JP4526262B2 - Perpendicular magnetic recording medium and manufacturing method thereof - Google Patents

Perpendicular magnetic recording medium and manufacturing method thereof Download PDF

Info

Publication number
JP4526262B2
JP4526262B2 JP2003384973A JP2003384973A JP4526262B2 JP 4526262 B2 JP4526262 B2 JP 4526262B2 JP 2003384973 A JP2003384973 A JP 2003384973A JP 2003384973 A JP2003384973 A JP 2003384973A JP 4526262 B2 JP4526262 B2 JP 4526262B2
Authority
JP
Japan
Prior art keywords
layer
magnetic recording
magnetic field
exchange coupling
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003384973A
Other languages
Japanese (ja)
Other versions
JP2004192782A (en
Inventor
貞幸 渡辺
泰志 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2003384973A priority Critical patent/JP4526262B2/en
Publication of JP2004192782A publication Critical patent/JP2004192782A/en
Application granted granted Critical
Publication of JP4526262B2 publication Critical patent/JP4526262B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、垂直磁気記録媒体及びその製造方法に関し、より詳細には、軟磁性層の磁壁形成を阻止して、低ノイズ化を図った垂直磁気記録媒体及びその製造方法に関する。   The present invention relates to a perpendicular magnetic recording medium and a method for manufacturing the same, and more particularly, to a perpendicular magnetic recording medium and a method for manufacturing the same that prevent formation of a domain wall in a soft magnetic layer and reduce noise.

磁気記録の高密度化を実現する技術として、従来の長手磁気記録方式に代えて、垂直磁気記録方式が注目されつつある。垂直磁気記録媒体は、硬質磁性材料の磁気記録層と、この記録層への記録に用いられる、磁気ヘッドが発生する磁束を集中させる役割を担う軟磁性材料の裏打ち層から構成される。このような構造の垂直磁気記録媒体において問題となるノイズのひとつであるスパイクノイズは、裏打ち層である軟磁性層に形成された磁壁によるものであることが知られている。そのため垂直磁気記録媒体の低ノイズ化のためには、軟磁性裏打ち層の磁壁形成を阻止する必要がある。
この軟磁性裏打ち層の磁壁の制御については、軟磁性裏打ち層の上層や下層に、Co合金等の強磁性層を形成しこれを所望の方向に磁化させるように着磁する方法(例えば、特許文献1参照)、反強磁性薄膜を形成し交換結合を利用して磁化をピン止めする方法(例えば、特許文献2参照)などが提案されている。
特開平6−180834号公報(段落番号〔0029〕、第1図) 特開平10−214719号公報(段落番号〔0009〕、第2図)
As a technique for realizing a high density magnetic recording, a perpendicular magnetic recording system is drawing attention in place of the conventional longitudinal magnetic recording system. The perpendicular magnetic recording medium is composed of a magnetic recording layer made of hard magnetic material and a backing layer made of soft magnetic material which is used for recording on the recording layer and plays a role of concentrating magnetic flux generated by the magnetic head. It is known that spike noise, which is one of the noises problematic in the perpendicular magnetic recording medium having such a structure, is caused by a domain wall formed in a soft magnetic layer as a backing layer. Therefore, in order to reduce the noise of the perpendicular magnetic recording medium, it is necessary to prevent the domain wall formation of the soft magnetic underlayer.
For controlling the domain wall of the soft magnetic backing layer, a method of forming a ferromagnetic layer such as a Co alloy on the upper layer or the lower layer of the soft magnetic backing layer and magnetizing the ferromagnetic layer in a desired direction (for example, patents) Reference 1), a method of forming an antiferromagnetic thin film and pinning magnetization using exchange coupling (for example, see Patent Document 2) has been proposed.
Japanese Patent Laid-Open No. 6-180834 (paragraph number [0029], FIG. 1) JP 10-214719 A (paragraph number [0009], FIG. 2)

磁区制御層としての反強磁性層を用いて軟磁性裏打ち層との交換結合により磁壁の制御を行なう方法は、交換結合が十分に得られた場合、軟磁性裏打ち層の磁壁形成を阻止することができ、非常に効果的である。しかしながら、十分な交換結合を得るためには、例えば特許文献2に示すように、軟磁性裏打ち層の特性を出すために成膜後の加熱処理が必要である。この加熱処理は、半径方向に磁場を印加しながら長時間行わなければならない処理であるため、大量生産には適さないという問題があった。
また、例えば特許文献1に示すように、軟磁性層と反強磁性層とを複数回積層して裏打ち層を構成する方法では、裏打ち層の構造が複雑であり、大量生産には適さないという問題もあった。
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、低ノイズ化された垂直磁気記録媒体、および大量生産に適した垂直磁気記録媒体の製造方法を提供することにある。
The method of controlling the domain wall by exchange coupling with the soft magnetic backing layer using the antiferromagnetic layer as the magnetic domain control layer prevents the domain wall formation of the soft magnetic backing layer when the exchange coupling is sufficiently obtained. Can be very effective. However, in order to obtain sufficient exchange coupling, for example, as shown in Patent Document 2, a heat treatment after film formation is necessary in order to obtain the characteristics of the soft magnetic underlayer. Since this heat treatment is a treatment that must be performed for a long time while applying a magnetic field in the radial direction, there is a problem that it is not suitable for mass production.
Further, as shown in Patent Document 1, for example, the method of forming a backing layer by laminating a soft magnetic layer and an antiferromagnetic layer a plurality of times has a complicated backing layer structure and is not suitable for mass production. There was also a problem.
The present invention has been made in view of such problems, and an object of the present invention is to provide a perpendicular magnetic recording medium with reduced noise and a method of manufacturing a perpendicular magnetic recording medium suitable for mass production. It is in.

上述の目的を達成するため、本発明の垂直磁気記録媒体は、非磁性基体上に、少なくとも反強磁性層、軟磁性層、磁気記録層、保護層及び液体潤滑剤層が積層されてなる垂直磁気記録媒体において、少なくともNi、Feを含み、B、Nb、Siの少なくとも1つの元素を添加した材料からなり、前記反強磁性層の直下に積層された配向制御層と、Taからなり、前記配向制御層の直下に積層されたシード層と、少なくともFe、Co及びNiを含む合金からなり、前記反強磁性層と前記軟磁性層との間に積層された交換結合磁界制御層とを備え、前記反強磁性層は、IrMn合金からなることを特徴とする。
ここで、前記交換結合磁界制御層は、さらにBを含む合金からなることが好ましい。
In order to achieve the above object, the perpendicular magnetic recording medium of the present invention is a perpendicular magnetic layer in which at least an antiferromagnetic layer, a soft magnetic layer, a magnetic recording layer, a protective layer, and a liquid lubricant layer are laminated on a nonmagnetic substrate. The magnetic recording medium is made of a material containing at least Ni, Fe, and added with at least one element of B, Nb, and Si, an orientation control layer stacked immediately below the antiferromagnetic layer, and Ta, A seed layer laminated immediately below the orientation control layer; and an exchange coupling magnetic field control layer made of an alloy containing at least Fe, Co and Ni, and laminated between the antiferromagnetic layer and the soft magnetic layer. The antiferromagnetic layer is made of an IrMn alloy .
Here, the exchange coupling magnetic field control layer is preferably made of an alloy further containing B.

また、本発明の垂直磁気記録媒体の製造方法は、前記反強磁性層と前記軟磁性層とを成膜した後、ブロッキング温度以上に加熱を行う工程と、円盤状の媒体の半径方向に向いて、放射状に印加された静磁場中において、ブロッキング温度以下に冷却する工程とを備えたことを特徴とする。 The method for manufacturing a perpendicular magnetic recording medium of the present invention includes a step of heating the antiferromagnetic layer and the soft magnetic layer to a temperature higher than the blocking temperature, and a radial direction of the disk-shaped medium. And a step of cooling below the blocking temperature in a radially applied static magnetic field.

本発明によれば、少なくともNi、Feを含み、B、Nb、Siの少なくとも1つの元素を添加した材料からなる配向制御層と、配向制御層の直下にTaからなるシード層とを備えたので、IrMn合金からなる反強磁性層の結晶性・配向性を向上させ、交換結合磁界を強めることができ、スパイクノイズを抑制することが可能となる。
また、本発明によれば、反強磁性層と軟磁性裏打ち層の間に少なくともFe、Co及びNiを含む合金からなる交換結合磁界制御層を備えたので、交換結合磁界を増加させ、スパイクノイズの抑制を向上することが可能となる。
According to the present invention, since the alignment control layer is made of a material containing at least Ni and Fe and added with at least one element of B, Nb, and Si, and the seed layer made of Ta is provided immediately below the alignment control layer. The crystallinity and orientation of the antiferromagnetic layer made of IrMn alloy can be improved, the exchange coupling magnetic field can be strengthened, and spike noise can be suppressed.
In addition, according to the present invention, the exchange coupling magnetic field control layer made of an alloy containing at least Fe, Co, and Ni is provided between the antiferromagnetic layer and the soft magnetic backing layer. It is possible to improve the suppression.

以下、図面を参照しながら本発明の実施形態について詳細に説明する。本発明にかかる垂直磁気記録媒体は、反強磁性層の結晶性・配向性を向上させ、交換結合の磁界を強める目的で、反強磁性層の直下に配向制御層を設ける。配向制御層としては、NiFeに、B、Nb、Siの少なくとも1つの元素を添加した材料を用いる。また、配向制御層の結晶性・配向性を向上させるために、Taからなるシード層を設ける。この構成によれば、従来のNiFeまたはNiFeCrからなる配向制御層と比較して、シード層との界面において、Ta原子と、Ni原子及びFe原子との相互拡散が抑制される。さらに、配向制御層の初期成長層、すなわち0〜2nmの薄膜領域であって格子欠陥を有し、結晶性の悪い部分が抑制される。従って、従来の配向制御層と比較して、反強磁性層の結晶性・配向性を向上することができる。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the perpendicular magnetic recording medium according to the present invention, an orientation control layer is provided immediately below the antiferromagnetic layer for the purpose of improving the crystallinity and orientation of the antiferromagnetic layer and enhancing the magnetic field of exchange coupling. As the orientation control layer, a material obtained by adding at least one element of B, Nb, and Si to NiFe is used. In order to improve the crystallinity / orientation of the orientation control layer, a seed layer made of Ta is provided. According to this configuration, compared with a conventional orientation control layer made of NiFe or NiFeCr, interdiffusion between Ta atoms, Ni atoms, and Fe atoms is suppressed at the interface with the seed layer. Furthermore, an initial growth layer of the orientation control layer, that is, a thin film region of 0 to 2 nm, which has lattice defects, and a portion having poor crystallinity is suppressed. Therefore, the crystallinity and orientation of the antiferromagnetic layer can be improved as compared with the conventional orientation control layer.

さらに、反強磁性層と軟磁性層との間に、交換結合の磁界を強める目的で、交換結合磁界制御層を設ける。交換結合磁界制御層としては、少なくともFe、Coを含む合金を用いる。
図1に、本発明の一実施形態にかかる垂直磁気記録媒体の構造を示す。垂直磁気記録媒体は、非磁性基体1上に、シード層2、配向制御層3、反強磁性層4、交換結合磁界制御層5、軟磁性裏打ち層6、下地層7、磁気記録層8及び保護層9が順に形成され、さらにその上に液体潤滑剤層10が形成された構造を有している。非磁性基体1としては、通常の磁気記録媒体用に用いられるNiPメッキを施したAl合金や強化ガラス、結晶化ガラス等を用いることができる。
シード層2は、配向制御層3の結晶性・配向性を向上させる。材料は、Taが好ましい。膜厚は、非晶質または微結晶となる10nm以下が望ましい。配向制御層3は、反強磁性層4の結晶性・配向性を向上させる。材料は、少なくともNi、Feを含み、B、Nb、Siの少なくとも1つの元素を添加した材料を用いる。膜厚は、十分に結晶成長がみられる3nm以上が望ましい。反強磁性層4は、FeMn、CoMn、IrMnなどのMn系合金が用いられる。膜厚は特に制限されないが、適度な交換結合が得られ、かつ大量生産に適するためには2nm〜30nm程度が望ましい。
Further, an exchange coupling magnetic field control layer is provided between the antiferromagnetic layer and the soft magnetic layer for the purpose of enhancing the exchange coupling magnetic field. As the exchange coupling magnetic field control layer, an alloy containing at least Fe and Co is used.
FIG. 1 shows the structure of a perpendicular magnetic recording medium according to an embodiment of the present invention. The perpendicular magnetic recording medium includes a seed layer 2, an orientation control layer 3, an antiferromagnetic layer 4, an exchange coupling magnetic field control layer 5, a soft magnetic backing layer 6, an underlayer 7, a magnetic recording layer 8, and a nonmagnetic substrate 1. The protective layer 9 is formed in order, and the liquid lubricant layer 10 is further formed thereon. As the nonmagnetic substrate 1, an Al alloy, tempered glass, crystallized glass, or the like subjected to NiP plating, which is used for a normal magnetic recording medium, can be used.
The seed layer 2 improves the crystallinity and orientation of the orientation control layer 3. The material is preferably Ta. The film thickness is preferably 10 nm or less, which is amorphous or microcrystalline. The orientation control layer 3 improves the crystallinity and orientation of the antiferromagnetic layer 4. As the material, a material containing at least Ni and Fe and added with at least one element of B, Nb, and Si is used. The film thickness is desirably 3 nm or more so that crystal growth is sufficiently observed. The antiferromagnetic layer 4 is made of a Mn alloy such as FeMn, CoMn, IrMn. The film thickness is not particularly limited, but is preferably about 2 nm to 30 nm in order to obtain an appropriate exchange coupling and be suitable for mass production.

交換結合磁界制御層5は、交換結合の磁界を向上させる。材料は、FeCo、FeCoNi、FeCoB、FeCoNiBなどの、少なくともFe、Coを含む合金が用いられる。膜厚は、生産性を考慮すると、20nm以下とするのが望ましい。軟磁性裏打ち層6としては、NiFe合金、センダスト(FeSiAl)合金等の結晶系の他、CoZrNb、CoTaZr等の非晶質のCo系合金を用いることができる。膜厚は、記録に使用する磁気ヘッドの構造や特性によって最適値が変化するが、10nm以上500nm以下であることが、生産性との兼ね合いから望ましい。反強磁***換結合により固定される軟磁性裏打ち層6の磁化は、一般的に用いられる円盤状の媒体を想定すると、図2に示すように基板の半径方向に向いて、放射状に印加されていることが好ましい。
磁気記録層8は、一般的に用いられているCoCrPt系材料の他、強磁性を有する結晶粒を取り巻く非磁性粒界が非磁性非金属であるグラニュラー磁気記録層、TbCo等の希土類−遷移金属系合金(RE−TM系合金)、Co/Pt、Co/Pdの多層積層膜、またはFePt規則合金などを用いることができる。なお、垂直磁気記録媒体として用いるためには、強磁性の結晶粒は、膜面に対して垂直異方性を有することが必要である。また、磁気記録材料によって、適宜、下地層7を設けることができる。
The exchange coupling magnetic field control layer 5 improves the exchange coupling magnetic field. As the material, an alloy containing at least Fe and Co, such as FeCo, FeCoNi, FeCoB, and FeCoNiB, is used. The film thickness is desirably 20 nm or less in consideration of productivity. As the soft magnetic backing layer 6, an amorphous Co-based alloy such as CoZrNb or CoTaZr can be used in addition to a crystal system such as NiFe alloy or Sendust (FeSiAl) alloy. The optimum value of the film thickness varies depending on the structure and characteristics of the magnetic head used for recording, but it is preferably 10 nm or more and 500 nm or less in view of productivity. Assuming a generally used disk-shaped medium, the magnetization of the soft magnetic backing layer 6 fixed by antiferromagnetic exchange coupling is applied radially in the radial direction of the substrate as shown in FIG. Preferably it is.
The magnetic recording layer 8 includes a commonly used CoCrPt-based material, a granular magnetic recording layer in which a nonmagnetic grain boundary surrounding a ferromagnetic crystal grain is a nonmagnetic nonmetal, and a rare earth-transition metal such as TbCo. An alloy based on RE (TM alloy), Co / Pt, Co / Pd multi-layered film, or FePt ordered alloy can be used. For use as a perpendicular magnetic recording medium, the ferromagnetic crystal grains must have perpendicular anisotropy with respect to the film surface. Moreover, the underlayer 7 can be provided as appropriate depending on the magnetic recording material.

保護層9は、例えばカーボンを主体とする薄膜が用いられる。液体潤滑剤層10は、例えばパーフルオロポリエーテル系の潤滑剤を用いることができる。
垂直磁気記録媒体の製造方法は、反強磁***換結合を失う温度であるブロッキング温度以上に加熱を行い、例えば、永久磁石で制御された静磁場の中でブロッキング温度以下まで冷却する方法が用いられる。この方法は、軟磁性裏打ち層6の磁化方向を全て一方向に制御する目的で用いる。反強磁性層4と軟磁性裏打ち層6とを成膜した後、磁気記録層8を成膜する前に加熱を行う場合には、加熱温度がブロッキング温度を超えてしまうと、反強磁***換結合が消失し、軟磁性裏打ち層6の磁化固定効果を失ってしまう。この状態で、わずかな外部磁場が加えられると、軟磁性裏打ち層6の磁化が乱され、磁壁を生ずる。そして、ブロッキング温度以下となって再度交換結合を生じると、そのまま固定されてしまう。従って、ブロッキング温度以下に冷却されるまでの間、静磁場中で保持するという方法を用いる。この方法によれば、基板全面で、軟磁性裏打ち層6の磁化固定効果を得ることができる。静磁場の強度としては、少なくとも交換結合磁界制御層5と軟磁性裏打ち層6の磁化が飽和する程度の磁界が必要であり、50〜1000Oe程度が望ましい。
For example, a thin film mainly composed of carbon is used for the protective layer 9. For the liquid lubricant layer 10, for example, a perfluoropolyether lubricant can be used.
As a method for manufacturing a perpendicular magnetic recording medium, heating is performed at a temperature higher than the blocking temperature, which is a temperature at which the antiferromagnetic exchange coupling is lost, and, for example, a method of cooling to a temperature lower than the blocking temperature in a static magnetic field controlled by a permanent magnet is used. . This method is used for the purpose of controlling all the magnetization directions of the soft magnetic underlayer 6 in one direction. When heating is performed after the antiferromagnetic layer 4 and the soft magnetic backing layer 6 are formed and before the magnetic recording layer 8 is formed, if the heating temperature exceeds the blocking temperature, the antiferromagnetic exchange is performed. The bond disappears, and the magnetization fixing effect of the soft magnetic underlayer 6 is lost. In this state, when a slight external magnetic field is applied, the magnetization of the soft magnetic underlayer 6 is disturbed and a domain wall is generated. And if it becomes below the blocking temperature and exchange coupling occurs again, it will be fixed as it is. Therefore, a method of holding in a static magnetic field until it is cooled below the blocking temperature is used. According to this method, the magnetization fixing effect of the soft magnetic underlayer 6 can be obtained over the entire surface of the substrate. The strength of the static magnetic field is required to be at least a magnetic field at which the magnetization of the exchange coupling magnetic field control layer 5 and the soft magnetic underlayer 6 is saturated, and is preferably about 50 to 1000 Oe.

以下に本発明の実施例(実施例7〜12)を参考例(実施例1〜6)及び比較例(比較例1〜3)と共に記す。なお、本発明は、以下の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。
(実施例1)
非磁性基体として表面が平滑な化学強化ガラス基板(例えば、HOYA社製N−10ガラス基板)を用い、これを洗浄後スパッタ装置内に導入する。Taターゲットを用いてTaシード層を5nm成膜した後、Ni85Fe123ターゲットを用い、NiFeB配向制御層を10nm成膜した。引き続いてランプヒータを用いて、基板表面温度が350℃になるように加熱を行なった後、Ir20Mn80ターゲットを用いてIrMn反強磁性層を10nmの厚さで成膜した後、Co87Zr5Nb8ターゲットを用いてCoZrNb非晶質の軟磁性裏打ち層を100nm成膜した。
Examples (Examples 7 to 12) of the present invention will be described below together with reference examples (Examples 1 to 6) and comparative examples (Comparative Examples 1 to 3) . In addition, this invention is not limited to a following example, A various change is possible in the range which does not deviate from the summary of this invention.
Example 1
A chemically strengthened glass substrate (for example, N-10 glass substrate manufactured by HOYA) having a smooth surface is used as the nonmagnetic substrate, and this is introduced into the sputtering apparatus after cleaning. After forming a Ta seed layer with a thickness of 5 nm using a Ta target, a Ni 85 Fe 12 B 3 target was used to form a NiFeB orientation control layer with a thickness of 10 nm. Subsequently, after heating the substrate surface temperature to 350 ° C. using a lamp heater, an IrMn antiferromagnetic layer is formed to a thickness of 10 nm using an Ir 20 Mn 80 target, and then Co 87 is used. A CoZrNb amorphous soft magnetic backing layer was formed to a thickness of 100 nm using a Zr 5 Nb 8 target.

次に、Tiターゲットを用いて、Ti下地層を10nmの厚さで成膜した後、Co70Cr20Pt10ターゲットを用いてCoCrPt磁気記録層を20nm成膜した。引き続いてランプヒータを用いて基板表面温度が350℃になるように再度加熱を行なった直後、1000Oeの固定磁場中で、150℃まで冷却する。最後にカーボンターゲットを用いて保護層を10nm成膜後、真空装置から取り出した。これらの成膜はすべてArガス圧5mTorr下で、DCマグネトロンスパッタリング法により行なった。その後、パーフルオロポリエーテルからなる液体潤滑剤層2nmをディップ法により形成し、垂直磁気記録媒体とした。
(実施例2)
配向制御層を、Ni79Fe12Nbターゲットを用いて10nm成膜した。その他は、実施例1に同じである。
Next, after forming a Ti underlayer with a thickness of 10 nm using a Ti target, a CoCrPt magnetic recording layer was formed with a thickness of 20 nm using a Co 70 Cr 20 Pt 10 target. Subsequently, the substrate surface is cooled again to 150 ° C. in a fixed magnetic field of 1000 Oe immediately after heating again using a lamp heater so that the substrate surface temperature becomes 350 ° C. Finally, a protective layer was formed to a thickness of 10 nm using a carbon target, and then taken out from the vacuum apparatus. All of these films were formed by DC magnetron sputtering under an Ar gas pressure of 5 mTorr. Thereafter, a liquid lubricant layer 2 nm made of perfluoropolyether was formed by a dip method to obtain a perpendicular magnetic recording medium.
(Example 2)
The orientation control layer was formed to a thickness of 10 nm using a Ni 79 Fe 12 Nb 9 target. Others are the same as Example 1.

(実施例3)
配向制御層を、Ni84Fe12Siターゲットを用いて10nm成膜した。その他は、実施例1に同じである。
(実施例4)
IrMn反強磁性層を成膜した後、CoZrNb軟磁性裏打ち層を成膜する前に、Co90Fe10ターゲットを用いて、CoFe交換結合磁界制御層を2nmの厚さで成膜した。その他は、実施例1に同じである。
(実施例5)
IrMn反強磁性層を成膜した後、CoZrNb軟磁性裏打ち層を成膜する前に、Co90Fe10ターゲットを用いて、CoFe交換結合磁界制御層を2nmの厚さで成膜した。その他は、実施例2に同じである。
(Example 3)
The orientation control layer was formed to a thickness of 10 nm using a Ni 84 Fe 12 Si 4 target. Others are the same as Example 1.
Example 4
After forming the IrMn antiferromagnetic layer and before forming the CoZrNb soft magnetic underlayer, a CoFe exchange coupling magnetic field control layer was formed to a thickness of 2 nm using a Co 90 Fe 10 target. Others are the same as Example 1.
(Example 5)
After forming the IrMn antiferromagnetic layer and before forming the CoZrNb soft magnetic underlayer, a CoFe exchange coupling magnetic field control layer was formed to a thickness of 2 nm using a Co 90 Fe 10 target. Others are the same as those in the second embodiment.

(実施例6)
IrMn反強磁性層を成膜した後、CoZrNb軟磁性裏打ち層を成膜する前に、Co90Fe10ターゲットを用いて、CoFe交換結合磁界制御層を2nmの厚さで成膜した。その他は、実施例3に同じである。
(実施例7)
交換結合磁界制御層を、Co65Ni13Fe22ターゲットを用いて成膜した。その他は、実施例4に同じである。
(実施例8)
交換結合磁界制御層を、Co65Ni13Fe22ターゲットを用いて成膜した。その他は、実施例5に同じである。
(Example 6)
After forming the IrMn antiferromagnetic layer and before forming the CoZrNb soft magnetic underlayer, a CoFe exchange coupling magnetic field control layer was formed to a thickness of 2 nm using a Co 90 Fe 10 target. Others are the same as Example 3.
(Example 7)
The exchange coupling magnetic field control layer was formed using a Co 65 Ni 13 Fe 22 target. Others are the same as those in the fourth embodiment.
(Example 8)
The exchange coupling magnetic field control layer was formed using a Co 65 Ni 13 Fe 22 target. Others are the same as Example 5.

(実施例9)
交換結合磁界制御層を、Co65Ni13Fe22ターゲットを用いて成膜した。その他は、実施例6に同じである。
(実施例10)
交換結合磁界制御層を、(Co65Ni13Fe2294ターゲットを用いて成膜した。その他は、実施例4に同じである。
(実施例11)
交換結合磁界制御層を、(Co65Ni13Fe2294ターゲットを用いて成膜した。その他は、実施例5に同じである。
(実施例12)
交換結合磁界制御層を、(Co65Ni13Fe2294ターゲットを用いて成膜した。その他は、実施例6に同じである。
Example 9
The exchange coupling magnetic field control layer was formed using a Co 65 Ni 13 Fe 22 target. Others are the same as Example 6.
(Example 10)
The exchange coupling magnetic field control layer was formed using a (Co 65 Ni 13 Fe 22 ) 94 B 6 target. Others are the same as those in the fourth embodiment.
(Example 11)
The exchange coupling magnetic field control layer was formed using a (Co 65 Ni 13 Fe 22 ) 94 B 6 target. Others are the same as Example 5.
(Example 12)
The exchange coupling magnetic field control layer was formed using a (Co 65 Ni 13 Fe 22 ) 94 B 6 target. Others are the same as Example 6.

(比較例1)
Taシード層を成膜しないこと以外は、実施例1と同じである。
(比較例2)
NiFeB配向制御層を成膜しないこと以外は、実施例1と同じである。
(比較例3)
Taシード層、NiFeB配向制御層、IrMn反強磁性層、CoZrNb軟磁性裏打ち層を成膜しないこと以外は、実施例1と同じである。
各実施例および比較例について、軟磁性裏打ち層に形成される磁壁の有無を確認するために、スピンスタンドテスターを用いて、信号が書き込まれていない状態での読み出し評価を行った。ディスク100回転分について読み出しを行い、出力の平均値に対する変動の割合をCOV%とした。磁壁からのスパイクノイズは、局所的に大きな信号出力として検出され、磁壁が揺らいでいる場合には、その大きさが変動することから、COVの値が大きいほどスパイクノイズが発生していると考えられる。
(Comparative Example 1)
Example 1 is the same as Example 1 except that no Ta seed layer is formed.
(Comparative Example 2)
Example 1 is the same as Example 1 except that the NiFeB orientation control layer is not formed.
(Comparative Example 3)
Example 1 is the same as Example 1 except that no Ta seed layer, NiFeB orientation control layer, IrMn antiferromagnetic layer, and CoZrNb soft magnetic backing layer are formed.
For each example and comparative example, in order to confirm the presence or absence of a domain wall formed in the soft magnetic underlayer, a read evaluation was performed in a state where no signal was written using a spin stand tester. Reading was performed for 100 revolutions of the disk, and the rate of fluctuation relative to the average value of output was defined as COV%. Spike noise from the domain wall is locally detected as a large signal output, and when the domain wall is fluctuating, its magnitude fluctuates, so it is considered that spike noise is generated as the value of COV increases. It is done.

また、交換結合磁界の大きさを調べるために、垂直磁気記録媒体の製造工程において、Ti下地層とCoCrPt磁気記録層とを成膜する工程を省略した試料も作製した。これらの各実施例、比較例1および比較例2の試料について、基板半径方向の磁化曲線を振動試料型磁力計にて測定し、得られたM−Hループより交換結合磁界を算出した。結果を表1に示す。   Further, in order to investigate the magnitude of the exchange coupling magnetic field, a sample in which the step of forming the Ti underlayer and the CoCrPt magnetic recording layer in the manufacturing process of the perpendicular magnetic recording medium was omitted was also produced. With respect to the samples of these Examples, Comparative Example 1 and Comparative Example 2, the magnetization curve in the substrate radial direction was measured with a vibrating sample magnetometer, and the exchange coupling magnetic field was calculated from the obtained MH loop. The results are shown in Table 1.

Figure 0004526262
Figure 0004526262

交換結合磁界の大きさと層の構成の関係について述べる。実施例1と比較例2とを比較すると、NiFeB配向制御層を有しない比較例2は、交換結合磁界が0であり、交換結合が生じていないことから、配向制御層の必要性が明らかである。実施例1と比較例1とを比較すると、Taシード層を有する実施例1は、交換結合磁界の向上が見られる。実施例1のNiFeB配向制御層に代えて、NiFeNbを用いた実施例2、NiFeSiを用いた実施例3ともに、実施例1と同等の交換結合が生じている。さらに、CoFe交換結合磁界制御層を付与した実施例4〜6、CoNiFe交換結合磁界制御層を付与した実施例7〜9、CoNiFeB交換結合磁界制御層を付与した実施例10〜12ともに、実施例1〜3と比較して、交換結合磁界が向上している。
次に、交換結合磁界の大きさとCOVの関係について述べる。軟磁性裏打ち層のない比較例3では、スパイクノイズが生じ得ず、このCOVは5%である。これに対して、交換結合磁界が26.5Oe以上の実施例4〜12は、同様に5%であることから、スパイクノイズが完全に抑制されていることがわかる。なお、実施例1〜3と比較例1,2とから、交換結合磁界が大きいほどCOVが小さいことがわかる。
The relationship between the magnitude of the exchange coupling magnetic field and the layer configuration will be described. When Example 1 and Comparative Example 2 are compared, Comparative Example 2 having no NiFeB orientation control layer has an exchange coupling magnetic field of 0 and no exchange coupling occurs, so the necessity of the orientation control layer is clear. is there. When Example 1 and Comparative Example 1 are compared, Example 1 having a Ta seed layer shows an improved exchange coupling magnetic field. Instead of the NiFeB orientation control layer of Example 1, both Example 2 using NiFeNb and Example 3 using NiFeSi have exchange coupling equivalent to that of Example 1. Furthermore, Examples 4 to 6 provided with a CoFe exchange coupling magnetic field control layer, Examples 7 to 9 provided with a CoNiFe exchange coupling magnetic field control layer, and Examples 10 to 12 provided with a CoNiFeB exchange coupling magnetic field control layer Compared with 1 to 3, the exchange coupling magnetic field is improved.
Next, the relationship between the magnitude of the exchange coupling magnetic field and COV will be described. In Comparative Example 3 without a soft magnetic backing layer, spike noise cannot occur, and this COV is 5%. On the other hand, since Examples 4-12 whose exchange coupling magnetic field is 26.5 Oe or more are similarly 5%, it turns out that spike noise is suppressed completely. From Examples 1 to 3 and Comparative Examples 1 and 2, it can be seen that the larger the exchange coupling magnetic field, the smaller the COV.

本発明の一実施形態にかかる垂直磁気記録媒体の構造を示す模式図である。1 is a schematic diagram showing the structure of a perpendicular magnetic recording medium according to an embodiment of the present invention. 垂直磁気記録媒体の基板の半径方向に磁場を印加している様子を示す模式図である。It is a schematic diagram which shows a mode that the magnetic field is applied to the radial direction of the board | substrate of a perpendicular magnetic recording medium.

符号の説明Explanation of symbols

1 非磁性基体
2 シード層
3 配向制御層
4 反強磁性層
5 交換結合磁界制御層
6 軟磁性裏打ち層
7 下地層
8 磁気記録層
9 保護層
10 液体潤滑剤層
DESCRIPTION OF SYMBOLS 1 Nonmagnetic base | substrate 2 Seed layer 3 Orientation control layer 4 Antiferromagnetic layer 5 Exchange coupling magnetic field control layer 6 Soft magnetic backing layer 7 Underlayer 8 Magnetic recording layer 9 Protective layer 10 Liquid lubricant layer

Claims (3)

非磁性基体上に、少なくとも反強磁性層、軟磁性層、磁気記録層、保護層及び液体潤滑剤層が積層されてなる垂直磁気記録媒体において、
少なくともNi、Feを含み、B、Nb、Siの少なくとも1つの元素を添加した材料からなり、前記反強磁性層の直下に積層された配向制御層と、
Taからなり、前記配向制御層の直下に積層されたシード層と
少なくともFe、Co及びNiを含む合金からなり、前記反強磁性層と前記軟磁性層との間に積層された交換結合磁界制御層とを備え、
前記反強磁性層は、IrMn合金からなることを特徴とする垂直磁気記録媒体。
In a perpendicular magnetic recording medium in which at least an antiferromagnetic layer, a soft magnetic layer, a magnetic recording layer, a protective layer, and a liquid lubricant layer are laminated on a nonmagnetic substrate.
An orientation control layer made of a material containing at least Ni and Fe and added with at least one element of B, Nb and Si, and laminated immediately below the antiferromagnetic layer;
A seed layer made of Ta and stacked immediately below the orientation control layer ;
An alloy comprising at least Fe, Co and Ni, and comprising an exchange coupling magnetic field control layer laminated between the antiferromagnetic layer and the soft magnetic layer,
The perpendicular magnetic recording medium according to claim 1, wherein the antiferromagnetic layer is made of an IrMn alloy .
前記交換結合磁界制御層は、さらにBを含む合金からなることを特徴とする請求項1に記載の垂直磁気記録媒体。 The perpendicular magnetic recording medium according to claim 1, wherein the exchange coupling magnetic field control layer is made of an alloy further containing B. 請求項1又は2に記載の垂直磁気記録媒体の製造方法において、
前記反強磁性層と前記軟磁性層とを成膜した後、ブロッキング温度以上に加熱を行う工程と、
円盤状の媒体の半径方向に向いて、放射状に印加された静磁場中において、ブロッキング温度以下に冷却する工程と
を備えたことを特徴とする垂直磁気記録媒体の製造方法。
The method for manufacturing a perpendicular magnetic recording medium according to claim 1 or 2 ,
After the antiferromagnetic layer and the soft magnetic layer are formed, heating to a blocking temperature or higher,
And a step of cooling to a temperature equal to or lower than the blocking temperature in a radially applied static magnetic field in the radial direction of the disk-shaped medium.
JP2003384973A 2002-11-26 2003-11-14 Perpendicular magnetic recording medium and manufacturing method thereof Expired - Fee Related JP4526262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003384973A JP4526262B2 (en) 2002-11-26 2003-11-14 Perpendicular magnetic recording medium and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002342589 2002-11-26
JP2003384973A JP4526262B2 (en) 2002-11-26 2003-11-14 Perpendicular magnetic recording medium and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004192782A JP2004192782A (en) 2004-07-08
JP4526262B2 true JP4526262B2 (en) 2010-08-18

Family

ID=32774788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003384973A Expired - Fee Related JP4526262B2 (en) 2002-11-26 2003-11-14 Perpendicular magnetic recording medium and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4526262B2 (en)

Also Published As

Publication number Publication date
JP2004192782A (en) 2004-07-08

Similar Documents

Publication Publication Date Title
JP4222965B2 (en) Perpendicular magnetic recording medium, method for manufacturing the same, and magnetic recording apparatus
JP3143611B2 (en) Ultrathin nucleation layer for magnetic thin film media and method of making the layer
US8277961B2 (en) Magnetic recording medium
US7105239B2 (en) Perpendicular magnetic recording medium and magnetic recording/reproducing apparatus using the same
US8247094B2 (en) Perpendicular magnetic recording medium and magnetic recording and reproducing apparatus
JP3653007B2 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic storage device
JP4332832B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP2007273057A (en) Perpendicular magnetic recording medium and magnetic storage device
JP2003162806A (en) Perpendicular magnetic recording medium and magnetic storage device
JP2007317304A (en) Magnetic recording medium and magnetic recording system
US20090226763A1 (en) Perpendicular magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
JP2002358617A (en) Perpendicular magnetic recording medium
JP4247575B2 (en) Method for manufacturing perpendicular magnetic recording medium
US6428906B1 (en) Magnetic recording media having a layered structure for perpendicular magnetization of a recording layer
JP4552668B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP2003317221A (en) Perpendicular magnetic recording medium
JP2008071406A (en) Vertical magnetic recording medium
US7045225B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP2006185489A (en) Magnetic recording medium and magnetic storage device
JP4367326B2 (en) Perpendicular magnetic recording medium
JP2006286103A (en) Vertical magnetic recording medium, manufacturing method of the same, and magnetic storage device
JP4526262B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP2005302109A (en) Manufacturing method of multilayer film vertical magnetic recording medium
US8529989B2 (en) Method for manufacturing magnetic recording layer having two or more layers
JP2010027110A (en) Perpendicular magnetic recording medium and magnetic recording/reproduction apparatus

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070911

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4526262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees