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Next, examples of the present invention will be described.
[0031]
Example 1
A water-based ink containing 5% by weight of Ag fine particles having an average particle diameter of 20 nm (including 1.5% by weight of protective colloid) and 15% by weight of Pd fine particles having an average particle diameter of 50 nm (including 3% by weight of protective colloid) Was used to form a circuit pattern having a line width of 10 μm and a film thickness of 0.5 μm on a polyimide film, and dried at 100 ° C. for 15 minutes. After irradiating the obtained pattern with ultraviolet rays to decompose and volatilize the protective colloid resin, a wiring pattern having a copper film thickness of 5 μm was formed by dipping in a copper electroless plating bath. A wiring pattern of 10 −5 Ωcm could be formed.
[0032]
Example 2
In this embodiment, the present invention is applied to a through hole of a multilayer wiring board.
[0033]
As shown in FIG. 1, after the circuit pattern 2 having a line width of 10 μm and a film thickness of 0.5 μm is formed in a multilayer using the water-based ink and method used in Example 1 in the polyimide insulating layer 1, each circuit pattern 2 An inverted conical through-hole 3 is formed so as to expose the interlayer connection portion, and a coating film 4 having a film thickness of 0.5 μm is formed by a thermal ink jet apparatus using the same water-based ink in the through-hole, Dry at 100 ° C. for 15 minutes.
[0034]
The obtained coating film 4 was irradiated with ultraviolet rays to decompose and volatilize the protective colloid resin, and then immersed in a copper electroless plating bath to obtain a through hole 5 made of a copper film having a thickness of 5 μm .
[0035]
In the above embodiment, the circuit pattern is formed by using a water-based ink containing Ag fine particles and Pd fine particles. For example, by the method using the ink containing metal fine particles as shown in the following example. A circuit pattern may be formed.
Example 1
Ag fine particle ink (Ag average particle size 10 nm, isopropyl alcohol dispersion containing 5% by weight of protective colloid resin) dissolved in propylene glycol monomethyl acetate so as to have a solid content concentration of 15% by weight. A circuit pattern having a line width of 20 μm and a film thickness of 3 μm was drawn on a polyimide film using a piezo-type ink jet device and dried at 150 ° C. for 15 minutes.
[0036]
Next, baking was performed at 200 ° C. for 40 minutes to form a conductor pattern. The resistance value of the obtained conductor pattern was 2 × 10 −5 Ωcm, and it was confirmed that it could be used as a circuit board.
[0037]
Example 2
The line width on the glass plate was similarly changed by piezo ink-jet using Au particle ink (Au particle average system 100 nm, Au particle content 30 wt% and protective colloid content 10 wt% water dispersion) instead of Ag fine particle ink. When a conductive circuit pattern having a thickness of 50 μm and a film thickness of 1 μm was prepared and dried and baked in the same manner, a wiring pattern having an electric resistance of 3 × 10 −4 Ωcm could be formed.
[0038]
【The invention's effect】
As described above, according to the present invention, a conductive fine pattern that could not be achieved conventionally can be formed on a substrate or the like with extremely high accuracy and speed. The present invention can also form a conductive circuit without requiring a waste liquid treatment without undergoing processes such as resist film coating, exposure, development and etching, which have been conventionally required. Furthermore, since the present invention can greatly reduce problems such as waste liquid treatment, it significantly contributes to the reduction of equipment costs and production costs.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing a through hole portion of a circuit board formed using the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Polyimide insulating layer, 2 ... Circuit pattern, 3 ......... Reverse-cone-shaped through-hole, 4 ... Coating film, 5 ... Through-hole

Claims (2)

基体上に、インクジェット装置を用いて、平均粒子径が100nm以下の金属微粒子を保護コロイドとしての重合体又は界面活性剤を含有する水または有機溶剤中に分散させた粘度が3〜30センチポイズの金属微粒子インクにより、回路パターンを描画する工程と、
前記基体を150〜300℃の温度で熱処理するか、もしくは光線により処理して前記回路パターンに含まれる重合体または界面活性剤を分解揮散させて金属微粒子パターンを形成する工程と、
前記金属微粒子パターンをメッキ核として導電金属によるメッキを施し所望の膜厚の導体パターンとする工程と、
を含むことを特徴とする配線パターンの形成方法。
A metal having a viscosity of 3 to 30 centipoise, in which metal fine particles having an average particle size of 100 nm or less are dispersed in water or an organic solvent containing a polymer or a surfactant as a protective colloid using an inkjet apparatus on a substrate. Drawing a circuit pattern with fine particle ink;
Heat treating the substrate at a temperature of 150 to 300 ° C., or treating with a light beam to decompose and volatilize a polymer or a surfactant contained in the circuit pattern to form a metal fine particle pattern;
A process of plating with a conductive metal using the metal fine particle pattern as a plating nucleus to form a conductor pattern with a desired film thickness;
A method of forming a wiring pattern comprising:
前記金属微粒子が、Au、Pt、Ag、Cu、Ni、Cr、Rh、Pd、Zn、Co、Mo、Ru、W、Os、Ir、Fe、Mn、Ge、Sn、GaおよびInから選ばれた一種以上からなることを特徴とする請求項1記載の配線パターンの形成方法。 The metal fine particles were selected from Au, Pt, Ag, Cu, Ni, Cr, Rh, Pd, Zn, Co, Mo, Ru, W, Os, Ir, Fe, Mn, Ge, Sn, Ga, and In. The wiring pattern forming method according to claim 1, comprising at least one type.
JP2000326114A 2000-10-25 2000-10-25 Method for forming wiring pattern, method for manufacturing circuit board, and method for manufacturing translucent body having light-shielding pattern formed thereon Expired - Fee Related JP4355436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000326114A JP4355436B2 (en) 2000-10-25 2000-10-25 Method for forming wiring pattern, method for manufacturing circuit board, and method for manufacturing translucent body having light-shielding pattern formed thereon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000326114A JP4355436B2 (en) 2000-10-25 2000-10-25 Method for forming wiring pattern, method for manufacturing circuit board, and method for manufacturing translucent body having light-shielding pattern formed thereon

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2006148911A Division JP2006270118A (en) 2006-05-29 2006-05-29 Manufacturing method for circuit board
JP2006148912A Division JP2006229254A (en) 2006-05-29 2006-05-29 Method for manufacturing translucent body

Publications (2)

Publication Number Publication Date
JP2002134878A JP2002134878A (en) 2002-05-10
JP4355436B2 true JP4355436B2 (en) 2009-11-04

Family

ID=18803361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000326114A Expired - Fee Related JP4355436B2 (en) 2000-10-25 2000-10-25 Method for forming wiring pattern, method for manufacturing circuit board, and method for manufacturing translucent body having light-shielding pattern formed thereon

Country Status (1)

Country Link
JP (1) JP4355436B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200111020A (en) * 2019-03-18 2020-09-28 서울시립대학교 산학협력단 Method for manufacturing colloidal metal nanoparticle assembly through light-induced photothermal convection

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003237578A1 (en) * 2002-07-03 2004-01-23 Nanopowders Industries Ltd. Low sintering temperatures conductive nano-inks and a method for producing the same
JP2004122744A (en) 2002-07-31 2004-04-22 Seiko Epson Corp Driver of liquid drop ejection head, film deposition system, driving method of liquid drop ejection head, process for depositing film, and process for manufacturing electronic apparatus and device
JP4192554B2 (en) 2002-10-25 2008-12-10 株式会社デンソー Multilayer circuit board manufacturing method
US7380690B2 (en) 2003-01-17 2008-06-03 Ricoh Company, Ltd. Solution jet type fabrication apparatus, method, solution containing fine particles, wiring pattern substrate, device substrate
JP2004304129A (en) 2003-04-01 2004-10-28 Seiko Epson Corp Pattern forming method by droplet discharge method, and forming method for multilevel interconnection structure
JP4400138B2 (en) * 2003-08-08 2010-01-20 セイコーエプソン株式会社 Method for forming wiring pattern
JP2005072319A (en) 2003-08-26 2005-03-17 Mitsubishi Electric Corp Method and device for evaluating and preparing microwave integrated circuit
US7033667B2 (en) * 2003-12-18 2006-04-25 3M Innovative Properties Company Printed circuits on shrink film
US7683107B2 (en) 2004-02-09 2010-03-23 E.I. Du Pont De Nemours And Company Ink jet printable thick film compositions and processes
JP2005262598A (en) * 2004-03-18 2005-09-29 Asahi Kasei Corp Laminate and its production method
US7704414B2 (en) * 2004-05-07 2010-04-27 Canon Kabushiki Kaisha Image-forming method employing a composition
JP2006024695A (en) * 2004-07-07 2006-01-26 Nec Lcd Technologies Ltd Wiring forming method using nano particle ink
US7704783B2 (en) 2004-10-15 2010-04-27 Panasonic Corporation Method of manufacturing conductive pattern and electronic device, and electronic device
JP4664046B2 (en) * 2004-11-08 2011-04-06 ハリマ化成株式会社 Method for forming conductive circuit
JP4675096B2 (en) * 2004-12-06 2011-04-20 株式会社リコー 3D molded circuit component manufacturing method and 3D molded circuit component manufactured thereby
JP4637591B2 (en) * 2005-01-14 2011-02-23 株式会社リコー Manufacturing method of wiring formed body
JP4632301B2 (en) * 2005-02-17 2011-02-16 日本ペイント株式会社 Electroless plating catalyst and electroless plating method
JP4590294B2 (en) * 2005-04-13 2010-12-01 株式会社リコー Manufacturing method of three-dimensional molded circuit components
JP2007049101A (en) * 2005-08-12 2007-02-22 Morimura Chemicals Ltd Circuit substrate, circuit substrate forming ink and method for forming circuit substrate
US7640659B2 (en) 2005-09-02 2010-01-05 Panasonic Corporation Method for forming conductive pattern and wiring board
JP2007184408A (en) * 2006-01-06 2007-07-19 Nec Corp Electrode bonding method
WO2007144322A1 (en) * 2006-06-14 2007-12-21 Basf Se Method for producing electrically conductive surfaces on a carrier
JP4775204B2 (en) * 2006-09-20 2011-09-21 凸版印刷株式会社 Method for forming conductive pattern, method for manufacturing wiring board, and wiring board
EP1926357A3 (en) 2006-11-21 2009-09-30 Ricoh Company, Ltd. Functional device fabrication apparatus and functional device fabricated with the same
US8414961B1 (en) 2006-12-13 2013-04-09 Nanosolar, Inc. Solution deposited transparent conductors
US7947328B2 (en) 2007-09-28 2011-05-24 Fujifilm Corporation Metal pattern forming method
US8530262B2 (en) * 2008-02-28 2013-09-10 Nanosolar, Inc. Roll-to-roll non-vacuum deposition of transparent conductive electrodes
JP5462039B2 (en) * 2010-03-18 2014-04-02 株式会社フジクラ Circuit board manufacturing method, circuit board, and circuit board manufacturing method
JP5058326B2 (en) * 2010-10-22 2012-10-24 ハリマ化成株式会社 Method for forming conductive circuit
TWI592079B (en) * 2012-04-27 2017-07-11 Dsm智慧財產有限公司 Electrically conductive polyamide substrate
JP6610262B2 (en) 2014-01-28 2019-11-27 コニカミノルタ株式会社 Conductive pattern, substrate with conductive pattern, method for manufacturing substrate with conductive pattern, structure having conductive pattern on surface, and method for manufacturing the structure
JP2018134868A (en) * 2018-03-19 2018-08-30 エックスジェット エルティーディー. Storage and cleaning of ink jet head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200111020A (en) * 2019-03-18 2020-09-28 서울시립대학교 산학협력단 Method for manufacturing colloidal metal nanoparticle assembly through light-induced photothermal convection
KR102169064B1 (en) 2019-03-18 2020-10-22 서울시립대학교 산학협력단 Method for manufacturing colloidal metal nanoparticle assembly through light-induced photothermal convection

Also Published As

Publication number Publication date
JP2002134878A (en) 2002-05-10

Similar Documents

Publication Publication Date Title
JP4355436B2 (en) Method for forming wiring pattern, method for manufacturing circuit board, and method for manufacturing translucent body having light-shielding pattern formed thereon
TWI399457B (en) Copper conductive film and fabricating method thereof, conductive substrate and fabricating method thereof, copper conductive wire and fabricating method thereof and treating solution for treating layer containing copper oxide
KR100644309B1 (en) Ink jet printable thick film ink compositions and processes
US8999204B2 (en) Conductive ink composition, method for manufacturing the same, and method for manufacturing conductive thin layer using the same
EP2424337A1 (en) Substrate for printed wiring board, printed wiring board, and methods for producing same
KR100872162B1 (en) Conducting metal nano particle and nano-metal ink containing it
WO2003032084A2 (en) Low viscosity precursor compositions and methods for the deposition of conductive electronic features
JP2007194175A (en) Ink for conductor pattern, conductor pattern, wiring board, electro-optical device and electronic equipment
JPS6361798B2 (en)
WO2007140480A2 (en) Printed resistors and processes for forming same
KR102456821B1 (en) Copper oxide ink and a method for manufacturing a conductive substrate using the same, a product including a coating film and a method for manufacturing a product using the same, a method for manufacturing a product having a conductive pattern, and a product having a conductive pattern
JP2006303368A (en) Manufacturing method of circuit board
DE2845891A1 (en) THIN FILM MICROCIRCUIT, ITS PRODUCTION AND USE
US20170354040A1 (en) Patterning of electroless metals by selective deactivation of catalysts
KR101808741B1 (en) Method for forming conductive layer patterns by inkjet-printing
JP2006270118A (en) Manufacturing method for circuit board
US20170347459A1 (en) Substrate for printed circuit board, printed circuit board, and method for producing substrate for printed circuit board
JP2006342380A (en) Composite colloidal metal particle, coated body with composite colloidal metal particle, mixed dispersion liquid of colloidal metals particles, and method for forming electroconductive film
JP2020113706A (en) Structure with conductive pattern region and manufacturing method of the same
JP2006229254A (en) Method for manufacturing translucent body
EP1232294B1 (en) Metallizing method for dielectrics
JP7032127B2 (en) Method for manufacturing printed wiring board base material, printed wiring board and printed wiring board base material
JP2007049101A (en) Circuit substrate, circuit substrate forming ink and method for forming circuit substrate
US20050260350A1 (en) Forming a conductor circuit on a substrate
JP5327107B2 (en) Printed wiring board substrate, printed wiring board, and printed wiring board manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070620

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090803

R150 Certificate of patent or registration of utility model

Ref document number: 4355436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060529

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150807

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees