JP2006277950A - Vertical magnetic recording medium - Google Patents

Vertical magnetic recording medium Download PDF

Info

Publication number
JP2006277950A
JP2006277950A JP2006195939A JP2006195939A JP2006277950A JP 2006277950 A JP2006277950 A JP 2006277950A JP 2006195939 A JP2006195939 A JP 2006195939A JP 2006195939 A JP2006195939 A JP 2006195939A JP 2006277950 A JP2006277950 A JP 2006277950A
Authority
JP
Japan
Prior art keywords
layer
magnetic
recording medium
magnetic layer
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006195939A
Other languages
Japanese (ja)
Inventor
Yasushi Sakai
泰志 酒井
Sadayuki Watanabe
貞幸 渡辺
Hiroyuki Uwazumi
洋之 上住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2006195939A priority Critical patent/JP2006277950A/en
Publication of JP2006277950A publication Critical patent/JP2006277950A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vertical magnetic recording medium superior in electromagnetic conversion characteristics, durability and productivity, without the elution of Co from a granular magnetic layer. <P>SOLUTION: The magnetic layer of the vertical magnetic recording medium is constituted of a first magnetic layer 14 of a CoCr-based alloy, in a granular structure for which a nonmagnetic grain boundary is composed of a metal oxide or nitride, and a second magnetic layer 15 of the CoCr-based alloy in a non-granular structure for which the nonmagnetic grain boundary does not contain the metal oxide or nitride. Thus, while the first magnetic layer 14 secures superior electromagnetic conversion characteristics due to the granular structure, the second magnetic layer 15 blocks Co atoms eluted from the nonmagnetic grain boundary of the first magnetic layer and enables securing of high durability for the medium. Furthermore, by imparting a multilayered base layer 22 and a magnetic domain control layer 23 between a nonmagnetic base body 21 and a soft magnetic backing layer 24, spike noise generated due to the soft magnetic backing layer 24 is substantially suppressed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、垂直磁気記録媒体に関し、より詳細には、優れた電磁変換特性と良好な耐久性とを具え、かつ、生産性に優れた垂直磁気記録媒体に関する。   The present invention relates to a perpendicular magnetic recording medium, and more particularly to a perpendicular magnetic recording medium having excellent electromagnetic conversion characteristics and good durability and excellent productivity.

磁気記録の高密度化を実現する技術として、従来の長手磁気記録方式に代えて、垂直磁気記録方式が注目されつつある。   As a technique for realizing a high density magnetic recording, a perpendicular magnetic recording system is drawing attention in place of the conventional longitudinal magnetic recording system.

垂直磁気記録媒体用の磁気記録層用材料としては、現在、主にCoCr系合金結晶質膜が検討されており、垂直磁気記録に用いるために、六方最密充填(hcp)構造をもつCoCr系合金のc軸が膜面に垂直(c面が膜面に平行)になるように結晶配向を制御している。CoCr系合金の今後の更なる高密度化に対し、このCoCr系結晶粒の微細化、粒径分布の低減、粒間の磁気的な相互作用の低減等の試みが行なわれている。   As a material for a magnetic recording layer for a perpendicular magnetic recording medium, a CoCr-based alloy crystalline film is currently being studied. A CoCr-based material having a hexagonal close-packed (hcp) structure is used for perpendicular magnetic recording. The crystal orientation is controlled so that the c-axis of the alloy is perpendicular to the film surface (c-plane is parallel to the film surface). In order to further increase the density of CoCr-based alloys in the future, attempts have been made to refine the CoCr-based crystal grains, reduce the grain size distribution, reduce the magnetic interaction between grains, and the like.

一方、長手記録媒体の高密度化のための磁性層構造制御の一方式として、例えば特開平8−255342号公報や米国特許5679473号明細書において、一般にグラニュラ磁性層と呼ばれる、磁性結晶粒の周囲を酸化物や窒化物のような非磁性非金属物質で囲んだ構造をもつ磁性層が提案されている。このようなグラニュラ磁性膜は、非磁性非金属の粒界相が磁性粒子を物理的に分離するため、磁性粒子間の磁気的な相互作用が低下し、記録ビットの遷移領域に生じるジグザグ磁壁の形成を抑制するので、低ノイズ特性が得られると考えられており、垂直磁気記録媒体の記録層として、グラニュラ磁性層を用いることが提案されている。例えば、IEEE Trans., Mag., Vol. 36, 2393(2000) には、Ruを下地層とし、グラニュラ構造をもつCoPtCrO合金を磁性層とした垂直記録媒体が記載されており、グラニュラ磁性層の下地層であるRu層の膜厚を増加させるにしたがってc軸配向性が向上し、それに伴い優れた磁気特性と電磁変換特性が得られている。   On the other hand, as one method of controlling the magnetic layer structure for increasing the density of the longitudinal recording medium, for example, in JP-A-8-255342 and US Pat. No. 5,679,473, the periphery of magnetic crystal grains generally called a granular magnetic layer is disclosed. A magnetic layer having a structure in which is surrounded by a non-magnetic non-metallic material such as oxide or nitride has been proposed. In such a granular magnetic film, since the nonmagnetic nonmetallic grain boundary phase physically separates the magnetic particles, the magnetic interaction between the magnetic particles is reduced, and the zigzag domain wall generated in the transition region of the recording bit is reduced. Since formation is suppressed, it is considered that low noise characteristics can be obtained, and it has been proposed to use a granular magnetic layer as a recording layer of a perpendicular magnetic recording medium. For example, IEEE Trans., Mag., Vol. 36, 2393 (2000) describes a perpendicular recording medium in which Ru is a base layer and a CoPtCrO alloy having a granular structure is a magnetic layer. As the film thickness of the Ru layer as the underlayer is increased, the c-axis orientation is improved, and accordingly, excellent magnetic characteristics and electromagnetic conversion characteristics are obtained.

