JP4353655B2 - Perpendicular magnetic recording medium and manufacturing method thereof - Google Patents

Perpendicular magnetic recording medium and manufacturing method thereof Download PDF

Info

Publication number
JP4353655B2
JP4353655B2 JP2001157664A JP2001157664A JP4353655B2 JP 4353655 B2 JP4353655 B2 JP 4353655B2 JP 2001157664 A JP2001157664 A JP 2001157664A JP 2001157664 A JP2001157664 A JP 2001157664A JP 4353655 B2 JP4353655 B2 JP 4353655B2
Authority
JP
Japan
Prior art keywords
layer
magnetic
magnetic recording
recording medium
soft magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001157664A
Other languages
Japanese (ja)
Other versions
JP2002352418A (en
Inventor
泰志 酒井
貞幸 渡辺
一雄 榎本
覚 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Fuji Electric Holdings Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Fuji Electric Holdings Ltd, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001157664A priority Critical patent/JP4353655B2/en
Publication of JP2002352418A publication Critical patent/JP2002352418A/en
Application granted granted Critical
Publication of JP4353655B2 publication Critical patent/JP4353655B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は各種磁気記録装置に搭載される垂直磁気記録媒体及びその製造方法に関する。
【0002】
【従来の技術】
磁気記録の高密度化を実現する技術として、従来の長手磁気記録方式に代えて、垂直磁気記録方式が注目されつつある。
【0003】
垂直磁気記録媒体は、硬質磁性材料の磁気記録層と、この記録層への記録に用いられる、磁気ヘッドが発生する磁束を集中させる役割を担う軟磁性材料の裏打ち層から構成される。このような構造の垂直磁気記録媒体において問題となるノイズのひとつであるスパイクノイズは、裏打ち層である軟磁性層に形成された磁壁によるものであることが知られている。そのため垂直磁気記録媒体の低ノイズ化のためには、軟磁性裏打ち層の磁壁形成を阻止する必要がある。
【0004】
この軟磁性裏打ち層の磁壁の制御については、例えば特開平6−180834号公報や特開平10−214719号公報に示されているように、軟磁性裏打ち層の上層や下層に、Co合金等の強磁性層を形成しこれを所望の方向に磁化させるように着磁する方法や、反強磁性薄膜を形成し交換結合を利用して磁化をピン止めする方法が提案されている。
【0005】
磁区制御層としての反強磁性層を用いて軟磁性裏打ち層との交換結合により磁壁の制御を行なう方法は、交換結合が十分に得られた場合、軟磁性裏打ち層の磁壁形成を阻止することができ、非常に効果的である。しかしながら、十分な交換結合を得るためには、例えば前出の特開平10−214719号公報に示すように、軟磁性裏打ち層の特性を出すためには成膜後の加熱処理が必要であり、この加熱処理は半径方向に磁場を印加しながら長時間行わなければならない処理であるため、大量生産を行なう場合に非常に不利であった。
【0006】
【発明が解決しようとする課題】
本発明の課題は、磁区制御層として反強磁性層を使用することにより軟磁性裏打ち層の磁壁の制御を有効に行なうことにより低ノイズ化された垂直磁気記録媒体を提供すること、および該垂直磁気記録媒体の大量生産に適した製造方法を提供することである。
【0007】
【課題を解決するための手段】
上記課題を解決するための本発明の第1の形態は、非磁性基体上に少なくとも下地層、配向制御層、磁区制御層と軟磁性裏打ち層とからなる層、中間層、磁気記録層、保護層及び液体潤滑層が順次積層されてなる垂直磁気記録媒体であって、前記中間層下に、磁化が基板の半径方向に固定された反強磁性層である磁区制御層と軟磁性層である軟磁性裏打ち層とが交互に積層され、最上層に反強磁性層を有する前記磁区制御層と軟磁性裏打ち層とからなる層、Crを含むNiFe系合金薄膜よりなる前記配向制御層、およびTaよりなる前記下地層からなる層構成を有し、前記磁区制御層少なくともIrを含むMn合金からなる反強磁性層であり、前記軟磁性裏打ち層は少なくともNiとFeを含む軟磁性層であり前記配向制御層が前記反強磁性層の結晶配向を制御し、前記下地層が前記配向制御層の微細構造を制御している垂直磁気記録媒体であり、同じく第2の形態は、前記垂直磁気記録媒体の製造方法であって、少なくとも前記磁区制御層と軟磁性裏打ち層とからなる層の成膜時に、基板の半径方向に放射状に磁場を印加することによる垂直磁気記録媒体の製造方法である。
【0008】
【発明の実施の形態】
垂直磁気記録媒体について鋭意検討した結果、軟磁性裏打ち層として少なくともNiとFeを含む軟磁性層を用い、非磁性基体と軟磁性層の間に形成する磁区制御層としての反強磁性層としてIrMn合金を用い、その反強磁性層の結晶配向を制御するために反強磁性層の下層にCrを含むNiFe合金よりなる配向制御層を設け、更にその配向制御層の微細構造を制御する目的で配向制御層の下層に下地層を設け、さらに、少なくとも磁区制御層として反強磁性層及び軟磁性層の成膜時に、基板の半径方向に磁場を印加することにより、成膜後に加熱処理等を行なわなくても大きな交換結合が得られ、軟磁性裏打ち層の磁壁の制御を有効に行なえることを見出した。
【0009】
また、軟磁性層と磁区制御層としての反強磁性層とを交互に2層以上積層することにより、さらに大きな交換結合磁界が得られることも判明した。
【0010】
図1は本発明の垂直磁気記録媒体の断面模式図である。非磁性基体1上に少なくとも下地層2、配向制御層3、磁区制御層4としての反強磁性層、軟磁性層5が順次形成され、反強磁性層と軟磁性層とが交互に少なくとも2層以上積層された形態をしており、更に中間層6、磁気記録層7及び保護層8が順に形成された構造を有し、その上に液体潤滑剤層9が形成されてなる形態を示している。
【0011】
非磁性基体1としては、通常の磁気記録媒体用に用いられるNiPメッキを施したAl合金や強化ガラス、結晶化ガラス等を用いることができる。下地層2としては、Taにより構成される。膜厚としては特に制限されないが、大量生産に適するためには3nm〜50nm程度が望ましい。配向制御層3としては、少なくともCrを含むNiFe合金により構成される。特に膜厚は制限されないが、大量生産に適するためには3nm〜50nm程度が望ましい。磁区制御層4としての反強磁性層としては、IrMn合金により構成される。膜厚は特に制限されないが、適度な交換結合が得られ、かつ大量生産に適するためには5nm〜50nm程度が望ましい。軟磁性層5としては、NiFe合金が用いられる。軟磁性層5の膜厚は、記録に使用する磁気ヘッドの構造や特性によって最適値が変化するが、軟磁性層のトータルの膜厚は50nm以上300nm以下であることが、生産性との兼ね合いから望ましい。
【0012】
中間層6は、磁気記録層7の結晶配向性や結晶粒径を好ましく制御するために用いられる。中間層の材料として用いることのできるものとして、例えばTiやTiCr合金などがあげられる。磁気記録層7は少なくともCoとCrを含む合金の強磁性材料が好適に用いられ、その六方細密充填構造のc軸が膜面に垂直方向に配向していることが垂直磁気記録媒体として用いるために必要である。保護層8は、例えばカーボンを主体とする薄膜が用いられる。また液体循環剤層9は、例えばパーフルオロポリエーテル系の潤滑剤を用いることができる。
【0013】
以上説明したとおりの層構成からなる、図1に示した磁気記録媒体の製造にあたっては、少なくとも磁区制御層4としての反強磁性層および軟磁性層5を成膜する際には、例えば図2に示すように、基板の半径方向に磁場を印加しながら行なう必要がある。これによって、磁区制御層4としての反強磁性層の磁化が基板の半径方向に固定され、続いて積層される軟磁性層5の磁化容易軸も基板半径方向に向くため、効果的な磁壁の制御、すなわち磁壁形成の阻止が可能となる。磁壁の制御の観点からは、印加する磁場の強さに制限はないが、極端に強い磁場を成膜中に印加するとスパッタリングによる成膜に支障をきたす恐れがあるため、1000Oe程度以下にすることが望ましい。
【0014】
【実施例】
以下に本発明の実施例を記す。
【0015】
実施例1(参考)
非磁性気体として表面が平滑な化学強化ガラス基板(例えばHOYA社製N−5ガラス基板)を用い、これを洗浄後スパッタ装置内に導入し、Taターゲットを用いてTa下地層を5nm成膜し、続いてCrを添加したNiFe系合金ターゲットを用い、NiFeCr合金薄膜を5nm成膜、IrMn合金ターゲットを用い磁区制御層として反強磁性層を5nmの厚さで成膜し、引き続いてNiFeターゲットを用いて軟磁性層を100nm成膜した。これらの前記反強磁性層及び軟磁性層の成膜時には、前述の同じスパッタ装置内で基板の半径方向に平行に50Oeの磁場を印加した。後述の交換結合磁界測定用の試料には、この時点でスパッタ装置から取り出した軟磁性裏打ち層までの積層構成体を用いた。その他の試験については液体潤滑層まで成膜した垂直記録媒体を用いた。なお残りの層を形成して本発明で参考とする垂直磁気記録媒体を作製する場合には、前述のスパッタ装置内で引き続いてランプヒータを用いて基板表面温度が250℃になるように加熱を行った後、Ti中間層を10nm、引き続きCoCrPt磁気記録層を30nm成膜し、最後にカーボン保護膜を10nm成膜後、真空装置から取り出した。これらの成膜はすべてArガス圧力5mTorr下でDCマグネトロンスパッタリング法により行った。その後、パーフルオロポリエーテルからなる液体潤滑剤層2nmをディップ法により形成し、垂直磁気記録媒体とした。
【0016】
実施例2
実施例1に示した層構成について、最上部の軟磁性層の上層に連続してさらに磁区制御層としての反強磁性層としてIrMnを5nm成膜した。この時にも前記反強磁性層の成膜時には、前述の同じスパッタ装置内で基板の半径方向に平行に50Oeの磁場を印加した。本実施例では、実施例1で述べたように、ここまでの積層構成体により以下に述べる交換結合磁界の大きさを測定し、その他の試験については液体潤滑剤層まで成膜した垂直磁気記録媒体を用いた。なお、本発明の垂直磁気記録媒体を作製する場合には、実施例1と同様に同じスパッタ装置内で引き続いてTi中間層、磁気記録層、カーボン保護層、および液体潤滑剤層を形成し、垂直磁気記録媒体とした。
【0017】
実施例3
非磁性基体を洗浄後スパッタ装置内に導入し、Ta下地層を5nm成膜し、続いてNiFeCr合金薄膜を5nm成膜、磁区制御層としてのIrMn反強磁性層を5nm成膜し、引き続いてNiFe軟磁性層を50nm成膜、更に磁区制御層としてのIrMn反強磁性層を5nm、NiFe軟磁性層を50nmさらに磁区制御層としてのIrMn反強磁性層を5nm成膜した。実施例1、実施例2と整合性を取るために軟磁性層の合計膜厚は100nmにした。全ての前記反強磁性層及び前記軟磁性層の成膜時には、前述の同じスパッタ装置内で基板の半径方向に平行に50Oeの磁場を印加した。本実施例では、実施例1で述べたように、ここまでの積層構成体により以下に述べる交換結合磁界の大きさを測定し、その他の試験については液体潤滑剤層まで成膜した垂直磁気記録媒体を用いた。なお、本発明の垂直磁気記録媒体を作製する場合には、実施例1と同様に同じスパッタ装置内で引き続いてTi中間層、磁気記録層、カーボン保護層、および液体潤滑剤層を形成し、垂直磁気記録媒体とした。
【0018】
比較例1
下地層並びに配向制御層付与による効果を検証するために、上記実施例1に示した製造方法において、Ta層並びにNiFeCr層を付与せずに非磁性基体から軟磁性裏打ち層までの積層構成体を作製した。本比較例では、実施例1で述べたように、ここまでの積層構成体により以下に述べる交換結合磁界の大きさを測定し、その他の試験については液体潤滑剤層まで成膜した垂直磁気記録媒体を用いた。なお、垂直磁気記録媒体を作製する場合には、実施例1と同様に同じスパッタ装置内で引き続いてTi中間層、磁気記録層、カーボン保護層、および液体潤滑剤層を形成し、垂直磁気記録媒体とした。
【0019】
比較例2
下地層付与による効果を検証するために、上記実施例1に示した製造方法において、Ta層を付与せずに非磁性基体から軟磁性裏打ち層までの積層構成体を作製した。本比較例では、実施例1で述べたように、ここまでの積層構成体により以下に述べる交換結合磁界の大きさを測定し、その他の試験については液体潤滑剤層まで成膜した垂直磁気記録媒体を用いた。なお、垂直磁気記録媒体を作製する場合には、実施例1と同様に同じスパッタ装置内で引き続いてTi中間層、磁気記録層、カーボン保護層、および液体潤滑剤層を形成し、垂直磁気記録媒体とした。
【0020】
上記の各実施例および比較例における、中間層、磁気記録層、保護層及び液体循環剤層を形成せずにスパッタ装置から取り出した試料の基板半径方向の磁化曲線を振動試料型磁力計にて測定し、交換結合磁界を測定した。また完成した垂直磁気記録媒体の軟磁性裏打ち層に形成される磁壁の有無を確認するために、スピンスタンドテスターを用いて、信号が書き込まれていない状態での出力波形の平均値に対する変動の割合(COV)を測定することにより、スパイクノイズの有無を調べた。
【0021】
図6には、層構成を変えた時の交換結合磁界の値を示した。比較例1に示した層構成(Ta,NiFeCr層なし)の場合には、交換結合磁界は全く得られない。配向制御層を付与した比較例2の層構成(Ta層なし)にすることにより交換結合磁界が出現し、7Oe程度の交換結合磁界が得られる。配向制御層の微細構造を制御するために下地層を用いた実施例1に示す媒体層構成にすることにより、14Oe程度の大きな交換結合磁界を得ることが出来る。磁区制御層としての反強磁性層を2層にした実施例2に示す媒体層構成の場合、交換結合磁界は実施例1の層構成で得られる値の約2倍の24Oeが得られた。更に、磁区制御層として反強磁性層を3層用いた実施例3に示す媒体層構成にした場合、交換結合磁界は45Oe程度の大きな値を示した。
【0022】
図7にスパイクノイズの存在を示す指標となるCOV値を各層構成に対して示す。参考として、図6に示した各層構成における交換結合磁界の強さも同じグラフに示した。交換結合磁界が0の場合には、スパイクノイズによりCOV値は大きな値を示すが、交換結合磁界が大きくなるに従いCOVは減少し、交換結合磁界が10Oe以上では、軟磁性裏打ち層がない垂直磁気記録媒体とほぼ同等の値を示している。ただし、実際の磁気記録装置内では、モーター等から発生する浮遊磁場が存在するために、必要とされる交換結合磁界は更に大きな値となる可能性があるが、各種磁気記録装置を用いて調査した結果、最大でも40Oeの交換結合磁界があれば十分に軟磁性裏打ち層から発生するスパイクノイズを抑制することが出来た。垂直磁気記録媒体として必要とされる交換結合磁界の大きさは、実際に使用される磁気記録装置により異なるが、実施例1から3に示したような層構成を用いることにより、スパイクノイズを抑制することが出来る。ただし、生産性の観点から、垂直磁気記録媒体の層構成はなるべく単純な方が好ましい。
【0023】
図8には、磁区制御層としての反強磁性層及び軟磁性層の成膜時に、磁場印加を行なった垂直磁気記録媒体並びに行なわずに成膜した垂直磁気記録媒体のスピンスタンドテスターによる1周分の出力波形を示す。磁場中成膜を行なうことにより、交換結合磁界の方向を半径方向に揃えた垂直磁気記録媒体においては全くスパイクノイズは発生していないが、磁場印加を行なわずに成膜を行なった垂直磁気記録媒体においては、全周に渡り不均一にスパイクノイズが発生していることが分かる。これは、交換結合磁界による一方向異方性の向きがそろっていないために、境界において磁壁が発生し、これがスパイクノイズとして観測されているためである。このように、スパイクノイズをなくすためには、磁区制御層としての反強磁性層及び軟磁性層を成膜する際に、基板の半径方向に放射状に磁場を印加する必要がある。
【0024】
【発明の効果】
以上述べたように本発明によれば、軟磁性裏打ち層として少なくともNiとFeを含む軟磁性層を用い、磁区制御層としてのIrMn系合金反強磁性層の結晶配向性を向上させるためにNiFeCr系合金配向制御層を用い、更に配向制御層の微細構造を制御するためにTaよりなる下地層を用いることにより、軟磁性層の磁化を磁区制御層としての反強磁性層との交換結合によりピン止めし、ノイズ源となる軟磁性層の磁壁形成の抑止を行なうことができる。また前記反強磁性層と軟磁性層とを交互に積層することにより、さらに高い効果が得られることが明らかとなった。さらに本発明の磁区制御層として反強磁性層を使用する場合、反強磁性層と軟磁性裏打ち層の成膜時に基板に磁場を印加するという非常に単純な製造方法により、必要とされる均一で高い交換結合が得られるため、大量生産にも非常に適したものである。
【図面の簡単な説明】
【図1】本発明による磁気記録媒体の構成を示す断面模式図である。
【図2】本発明の実施例を説明するためのもので、基板の半径方向に磁場を印加している様子を示す模式図である。
【図3】 本発明で参考とする実施例1を説明するためのもので、垂直磁気記録媒体の構成を示す断面模式図である。
【図4】本発明の実施例2を説明するためのもので、垂直磁気記録媒体の構成を示す断面模式図である。
【図5】本発明の実施例3を説明するためのもので、垂直磁気記録媒体の構成を示す断面模式図である。
【図6】本発明の実施例を説明するためのもので、実施例において作製した非磁性基体から軟磁性裏打ち層までの積層構成体の層構成を変えた時の交換結合磁界の値の変化を示したグラフである。
【図7】本発明の実施例を説明するためのもので、実施例において作製した垂直磁気記録媒体の層構成を変えた時のCOVと交換結合磁界の値の変化を示したグラフである。
【図8】本発明の実施例を説明するためのもので、磁区制御層としての反強磁性層及び軟磁性層の成膜時に、磁場印加を行なった垂直磁気記録媒体並びに行なわずに成膜した垂直磁気記録媒体のスピンスタンドテスターによる1周分の出力波形を示した図である。
【符号の説明】
1 非磁性基体
2 下地層
3 配向制御層
4 磁区制御層
41 磁区制御層
42 磁区制御層
43 磁区制御層
5 軟磁性裏打ち層
51 軟磁性裏打ち層
52 軟磁性裏打ち層
6 中間層
7 磁気記録層
8 保護層
9 液体潤滑剤層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a perpendicular magnetic recording medium mounted on various magnetic recording apparatuses and a manufacturing method thereof.
[0002]
[Prior art]
As a technique for realizing a high density magnetic recording, a perpendicular magnetic recording system is drawing attention in place of the conventional longitudinal magnetic recording system.
[0003]
The perpendicular magnetic recording medium is composed of a magnetic recording layer made of hard magnetic material and a backing layer made of soft magnetic material which is used for recording on the recording layer and plays a role of concentrating magnetic flux generated by the magnetic head. It is known that spike noise, which is one of the noises problematic in the perpendicular magnetic recording medium having such a structure, is caused by a domain wall formed in a soft magnetic layer as a backing layer. Therefore, in order to reduce the noise of the perpendicular magnetic recording medium, it is necessary to prevent the domain wall formation of the soft magnetic underlayer.
[0004]
As for the control of the domain wall of the soft magnetic backing layer, for example, as disclosed in Japanese Patent Laid-Open No. 6-180834 and Japanese Patent Laid-Open No. 10-214719, the upper and lower layers of the soft magnetic backing layer are made of a Co alloy or the like. There are proposed a method in which a ferromagnetic layer is formed and magnetized so as to be magnetized in a desired direction, and a method in which an antiferromagnetic thin film is formed and magnetization is pinned using exchange coupling.
[0005]
The method of controlling the domain wall by exchange coupling with the soft magnetic backing layer using the antiferromagnetic layer as the magnetic domain control layer prevents the domain wall formation of the soft magnetic backing layer when the exchange coupling is sufficiently obtained. Can be very effective. However, in order to obtain sufficient exchange coupling, for example, as shown in the above-mentioned Japanese Patent Application Laid-Open No. 10-214719, a heat treatment after film formation is necessary in order to obtain the characteristics of the soft magnetic backing layer. Since this heat treatment is a treatment that must be performed for a long time while applying a magnetic field in the radial direction, it is very disadvantageous for mass production.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a perpendicular magnetic recording medium with reduced noise by effectively controlling a domain wall of a soft magnetic underlayer by using an antiferromagnetic layer as a magnetic domain control layer, and It is an object of the present invention to provide a manufacturing method suitable for mass production of magnetic recording media.
[0007]
[Means for Solving the Problems]
The first aspect of the present invention for solving the above problems is that a layer comprising at least an underlayer, an orientation control layer, a magnetic domain control layer and a soft magnetic backing layer , an intermediate layer, a magnetic recording layer, and a protective layer on a nonmagnetic substrate. A perpendicular magnetic recording medium in which a layer and a liquid lubricant layer are sequentially laminated , and are a magnetic domain control layer and a soft magnetic layer, which are antiferromagnetic layers whose magnetization is fixed in the radial direction of the substrate, below the intermediate layer Soft magnetic underlayers are alternately laminated, and the uppermost layer is composed of the magnetic domain control layer having an antiferromagnetic layer and the soft magnetic underlayer, the orientation control layer made of a NiFe-based alloy thin film containing Cr, and Ta has a layer structure consisting of more becomes the underlying layer, the magnetic domain control layer is at least Ir is antiferromagnetic layer comprising Mn alloy containing said soft magnetic backing layer is a soft magnetic layer containing at least Ni and Fe The orientation control layer is A perpendicular magnetic recording medium in which the crystal orientation of the ferromagnetic layer is controlled and the underlayer controls the fine structure of the orientation control layer. Similarly, the second embodiment is a method for manufacturing the perpendicular magnetic recording medium. A method of manufacturing a perpendicular magnetic recording medium by applying a magnetic field radially in the radial direction of the substrate at the time of film formation of at least the magnetic domain control layer and the soft magnetic backing layer .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
As a result of intensive studies on perpendicular magnetic recording media, a soft magnetic layer containing at least Ni and Fe is used as a soft magnetic underlayer, and IrMn is used as an antiferromagnetic layer as a magnetic domain control layer formed between the nonmagnetic substrate and the soft magnetic layer. In order to control the crystal orientation of the antiferromagnetic layer using an alloy, an orientation control layer made of a NiFe alloy containing Cr is provided under the antiferromagnetic layer, and the microstructure of the orientation control layer is further controlled. An underlayer is provided below the orientation control layer, and at the time of forming an antiferromagnetic layer and a soft magnetic layer as at least a magnetic domain control layer, a magnetic field is applied in the radial direction of the substrate to perform heat treatment after the film formation. It has been found that a large exchange coupling can be obtained without performing the control, and the domain wall of the soft magnetic underlayer can be effectively controlled.
[0009]
It has also been found that a larger exchange coupling magnetic field can be obtained by alternately laminating two or more soft magnetic layers and antiferromagnetic layers as magnetic domain control layers.
[0010]
FIG. 1 is a schematic sectional view of a perpendicular magnetic recording medium of the present invention. At least an underlayer 2, an orientation control layer 3, an antiferromagnetic layer as a magnetic domain control layer 4, and a soft magnetic layer 5 are sequentially formed on the nonmagnetic substrate 1, and at least two antiferromagnetic layers and soft magnetic layers are alternately formed. It has a structure in which more than one layer is laminated, and further has a structure in which an intermediate layer 6, a magnetic recording layer 7 and a protective layer 8 are formed in order, and a liquid lubricant layer 9 is formed thereon. ing.
[0011]
As the nonmagnetic substrate 1, an Al alloy, tempered glass, crystallized glass, or the like subjected to NiP plating, which is used for a normal magnetic recording medium, can be used. The underlayer 2 is made of Ta. The film thickness is not particularly limited, but is preferably about 3 nm to 50 nm in order to be suitable for mass production. The orientation control layer 3 is made of a NiFe alloy containing at least Cr. The film thickness is not particularly limited, but is preferably about 3 nm to 50 nm in order to be suitable for mass production. The antiferromagnetic layer as the magnetic domain control layer 4 is made of an IrMn alloy. The film thickness is not particularly limited, but is preferably about 5 nm to 50 nm in order to obtain appropriate exchange coupling and to be suitable for mass production. As the soft magnetic layer 5, a NiFe alloy is used. The optimum value of the thickness of the soft magnetic layer 5 varies depending on the structure and characteristics of the magnetic head used for recording, but the total thickness of the soft magnetic layer is not less than 50 nm and not more than 300 nm. Is desirable.
[0012]
The intermediate layer 6 is used for preferably controlling the crystal orientation and crystal grain size of the magnetic recording layer 7. Examples of materials that can be used as the material for the intermediate layer include Ti and TiCr alloys. The magnetic recording layer 7 is preferably made of a ferromagnetic material of an alloy containing at least Co and Cr, and the c-axis of the hexagonal close-packed structure is oriented perpendicularly to the film surface for use as a perpendicular magnetic recording medium. Is necessary. For example, a thin film mainly composed of carbon is used for the protective layer 8. The liquid circulating agent layer 9 can be made of, for example, a perfluoropolyether lubricant.
[0013]
In manufacturing the magnetic recording medium shown in FIG. 1 having the layer structure as described above, at least the antiferromagnetic layer and the soft magnetic layer 5 as the magnetic domain control layer 4 are formed, for example, FIG. As shown in FIG. 2, it is necessary to apply the magnetic field in the radial direction of the substrate. Thereby, the magnetization of the antiferromagnetic layer as the magnetic domain control layer 4 is fixed in the radial direction of the substrate, and the easy magnetization axis of the soft magnetic layer 5 to be subsequently laminated is also oriented in the radial direction of the substrate. Control, that is, prevention of domain wall formation becomes possible. From the viewpoint of controlling the domain wall, the strength of the magnetic field to be applied is not limited. However, if an extremely strong magnetic field is applied during film formation, there is a risk of film formation by sputtering. Is desirable.
[0014]
【Example】
Examples of the present invention will be described below.
[0015]
Example 1 (reference)
Using a chemically strengthened glass substrate (for example, N-5 glass substrate manufactured by HOYA) having a smooth surface as a nonmagnetic gas, this is washed and introduced into a sputtering apparatus, and a Ta underlayer is formed to a thickness of 5 nm using a Ta target. Subsequently, using a NiFe-based alloy target to which Cr is added, a NiFeCr alloy thin film is formed to a thickness of 5 nm, an IrMn alloy target is used to form an antiferromagnetic layer as a magnetic domain control layer with a thickness of 5 nm, and subsequently a NiFe target is formed. A soft magnetic layer was formed to a thickness of 100 nm. When forming the antiferromagnetic layer and the soft magnetic layer, a magnetic field of 50 Oe was applied in parallel to the radial direction of the substrate in the same sputtering apparatus. As a sample for measuring an exchange coupling magnetic field, which will be described later, a laminated structure up to the soft magnetic backing layer taken out from the sputtering apparatus at this time was used. For other tests, a perpendicular recording medium having a liquid lubricating layer formed thereon was used. When the remaining layer is formed and a perpendicular magnetic recording medium to be used as a reference in the present invention is manufactured, the substrate surface temperature is heated to 250 ° C. using a lamp heater in the aforementioned sputtering apparatus. After this, a Ti intermediate layer was formed to 10 nm, and subsequently a CoCrPt magnetic recording layer was formed to 30 nm. Finally, a carbon protective film was formed to 10 nm, and then taken out from the vacuum apparatus. All of these films were formed by DC magnetron sputtering under an Ar gas pressure of 5 mTorr. Thereafter, a liquid lubricant layer 2 nm made of perfluoropolyether was formed by a dip method to obtain a perpendicular magnetic recording medium.
[0016]
Example 2
In the layer configuration shown in Example 1, 5 nm of IrMn was further formed as an antiferromagnetic layer as a magnetic domain control layer continuously on the upper layer of the uppermost soft magnetic layer. Also at this time, when forming the antiferromagnetic layer, a magnetic field of 50 Oe was applied in parallel to the radial direction of the substrate in the same sputtering apparatus. In this example, as described in Example 1, the magnitude of the exchange coupling magnetic field described below was measured with the laminated structure so far, and for other tests, perpendicular magnetic recording was formed up to the liquid lubricant layer. Medium was used. When producing the perpendicular magnetic recording medium of the present invention, a Ti intermediate layer, a magnetic recording layer, a carbon protective layer, and a liquid lubricant layer are formed in the same sputtering apparatus as in Example 1, A perpendicular magnetic recording medium was obtained.
[0017]
Example 3
After cleaning the non-magnetic substrate, it was introduced into the sputtering apparatus, a Ta underlayer was formed to a thickness of 5 nm, a NiFeCr alloy thin film was formed to a thickness of 5 nm, and an IrMn antiferromagnetic layer as a magnetic domain control layer was formed to a thickness of 5 nm. A NiFe soft magnetic layer was formed to a thickness of 50 nm, an IrMn antiferromagnetic layer as a magnetic domain control layer was deposited to 5 nm, a NiFe soft magnetic layer was deposited to 50 nm, and an IrMn antiferromagnetic layer was deposited as a magnetic domain control layer to a thickness of 5 nm. In order to achieve consistency with Example 1 and Example 2, the total thickness of the soft magnetic layer was set to 100 nm. When forming all the antiferromagnetic layers and the soft magnetic layers, a magnetic field of 50 Oe was applied in parallel to the radial direction of the substrate in the same sputtering apparatus. In this example, as described in Example 1, the magnitude of the exchange coupling magnetic field described below was measured with the laminated structure so far, and for other tests, perpendicular magnetic recording was formed up to the liquid lubricant layer. Medium was used. When producing the perpendicular magnetic recording medium of the present invention, a Ti intermediate layer, a magnetic recording layer, a carbon protective layer, and a liquid lubricant layer are formed in the same sputtering apparatus as in Example 1, A perpendicular magnetic recording medium was obtained.
[0018]
Comparative Example 1
In order to verify the effect of applying the underlayer and the orientation control layer, in the manufacturing method shown in Example 1 above, the laminated structure from the nonmagnetic substrate to the soft magnetic backing layer without providing the Ta layer and the NiFeCr layer was prepared. Produced. In this comparative example, as described in Example 1, the magnitude of the exchange coupling magnetic field described below was measured with the laminated structure so far, and for other tests, perpendicular magnetic recording was formed up to the liquid lubricant layer. Medium was used. In the case of producing a perpendicular magnetic recording medium, a Ti intermediate layer, a magnetic recording layer, a carbon protective layer, and a liquid lubricant layer are formed successively in the same sputtering apparatus as in Example 1, and perpendicular magnetic recording is performed. The medium.
[0019]
Comparative Example 2
In order to verify the effect of applying the underlayer, in the manufacturing method shown in Example 1 above, a laminated structure from the nonmagnetic substrate to the soft magnetic backing layer was prepared without providing the Ta layer. In this comparative example, as described in Example 1, the magnitude of the exchange coupling magnetic field described below was measured with the laminated structure so far, and for other tests, perpendicular magnetic recording was formed up to the liquid lubricant layer. Medium was used. In the case of producing a perpendicular magnetic recording medium, a Ti intermediate layer, a magnetic recording layer, a carbon protective layer, and a liquid lubricant layer are formed successively in the same sputtering apparatus as in Example 1, and perpendicular magnetic recording is performed. The medium.