一方、浮上型磁気ヘッドを用いた磁気記録装置においては、その磁気ヘッドと磁気記録媒体との間の距離が数10nmと非常に小さいため、ヘッド−媒体間の摩擦磨耗特性が装置の耐久性に強く影響する。そのため、媒体表面に分子量数千の液体潤滑材を塗布することで、ヘッドとの摩擦磨耗特性を向上させることが一般に行われている。ここで、媒体の磁性層に含まれているCo原子が媒体表面に析出した場合、そのCo原子は媒体表面の液体潤滑材の分解を促進し、媒体の耐久性を著しく劣化させてしまうことが知られている。そこでこのようなCo原子の析出を防ぐため、媒体保護膜の膜厚や膜質の管理及び媒体表面粗さの制御等が、媒体を作製する上で必要不可欠となっている。   On the other hand, in a magnetic recording apparatus using a floating type magnetic head, since the distance between the magnetic head and the magnetic recording medium is as small as several tens of nanometers, the friction wear characteristics between the head and the medium contribute to the durability of the apparatus. It has a strong influence. Therefore, it is a common practice to improve the frictional wear characteristics with the head by applying a liquid lubricant having a molecular weight of several thousand to the surface of the medium. Here, when Co atoms contained in the magnetic layer of the medium are deposited on the surface of the medium, the Co atoms accelerate the decomposition of the liquid lubricant on the surface of the medium, which may significantly deteriorate the durability of the medium. Are known. Therefore, in order to prevent such precipitation of Co atoms, management of the thickness and quality of the medium protective film and control of the surface roughness of the medium are indispensable for producing the medium.

しかしながら、本発明者らの検討によると、磁性層としてグラニュラ磁性層を使用した場合には、磁性層に含まれるCo原子が媒体表面に容易に析出することが判明した。特に、優れた磁気特性と電磁変換特性を得るためにスパッタ成膜時のArガス圧を増加させた場合にCo溶出量はより顕著になる。Co原子が媒体表面に析出すると、そのCo原子が媒体表面の液体潤滑材分子を分解することにより、媒体の摩擦磨耗耐久性を著しく劣化させてしまうという問題が生じる。   However, according to the study by the present inventors, it has been found that when a granular magnetic layer is used as the magnetic layer, Co atoms contained in the magnetic layer easily precipitate on the medium surface. In particular, when the Ar gas pressure during sputtering film formation is increased in order to obtain excellent magnetic characteristics and electromagnetic conversion characteristics, the Co elution amount becomes more prominent. When Co atoms are deposited on the medium surface, the Co atoms decompose the liquid lubricant molecules on the medium surface, thereby causing a problem that the friction wear durability of the medium is significantly deteriorated.

本発明は、このような問題に鑑みてなされたものであって、その目的とするところは、グラニュラ磁性層からのCoの溶出を抑制して優れた電磁変換特性と良好な耐久性とを両立させ、更に、生産性に優れた垂直磁気記録媒体を提供することにある。   The present invention has been made in view of such problems, and the object of the present invention is to achieve both excellent electromagnetic conversion characteristics and good durability by suppressing elution of Co from the granular magnetic layer. And providing a perpendicular magnetic recording medium having excellent productivity.

本発明は、このような目的を達成するために、請求項1に記載の発明は、非磁性基体上に、軟磁性裏打ち層と、中間層と、CoCr系合金層の磁性層と、保護層と、液体潤滑剤層とが順次積層されてなる垂直磁気記録媒体であって、前記磁性層は、前記中間層側に設けられたグラニュラ構造の第1の磁性層と、前記保護層側に設けられた非グラニュラ構造の第2の磁性層とから構成されていることを特徴とする。   In order to achieve the above object, the present invention provides a soft magnetic backing layer, an intermediate layer, a magnetic layer of a CoCr-based alloy layer, and a protective layer on a nonmagnetic substrate. And a liquid lubricant layer are sequentially stacked, and the magnetic layer is provided on the intermediate layer side with a first magnetic layer having a granular structure and on the protective layer side. And a second magnetic layer having a non-granular structure.

また、請求項2に記載の発明は、請求項1に記載の垂直磁気記録媒体において、前記中間層が、六方最密充填(hcp)の結晶構造を有するTi、Re、Ru、Osのいずれかの金属、又は、Ti、Re、Ru、Osのうちの少なくとも一種の金属を含む合金で構成されていることを特徴とする。   The invention according to claim 2 is the perpendicular magnetic recording medium according to claim 1, wherein the intermediate layer is any one of Ti, Re, Ru, and Os having a hexagonal close-packed (hcp) crystal structure. Or an alloy containing at least one of Ti, Re, Ru, and Os.

更に、請求項3に記載の発明は、請求項1又は2に記載の垂直磁気記録媒体において、前記非磁性基体と前記軟磁性裏打ち層との間に、前記非磁性基体側の下地層と前記軟磁性裏打ち層側の磁区制御層を順次積層させたことを特徴とする。   Further, the invention according to claim 3 is the perpendicular magnetic recording medium according to claim 1 or 2, wherein the underlayer on the nonmagnetic substrate side and the underlayer on the nonmagnetic substrate side are disposed between the nonmagnetic substrate and the soft magnetic backing layer. The magnetic domain control layer on the soft magnetic backing layer side is sequentially laminated.

本発明の垂直磁気記録媒体では、磁気記録を行なうための磁性層を2層で構成し、非磁性基体側の第1の磁性層を、その非磁性粒界が金属の酸化物または窒化物からなるグラニュラ構造のCoCr系合金で構成し、この上に設けられる第2の磁性層を、非磁性粒界に金属の酸化物や窒化物を含有しない非グラニュラ構造のCoCr系合金で構成している。これらの磁性層のうち、第1の磁性層が、そのグラニュラ構造に起因する良好な電磁変換特性を担保する一方、第2の磁性層は、第1の磁性層の非磁性粒界から溶出してくるCo原子をブロックして媒体の高い耐久性を担保するように構成したので、優れた磁気特性と電磁変換特性を有し、かつ、85℃で80%RHの高温高湿環境下に96時間以上放置しても、50mlの純水中で3分間揺動して抽出したCoの量をICP発光分光分析によって測定した値が、ディスクの面積1m2あたり10μg以下に抑制され、充分な長期信頼性を有する媒体が実現できる。   In the perpendicular magnetic recording medium of the present invention, the magnetic layer for performing magnetic recording is composed of two layers, and the first magnetic layer on the nonmagnetic substrate side is made of an oxide or nitride whose nonmagnetic grain boundary is a metal. And a second magnetic layer provided thereon is made of a non-granular CoCr alloy that does not contain metal oxides or nitrides in the nonmagnetic grain boundaries. . Of these magnetic layers, the first magnetic layer ensures good electromagnetic conversion characteristics due to its granular structure, while the second magnetic layer elutes from the nonmagnetic grain boundaries of the first magnetic layer. Since it is configured to block the incoming Co atoms to ensure high durability of the medium, it has excellent magnetic characteristics and electromagnetic conversion characteristics, and it is 96 in a high temperature and high humidity environment of 80% RH at 85 ° C. Even if it is left for more than an hour, the amount of Co extracted by shaking for 3 minutes in 50 ml of pure water is measured by ICP emission spectroscopic analysis, and the value is suppressed to 10 μg or less per 1 m 2 of disk area. A medium having the characteristics can be realized.

さらに、非磁性基体と軟磁性裏打ち層との間に、1層あるいは複数層からなる下地層並びに磁区制御層を付与することにより軟磁性裏打ち層に起因して発生するスパイクノイズを大幅に抑制することが可能となる。   Furthermore, by providing an underlayer consisting of one or more layers and a magnetic domain control layer between the nonmagnetic substrate and the soft magnetic backing layer, spike noise generated due to the soft magnetic backing layer is greatly suppressed. It becomes possible.

以下、図面を参照して本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の垂直磁気記録媒体の構成例を説明するための図で、垂直磁気記録媒体は、非磁性基体11上に、軟磁性裏打ち層12、中間層13、第1の磁性層14、第2の磁性層15、及び、保護層16が順次積層され、更に、保護層16の上には液体潤滑剤層17が形成されて構成されている。   FIG. 1 is a diagram for explaining a configuration example of a perpendicular magnetic recording medium according to the present invention. The perpendicular magnetic recording medium includes a soft magnetic backing layer 12, an intermediate layer 13, and a first magnetic layer on a nonmagnetic substrate 11. 14, a second magnetic layer 15, and a protective layer 16 are sequentially laminated, and a liquid lubricant layer 17 is formed on the protective layer 16.

また、図2は、本発明の垂直磁気記録媒体の他の構成例を説明するための図で、垂直磁気記録媒体は、非磁性基体21上に、複数層で構成された多層下地層22、磁区制御層23、軟磁性裏打ち層24、中間層25、第1の磁性層26、第2の磁性層27、及び、保護層28が順次積層され、更に、保護層28の上には液体潤滑剤層29が形成されて構成されている。   FIG. 2 is a diagram for explaining another configuration example of the perpendicular magnetic recording medium of the present invention. The perpendicular magnetic recording medium has a multilayer underlayer 22 composed of a plurality of layers on a nonmagnetic substrate 21. A magnetic domain control layer 23, a soft magnetic backing layer 24, an intermediate layer 25, a first magnetic layer 26, a second magnetic layer 27, and a protective layer 28 are sequentially laminated. An agent layer 29 is formed.

本発明の垂直磁気記録媒体において、非磁性基体11、21としては、通常の磁気記録媒体用に用いられるNiPメッキを施したAl合金や強化ガラス、或いは結晶化ガラス等を用いることができ、磁区制御層23としては、Mnを含む合金系からなるPtMn、IrMnなどの反強磁性膜、或いは非磁性基体21の半径方向に磁化を配向させたCoCrTa、CoCrPt、CoCrPtB膜などの硬質磁性膜を用いることができる。なお、この磁区制御層23は、5〜300nm程度の膜厚とすることが好ましい。   In the perpendicular magnetic recording medium of the present invention, the nonmagnetic substrates 11 and 21 can be made of an Al alloy plated with NiP, tempered glass, crystallized glass, or the like used for ordinary magnetic recording media. As the control layer 23, an antiferromagnetic film such as PtMn or IrMn made of an alloy containing Mn, or a hard magnetic film such as a CoCrTa, CoCrPt, or CoCrPtB film whose magnetization is oriented in the radial direction of the nonmagnetic substrate 21 is used. be able to. The magnetic domain control layer 23 preferably has a thickness of about 5 to 300 nm.

多層下地層22としては、磁区制御層23としてMn合金系の反強磁性膜を用いる場合には、面心立方(fcc)構造を有するCu、Irなどの非磁性単金属、あるいはNiFeCrなどの非磁性合金などを用いることが望ましい。この場合、さらにその下層に、これらの非磁性単金属膜あるいは非磁性合金膜の微細構造を制御するために、3〜30nmの膜厚のTa、Zr、Nbなどの層を設けることとしてもよい。また、磁区制御層23として硬質磁性膜を用いた場合には、多層下地層22としては、CrMo、CrWなどのCr合金などを用いることができる。この場合にも、さらにその下層に、これらのCr合金膜の微細構造を制御するために下地層を設けてもよい。なお、この多層下地層22は、必ずしも複数の層から構成された多層下地層である必要はなく、所望により、単層の下地層であってもよい。   In the case of using a Mn alloy-based antiferromagnetic film as the magnetic domain control layer 23 as the multilayer underlayer 22, a nonmagnetic single metal such as Cu or Ir having a face-centered cubic (fcc) structure, or a nonmagnetic single metal such as NiFeCr is used. It is desirable to use a magnetic alloy or the like. In this case, in order to control the fine structure of these nonmagnetic single metal film or nonmagnetic alloy film, a layer of Ta, Zr, Nb or the like having a thickness of 3 to 30 nm may be provided in the lower layer. . When a hard magnetic film is used as the magnetic domain control layer 23, a Cr alloy such as CrMo or CrW can be used as the multilayer base layer 22. Also in this case, an underlayer may be provided in the lower layer in order to control the microstructure of these Cr alloy films. The multilayer base layer 22 is not necessarily a multilayer base layer composed of a plurality of layers, and may be a single layer base layer as desired.

軟磁性裏打ち層12、24としては、NiFe合金、センダスト(FeSiAl)合金等を用いることができるが、非晶質のCo合金、例えばCoNbZr、CoTaZrなどを用いることにより良好な電磁変換特性を得ることができる。なお、軟磁性裏打ち層12、24の膜厚の最適値は、磁気記録に用いる磁気ヘッドの構造や特性によって変化するが、生産性との兼ね合いから10nm以上300nm以下であることが望ましい。   As the soft magnetic underlayers 12 and 24, NiFe alloy, Sendust (FeSiAl) alloy, or the like can be used. By using an amorphous Co alloy such as CoNbZr or CoTaZr, good electromagnetic characteristics can be obtained. Can do. The optimum value of the film thickness of the soft magnetic underlayers 12 and 24 varies depending on the structure and characteristics of the magnetic head used for magnetic recording, but is preferably 10 nm or more and 300 nm or less in view of productivity.

中間層13、25としては、第1の磁性層14、26の結晶配向性、結晶粒径及び、粒界偏析を好適に制御するための材料を適宜用いることができ、特に、第1の磁性層14、26の結晶配向制御の観点からは、六方最密充填(hcp)の結晶構造を有するTi、Re、Ru、Osのいずれかの金属、またはTi、Re、Ru、Osのうちの少なくとも一種の金属を含む合金であることが望ましい。なお、その膜厚は特に限定されるものではないが、記録再生分解能の向上や生産性の観点からは、第1の磁性層14、26の結晶構造制御のために必要とされる最小限の膜厚とすることが望ましい。   As the intermediate layers 13 and 25, materials for suitably controlling the crystal orientation, crystal grain size, and grain boundary segregation of the first magnetic layers 14 and 26 can be used as appropriate. From the viewpoint of controlling the crystal orientation of the layers 14 and 26, at least one of Ti, Re, Ru, and Os having a hexagonal close-packed (hcp) crystal structure, or at least one of Ti, Re, Ru, and Os An alloy containing a kind of metal is desirable. The film thickness is not particularly limited, but from the viewpoint of improvement in recording / reproducing resolution and productivity, it is the minimum required for controlling the crystal structure of the first magnetic layers 14 and 26. It is desirable to use a film thickness.

第1の磁性層14、26は、強磁性を有するCoCr系合金結晶粒とそれを取り巻く非磁性粒界からなり、かつ、その非磁性粒界が金属の酸化物または窒化物からなる、いわゆるグラニュラ磁性層である。このグラニュラ構造は、例えば、非磁性粒界を構成する酸化物を含有する強磁性金属をターゲットとしたスパッタリングや、酸素を含有するArガス雰囲気中で強磁性金属をターゲットとした反応性スパッタリングによって作製することができる。なお、グラニュラ磁性層として良好な特性を得るためには、成膜時のガス圧を10mTorr以上にする必要がある。   The first magnetic layers 14 and 26 are so-called granular materials comprising CoCr-based alloy crystal grains having ferromagnetism and nonmagnetic grain boundaries surrounding the crystal grains, and the nonmagnetic grain boundaries comprising a metal oxide or nitride. It is a magnetic layer. This granular structure is produced by, for example, sputtering using a ferromagnetic metal containing an oxide that constitutes a nonmagnetic grain boundary, or reactive sputtering using a ferromagnetic metal as a target in an Ar gas atmosphere containing oxygen. can do. In order to obtain good characteristics as a granular magnetic layer, the gas pressure during film formation needs to be 10 mTorr or more.

ここで、強磁性を有する結晶を成膜するための材料としてはCoCr系合金が好適に用いられ、特に、優れた磁気特性と記録再生特性を得る観点からは、CoCr合金にPt、Ni、Taのうちの少なくとも1つの元素を添加することが望ましい。一方、非磁性粒界を構成する材料としては、安定なグラニュラ構造を形成する観点から、Cr、Co、Si、Al、Ti、Ta、Hf、Zrのうちの少なくとも1つの元素の酸化物を用いることが望ましく、その膜厚は、記録再生分解能を高めるために、30nm以下とすることが望ましい。   Here, a CoCr-based alloy is preferably used as a material for forming a ferromagnetic crystal, and in particular, from the viewpoint of obtaining excellent magnetic characteristics and recording / reproducing characteristics, the CoCr alloy is made of Pt, Ni, Ta. It is desirable to add at least one of these elements. On the other hand, as the material constituting the nonmagnetic grain boundary, an oxide of at least one element of Cr, Co, Si, Al, Ti, Ta, Hf, and Zr is used from the viewpoint of forming a stable granular structure. The film thickness is desirably 30 nm or less in order to increase the recording / reproducing resolution.

第2の磁性層15、27は、非磁性粒界には金属の酸化物や窒化物を含有しない非グラニュラ構造のCoCr系合金結晶質膜で構成されている。このCoCr系合金結晶質膜の成膜に使用可能な材料の例としては、CoCr、CoCrTa、CoCrPt、CoCrPtTa、CoCrPtB等の合金系材料を挙げることができる。なお、耐久性に優れた垂直磁気記録媒体を作製するためには、第2の磁性層14、27を成膜する際のガス圧は15mTorr以下にする必要があり、その膜厚は20nm以下であることが望ましい。   The second magnetic layers 15 and 27 are made of a non-granular CoCr-based alloy crystalline film containing no metal oxide or nitride at the nonmagnetic grain boundaries. Examples of materials that can be used for forming the CoCr-based alloy crystalline film include alloy-based materials such as CoCr, CoCrTa, CoCrPt, CoCrPtTa, and CoCrPtB. In order to manufacture a perpendicular magnetic recording medium with excellent durability, the gas pressure when forming the second magnetic layers 14 and 27 must be 15 mTorr or less, and the film thickness is 20 nm or less. It is desirable to be.

すなわち、本発明の垂直磁気記録媒体では、磁気記録を行なうための磁性層を2層で構成し、非磁性基体側の第1の磁性層を、その非磁性粒界が金属の酸化物または窒化物からなるグラニュラ構造のCoCr系合金で構成し、この上に設けられる第2の磁性層を、非磁性粒界に金属の酸化物や窒化物を含有しない非グラニュラ構造のCoCr系合金で構成している。これらの磁性層のうち、第1の磁性層が、そのグラニュラ構造に起因する良好な電磁変換特性を担保する一方、第2の磁性層は、第1の磁性層の非磁性粒界から溶出してくるCo原子をブロックして媒体の高い耐久性を担保するように構成されている。   That is, in the perpendicular magnetic recording medium of the present invention, the magnetic layer for performing magnetic recording is composed of two layers, and the first magnetic layer on the nonmagnetic substrate side is made of an oxide or nitride of which the nonmagnetic grain boundary is a metal. It is composed of a granular CoCr alloy composed of a material, and the second magnetic layer provided thereon is composed of a non-granular CoCr alloy that does not contain metal oxide or nitride at the nonmagnetic grain boundary. ing. Of these magnetic layers, the first magnetic layer ensures good electromagnetic conversion characteristics due to its granular structure, while the second magnetic layer elutes from the nonmagnetic grain boundaries of the first magnetic layer. It is configured to block the Co atoms coming and ensure the high durability of the medium.

保護層16、28は、従来より使用されている保護膜を用いることができ、例えば、カーボンを主体とする保護膜を用いることができる。また、液体潤滑剤層17、29も、従来より使用されている材料を用いることができ、例えば、パーフルオロポリエーテル系の潤滑剤を用いることができる。なお、保護層16、28の膜厚等の条件や、液体潤滑剤層17、29の膜厚等の条件は、通常の磁気記録媒体で用いられる諸条件をそのまま用いることができる。   As the protective layers 16 and 28, a conventionally used protective film can be used. For example, a protective film mainly composed of carbon can be used. The liquid lubricant layers 17 and 29 can also be made of a conventionally used material, for example, a perfluoropolyether lubricant. The conditions such as the film thickness of the protective layers 16 and 28 and the conditions such as the film thickness of the liquid lubricant layers 17 and 29 can be the same as those used in ordinary magnetic recording media.

以下に本発明の垂直磁気記録媒体の製造方法の実施例について説明する。なお、これらの実施例は、本発明の垂直磁気記録媒体の製造方法を好適に説明するための代表例に過ぎず、これらに限定されるものではない。   Examples of the method for manufacturing a perpendicular magnetic recording medium according to the present invention will be described below. These examples are merely representative examples for suitably explaining the method of manufacturing the perpendicular magnetic recording medium of the present invention, and the present invention is not limited to these examples.

(実施例1)
非磁性基体として、表面が平滑な化学強化ガラス基板(例えばHOYA社製N−5ガラス基板)を用い、これを洗浄後スパッタ装置内に導入し、CoZrNb非晶質軟磁性裏打ち層を200nm、Ru中間層を30nm積層させた後、CoCrPt−SiO2ターゲットを用いたRFスパッタ法により第1の磁性層を20nm成膜し、更に、CoCrPtBターゲットを用いて第2の磁性層を10nm成膜させた。ここで、第1の磁性層及び第2の磁性層は、ガス圧を種々変化させた条件で成膜している。最後にカーボンからなる保護層5nmを成膜後、真空装置から取り出し、その後、パーフルオロポリエーテルからなる液体潤滑剤層2nmをディップ法により形成して垂直磁気記録媒体とした。なお、成膜に先立つ基板加熱、並びに、磁性層成膜後の加熱・急冷処理は行なっていない。
Example 1
As the nonmagnetic substrate, a chemically strengthened glass substrate (for example, N-5 glass substrate manufactured by HOYA) having a smooth surface was used, and this was introduced into the sputtering apparatus after cleaning, and a CoZrNb amorphous soft magnetic backing layer was formed to 200 nm, After the intermediate layer was deposited to 30 nm, the first magnetic layer was formed to 20 nm by RF sputtering using a CoCrPt—SiO 2 target, and the second magnetic layer was further formed to 10 nm using the CoCrPtB target. Here, the first magnetic layer and the second magnetic layer are formed under conditions in which the gas pressure is variously changed. Finally, after forming a protective layer 5 nm made of carbon, it was taken out from the vacuum apparatus, and then a liquid lubricant layer 2 nm made of perfluoropolyether was formed by a dip method to obtain a perpendicular magnetic recording medium. In addition, the substrate heating prior to the film formation and the heating / quenching process after the magnetic layer formation are not performed.

このようにして作製した垂直磁気記録媒体を、85℃で80%RHの高温高湿環境下に96時間放置した後に50mlの純水中で3分間揺動して溶出したCoを抽出し、その濃度をICP発光分光分析法によって測定した。なお、第1及び第2の磁性層成膜後の媒体の磁化曲線を振動試料型磁力計で測定して磁気特性を評価すると共に、全層を成膜した媒体の電磁変換特性をGMRヘッドを備えたスピンスタンドテスターにより評価した。   The perpendicular magnetic recording medium thus prepared was left in a high-temperature and high-humidity environment of 80% RH at 85 ° C. for 96 hours, and then the eluted Co was extracted by shaking in 50 ml of pure water for 3 minutes. The concentration was measured by ICP emission spectroscopy. The magnetic properties of the medium on which the first and second magnetic layers were formed were measured with a vibrating sample magnetometer, and the magnetic characteristics were evaluated. Evaluation was performed by a spin stand tester provided.

表1は、第1並びに第2の磁性層を成膜する際のガス圧を種々変化させて作製した垂直磁気記録媒体のCo溶出量を纏めた結果である。   Table 1 summarizes the Co elution amounts of perpendicular magnetic recording media manufactured by variously changing the gas pressure when forming the first and second magnetic layers.

Figure 2006277950
Figure 2006277950

この表から明らかなように、第1の磁性層、第2の磁性層共に、成膜時のガス圧を低下させることにより、Coの溶出量を抑制することができる。特に、第2の磁性層のガス圧を15mTorr以下とした場合には、第1の磁性層のガス圧によらず、Coの溶出量を10μg/m2以下に抑えることが可能である。   As is apparent from this table, the amount of Co elution can be suppressed by reducing the gas pressure during film formation for both the first magnetic layer and the second magnetic layer. In particular, when the gas pressure of the second magnetic layer is set to 15 mTorr or less, the elution amount of Co can be suppressed to 10 μg / m 2 or less regardless of the gas pressure of the first magnetic layer.

表2は、第1並びに第2の磁性層の成膜時のガス圧を種々変化させて作製した垂直磁気記録媒体の350kFClにおけるSNR(電磁変換特性の信号とノイズの比)を纏めた結果である。   Table 2 summarizes the SNR (ratio of electromagnetic conversion characteristic signal to noise) at 350 kFCl of a perpendicular magnetic recording medium manufactured by variously changing the gas pressure during the formation of the first and second magnetic layers. is there.

Figure 2006277950
Figure 2006277950

この表から分かるように、第1の磁性層成膜時のガス圧を15mTorr以上とした場合には、第2の磁性層の成膜時のガス圧によらず、15dB以上の良好な電磁変換特性が得られている。また、第2の磁性層成膜時のガス圧が15mTorr以下の領域においては、第1の磁性層成膜時のガス圧が10mTorr以上の媒体においても15dB以上の値が得られている。   As can be seen from this table, when the gas pressure during film formation of the first magnetic layer is set to 15 mTorr or more, good electromagnetic conversion of 15 dB or more regardless of the gas pressure during film formation of the second magnetic layer. Characteristics are obtained. Further, in the region where the gas pressure during film formation of the second magnetic layer is 15 mTorr or less, a value of 15 dB or more is obtained even in a medium where the gas pressure during film formation of the first magnetic layer is 10 mTorr or more.

このように、Co溶出量を10μg/m2以下に抑制し、かつ、記録密度350kFClでのSNR値を15dB以上にするためには、第1の磁性層の成膜時のガス圧を10mTorr以上とし、かつ、第2の磁性層の成膜時のガス圧を15mTorr以下にする必要があることが分かる。   Thus, in order to suppress the Co elution amount to 10 μg / m 2 or less and increase the SNR value at a recording density of 350 kFCl to 15 dB or more, the gas pressure at the time of forming the first magnetic layer is set to 10 mTorr or more. And it turns out that the gas pressure at the time of film-forming of a 2nd magnetic layer needs to be 15 mTorr or less.

(実施例2)
成膜に先立つ基板加熱(前加熱)、及び、第2の磁性層成膜後の加熱(後加熱)、並びに、急冷処理を同一装置内で行って作製したこと以外は上述した実施例1と同様にして磁気記録媒体を作製した。但し、第1の磁性層成膜時のガス圧を50mTorr、第2の磁性層成膜時のガス圧を5mTorr一定とした。
(Example 2)
Example 1 described above except that substrate heating (preheating) prior to film formation, heating after film formation of the second magnetic layer (post heating), and rapid cooling treatment were performed in the same apparatus. A magnetic recording medium was produced in the same manner. However, the gas pressure at the time of forming the first magnetic layer was fixed at 50 mTorr, and the gas pressure at the time of forming the second magnetic layer was fixed at 5 mTorr.

表3は、前加熱温度を200℃、後加熱温度200℃、後加熱処理に連続して行う冷却処理工程は10秒後の基板温度が100℃となるように調整を行い、それぞれの処理の有無による保磁力(Hc)並びにSNR値の値を纏めた結果である。   Table 3 shows that the pre-heating temperature is 200 ° C., the post-heating temperature is 200 ° C., and the cooling process step performed continuously after the post-heating treatment is adjusted so that the substrate temperature after 10 seconds becomes 100 ° C. It is the result of summarizing the coercive force (Hc) depending on the presence or absence and the SNR value.

Figure 2006277950
Figure 2006277950

この表から分かるとおり、前加熱処理を行うことにより、磁気特性並びにSNRが急激に低下しており、第1の磁性層であるグラニュラ磁性層を成膜する際は、事前に加熱せずに成膜プロセスを行なう必要がある。また、後加熱処理を行った場合には磁気特性とSNRの値が大幅に増加している。これは、後加熱処理により第2の磁性層であるCoCr系合金結晶質膜の特性が改善されたためである。更に、後加熱処理に連続して急冷処理を行うことにより、さらに特性が向上していることが分かる。   As can be seen from this table, the magnetic properties and the SNR are drastically decreased by performing the preheating treatment. When the granular magnetic layer as the first magnetic layer is formed, it is not heated in advance. It is necessary to perform a membrane process. In addition, when the post-heating treatment is performed, the magnetic characteristics and SNR values are greatly increased. This is because the characteristics of the CoCr-based alloy crystalline film which is the second magnetic layer are improved by the post-heating treatment. Furthermore, it turns out that the characteristic is further improved by performing the rapid cooling process continuously after a post-heating process.

(実施例3)
表4は、中間層として各種の材料を用い、その膜厚を30nmとした以外は実施例1と同様にして作製した磁気記録媒体の、磁性層のhcp(002)回折線をX線回折法により求めたロッキングカーブの半値幅Δθ50値を纏めた結果である。なお、比較のため、中間層として体心立方(bcc)構造をもつTa、及びCrを使用した場合についても示している。
(Example 3)
Table 4 shows the X-ray diffraction method of the hcp (002) diffraction line of the magnetic layer of the magnetic recording medium produced in the same manner as in Example 1 except that various materials were used as the intermediate layer and the film thickness was 30 nm. This is a result of summarizing the half-value width Δθ50 value of the rocking curve obtained by the above. For comparison, the case where Ta and Cr having a body-centered cubic (bcc) structure are used as the intermediate layer is also shown.

Figure 2006277950
Figure 2006277950

この表から、非磁性下地層としてbcc構造をもつTaやCrを使用した場合に比べ、hcp構造をもつ各種材料を用いた場合にΔθ50が改善され、磁性層の結晶配向制御が有効に行なわれることがわかる。   From this table, compared to the case of using Ta or Cr having a bcc structure as the nonmagnetic underlayer, Δθ50 is improved when various materials having an hcp structure are used, and the crystal orientation control of the magnetic layer is effectively performed. I understand that.

(実施例4)
実施例1に記載の製造方法において、非磁性基板と軟磁性裏打ち層との間に、Taターゲットを用いTaの第1下地層を5nm、NiFeCrターゲットを用いNiFeCrの第2下地層を5nm、及び、IrMnの磁区制御層を10nm成膜したことを除き実施例1と同様の手順で磁気記録媒体を作製した。
Example 4
In the manufacturing method described in Example 1, between the nonmagnetic substrate and the soft magnetic underlayer, a Ta target is used to form a first Ta underlayer 5 nm, a NiFeCr target is used to form a NiFeCr second underlayer 5 nm, and A magnetic recording medium was prepared in the same procedure as in Example 1 except that a magnetic domain control layer of IrMn was formed to 10 nm.

この方法にて作製した垂直磁気記録媒体と、実施例1の方法にて作製した垂直磁気記録媒体において、磁気特性並びにSNRに関しては、特に差異が認められなかった。   There was no particular difference in magnetic properties and SNR between the perpendicular magnetic recording medium produced by this method and the perpendicular magnetic recording medium produced by the method of Example 1.

図3は、これらの各々の方法で作成した垂直磁気記録媒体のスピンスタンドテスターによる1周分の出力波形を比較したものである。下地層並びに磁区制御層を備えない構造の実施例1に示した方法で作製した垂直磁気記録媒体では、全周に渡り不均一にスパイクノイズが発生しているのに対し、下地層並びに磁区制御層を備える構成とすることにより、スパイクノイズは顕著に減少していることが分かる。これは、非磁性基板上に下地層並びに磁区制御層を備えることにより、これらに続いて積層される軟磁性裏打ち層に磁壁が形成されないようになるためである。   FIG. 3 shows a comparison of output waveforms for one round by a spin stand tester of a perpendicular magnetic recording medium produced by each of these methods. In the perpendicular magnetic recording medium manufactured by the method shown in Example 1 having a structure not including the underlayer and the magnetic domain control layer, spike noise is generated nonuniformly over the entire circumference, whereas the underlayer and the magnetic domain control are performed. It can be seen that spike noise is remarkably reduced by employing a configuration including layers. This is because by providing the base layer and the magnetic domain control layer on the nonmagnetic substrate, the domain wall is not formed on the soft magnetic backing layer that is subsequently laminated.

本発明の垂直磁気記録媒体の構成例を説明するための図である。It is a figure for demonstrating the structural example of the perpendicular magnetic recording medium of this invention. 本発明の垂直磁気記録媒体の他の構成例を説明するための図である。It is a figure for demonstrating the other structural example of the perpendicular magnetic recording medium of this invention. 本発明の垂直磁気記録媒体のスピンスタンドテスターによる1周分の出力波形説明するための図である。It is a figure for demonstrating the output waveform for one round by the spin stand tester of the perpendicular magnetic recording medium of this invention.

符号の説明Explanation of symbols

11、21 非磁性基体
12、24 軟磁性裏打ち層
13、25 中間層
14、26 第1の磁性層
15、27 第2の磁性層
16、28 保護層
17、29 液体潤滑剤層
22 多層下地層
23 磁区制御層
11, 21 Nonmagnetic substrate 12, 24 Soft magnetic backing layer 13, 25 Intermediate layer 14, 26 First magnetic layer 15, 27 Second magnetic layer 16, 28 Protective layer 17, 29 Liquid lubricant layer 22 Multilayer underlayer 23 Magnetic domain control layer

Claims (3)

非磁性基体上に、軟磁性裏打ち層と、中間層と、CoCr系合金層の磁性層と、保護層と、液体潤滑剤層とが順次積層されてなる垂直磁気記録媒体であって、
前記磁性層は、前記中間層側に設けられたグラニュラ構造の第1の磁性層と、前記保護層側に設けられた非グラニュラ構造の第2の磁性層とから構成されていることを特徴とする垂直磁気記録媒体。
A perpendicular magnetic recording medium in which a soft magnetic backing layer, an intermediate layer, a magnetic layer of a CoCr-based alloy layer, a protective layer, and a liquid lubricant layer are sequentially laminated on a nonmagnetic substrate,
The magnetic layer is composed of a granular first magnetic layer provided on the intermediate layer side and a non-granular second magnetic layer provided on the protective layer side. Perpendicular magnetic recording medium.
前記中間層が、六方最密充填(hcp)の結晶構造を有するTi、Re、Ru、Osのいずれかの金属、又は、Ti、Re、Ru、Osのうちの少なくとも一種の金属を含む合金で構成されていることを特徴とする請求項1に記載の垂直磁気記録媒体。   The intermediate layer is made of any one of Ti, Re, Ru, and Os having a hexagonal close-packed (hcp) crystal structure, or an alloy containing at least one of Ti, Re, Ru, and Os. The perpendicular magnetic recording medium according to claim 1, wherein the perpendicular magnetic recording medium is configured. 前記非磁性基体と前記軟磁性裏打ち層との間に、前記非磁性基体側の下地層と前記軟磁性裏打ち層側の磁区制御層を順次積層させたことを特徴とする請求項1又は2に記載の垂直磁気記録媒体。   3. The underlayer on the nonmagnetic substrate side and the magnetic domain control layer on the soft magnetic backing layer side are sequentially laminated between the nonmagnetic substrate and the soft magnetic backing layer. The perpendicular magnetic recording medium described.
JP2006195939A 2006-07-18 2006-07-18 Vertical magnetic recording medium Withdrawn JP2006277950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006195939A JP2006277950A (en) 2006-07-18 2006-07-18 Vertical magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006195939A JP2006277950A (en) 2006-07-18 2006-07-18 Vertical magnetic recording medium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001365280A Division JP3988117B2 (en) 2001-11-29 2001-11-29 Perpendicular magnetic recording medium and method of manufacturing perpendicular magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2006277950A true JP2006277950A (en) 2006-10-12

Family

ID=37212528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006195939A Withdrawn JP2006277950A (en) 2006-07-18 2006-07-18 Vertical magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2006277950A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8034413B2 (en) 2007-11-09 2011-10-11 Fuji Electric Co., Ltd. Method for manufacturing magnetic recording media
US9659592B2 (en) 2011-06-03 2017-05-23 Fuji Electric Co., Ltd. Perpendicular magnetic recording medium and method of manufacturing same
US10832720B2 (en) 2016-12-08 2020-11-10 Showa Denko K.K. Magnetic recording medium with nitride segregant, method for manufacturing same and magnetic recording and reproducing apparatus
US10829848B2 (en) 2016-12-21 2020-11-10 Showa Denko K.K. Magnetic recording medium, with carbide segregant, method for manufacturing same and magnetic recording and reproducing apparatus
US10978103B2 (en) 2018-05-21 2021-04-13 Showa Denko K.K. Magnetic recording medium and magnetic storage apparatus
US10984829B2 (en) 2018-03-23 2021-04-20 Showa Denko K.K. Magnetic recording medium having magnetic layer with hydride of carbon, and magnetic storage apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8034413B2 (en) 2007-11-09 2011-10-11 Fuji Electric Co., Ltd. Method for manufacturing magnetic recording media
US8470391B2 (en) 2007-11-09 2013-06-25 Fuji Electric Co., Ltd. Magnetic recording media
US9659592B2 (en) 2011-06-03 2017-05-23 Fuji Electric Co., Ltd. Perpendicular magnetic recording medium and method of manufacturing same
US10832720B2 (en) 2016-12-08 2020-11-10 Showa Denko K.K. Magnetic recording medium with nitride segregant, method for manufacturing same and magnetic recording and reproducing apparatus
US10829848B2 (en) 2016-12-21 2020-11-10 Showa Denko K.K. Magnetic recording medium, with carbide segregant, method for manufacturing same and magnetic recording and reproducing apparatus
US10984829B2 (en) 2018-03-23 2021-04-20 Showa Denko K.K. Magnetic recording medium having magnetic layer with hydride of carbon, and magnetic storage apparatus
US11295775B2 (en) 2018-03-23 2022-04-05 Showa Denko K.K. Magnetic recording medium having magnetic layer with nitride of carbon or hydride of carbon, and magnetic storage apparatus
US10978103B2 (en) 2018-05-21 2021-04-13 Showa Denko K.K. Magnetic recording medium and magnetic storage apparatus

Similar Documents

Publication Publication Date Title
US7311983B2 (en) Perpendicular magnetic recording medium and a method for manufacturing the same
JP4893853B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP3988117B2 (en) Perpendicular magnetic recording medium and method of manufacturing perpendicular magnetic recording medium
JP4332832B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
US20100209741A1 (en) Perpendicular magnetic recording medium, process for production thereof, and magnetic recording/reproduction apparatus
TWI564886B (en) Stack including a magnetic zero layer
US8043734B2 (en) Oxidized conformal capping layer
JP4534711B2 (en) Perpendicular magnetic recording medium
WO2006134952A1 (en) Perpendicular magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
US6403241B1 (en) CoCrPtB medium with a 1010 crystallographic orientation
JP2006277950A (en) Vertical magnetic recording medium
JP2004220737A (en) Perpendicular magnetic recording medium and its manufacturing method
JP2001344740A (en) Magnetic recording medium and magnetic storage device
JP2004178748A (en) Perpendicular magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device
US6475611B1 (en) Si-containing seedlayer design for multilayer media
JP4214472B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4522418B2 (en) Perpendicular magnetic recording medium
JP5426409B2 (en) Method for manufacturing perpendicular magnetic recording medium
JPWO2008133035A1 (en) Perpendicular magnetic recording medium
JP2006004527A (en) Perpendicular magnetic recording medium and manufacturing method therefor
JP2006185566A (en) Perpendicular magnetic recording medium, and magnetic recording reproducing device using the same
JP4535666B2 (en) Perpendicular magnetic recording medium
JP4591806B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP5455188B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP2006155862A (en) Manufacturing method of magnetic recording medium, and magnetic recording and reproducing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070122