[0020]
In each of the above Examples and Comparative Examples, the magnetization curve in the substrate radial direction of the sample taken out from the sputtering apparatus without forming the intermediate layer, the magnetic recording layer, the protective layer and the liquid circulating agent layer was measured with a vibrating sample magnetometer. The exchange coupling magnetic field was measured. In addition, in order to confirm the presence or absence of the domain wall formed in the soft magnetic underlayer of the completed perpendicular magnetic recording medium, the rate of variation with respect to the average value of the output waveform when no signal is written using a spin stand tester The presence or absence of spike noise was investigated by measuring (COV).
[0021]
FIG. 6 shows the value of the exchange coupling magnetic field when the layer configuration is changed. In the case of the layer configuration shown in Comparative Example 1 (without a Ta or NiFeCr layer), no exchange coupling magnetic field can be obtained. By adopting the layer configuration of Comparative Example 2 (without a Ta layer) provided with an orientation control layer, an exchange coupling magnetic field appears and an exchange coupling magnetic field of about 7 Oe is obtained. A large exchange coupling magnetic field of about 14 Oe can be obtained by adopting the medium layer configuration shown in Example 1 using an underlayer for controlling the fine structure of the orientation control layer. In the case of the medium layer configuration shown in Example 2 in which two antiferromagnetic layers as the magnetic domain control layer were formed, the exchange coupling magnetic field of 24 Oe, which is about twice the value obtained in the layer configuration of Example 1, was obtained. Further, when the medium layer configuration shown in Example 3 using three antiferromagnetic layers as the magnetic domain control layer was used, the exchange coupling magnetic field showed a large value of about 45 Oe.
[0022]
FIG. 7 shows a COV value as an index indicating the presence of spike noise for each layer configuration. For reference, the strength of the exchange coupling magnetic field in each layer configuration shown in FIG. 6 is also shown in the same graph. When the exchange coupling magnetic field is 0, the COV value is large due to spike noise, but the COV decreases as the exchange coupling magnetic field increases, and when the exchange coupling magnetic field is 10 Oe or more, there is no soft magnetic underlayer. The value is almost equivalent to that of the recording medium. However, since there is a stray magnetic field generated from a motor or the like in an actual magnetic recording device, the required exchange coupling magnetic field may be even larger. As a result, spike noise generated from the soft magnetic underlayer could be sufficiently suppressed if there was an exchange coupling magnetic field of 40 Oe at the maximum. The magnitude of the exchange coupling magnetic field required as a perpendicular magnetic recording medium differs depending on the magnetic recording apparatus actually used, but by using the layer configuration as shown in Examples 1 to 3, spike noise is suppressed. I can do it. However, from the viewpoint of productivity, the layer structure of the perpendicular magnetic recording medium is preferably as simple as possible.
[0023]
FIG. 8 shows one rotation of a perpendicular magnetic recording medium to which a magnetic field is applied and a perpendicular magnetic recording medium not formed at the time of film formation of an antiferromagnetic layer and a soft magnetic layer as magnetic domain control layers by a spin stand tester. The output waveform of the minute is shown. Spike noise does not occur at all in perpendicular magnetic recording media in which the direction of the exchange coupling magnetic field is aligned in the radial direction by performing film formation in a magnetic field, but perpendicular magnetic recording was performed without applying a magnetic field. It can be seen that spike noise occurs non-uniformly over the entire circumference of the medium. This is because the domain wall is generated at the boundary because the direction of unidirectional anisotropy due to the exchange coupling magnetic field is not aligned, and this is observed as spike noise. Thus, in order to eliminate spike noise, it is necessary to apply a magnetic field radially in the radial direction of the substrate when forming the antiferromagnetic layer and the soft magnetic layer as the magnetic domain control layer.
[0024]
【The invention's effect】
As described above, according to the present invention, in order to improve the crystal orientation of the IrMn alloy antiferromagnetic layer as the magnetic domain control layer, a soft magnetic layer containing at least Ni and Fe is used as the soft magnetic backing layer. By using an alloy-based orientation control layer and further using an underlayer made of Ta to control the microstructure of the orientation control layer, the magnetization of the soft magnetic layer is exchanged with an antiferromagnetic layer as a magnetic domain control layer. It is possible to suppress the formation of the domain wall of the soft magnetic layer that is pinned and becomes a noise source. It has also been clarified that a higher effect can be obtained by alternately laminating the antiferromagnetic layer and the soft magnetic layer. Furthermore, when an antiferromagnetic layer is used as the magnetic domain control layer of the present invention, a uniform method required by applying a magnetic field to the substrate during the formation of the antiferromagnetic layer and the soft magnetic underlayer is required. It is very suitable for mass production because it provides high exchange coupling.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing the configuration of a magnetic recording medium according to the present invention.
FIG. 2 is a schematic diagram illustrating a state in which a magnetic field is applied in a radial direction of a substrate for explaining an embodiment of the present invention.
FIG. 3 is a schematic cross-sectional view illustrating the configuration of a perpendicular magnetic recording medium for explaining Example 1 referred to in the present invention.
FIG. 4 is a schematic cross-sectional view illustrating the configuration of a perpendicular magnetic recording medium for explaining a second embodiment of the present invention.
FIG. 5 is a schematic cross-sectional view illustrating the configuration of a perpendicular magnetic recording medium for explaining Example 3 of the present invention.
FIG. 6 is a diagram for explaining an example of the present invention, and shows a change in the value of the exchange coupling magnetic field when the layer structure of the laminated structure from the nonmagnetic substrate to the soft magnetic backing layer produced in the example is changed. It is the graph which showed.
FIG. 7 is a graph for explaining an example of the present invention, showing a change in the value of the COV and the exchange coupling magnetic field when the layer configuration of the perpendicular magnetic recording medium manufactured in the example is changed.
FIG. 8 is a diagram for explaining an embodiment of the present invention, and a perpendicular magnetic recording medium to which a magnetic field was applied during film formation of an antiferromagnetic layer and a soft magnetic layer as a magnetic domain control layer, and a film formed without it. It is the figure which showed the output waveform for 1 round by the spin stand tester of the perpendicular magnetic recording medium.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Nonmagnetic base | substrate 2 Underlayer 3 Orientation control layer 4 Magnetic domain control layer 41 Magnetic domain control layer 42 Magnetic domain control layer 43 Magnetic domain control layer 5 Soft magnetic backing layer 51 Soft magnetic backing layer 52 Soft magnetic backing layer 6 Intermediate layer 7 Magnetic recording layer 8 Protective layer 9 Liquid lubricant layer

Claims (2)

非磁性基体上に少なくとも下地層、配向制御層、磁区制御層と軟磁性裏打ち層とからなる層、中間層、磁気記録層、保護層及び液体潤滑層が順次積層されてなる垂直磁気記録媒体であって、前記磁区制御層と軟磁性裏打ち層とからなる層は、磁化が基板の半径方向に固定された反強磁性層である磁区制御層と軟磁性層である軟磁性裏打ち層とが交互に積層され最上層に前記反強磁性層を有し、前記反強磁性層は少なくともIrを含むMn合金、前記軟磁性層は少なくともNiとFeを含むNiFe合金、前記配向制御層はCrを含むNiFe系合金、および前記下地層はTaよりなり前記磁区制御層と軟磁性裏打ち層とからなる層の下層に位置する前記配向制御層が前記反強磁性層の結晶配向を制御し、最下層に位置する下地層が前記配向制御層の微細構造を制御していることを特徴とする垂直磁気記録媒体。A perpendicular magnetic recording medium in which at least an underlayer, an orientation control layer, a layer comprising a magnetic domain control layer and a soft magnetic backing layer , an intermediate layer, a magnetic recording layer, a protective layer, and a liquid lubricant layer are sequentially laminated on a nonmagnetic substrate. The magnetic domain control layer and the soft magnetic backing layer have alternating magnetic domain control layers, which are antiferromagnetic layers whose magnetization is fixed in the radial direction of the substrate, and soft magnetic backing layers, which are soft magnetic layers. And the antiferromagnetic layer is an Mn alloy containing at least Ir, the soft magnetic layer is an NiFe alloy containing at least Ni and Fe, and the orientation control layer contains Cr. NiFe alloy, and the underlying layer is made of Ta, the orientation control layer located under the layer made of said magnetic domain control layer and the soft magnetic backing layer controls the crystal orientation of the antiferromagnetic layer, the bottom layer the alignment is the base layer is located in the The perpendicular magnetic recording medium characterized by controlling the microstructure of your layers. 請求項1に記載の垂直磁気記録媒体の製造方法であって、前記磁区制御層と軟磁性裏打ち層とからなる層の成膜時に、基板の半径方向に放射状に磁場を印加することを特徴とする垂直磁気記録媒体の製造方法。2. The method of manufacturing a perpendicular magnetic recording medium according to claim 1, wherein a magnetic field is applied radially in the radial direction of the substrate when the layer composed of the magnetic domain control layer and the soft magnetic backing layer is formed. A method for manufacturing a perpendicular magnetic recording medium.
JP2001157664A 2001-05-25 2001-05-25 Perpendicular magnetic recording medium and manufacturing method thereof Expired - Fee Related JP4353655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001157664A JP4353655B2 (en) 2001-05-25 2001-05-25 Perpendicular magnetic recording medium and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001157664A JP4353655B2 (en) 2001-05-25 2001-05-25 Perpendicular magnetic recording medium and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002352418A JP2002352418A (en) 2002-12-06
JP4353655B2 true JP4353655B2 (en) 2009-10-28

Family

ID=19001492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001157664A Expired - Fee Related JP4353655B2 (en) 2001-05-25 2001-05-25 Perpendicular magnetic recording medium and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4353655B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4254643B2 (en) * 2004-07-23 2009-04-15 株式会社日立製作所 Perpendicular magnetic recording medium and magnetic storage device

Also Published As

Publication number Publication date
JP2002352418A (en) 2002-12-06

Similar Documents

Publication Publication Date Title
JP4332832B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4207140B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP2003162806A (en) Perpendicular magnetic recording medium and magnetic storage device
JP3988117B2 (en) Perpendicular magnetic recording medium and method of manufacturing perpendicular magnetic recording medium
JP2002358617A (en) Perpendicular magnetic recording medium
JP4772015B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP2006277950A (en) Vertical magnetic recording medium
US8012613B2 (en) Magnetic recording medium, process for producing same, and magnetic recording reproducing apparatus
JP2008276859A (en) Magnetic recording medium, method of manufacturing the same, and magnetic recording and reproducing device
US7045225B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4353655B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4353654B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4540288B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4557277B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP4557276B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP4348952B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP3652999B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP4591806B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4782047B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus
JP2008097824A (en) Vertical magnetic recording medium and manufacturing method therefor
JP2003077121A (en) Magnetic recording medium and manufacturing method therefor
JP2004272957A (en) Perpendicular magnetic recording medium and its manufacturing method
JP4522418B2 (en) Perpendicular magnetic recording medium
JP4798520B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP4526262B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090728

R150 Certificate of patent or registration of utility model

Ref document number: 4353655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees