JP4349822B2 - Meteorite sheet - Google Patents

Meteorite sheet Download PDF

Info

Publication number
JP4349822B2
JP4349822B2 JP2003059866A JP2003059866A JP4349822B2 JP 4349822 B2 JP4349822 B2 JP 4349822B2 JP 2003059866 A JP2003059866 A JP 2003059866A JP 2003059866 A JP2003059866 A JP 2003059866A JP 4349822 B2 JP4349822 B2 JP 4349822B2
Authority
JP
Japan
Prior art keywords
meteorite
sheet
treated
delamination
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003059866A
Other languages
Japanese (ja)
Other versions
JP2004269292A (en
Inventor
英之 森田
久夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
D&D Corp
Original Assignee
D&D Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by D&D Corp filed Critical D&D Corp
Priority to JP2003059866A priority Critical patent/JP4349822B2/en
Publication of JP2004269292A publication Critical patent/JP2004269292A/en
Application granted granted Critical
Publication of JP4349822B2 publication Critical patent/JP4349822B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/20Mica; Vermiculite
    • C04B14/202Vermiculite

Description

【0001】
【発明の属する技術分野】
本発明は、蛭石を親水性層間侵入剤で処理した蛭石処理物、該蛭石処理物をガス発生層間剥離膨積剤で処理した層間剥離蛭石、該層間剥離蛭石と水を含有してなる蛭石スラリー(分散液)および該蛭石スラリーを抄造した蛭石シートに関する。
【0002】
【従来の技術】
天然の含水ケイ酸塩鉱物である蛭石は水性塩によって何倍にも膨積することが可能であることが知られている。次いで、膨積した蛭石がせん断力によって層間剥離され、その結果蛭石を構成する個々の粒子またはラメラ(細鱗片)が得られる。こうしたラメラは軽量性、断熱性、吸音性、不燃性を有し、また高いアスペクト比(ラメラの長さまたは幅をラメラの厚さで割った数値)をも有することが知られており、これらの特性を利用して蛭石ラメラを原料として紙/フィルム、積層品、塗料、発泡体、他の物品(例えばガスケット)等種々の形態に加工されて建築用材、保温断熱材、荷造り材料等として数多くの用途に利用されている。日本では、蛭石(バーミキュライト)とは結晶水を持つ雲母性鉱物の総称であり、この層状鉱物片を1000℃近い温度で焼成すると、アコーデオン様に膨積する含水ケイ酸塩鉱物のことをいう。しかし産地によって種々の蛭石が存在しており、フロゴパイト、ハイドロ-バイオタイトなどの雲母の水和風化物、本来のバーミキュライト、ハイドロ-クロライトの風化物等、またマイカも含めたこれら鉱物種の混合層鉱物が知られている。膨積された蛭石を構成する個々の粒子またはラメラの寸法を減少するように層間剥離してコロイド的な寸法とした後に、その蛭石の粒子またはラメラから成る可撓性シートを作ることは既に知られている(特許文献1および2)。蛭石の処理の際における膨積が、その後の適切な寸法に調整された蛭石ラメラから製造される成型物品の物理性質、例えば可撓性、強度等に大きな影響を及ぼすために蛭石の膨積方法に関して種々の提案がなされている。
【0003】
提案されている蛭石の膨積方法として、1)焼成法:一般的には1000℃近い炉で蛭石を焼成する方法(物理的な蛭石の層間風化―この場合蛭石は既に変質して、蛭石以外のセラミックになっている)、2)過酸化物法:過酸化水素水等過酸化物を用いて蛭石を膨積させる完全湿式方式による層間剥離方法(特許文献3)、3)イオン交換法:Li、NH およびアミン類をイオン交換法で蛭石の層間に入れ込んで膨積させる方法(湿式でしか行えない)(特許文献4)等が知られている。1)の焼成法によれば、簡単に蛭石の膨積が可能であるが、そのために炉を設置しなければならない。また焼成後に得られた蛭石はセラミック化したり、特に鉄成分の多い蛭石は溶融してガラス化し本来蛭石が有している良好な特性を消失してしまっており、これを原料とする製品は特異なものになり難い。2)の過酸化物法については、処理剤としての化学薬品が高価なために、膨積のための費用が高くなる。3)のイオン交換法については、イオン交換の為に電解質の溶液を使わねばならない。しかもイオン交換の時間がイオン種によっては長くかかるので、大型の貯蔵槽が必要になる。さらに製品化に際して、乾燥し難い粘土質製品を低温乾燥しなければならないという不利がある。廃液に電解質が残るので、大掛かりなシステムが必要となる。従って、高効率且つ経済的に有利な、蛭石(本発明において、出発原料である蛭石鉱石を意味する)本来の特性を有する膨積した蛭石(本発明において、蛭石を親水性層間侵入剤で処理した蛭石処理物および該蛭石処理物をガス発生層間剥離膨積剤で処理し、所望により該蛭石処理物をさらに加熱した層間剥離蛭石を意味する)、該層間剥離蛭石を崩壊させて得た本来の特性を有する蛭石のラメラからなる蛭石スラリー(分散液)および該蛭石スラリーを抄造してなる蛭石本来の特性を有する蛭石シートは今だ開発されていない。
【0004】
【特許文献1】
英国特許第1016385号公報(請求項1および2)
【特許文献2】
英国特許第1119305号公報(請求項1)
【特許文献3】
特公昭55−6600(請求項1)
【特許文献4】
特公昭59−11547(請求項1)
【0005】
【発明が解決しようとする課題】
蛭石を親水性層間侵入剤で処理した蛭石本来の特性を保持した蛭石処理物および該蛭石処理物をガス発生層間剥離膨積剤で処理し、所望により該蛭石処理物をさらに加熱した蛭石本来の特性を保持した層間剥離蛭石、該層間剥離蛭石を崩壊させて得た高アスペクト比、不燃性およびソフト性等に富んだ蛭石本来の特性を保持した高純度の蛭石ラメラからなる良好な水分散性蛭石スラリーおよび該蛭石スラリーを抄造してなる水分呼吸性、ガスバリアー性および不燃性等の蛭石本来の特性を保持した蛭石シートを提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは、これまでに開発された方法が有する上記した種々の問題点を解決すべく鋭意検討を行った結果、蛭石を親水性層間侵入剤で処理した蛭石本来の特性を保持した蛭石処理物および該蛭石処理物をガス発生層間剥離膨積剤で処理し、所望により該蛭石処理物をさらに加熱した蛭石本来の特性を保持した層間剥離蛭石、該層間剥離蛭石を崩壊させて得た高アスペクト比、不燃性およびソフト性等に富んだ蛭石本来の特性を保持した高純度の蛭石ラメラからなる良好な水分散性蛭石スラリーおよび該蛭石スラリーを抄造してなる水分呼吸性、ガスバリアー性および不燃性等の蛭石本来の特性を保持した蛭石シートが、上記した種々の問題点を解決することを知見してさらに検討を重ねて本発明を完成させるに至った。
【0007】
すなわち、本発明は、
(1)蛭石を親水性層間侵入剤で処理した蛭石処理物、
(2)親水性層間侵入剤が(イ)燐の酸化物、(ロ)硫黄酸化物、(ハ)無機酸とそれと複塩を形成する化合物の混合物、(ニ)金属硫酸塩、(ホ)ヘテロポリ酸または(ヘ)ピロガロール類であることを特徴とする(1)記載の蛭石処理物、
(3)(1)または(2)に記載の蛭石処理物をガス発生層間剥離膨積剤で処理し、所望により処理物をさらに加熱した層間剥離蛭石、
(4)(3)に記載の層間剥離蛭石と水と所望によりさらに水溶性接着剤、パルプまたは無機パルプを含有してなる蛭石スラリー、
(5)(4)に記載の蛭石スラリーを抄造してなる蛭石シート、
に関する。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
蛭石を予め親水性層間侵入剤で処理する。蛭石の層間が陽イオンと水に占有されており、層間の陽イオンは一般にMg++とKが主で外界の陽イオン(または分子)と容易に入れ替わる事に着目して、蛭石を親水性層間侵入剤で処理するとKと同じイオン半径を有するヒドロニウムイオンが発生し、これが蛭石の層間の陽イオンK、Mg++とイオン交換すると共に、蛭石の層間の結晶水を脱水しようとして、蛭石層間に取り込まれる程度の大きさのアニオンが形成され、このアニオンが蛭石層間に取り込まれて蛭石の層間がさらに脆くなる。親水性層間侵入剤として、例えば五酸化燐を蛭石に接触させると初期段階には結晶水が滲み出して蛭石が濡れた状態を示すが、その後結晶水が五酸化燐に吸着されて、蛭石が乾燥したように見えるとともに蛭石層間が拡がって、蛭石の体積が増加する。このように親水性層間侵入剤で処理されて膨積した蛭石を蛭石処理物と称し、例えば蛭石を膨積させる五酸化燐のような化学物質を親水性層間侵入剤と称する。
【0009】
親水性層間侵入剤として、上記の五酸化リン(無水リン酸)をはじめ、ポリリン酸、塩化燐、6弗化リン酸、オキシ塩化燐等の燐の酸化物類、硫化水素、硫黄粉末、液状硫黄、無水硫酸、発煙硫酸、無水亜硫酸、無水チオ硫酸、硫酸+液状硫黄等の硫黄酸化物群、濃硫酸+ニトログリセリン、濃硫酸+エタノールアミン、硫酸+ヒドラジン、燐酸+ヒドラジン、硝酸+エタノールアミン等無機酸とそれと複塩を形成する化合物の混合物、無水ヒドロニウム硫酸アルミ(ヒドロニュウムアルナイト構造)、ヒドロニウム硫酸鉄(無水ジャロサイト構造)、無水明礬、クロム硫酸等の金属硫酸塩、リンモリブデン酸、シリカモリブデン酸、リンタングステン酸、シリカタングステン酸等のヘテロポリ酸またはピロガロール類等が挙げられる。これらの内、親水性層間侵入剤として五酸化リン(無水リン酸)、硫化水素、発煙硫酸および硫酸+ヒドラジンが好ましい。
【0010】
親水性層間侵入剤としては、通常の酸のように水と接触してヒドロニウムイオンを形成することと脱水作用を有し蛭石の層間に侵入できる大きさのアニオンを形成することが必要条件である。親水性層間侵入剤は単独の化合物であってもよいし、無機酸とそれと複塩を形成する化合物の混合物であってもよい。 蛭石に親水性層間侵入剤を接触させる方法としては、親水性層間侵入剤が粉体の場合はこれを単に蛭石と混合するだけでよい。例えば、親水性層間侵入剤として五酸化リンを使用する場合について上記に説明したように初期段階においては蛭石が濡れたように見え、その後直ちに再び乾燥した状態になり、黒ずんで蛭石体積の増加が知見される。親水性層間侵入剤が液体の場合は、所望する蛭石の膨積の程度に応じて蛭石に所定量の親水性層間侵入剤を添加すればよいが、蛭石処理物を乾燥状態に保持するのが好ましく、したがって親水性層間侵入剤を数度に分けて蛭石に添加して乾燥状態で処理することが好ましい。親水性層間侵入剤の添加量は通常蛭石100g当たり約0.0001〜2molが好ましく、蛭石100g当たり約0.0001〜0.005molの添加量がより好ましい。所望によりより大きな蛭石ラメラを得ようとする場合には、より多くの親水性層間侵入剤を添加することができる。
【0011】
次いで蛭石処理物をガス発生層間剥離膨積剤で処理する。蛭石処理物にガス発生層間剥離膨積剤、例えば過酸化水素水を添加すると一種の乾燥剤のように過酸化水素水が蛭石処理物の層間に吸収されて、過酸化水素水が分解されて発生した酸素によって蛭石処理物の層間が押し広げられ蛭石処理物の層が剥離されて、蛭石処理物の層が乾燥状態を保持したままで膨積される。蛭石処理物を膨積させるために、所望により自然発熱を含む加熱、電磁波加熱、高周波加熱、超音波加熱および放射線照射等物理的操作をさらに蛭石処理物に加えることもできる。この場合、加熱温度として400℃以下が好ましく、200℃以下がより好ましい。蛭石処理物をこのように処理して得たさらに膨積させた状態の蛭石処理物を層間剥離蛭石と称し、例えば蛭石処理物をさらに膨積させる過酸化水素水のような化学物質をガス発生層間剥離膨積剤と称する。ガス発生層間剥離膨積剤として例えば、過酸化物、ヒドラジンおよびアジ化塩等が挙げられる。過酸化物としては、例えば過酸化水素水、有機過酸化物(有機酸過酸化物、有機ケトン過酸化物等)、過酸化物付加体(過酸化カルバメート、過硼酸ナトリウム、過炭酸ナトリウムおよび過酸化カルシュウム等)等が挙げられる。液状又はペースト状である過酸化水素水および有機過酸化物については蛭石処理物にこれらを単に混合するだけでよい。一般に粉末の形態である過酸化付加体についても、蛭石処理物にこれらを単に混合するだけで通常蛭石処理物の有する結晶水と反応してガスが発生しこれにより蛭石処理物の層が膨積するが、蛭石処理物の層の膨積があまり進行しない時は少量の水を加えることによって蛭石処理物の層のさらなる膨積を促進することができる。ヒドラジンとしては、一般に液状のヒドラジン・モノ水和物等、一般に粉末状のヒドラジン硫酸塩、ヒドラジンリン酸塩、ヒドラジン硝酸塩等が挙げられる。これらの粉末状の塩の場合、蛭石処理物の層の膨積があまり進行しなければ過酸化物の場合と同様に少量の水を蛭石処理物に添加することによって蛭石処理物の層のさらなる膨積を促進することができる。アジ化塩としては、アジ化リチュウム、アジ化ナトリウム等が挙げられ、これらはいずれも粉末であり単純に蛭石処理物に混合するだけで、蛭石の結晶水または水分と反応して発生したガスによって蛭石処理物の層が膨積する。これらの内、ガス発生層間剥離膨積剤としてヒドラジンおよび過酸化水素水が好ましい。粉末状のガス発生層間剥離膨積剤の場合には、一般的にガス発生層間剥離膨積剤は液状で使用されることが好ましいのでこれらを水に溶解して用いてもよいが、水を多量に用い過ぎると蛭石処理物の膨積時に熱が奪われる為に処理工程上効率的でなく且つ湿式反応となり反応速度が遅くなり、イオン交換法の場合と同様になって本発明のメリットがなくなり好ましくない。例えば過酸化水素水の場合、通常約5〜35重量%濃度のものが使用される。これらガス発生層間剥離膨積剤の添加量は、通常蛭石処理物100gに対して約0.04〜1.00mol程度が好ましい。ガス発生層間剥離膨積剤を蛭石処理物100gに対して約1.00molを超えて必要以上に添加するのは上記した理由により好ましくない。本発明は、蛭石に親水性層間侵入剤を添加する場合または蛭石処理物にガス発生層間剥離膨積剤を添加する場合のいずれの場合も、また添加されるこれらの親水性層間侵入剤またはガス発生層間剥離膨積剤の形態が液体の場合であっても、蛭石または蛭石処理物の層間にこれらの化学物質が含浸吸収された結果起こる反応を利用している為に、蛭石処理物も層間剥離蛭石もアコーデオン状態に膨積された乾燥物として得られることを特徴とする。本発明による膨積蛭石は、焼成して膨積させた蛭石、あるいは蛭石を過酸化水素水のみで膨積させ、乾燥して得られた膨積蛭石に比べて明らかに小さい比表面積を有する。これは本発明による蛭石層間にアニオン又はその塩が含まれることによる為である。本発明による層間剥離蛭石は、X線回折法による分析または比表面積の測定により特定され得る。
【0012】
本発明により、湿式ではなく常温で乾燥した状態で、親水性層間侵入剤を蛭石の層に充分浸透させて蛭石処理物とし、次いで該蛭石処理物にガス発生層間剥離膨積剤を常温で乾燥した状態で処理して層間の剥離をより深くまで起こさせて得たアコーデオン状態に膨積された層間剥離蛭石を多量の水の中に投入することにより、層間剥離蛭石の層が剥離、崩壊してアスペクト比の大きい厚み約0.1μmの薄い蛭石ラメラから成る蛭石スラリーが得られる。本発明により得られた層間剥離蛭石は水に投入された初期段階には層間剥離蛭石の層間に未だガスが残存するため水に浮いている。その間に層間剥離蛭石中に含まれる母岩や膨積されていない雲母類等の不純物が急速に沈降するために、浮上している層間剥離蛭石のみを掬い取るかデカンテーション法にて分離することによって不純物が除去された高純度の層間剥離蛭石のみが得られる。次いでこの不純物が除去された高純度の分離された層間剥離蛭石を水中で単純に攪拌すると、層間剥離蛭石の層間に水が侵入してかつて蛭石層中に存在したとほぼ同等の大きさを保ったままの蛭石ラメラから成る良好な分散性を有する蛭石スラリーが得られる。本発明は、蛭石を親水性層間侵入剤で処理し、次いで該蛭石処理物にガス発生層間剥離膨積剤を処理して層間剥離蛭石とする工程において湿式ではなく、常温でほぼ乾燥した状態で行われることを特徴とする。また本発明は、蛭石スラリーが高純度の蛭石ラメラから成ることを特徴とする。得られた蛭石スラリーを砥石が回転して粒子を擂り潰す構造のコロイドミルに通すと、寸法が小さくなった蛭石ラメラから成るペースト状の蛭石スラリーが得られる。これらの蛭石スラリーにトリポリリン酸ナトリウム等のごとき分散助剤を添加したり、ポリエチレンオキサイドおよびポリアクリルアマイド等の凝集剤を添加して、できるかぎり含水量を減少させた蛭石スラリーを使用することもできる。該蛭石スラリーから後述するシート作製時において、これらの分散助剤、凝集剤を用いて蛭石スラリーの濾水量を調整するのは通常公知の製紙方法の場合と同様である。該蛭石スラリーから鋳込み法による成型物を作製したり、該成型物を焼成してセラミック化する時には、可塑性を付与するために可塑性付与剤としてのメチルセルロース等を該蛭石スラリーに添加することができ、これは通常公知のセラミック製造の場合と同様である。本発明により得られた蛭石スラリーは下記のごとき特徴を有している。
【0013】
蛭石スラリーの特徴:
1)分散体が高アスペクト比を持つ蛭石のラメラからなっている。
(本発明以外による蛭石を焼成して、膨積させて得た分散体は雲母に変化またはガラス化している。)
2)分散体の表面に水酸基を多量に有しているので、分散体が水に分散し易い。
(本発明以外による蛭石を焼成して、膨積させて得た分散体は水面に浮くかまたは沈殿する。)
3)分散体がソフトである。
(本発明以外による蛭石を焼成して、膨積させて得た分散体は硬くて、脆い。)
4)分散体がイオン交換能力を保持している。
(本発明以外による蛭石を焼成して、膨積させて得た分散体はイオン交換能力を有しない。)
5)分散体が水分に対する呼吸性を有する。
(本発明以外による蛭石を焼成して、膨積させて得た分散体は水分に対する呼吸性を有しない。)
6)分散体の形状が平板状である。
(本発明以外による蛭石を焼成して、膨積させて得た分散体の形状は波打ち状である。)
7)蛭石スラリーを濾過乾燥すると、水素結合でバインダーなしでも水素結合により蛭石シートの形成が可能である。
(本発明以外による蛭石を焼成して、膨積させて得た分散体から成る蛭石スラリーを濾過乾燥すると分散体同士が結合しないので単なる粉末になる。)
8)蛭石スラリーを濾過乾燥して得た蛭石シートを焼結すると成型セラミックシートを作製することができる。
(本発明以外による蛭石を焼成して、膨積させて得た分散体から成る蛭石スラリーを濾過乾燥して得たシートを焼結しても保型出来ず、単なる粉末になる。)
【0014】
本発明による蛭石スラリーを蛭石のラメラを通さないメッシュの網で濾過乾燥する事によって蛭石シートが得られる。本発明による蛭石スラリーからの蛭石シートの抄造については和紙を抄く通常公知の方法にて行うことができる。本発明による蛭石スラリーから抄造された蛭石シートを乾燥するだけで、蛭石の粘土としての性質、結晶水と水酸基の水素結合によって、特に接着剤を使用することなしに蛭石シートを形成することができる。本発明による蛭石シートをX線回折法によって分析した結果、C面の回折のみが観測されることによって該蛭石シート表面層上で完全に配向していることを確認することができ、また後述の実験によって該蛭石シートがガスバリアー性能をも有することが証明された。さらに該蛭石シートを約300℃以上に加熱すると焼結蛭石シートを形成することができた(X線回折法による分析の結果、確認できた)。機械による大量生産に際しては、蛭石シートの湿式強度が弱いために、抄き込み後の引っ張りに耐えられないので、通常、例えばパルプ、無機繊維、セピオライトおよびパリゴルスカイト等の無機パルプ、水溶性バインダー等を蛭石スラリーに添加することによって蛭石シートの湿式強度を向上させて長尺の連続蛭石シートを生産することができる。本発明による蛭石シートに対して上記のパルプ、無機繊維または無機パルプを約50重量%以下、好ましくは約20重量%以下、より好ましくは約10重量%以下添加することができる。一般に繊維成分を約10重量%程度以上加えると、ガスバリアー性能が低下し、有機成分が多くなると耐火性能が低下するが、蛭石シートは高いガスバリアー性を有するので約50重量%程度の有機成分を添加しても自然消火性能を依然として保持する。本発明による蛭石シートに対して水溶性バインダーを10〜30重量%、好ましくは10〜20重量%添加することができる。また、陶器の成型時に通常公知に用いられる鋳込み法に準じて、予め作成した型に上記蛭石スラリーを流し込み、脱水させる事によって所定の形態を有する成型物を作製することもできる。本発明による蛭石のラメラがソフトであるために、上記鋳込み法の適用が可能となる。このようにして作製した成型物を焼結してセラミック成型品を得ることができる。無機繊維として、例えばガラス繊維、石英繊維、アルミナーシリカ繊維、チラノ繊維、炭素繊維、活性炭繊維、アルミナ繊維、炭化ケイ素繊維、ジルコニア繊維、炭化ケイ素ウィスカ、窒化ケイ素ウィスカ、チタン酸カリウム、石綿などが挙げられる。
水溶性バインダーとして、例えば酸化澱粉、酵素変性澱粉、カチオン化澱粉などの澱粉類、カルボキシメチルセルロース、メチルセルロース、ヒドロキシアルキルセルロースなどの水溶性セルロース化合物、ポリビニルアルコール化合物やポリアクリルアミド類等が挙げられる。
【0015】
本発明による蛭石シートは蛭石を、例えば化学的処理等によって膨積および蛭石の層を剥離させて得た蛭石本来の性能を保持したままの蛭石ラメラから形成されたもので、以下の性能を有する。
1)ガスバリアー性
2)不燃性
3)焼結性
4)イオン交換性
5)水分呼吸性
【0016】
以下各々について詳細に説明する。
1)ガスバリアー性
図1を参照して説明する。
容器3にガスを発生し易い液2を約500ml投入してガスを発生させて、容器3のキャップ4の中央部の円形孔に貼り付けた試験シート1を通じて、ガスの漏れ状況を官能検査により確認した。ガス源となる化合物としてアルコール・ドライアイス・酢酸(アルコール中にドライアイスを添加し、酢酸を数滴添加したもの)、ホルマリンアルコール液(アルコール中にホルムアルデヒドを溶解したもの)、アンモニア・カセイソーダ(アンモニア水にカセイソーダを添加したもの)および酢酸エチル、試験シートとしてアルミニウムラミネート紙、蛭石ラメラ100重量%含有シート、蛭石ラメラ90重量%含有シート、蛭石ラメラ80重量%含有シート、蛭石ラメラ70重量%含有シートおよび通常紙を使用した。結果は表1の通りであった。
【0017】
【表1】

Figure 0004349822
(注1)試験シートの内容 ▲1▼:アルミニウムラミネート紙、▲2▼:蛭石ラメラ100重量%含有蛭石シート、▲3▼:蛭石ラメラ90重量%含有蛭石シート、▲4▼:蛭石ラメラ80重量%含有蛭石シート、▲5▼:蛭石ラメラ70重量%含有蛭石シート、▲6▼:通常紙
(注2) ◎ : 匂わない 、 ○ :わずかに臭う 、△:かなり匂う、 × : 強く臭う
【0018】
2)不燃性
図2を参照して説明する。
各試験シート5を洗濯バサミ6に挟んで吊るし、シートの下方からバーナー7(約1000℃)で燃焼試験を行った。結果は表2の通りであった。
【0019】
【表2】
Figure 0004349822
(注1)試験シートの内容 ▲1▼:蛭石ラメラ100重量%含有蛭石シート(坪量100g/m2)▲2▼:蛭石ラメラ90重量%含有蛭石シート(坪量100g/m2)▲3▼:蛭石ラメラ80重量%含有蛭石シート(坪量100g/m2)▲4▼:蛭石ラメラ70重量%含有蛭石シート(坪量100g/m2)▲5▼:蛭石ラメラ10重量%含有蛭石シート(坪量50g/m2
【0020】
3)焼結性
水酸化アルミニウム「Al(OH)」を添加した塩ビの壁紙を図2に示したように燃焼試験を行うと、燃焼後はシートの形態を残すことなく粉々に崩壊する。本発明による蛭石ラメラから成る蛭石シートでは、例えばパルプが30重量%も添加されたシートでさえ燃焼後黒化するものの元のシートの形態を保持している。しかしながら本発明以外による蛭石を焼成して膨積させて得た蛭石ラメラから成る蛭石シートの場合は、該蛭石シートの燃焼後もはや元のシートの形態を保持しない。これは本発明による蛭石ラメラが焼結性を持っているからである。化学的処理等により膨積させたために、本発明による蛭石ラメラは結晶水および珪酸層の水酸基を保持しており、したがって本発明による蛭石ラメラから成る蛭石シートが依然として焼結性という性質を残している。燃焼試験後の本発明による蛭石ラメラから成る蛭石シートが、本発明以外の方法により蛭石を焼成して膨積させて得た蛭石ラメラから成る蛭石シートと同じ結晶のX線回折パターンを示すことから、燃焼により一種のセラミックシートに変化したと考えられる。このことからも本発明による蛭石ラメラから成る蛭石シートが焼結性を有していることが証明された。
【0021】
4)イオン交換性
本発明による蛭石ラメラから成る蛭石シートにはイオン交換性が依然として保持されている。該蛭石シートは例えば、通常のイオンに対しては 約180meq/100g(蛭石シートの重量)、特にアンモニウムイオンに対しては約280meq/100g(蛭石シートの重量)の高イオン交換容量を示す。これはアンモニアガスに換算すると、該シート約100gが約4.8gのアンモニアガスを吸着することになる。したがって該蛭石シートは通常公知のアンモニアガスの吸着剤よりも優れていることになる。
【0022】
5)水分呼吸性
本発明による蛭石ラメラを粉砕したものと蛭石を粉砕したものを比較するとほとんど特性の差はない。本発明による蛭石ラメラ100%から成る蛭石シートを粉砕して(測定の都合上)その水分呼吸性を分析したところ、図3の結果が得られた。図3の結果から本発明による蛭石ラメラから成る蛭石シートが水分呼吸性を有することが分かる。尚、蛭石ラメラの吸脱着等温線はBET法に基づいて得られた。
【0023】
【実施例】
以下に本発明を実施例に基づいてより具体的に説明するが、本発明はこれらに限定されるものではない。
【0024】
〔実施例1〕
ポリエチレン製袋に南アフリカ産蛭石2号(X線回折法により分析した結果、バーミキュライト(vermiculite)、ホロゴパイト(phologopite)、バーミキュライト50重量%-ホロゴパイト50重量%の混合層、バーミキュライト35重量%-ホロゴパイト65重量%の混合層から成ることを確認)10kg(嵩比重1.0)と粉末五酸化リン500gとを加え振動させて均一化した。その後、蛭石の表面に艶が出て、蛭石が黒ずんできた。約3時間放置すると、黒ずみ、乾燥した蛭石が得られた(蛭石処理物)。この時点では五酸化リンの白い粉末を確認することはできず、蛭石処理物の体積が蛭石の体積より20%増加し、蛭石処理物の嵩比重が0.87であった。
次いで、ポリエチレン製袋に上記の体積が20%増加した蛭石処理物1.05kgを採取し、これに35重量%の過酸化水素水120mlを加えて均一に攪拌すると蛭石処理物が膨積を開始し、4時間後に蛭石処理物の膨積が停止した(層間剥離蛭石)。この時点の層間剥離蛭石の体積は10.5リットル、重量は1.18kg、嵩比重は0.112であった。別にポリエチレン製袋に蛭石処理物1.05kgを採取して、35重量%過酸化水素水150mlを加え、軽く口を閉めて、500kw電子レンジで1分間加熱すると膨積を開始した。膨積終了後の体積は12.0リットル、重量は1.14kg、嵩比重は0.095であった(層間剥離蛭石)。100リットル容量のポリバケツに90リットルの水を入れ、これに上記のように35重量%過酸化水素水で処理後電子レンジで1分間加熱して膨積させた層間剥離蛭石1.14kgを投入し撹拌すると、上部に層間剥離蛭石が浮上し、不純物成分が沈殿した。浮上した層間剥離蛭石を掬い上げて別に用意した10リットルの水の中に投入し、撹拌するとこの層間剥離蛭石が剥離、崩壊して生じた蛭石ラメラが水に分散し、蛭石ラメラから成るpH5、蛭石ラメラ5重量%の蛭石スラリーが得られた。上部に浮上した層間剥離蛭石を掬い上げた残液のpHは2、沈殿した不純物は母岩の輝石類および膨積しなかったフロゴパイト等であった。これら不純物の重量は0.287kgであった。上記蛭石スラリーを150ml採取し、さらに350mlの水をこれに添加し、家庭用のミキサーで1分間攪拌し、さらに水を添加して全量を5リットルとした蛭石スラリーを製紙試験機(T.S.S.式標準角型シートマシン、株式会社東洋精機製作所製)で抄造することによって蛭石シートを作製した。この蛭石シートを濾紙に移して乾燥すると、蛭石ラメラのみから成る蛭石シートが得られた。このシートの坪量は89.7g/mであった。
【0025】
〔実施例2〕
福島県田村郡の国産の蛭石(X線回折法により分析した結果、結晶度の低いハイドロ-バイオタイト「hydro-biotite」であることを確認)100gを塩ビ製の籠に入れたものを予め用意し、これを底部に発煙硫酸および硫黄粉末を入れたデシケーター内に中吊りにして蓋を閉めた。この状態で2日間放置すると、蛭石が三酸化硫黄を吸収して体積が30%増加し、重量が105gになった(蛭石処理物)。この間蛭石処理物は乾燥した状態であった。この蛭石処理物に30重量%過酸化水素水20mlを加えると30秒後に膨積し始めて、さらに5分後にはその体積が1.1リットルになった。別に、同産地の蛭石100gを600℃に加熱したところその体積が同じく1.1リットルになった。加熱による焼成をした層間剥離蛭石(焼成膨積蛭石と称す)は金茶色の金雲母となり、過酸化水素水によって膨積させた層間剥離蛭石(化学的膨積蛭石と称す)は金緑黒色の金雲母であった。両膨積蛭石の特性を比較すると下表のようになった。
【0026】
【表3】
Figure 0004349822
【0027】
上記層間剥離蛭石(化学膨積蛭石)を1リットルの水に投入して攪拌すると化学膨積蛭石が剥離、崩壊して蛭石ラメラが水に分散し、不純物である白色の長石成分が沈殿した。分散液をデカンテーションにて分離して蛭石ラメラから成る蛭石スラリーを得た。一方焼成膨積蛭石を同量の水に投入して攪拌すると蛭石層が細かく剥離、崩壊して不純物と共に沈殿した。上記化学膨積蛭石の場合のように蛭石ラメラから成る蛭石スラリーを分離することは不可能であった。内容積10cm×7cm×0.5cmの石膏型または底に直径1mmの穴を無数設けたポリエチレン製容器に上記の化学膨積蛭石から得た蛭石ラメラ5重量%の蛭石スラリーを流し込み、乾燥させて厚み2mmの蛭石シートを得た。この蛭石シートは可撓性を持っていて、湿らせた後ガラス棒に巻きつけて乾燥することによって不燃性紙管が得られた。
【0028】
〔実施例3〕
ジンバブエ産蛭石ミディアムグレード(X線回折法により分析の結果、純粋のバーミキュライトであることを確認)100gに硫酸5gを添加して十分蛭石に吸収させた後、ヒドラジン5gを加えるとやや発熱して、蛭石の体積が1.5倍になった(蛭石処理物)。この蛭石処理物サンプルを2個作り、一方に35重量%過酸化水素水10mlを添加すると激しく反応して蛭石処理物が膨積して、体積が蛭石の12倍〜15倍に膨積した(層間剥離蛭石)。この層間剥離蛭石をX線回折法により分析した結果、この層間剥離蛭石が蛭石の本来有する特性を失わず保持していた。他方の上記層間剥離蛭石サンプルに過酸化水素水の代わりにヒドラジン水和物をさらに10g添加すると体積が蛭石の8倍に膨積した(層間剥離蛭石)。次いでヒドラジン水和物を追加添加して膨積させた上記の層間剥離蛭石を200℃に加熱すると爆発的に膨積して、体積が蛭石の15倍に増大した。この15倍に増大した層間剥離蛭石をX線回折法により分析した結果、蛭石の本来有する特性を失わず保持したままであるが、ホロゴパイト−バーミキュライト混合層に変化していた。
これら両者の層間剥離蛭石を各々多量の水の中に投入し、撹拌すると各々層間剥離蛭石が浮上した。各々の層間剥離蛭石を掬い取った。掬い取った各々の層間剥離蛭石を各2リットルの水に投入して攪拌することにより、各々の層間剥離蛭石が剥離、崩壊して蛭石ラメラが水に分散し、5重量%の蛭石ラメラから成る蛭石スラリーを得た。このようにして得た両者の蛭石ラメラから成る蛭石スラリー各200mlを採取し、各5リットルの水に投入して分散後、実施例1で用いた抄紙試験機により抄紙し、乾燥した蛭石シートを得た。各々の層間剥離蛭石、得られた蛭石スラリーおよび蛭石シートを分析し、下記のような結果を得た。
【0029】
【表4】
Figure 0004349822
ガスバリアー性:上記の官能検査に基づいて行った(図1参照)。
【0030】
〔実施例4〕
南アフリカ、パラボラ産の蛭石(X線回折法により分析の結果、ハイドロ-フロゴパイト「hydro-phlogopite」であることを確認」の半透明な赤茶褐色の鉱物片5gを採取し、これを1cm程度の小片に細断した。細断後の小片の厚みは0.4mm、嵩比重1.2程度であった。これをポリエチレン製小袋に投入し、次いで五酸化燐300mgを添加して袋内で攪拌した。密封して24時間放置すると、五酸化燐の白色粉末が消失して、やや黒ずんだ茶褐色の小片群(嵩比重1.0)となった(蛭石処理物)。これに0.5mlのヒドラジン水和物を加えて均一に湿らせると、嵩比重0.8の乾燥した褐色で光沢のあるさらに膨積した層間剥離蛭石を得た。別のポリエチレン小袋にこのさらに膨積した層間剥離蛭石を移し換えて、35重量%過酸化水素水1.0mlを添加し均一に混合した。その数分後層間剥離蛭石が発熱して、体積が50mlまで膨積した(層間剥離蛭石)。この間、層間剥離蛭石の小片の厚みは0.4mmから見掛け上2〜4cmのアコーデオン状に膨積した。このように膨積した層間剥離蛭石をX線回折により分析した結果、蛭石が本来有する特性を失わず保持していた。膨積した層間剥離蛭石の小片を500mlの水の中に投入して家庭用のジューサーミキサーで2分間攪拌すると、層間剥離蛭石の層が剥離、崩壊して2mm角、厚み1μm程度の蛭石ラメラから成る蛭石スラリーが得られた。この蛭石スラリーは比較的簡単に蛭石ラメラの沈降を起こすので、例えば分散助剤トリポリリン酸ナトリウム50mgをこの蛭石スラリーに添加した。この蛭石スラリーにさらに1gの牛乳パックの破片と市販のポバール糊1mlを添加して家庭用のジューサーミキサーを用いて攪拌し、竹製の簾の子にブロードの生地を張りつけた濾過布で濾過後乾燥することによって蛭石シートを得ることができた。
【0031】
〔実施例5〕
以下に示した中国産の3種類の蛭石を用いて化学処理を行い蛭石ラメラからなる蛭石スラリーを得て、これを抄造して蛭石シートを作製した。3種類の蛭石の結晶種、処理条件、蛭石スラリーおよび蛭石シートの性能について下表に示す。(1)新彊産蛭石
新彊産蛭石 (X線回折法により分析した結果、バーミキュライト−ホロゴパイト混合層であることを確認)100gを採取し、これに硫酸4gを添加して充分吸収させた後、ヒドラジン2gを添加すると発熱して蛭石の体積が1.5倍になった(蛭石処理物)。この蛭石処理物に35重量%過酸化水素水20mlを添加すると激しく蛭石処理物と反応して蛭石処理物の体積がさらに膨積して蛭石の14倍になった(層間剥離蛭石)。この層間剥離蛭石をX線回折法により分析した結果、蛭石が本来有する特性を保持していた。この層間剥離蛭石を多量の水の中に投入し、撹拌することにより層間剥離蛭石が浮上し、不純物が沈殿した。浮上した層間剥離蛭石を掬い取った。この際、沈殿した不純物をデカンテーション法で分離して不純物を定量した。掬い取った層間剥離蛭石を2リットルの水に投入し、撹拌し層間剥離蛭石を剥離、崩壊させて得た蛭石ラメラから成る蛭石スラリーを得た。このようにして得た蛭石スラリー200mlを採取し、5リットルの水に投入して分散させた後、実施例1で用いた製紙試験機により抄造し、乾燥後蛭石シートを得た。
(2)河南省産黒蛭石
河南省産黒蛭石(X線回折法により分析した結果、ハイドロ−バイオタイトであることを確認)100gを採取し、これに五酸化燐5gを添加して充分吸収させると蛭石の体積が1.5倍になった(蛭石処理物)。この蛭石処理物に35重量%過酸化水素水20mlを添加すると激しく蛭石処理物と反応して蛭石処理物がさらに膨積して蛭石の体積が10倍になった(層間剥離蛭石)。この層間剥離蛭石をX線回折法により分析した結果、蛭石が本来有する特性を保持していた。この層間剥離蛭石を多量の水の中に投入し、撹拌することにより層間剥離蛭石が浮上し、不純物が沈殿した。浮上した層間剥離蛭石を掬い取った。この際、沈殿した不純物をデカンテーション法で分離して不純物を定量した。掬い取った層間剥離蛭石を2リットルの水に投入し、撹拌し層間剥離蛭石を剥離、崩壊させて得た蛭石ラメラから成る蛭石スラリーを得た。このようにして得た蛭石スラリー200mlを採取し、5リットルの水に投入して分散させた後、実施例1で用いた製紙試験機により抄造し、乾燥後蛭石シートを得た。
(3)河南省産白蛭石
河南省産白蛭石(X線回折法により分析した結果、バーミキュライト「ハイドロクロライト(hydro-chrolite)崩れ」であることを確認)100gを採取し、これに五酸化燐3gを添加して振動させて均一化した。次いでアジ化ナトリウム2gを添加すると蛭石の体積が1.5倍になった(蛭石処理物)。この蛭石処理物に35重量%過酸化水素水20ml添加すると激しく蛭石処理物と反応して蛭石処理物がさらに膨積して蛭石の体積が9倍になった(層間剥離蛭石)。この層間剥離蛭石をX線回折法により分析した結果、蛭石が本来有する特性を保持していた。この層間剥離蛭石を多量の水の中に投入し、撹拌することにより層間剥離蛭石が浮上し、不純物が沈殿した。浮上した層間剥離蛭石を掬い取った。この際、沈殿した不純物をデカンテーション法で分離して不純物を定量した。掬い取った層間剥離蛭石を2リットルの水に投入し、撹拌し層間剥離蛭石を剥離、崩壊させて得た蛭石ラメラから成る蛭石スラリーを得た。このようにして得た蛭石スラリー200mlを採取し、5リットルの水に投入して分散させた後、実施例1で用いた製紙試験機により抄造し、乾燥後蛭石シートを得た。
【0032】
【表5】
Figure 0004349822
(1)=@、>@および<@は南アフリカパラボラ産の蛭石を化学処理により膨積した蛭石ラメラから成る蛭石スラリーおよび該スラリーを抄造した蛭石シートを実施例1に基づいて作製した蛭石シートとの比較を意味する。(@は実施例1で作製した蛭石スラリーの分散安定性およびシートの柔軟性の性能レベルを意味する)
(2)ガスバリアー性:上記の官能検査に基づいて行った(図1参照)。
(3)蛭石スラリーの分散安定性:目視検査による。
【0033】
【発明の効果】
蛭石を親水性層間侵入剤で処理した蛭石本来の特性を保持した蛭石処理物および該蛭石処理物をガス発生層間剥離膨積剤で処理し、所望により該蛭石処理物をさらに加熱した蛭石本来の特性を保持した層間剥離蛭石、該層間剥離蛭石を崩壊させて得た高アスペクト比、不燃性およびソフト性等に富んだ蛭石本来の特性を保持した高純度の蛭石ラメラからなる良好な水分散性蛭石スラリーおよび該蛭石スラリーを抄造してなる水分呼吸性、ガスバリアー性および不燃性等の蛭石本来の特性を保持した蛭石シートを提供することができる。
【図面の簡単な説明】
【図1】ガスバリアー性を検査する装置。
【図2】不燃性を測定する方法。
【図3】蛭石吸脱着等温線。
【符号の説明】
1 試験蛭石シート
2 ガス源となる化合物
3 ガラス容器
4 キャップ
5 試験蛭石シート
6 洗濯バサミ
7 ガスバーナー[0001]
BACKGROUND OF THE INVENTION
The present invention comprises a meteorite treated product obtained by treating a meteorite with a hydrophilic intercalating agent, an exfoliated meteorite treated with a gas generating delamination swelling agent, the delaminated meteorite and water. The present invention relates to a meteorite slurry (dispersion) and a meteorite sheet made from the meteorite slurry.
[0002]
[Prior art]
It is known that meteorites, natural hydrous silicate minerals, can be swelled many times by aqueous salts. The expanded meteorite is then delaminated by shear forces, resulting in the individual particles or lamellae (fine scales) that make up the meteorite. These lamellae are known to have light weight, thermal insulation, sound absorption, non-flammability, and high aspect ratios (lamella length or width divided by lamella thickness). Utilizing the characteristics of the material, it is processed into various forms such as paper / film, laminates, paints, foams, other articles (eg gaskets) using meteorite lamellae as building materials, heat insulation materials, packing materials, etc. It is used for many purposes. In Japan, vermiculite is a general term for micaceous minerals with crystal water, and is a hydrous silicate mineral that swells like an accordion when this layered mineral piece is baked at a temperature close to 1000 ° C. . However, various meteorites exist depending on the place of production. Mica hydrated weathering such as phlogopite and hydro-biotite, natural vermiculite, hydro-chlorite weathering, etc., and a mixture of these mineral species including mica. Layer minerals are known. After delamination and colloidal dimensions to reduce the size of the individual particles or lamellae that make up the inflated meteorite, making a flexible sheet composed of the meteorite particles or lamellae It is already known (Patent Documents 1 and 2). The bulge during the processing of the meteorite has a great influence on the physical properties of the molded article produced from the meteorite lamella adjusted to the appropriate dimensions, such as flexibility, strength, etc. Various proposals have been made regarding the swelling method.
[0003]
The proposed methods for swelling meteorites are as follows: 1) Calcination method: Generally a method of firing meteorites in a furnace close to 1000 ° C. (physical meteorite weathering—in this case, the meteorite has already been altered. 2) Peroxide method: delamination method by a fully wet method in which a meteorite is expanded using a peroxide such as hydrogen peroxide (Patent Document 3), 3) Ion exchange method: Li+, NH4 +In addition, a method in which amines are placed between the layers of the meteorite by an ion exchange method and swelled (can only be performed by a wet method) (Patent Document 4) is known. According to the firing method 1), meteorites can be easily expanded, but a furnace must be installed for this purpose. In addition, the meteorite obtained after firing is converted to ceramics, and in particular, meteorites with a high iron content have melted and become vitrified and have lost the good characteristics inherent in meteorites. Products are unlikely to be unique. In the peroxide method 2), since the chemical as the treating agent is expensive, the cost for swelling is increased. Regarding the ion exchange method of 3), an electrolyte solution must be used for ion exchange. Moreover, since ion exchange takes a long time depending on the ion species, a large storage tank is required. Furthermore, there is a disadvantage that a clay product which is difficult to dry must be dried at a low temperature in commercialization. Since electrolyte remains in the waste liquid, a large-scale system is required. Therefore, a highly efficient and economically advantageous meteorite (in the present invention, it means the meteorite ore that is the starting material) and the expanded meteorite having the original characteristics (in the present invention, the meteorite is treated as a hydrophilic layer). Treated with an intruder and treated with a gas-generating delamination swelling agent, and optionally treated with a delamination meteorite obtained by further heating the treated meteorite, and delamination A meteorite slurry (dispersion) made of a fluorite lamellar with the original characteristics obtained by disrupting the meteorite and a meteorite sheet with the original characteristics of the meteorite formed by making the meteorite slurry are still being developed. It has not been.
[0004]
[Patent Document 1]
British Patent No. 1016385 (Claims 1 and 2)
[Patent Document 2]
British Patent No. 1119305 (Claim 1)
[Patent Document 3]
JP-B 55-6600 (Claim 1)
[Patent Document 4]
Japanese Patent Publication No.59-11547 (Claim 1)
[0005]
[Problems to be solved by the invention]
Treating the meteorite with a hydrophilic intercalating agent, treating the meteorite with the original characteristics of the meteorite, and treating the treated meteorite with a gas-generating delamination swelling agent, and optionally further treating the treated meteorite Delaminated meteorite that retains the original properties of heated meteorites, high purity that retains the original properties of meteorites that are rich in high aspect ratio, nonflammability, softness, etc. To provide a good water-dispersible meteorite slurry composed of meteorite lamellae and a meteorite sheet that retains the original characteristics of meteorite such as moisture breathability, gas barrier property, and non-combustibility by making the meteorite slurry. With the goal.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned various problems of the methods developed so far, the present inventors have retained the original characteristics of the meteorite treated with a hydrophilic intercalating agent. The treated meteorite and the treated meteorite are treated with a gas generating delamination swelling agent, and optionally the treated meteorite is further heated and the delaminated meteorite retaining the original characteristics of the meteorite, the delamination A good water-dispersible meteorite slurry comprising a high-purity meteorite lamella that retains the original characteristics of a meteorite rich in high aspect ratio, incombustibility, softness, etc. obtained by disintegrating the meteorite, and the meteorite slurry This paper is based on the knowledge that the meteorite sheet, which retains the original characteristics of meteorites such as moisture breathability, gas barrier properties, and non-combustibility, can solve the above-mentioned various problems. The invention has been completed.
[0007]
That is, the present invention
(1) A meteorite treated product obtained by treating a meteorite with a hydrophilic intercalating agent,
(2) The hydrophilic intercalating agent is (a) an oxide of phosphorus, (b) a sulfur oxide, (c) a mixture of an inorganic acid and a compound that forms a double salt therewith, (d) a metal sulfate, (e) The treated product of a meteorite according to (1), which is a heteropolyacid or (f) pyrogallol,
(3) An exfoliated meteorite in which the treated meteorite described in (1) or (2) is treated with a gas-generating delamination swelling agent, and the treated product is further heated as desired.
(4) Meteorite slurry comprising the delaminated meteorite according to (3), water, and optionally further a water-soluble adhesive, pulp or inorganic pulp,
(5) A meteorite sheet formed by papermaking the meteorite slurry according to (4),
About.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
The meteorite is pretreated with a hydrophilic intercalating agent. The meteorite layer is occupied by cations and water, and the cations between layers are generally Mg++And K+Focusing on the easy exchange of cations with external cations (or molecules) and treatment of meteorites with hydrophilic intercalating agents+Hydronium ion with the same ionic radius as+And this is the cation K between the meteorite layers+, Mg++In addition to the ion exchange, dehydration of the crystal water between the meteorite layers results in the formation of an anion large enough to be taken in between the meteorite layers. It becomes brittle. As a hydrophilic intercalating agent, for example, when phosphorus pentoxide is brought into contact with meteorite, crystal water exudes in the initial stage and the meteorite is wetted, but then the crystal water is adsorbed by phosphorus pentoxide, The meteorite appears to be dry and the meteorite layer expands, increasing the volume of the meteorite. Such a meteorite that has been treated with the hydrophilic intercalating agent and swelled is referred to as a meteorite-treated product. For example, a chemical substance such as phosphorus pentoxide that swells the meteorite is referred to as a hydrophilic intercalating agent.
[0009]
As the hydrophilic intercalating agent, phosphorus oxides such as the above-mentioned phosphorus pentoxide (anhydrous phosphoric acid), polyphosphoric acid, phosphorus chloride, hexafluorophosphoric acid, phosphorous oxychloride, hydrogen sulfide, sulfur powder, liquid Sulfur oxides such as sulfur, sulfuric anhydride, fuming sulfuric acid, sulfurous anhydride, thiosulfuric anhydride, sulfuric acid + liquid sulfur, concentrated sulfuric acid + nitroglycerin, concentrated sulfuric acid + ethanolamine, sulfuric acid + hydrazine, phosphoric acid + hydrazine, nitric acid + ethanolamine Mixtures of inorganic acids and compounds that form double salts with them, anhydrous hydronium aluminum sulfate (hydroalumite structure), hydronium iron sulfate (anhydrous jarosite structure), anhydrous alum, metal sulfates such as chromium sulfate, phosphomolybdenum Examples include heteropolyacids such as acid, silicamolybdic acid, phosphotungstic acid, and silicatungstic acid, or pyrogallol. Of these, phosphorus pentoxide (anhydrous phosphoric acid), hydrogen sulfide, fuming sulfuric acid and sulfuric acid + hydrazine are preferred as the hydrophilic intercalating agent.
[0010]
Hydrophilic intercalation agents include hydronium ions that come into contact with water like normal acids.+It is a necessary condition to form an anion having a size capable of dehydrating and penetrating between the layers of the meteorite. The hydrophilic intercalating agent may be a single compound or a mixture of an inorganic acid and a compound that forms a double salt therewith. As a method of bringing the hydrophilic intercalating agent into contact with the meteorite, when the hydrophilic intercalating agent is a powder, it may be simply mixed with the meteorite. For example, as described above for the case of using phosphorus pentoxide as a hydrophilic intercalant, the meteorite appears wet in the initial stage, and then immediately becomes dry again, darkening the meteorite volume. An increase is found. If the hydrophilic intercalating agent is a liquid, a predetermined amount of hydrophilic intercalating agent may be added to the meteorite depending on the desired degree of meteorite swelling, but the meteorite treated product is kept dry. Therefore, it is preferable to add a hydrophilic intercalating agent in several degrees to the meteorite and treat it in a dry state. The addition amount of the hydrophilic intercalating agent is usually preferably about 0.0001 to 2 mol per 100 g of meteorite, and more preferably about 0.0001 to 0.005 mol per 100 g of meteorite. More hydrophilic intercalating agent can be added if desired to obtain larger meteorite lamellae.
[0011]
Next, the treated meteorite is treated with a gas generating delamination swelling agent. When a gas generating delamination swelling agent such as hydrogen peroxide solution is added to the treated meteorite, the hydrogen peroxide solution is absorbed between the layers of the treated meteorite like a kind of desiccant, and the hydrogen peroxide solution is decomposed. Then, the generated oxygen layer is pushed out by the generated oxygen, the layer of the meteorite processed product is peeled off, and the layer of the treated meteorite product is expanded while keeping the dry state. In order to swell the treated meteorite, physical operations such as heating including spontaneous heat, electromagnetic wave heating, high-frequency heating, ultrasonic heating, and radiation irradiation can be further applied to the treated meteorite as desired. In this case, the heating temperature is preferably 400 ° C. or lower, and more preferably 200 ° C. or lower. The further expanded meteorite treated product obtained by treating the treated meteorite in this way is called delamination meteorite, and it is a chemical such as hydrogen peroxide that further expands the treated meteorite. The material is referred to as a gas generating delamination swelling agent. Examples of the gas generating delamination swelling agent include peroxides, hydrazine, and azide salts. Examples of peroxides include hydrogen peroxide, organic peroxides (organic acid peroxides, organic ketone peroxides, etc.), peroxide adducts (carbamate peroxide, sodium perborate, sodium percarbonate, and peroxides). And calcium oxide). As for the hydrogen peroxide solution and the organic peroxide that are liquid or pasty, these may be simply mixed with the treated meteorite. In general, peroxidation adducts which are in the form of a powder also generate a gas by reacting with the crystallization water of the treated product of the meteorite by simply mixing them with the treated product of the meteorite. However, when the expansion of the layer of the treated meteorite does not progress so much, the further expansion of the layer of the treated product of the meteorite can be promoted by adding a small amount of water. Examples of hydrazine include generally liquid hydrazine monohydrate and the like, and generally powdered hydrazine sulfate, hydrazine phosphate, hydrazine nitrate, and the like. In the case of these powdery salts, if the swelling of the layer of the treated meteorite does not progress so much, a small amount of water is added to the treated product of the meteorite as in the case of the peroxide. Further swelling of the layer can be promoted. Examples of azide salts include lithium azide, sodium azide, etc., both of which are powders and are simply mixed with the treated meteorite and reacted with crystallization water or moisture of the meteorite. The layer of treated meteorite is expanded by the gas. Of these, hydrazine and hydrogen peroxide are preferred as the gas generating delamination swelling agent. In the case of a powdered gas generating delamination and swelling agent, generally the gas generating delamination and swelling agent is preferably used in the form of a liquid, so these may be used by dissolving in water. If too much is used, heat is lost when the meteorite processed product is expanded, so that it is not efficient in the treatment process and becomes a wet reaction, resulting in a slow reaction rate, and the merit of the present invention is the same as in the case of the ion exchange method. Is not preferable. For example, in the case of hydrogen peroxide solution, a concentration of about 5 to 35% by weight is usually used. Usually, the amount of the gas generating delamination swelling agent added is preferably about 0.04 to 1.00 mol with respect to 100 g of the treated meteorite. It is not preferable to add more than about 1.00 mol of the gas generating delamination swelling agent more than necessary with respect to 100 g of the treated meteorite for the reasons described above. The present invention also relates to the case where a hydrophilic intercalating agent is added to the meteorite or the case where a gas generating delamination swelling agent is added to the treated meteorite, and these hydrophilic intercalating agents added. Even if the gas generating delamination swelling agent is in the form of liquid, the reaction that occurs as a result of impregnation and absorption of these chemical substances between the layers of the meteorite or the treated product of meteorite is utilized. Both the stone-treated product and the delaminated meteorite are obtained as a dried product swelled in an accordion state. The expanded meteorite according to the present invention has a ratio that is clearly smaller than the expanded meteorite obtained by firing and expanding the meteorite or the expanded meteorite obtained by expanding the dried meteorite only with hydrogen peroxide water and drying it. Has a surface area. This is because an anion or a salt thereof is contained between the meteorite layers according to the present invention. The delaminated meteorite according to the present invention can be identified by analysis by X-ray diffraction or measurement of specific surface area.
[0012]
According to the present invention, a hydrophilic intercalating agent is sufficiently permeated into the meteorite layer in a dry state at room temperature, not wet, to obtain a treated product of the meteorite, and then the gas-generated delamination swelling agent is added to the treated product of the meteorite. A layer of delamination meteorite is placed in a large amount of water by putting the delamination meteorite expanded in the accordion state obtained by processing in a dry state at room temperature to cause delamination to a deeper depth. Peels and collapses, and a meteorite slurry comprising a thin meteorite lamella having a large aspect ratio and a thickness of about 0.1 μm is obtained. The delamination meteorite obtained according to the present invention floats in water because gas still remains between the layers of the delamination meteorite at the initial stage when it is put into water. In the meantime, impurities such as mother rocks and unexpanded mica contained in the delaminated meteorite settle rapidly, so that only the delaminated meteorite is scraped or separated by decantation method By doing so, only a high purity delaminated meteorite from which impurities have been removed is obtained. Next, when the separated delaminated meteorite with high purity from which impurities have been removed is simply stirred in water, water enters the interlayer of the delaminated meteorite and is almost as large as it once existed in the meteorite layer. A meteorite slurry having good dispersibility composed of a meteorite lamella while maintaining its thickness is obtained. The present invention treats the meteorite with a hydrophilic intercalating agent, and then treats the treated meteorite with a gas-generating delamination swelling agent to form an exfoliated meteorite, which is not wet but nearly dry at room temperature. It is performed in the state which carried out. Further, the present invention is characterized in that the meteorite slurry is composed of a high-purity meteorite lamella. When the obtained meteorite slurry is passed through a colloid mill having a structure in which a grindstone rotates and crushes particles, a paste-like meteorite slurry composed of a meteorite lamella having a reduced size is obtained. Use a meteorite slurry in which the water content is reduced as much as possible by adding a dispersion aid such as sodium tripolyphosphate to these meteorite slurries or adding a flocculant such as polyethylene oxide and polyacrylamide. You can also. In the preparation of a sheet to be described later from the meteorite slurry, the amount of drainage of the meteorite slurry is adjusted using these dispersing aids and aggregating agents in the same manner as in a generally known papermaking method. When producing a molded product by casting from the meteorite slurry, or firing the molded product into a ceramic, it is possible to add methylcellulose or the like as a plasticizer to the meteorite slurry in order to impart plasticity. This is usually the same as in known ceramic production. The meteorite slurry obtained by the present invention has the following characteristics.
[0013]
Characteristics of meteorite slurry:
1) The dispersion is composed of meteorite lamellae with high aspect ratio.
(The dispersion obtained by firing and expanding the meteorite other than the present invention is changed to mica or vitrified.)
2) Since the surface of the dispersion has a large amount of hydroxyl groups, the dispersion is easily dispersed in water.
(The dispersion obtained by firing and expanding the meteorite according to other than the present invention floats on the water surface or precipitates.)
3) The dispersion is soft.
(The dispersion obtained by firing and expanding the meteorite other than the present invention is hard and brittle.)
4) The dispersion retains the ion exchange capacity.
(The dispersion obtained by firing and expanding the meteorite according to the invention other than the present invention does not have ion exchange capacity.)
5) The dispersion has breathability to moisture.
(The dispersion obtained by firing and expanding the meteorite other than the present invention has no breathability with respect to moisture.)
6) The shape of the dispersion is flat.
(The shape of the dispersion obtained by firing and expanding the meteorite according to the present invention is wavy.)
7) When the meteorite slurry is filtered and dried, a meteorite sheet can be formed by hydrogen bonding without hydrogen bonding.
(When a meteorite slurry made of a dispersion obtained by firing and expanding a meteorite according to a method other than the present invention is filtered and dried, the dispersions do not bind to each other, and the powder becomes a simple powder.)
8) A molded ceramic sheet can be produced by sintering a meteorite sheet obtained by filtering and drying the meteorite slurry.
(Even if a sheet obtained by filtering and drying a meteorite slurry obtained by firing and swelling a meteorite according to a method other than the present invention is sintered, the shape cannot be retained and becomes a simple powder.)
[0014]
A meteorite sheet can be obtained by filtering and drying the meteorite slurry according to the present invention through a mesh net that does not pass through a meteorite lamella. The making of the meteorite sheet from the meteorite slurry according to the present invention can be carried out by a generally known method for making Japanese paper. By simply drying the meteorite sheet made from the meteorite slurry according to the present invention, the meteorite sheet can be formed without using any adhesive due to the properties of the meteorite as clay and the hydrogen bond between crystal water and hydroxyl group. can do. As a result of analyzing the meteorite sheet according to the present invention by the X-ray diffraction method, it can be confirmed that only the C-plane diffraction is observed, and that the meteorite sheet surface layer is completely oriented. Experiments described later proved that the meteorite sheet also has gas barrier performance. Further, when the meteorite sheet was heated to about 300 ° C. or more, a sintered meteorite sheet could be formed (confirmed as a result of analysis by X-ray diffraction method). In mass production by machine, the wet strength of the meteorite sheet is weak, so it cannot withstand the tension after paper making, so usually pulp, inorganic fiber, inorganic pulp such as sepiolite and palygorskite, water-soluble binder, etc. By adding to the slurry of the meteorite, the wet strength of the meteorite sheet can be improved and a long continuous meteorite sheet can be produced. About 50% by weight or less, preferably about 20% by weight or less, more preferably about 10% by weight or less of the above-mentioned pulp, inorganic fiber or inorganic pulp can be added to the meteorite sheet according to the present invention. Generally, adding about 10% by weight or more of the fiber component lowers the gas barrier performance, and if the organic component increases, the fire resistance decreases, but the meteorite sheet has a high gas barrier property, so about 50% by weight of organic Natural fire extinguishing performance is still maintained even when the components are added. The water-soluble binder can be added in an amount of 10 to 30% by weight, preferably 10 to 20% by weight, based on the meteorite sheet according to the present invention. Moreover, according to the casting method normally used at the time of the shaping | molding of earthenware, the molded object which has a predetermined form can also be produced by pouring the said meteorite slurry into the type | mold previously produced, and making it dehydrate. Since the lamellae of the meteorite according to the present invention are soft, the above casting method can be applied. A ceramic molded product can be obtained by sintering the molded product thus produced. Examples of inorganic fibers include glass fiber, quartz fiber, alumina-silica fiber, Tyranno fiber, carbon fiber, activated carbon fiber, alumina fiber, silicon carbide fiber, zirconia fiber, silicon carbide whisker, silicon nitride whisker, potassium titanate, and asbestos. Can be mentioned.
Examples of the water-soluble binder include starches such as oxidized starch, enzyme-modified starch and cationized starch, water-soluble cellulose compounds such as carboxymethyl cellulose, methyl cellulose and hydroxyalkyl cellulose, polyvinyl alcohol compounds and polyacrylamides.
[0015]
The meteorite sheet according to the present invention is formed from a meteorite lamella that retains the original performance of the meteorite obtained by exfoliating the meteorite, for example, by chemical treatment or the like and peeling the layer of the meteorite. It has the following performance.
1) Gas barrier properties
2) Nonflammability
3) Sinterability
4) Ion exchange
5) Water breathability
[0016]
Each will be described in detail below.
1) Gas barrier properties
A description will be given with reference to FIG.
About 500 ml of the liquid 2 that easily generates gas is introduced into the container 3 to generate gas, and through the test sheet 1 attached to the circular hole at the center of the cap 4 of the container 3, the state of gas leakage is detected by a sensory test. confirmed. Alcohol, dry ice and acetic acid (added dry ice in alcohol and a few drops of acetic acid), formalin alcohol solution (formaldehyde dissolved in alcohol), ammonia / caustic soda (ammonia) Water and caustic soda added) and ethyl acetate, aluminum laminated paper as a test sheet, sheet containing 100% by weight of a meteorite lamella, sheet containing 90% by weight of a meteorite lamella, sheet containing 80% by weight of a meteorite lamella, and 70% of a meteorite lamella A sheet containing weight percent and regular paper were used. The results are shown in Table 1.
[0017]
[Table 1]
Figure 0004349822
(Note 1) Contents of test sheet (1): Aluminum laminated paper, (2): Meteorite sheet containing 100% by weight of meteorite lamella, (3): Meteorite sheet containing 90% by weight of meteorite lamella, (4): Meteorite sheet containing 80% by weight of meteorite lamella, (5): Meteorite sheet containing 70% by weight of meteorite lamella, (6): Regular paper
(Note 2) ◎: Does not smell, ○: Slightly smells, △: Smells considerably, ×: Strongly smells
[0018]
2) Nonflammability
This will be described with reference to FIG.
Each test sheet 5 was suspended between clothespins 6 and a combustion test was performed with a burner 7 (about 1000 ° C.) from below the sheet. The results are shown in Table 2.
[0019]
[Table 2]
Figure 0004349822
(Note 1) Content of test sheet (1): Meteorite sheet containing 100% by weight of meteorite lamella (basis weight 100g / m2) (2): Meteorite sheet containing 90% by weight of meteorite lamella (basis weight 100g / m2) (3): Meteorite sheet containing 80% by weight of meteorite lamella (basis weight 100g / m2) (4): Meteorite sheet containing 70% by weight of meteorite lamella (basis weight 100g / m2) (5): A meteorite sheet containing 10% by weight of a meteorite lamella (basis weight 50 g / m)2)
[0020]
3) Sinterability
Aluminum hydroxide “Al (OH)3When the vinyl chloride wallpaper to which “is added” is subjected to a combustion test as shown in FIG. 2, it disintegrates into pieces without leaving a sheet form after combustion. In the meteorite sheet composed of the meteorite lamella according to the present invention, for example, even a sheet to which 30% by weight of pulp is added is blackened after combustion, but retains the original sheet form. However, in the case of a meteorite sheet made of a meteorite lamella obtained by firing and expanding the meteorite according to the present invention, the form of the original sheet is no longer retained after the combustion of the meteorite sheet. This is because the meteorite lamella according to the present invention has sinterability. Due to the swelling by chemical treatment etc., the meteorite lamella according to the present invention retains the crystal water and the hydroxyl group of the silicate layer, and therefore the meteorite sheet composed of the meteorite lamella according to the present invention is still sinterable. Is leaving. X-ray diffraction of the same crystal as the meteorite sheet made of the meteorite lamella obtained by firing and expanding the meteorite lamella according to the present invention after the combustion test. Since it shows a pattern, it is thought that it changed into a kind of ceramic sheet by combustion. This also proves that the meteorite sheet made of the meteorite lamella according to the present invention has sinterability.
[0021]
4) Ion exchange
The meteorite sheet comprising the meteorite lamella according to the present invention still retains ion exchange properties. The meteorite sheet has a high ion exchange capacity of, for example, about 180 meq / 100 g (the weight of the meteorite sheet) for normal ions, especially about 280 meq / 100 g (the weight of the meteorite sheet) for ammonium ions. Show. In terms of ammonia gas, about 100 g of the sheet adsorbs about 4.8 g of ammonia gas. Therefore, the meteorite sheet is superior to the known ammonia gas adsorbent.
[0022]
5) Water breathability
Comparing the pulverized meteorite lamella and the crushed meteorite according to the present invention, there is almost no difference in characteristics. When the meteorite sheet composed of 100% of the meteorite lamella according to the present invention was pulverized (for convenience of measurement) and its water breathability was analyzed, the result of FIG. 3 was obtained. From the results of FIG. 3, it can be seen that the meteorite sheet made of the meteorite lamella according to the present invention has moisture breathability. The adsorption / desorption isotherm of the meteorite lamella was obtained based on the BET method.
[0023]
【Example】
Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited thereto.
[0024]
[Example 1]
South African meteorite No. 2 in polyethylene bag (analyzed by X-ray diffraction analysis, vermiculite, phologopite, vermiculite 50 wt%-horogopite 50 wt% mixed layer, vermiculite 35 wt%-hologopite 65 10 kg (bulk specific gravity 1.0) and 500 g of powdered phosphorus pentoxide were added and vibrated to make uniform. After that, the surface of the meteorite became glossy and the meteorite became dark. After standing for about 3 hours, a dark and dry meteorite was obtained (treated meteorite). At this time, a white powder of phosphorus pentoxide could not be confirmed, the volume of the treated meteorite increased by 20% from the volume of the meteorite, and the bulk specific gravity of the treated meteorite was 0.87.
Next, 1.05 kg of the treated garnet with the above volume increased by 20% was collected in a polyethylene bag, and 120 ml of 35% by weight hydrogen peroxide solution was added and stirred uniformly. After 4 hours, the expansion of the treated meteorite stopped (delamination meteorite). At this time, the delamination meteorite had a volume of 10.5 liters, a weight of 1.18 kg, and a bulk specific gravity of 0.112. Separately, 1.05 kg of the treated product of meteorite was collected in a polyethylene bag, 150 ml of 35% by weight hydrogen peroxide solution was added, the mouth was lightly closed, and swelling started when heated in a 500 kW microwave for 1 minute. The volume after the expansion was 12.0 liters, the weight was 1.14 kg, and the bulk specific gravity was 0.095 (delamination meteorite). 90 liters of water is put into a 100 liter capacity poly bucket, and 1.14 kg of delamination meteorite that has been treated with 35% by weight hydrogen peroxide and heated in a microwave for 1 minute to expand as described above. When stirred, the delamination meteorite surfaced at the top, and the impurity component precipitated. The delaminated meteorite that has floated up is poured into 10 liters of water prepared separately, and when stirred, this delaminated meteorite is peeled off and disintegrated, and the resulting meteorite lamella is dispersed in water. A meteorite slurry having a pH of 5 and a meteorite lamella of 5% by weight was obtained. The pH of the residual liquid obtained by scooping up the delaminated meteorite that floated on the top was 2, and the precipitated impurities were pyroxenes of the host rock and phlogopite that did not swell. The weight of these impurities was 0.287 kg. 150 ml of the above-mentioned meteorite slurry was collected, 350 ml of water was further added thereto, stirred for 1 minute with a home-use mixer, and further added with water to make a total volume of 5 liters. A meteorite sheet was prepared by paper making using a SS standard square sheet machine (manufactured by Toyo Seiki Seisakusho Co., Ltd.). When this meteorite sheet was transferred to a filter paper and dried, a meteorite sheet consisting only of a meteorite lamella was obtained. The basis weight of this sheet is 89.7 g / m2Met.
[0025]
[Example 2]
A Japanese-made meteorite in Tamura-gun, Fukushima Prefecture (confirmed that it is hydro-biotite with low crystallinity as a result of X-ray diffraction analysis) 100g in a PVC cage This was prepared and suspended in a desiccator containing fuming sulfuric acid and sulfur powder at the bottom, and the lid was closed. When left in this state for 2 days, the meteorite absorbed sulfur trioxide, the volume increased by 30%, and the weight became 105 g (treated meteorite). During this time, the treated meteorite was in a dry state. When 20 ml of 30% by weight hydrogen peroxide solution was added to the treated product of this meteorite, it started to swell after 30 seconds, and the volume became 1.1 liters after 5 minutes. Separately, when 100g of meteorite from the same region was heated to 600 ° C, the volume became 1.1 liters. The delaminated meteorite fired by heating (referred to as fired expanded meteorite) becomes a gold-brown phlogopite, and the delaminated meteorite expanded by hydrogen peroxide (referred to as chemically expanded meteorite) It was a gold-green-black phlogopite. A comparison of the characteristics of the two expanded meteorites is shown in the table below.
[0026]
[Table 3]
Figure 0004349822
[0027]
When the above exfoliated meteorite (chemically expanded meteorite) is added to 1 liter of water and stirred, the chemically expanded meteorite is exfoliated and disintegrated, and the meteorite lamella is dispersed in water, and the white feldspar component that is an impurity Precipitated. The dispersion was separated by decantation to obtain a meteorite slurry consisting of a meteorite lamella. On the other hand, when the calcined expanded meteorite was added to the same amount of water and stirred, the meteorite layer was finely peeled, collapsed and precipitated together with impurities. It was impossible to separate the meteorite slurry composed of meteorite lamella as in the case of the above-mentioned chemically expanded meteorite. A meteorite slurry of 5% by weight of a meteorite lamella obtained from the above-mentioned chemically expanded meteorite is poured into a gypsum mold having an internal volume of 10 cm × 7 cm × 0.5 cm or a polyethylene container having an infinite number of holes with a diameter of 1 mm on the bottom, It was dried to obtain a meteorite sheet having a thickness of 2 mm. This meteorite sheet was flexible, and was dampened and then wound around a glass rod and dried to obtain a nonflammable paper tube.
[0028]
Example 3
Zimbabwean meteorite medium grade (analyzed by X-ray diffractometry, confirmed to be pure vermiculite) 5 g of sulfuric acid was added to 100 g and absorbed sufficiently by meteorite, and then 5 g of hydrazine was slightly heated. As a result, the volume of the meteorite has increased 1.5 times (treated meteorite). When two samples of treated meteorites are made and 10 ml of 35% by weight hydrogen peroxide solution is added to one of them, the reaction takes place vigorously and the treated product of the meteorite expands, and the volume expands to 12 to 15 times that of the meteorite. Stacked (delamination meteorite). As a result of analyzing the delamination meteorite by X-ray diffraction, the delamination meteorite retained the characteristics inherent to the meteorite without loss. When another 10 g of hydrazine hydrate was added to the other delaminated meteorite sample instead of hydrogen peroxide, the volume expanded to 8 times that of the meteorite (delaminated meteorite). Subsequently, when the above delaminated meteorite expanded by adding hydrazine hydrate was heated to 200 ° C., it expanded explosively and the volume increased 15 times that of the meteorite. As a result of analyzing the delamination meteorite increased 15 times by X-ray diffraction method, the original characteristic of the meteorite was maintained without loss, but it changed to a phorogopite-vermiculite mixed layer.
When both of these delaminated meteorites were put into a large amount of water and stirred, the delaminated meteorites emerged. Each delamination meteorite was scraped off. Each delaminated meteorite taken up in each 2 liters of water is stirred and stirred, whereby each delaminated meteorite is peeled and disintegrated, and the meteorite lamella is dispersed in water. A meteorite slurry consisting of stone lamella was obtained. 200 ml each of the meteorite slurries composed of both meteorite lamellas obtained in this manner were collected, dispersed in 5 liters of water, and then paper-made by the paper-making tester used in Example 1 and dried. A stone sheet was obtained. Each delamination meteorite, the obtained meteorite slurry and the meteorite sheet were analyzed, and the following results were obtained.
[0029]
[Table 4]
Figure 0004349822
Gas barrier property: Performed based on the above sensory test (see FIG. 1).
[0030]
Example 4
A semi-transparent red-brown mineral piece of Parabola from South Africa, Parabola (analyzed by X-ray diffractometry, confirmed to be hydro-phlogopite) was collected.2Shredded into small pieces. The thickness of the small piece after shredding was about 0.4 mm and the bulk specific gravity was about 1.2. This was put into a polyethylene sachet, and then 300 mg of phosphorus pentoxide was added and stirred in the sachet. When sealed and allowed to stand for 24 hours, the white powder of phosphorus pentoxide disappeared and became a slightly dark brownish brown small piece group (bulk specific gravity 1.0) (treated meteorite). When 0.5 ml of hydrazine hydrate was added thereto and uniformly moistened, a dry brown and glossy, further exfoliated delaminated meteorite with a bulk specific gravity of 0.8 was obtained. This further swelled delamination meteorite was transferred to another polyethylene sachet, and 1.0 ml of 35% by weight hydrogen peroxide solution was added and mixed uniformly. A few minutes later, the delamination meteorite generated heat and swelled to a volume of 50 ml (delamination meteorite). During this time, the thickness of the delamination meteorite pieces expanded from 0.4 mm to an apparent accordion shape of 2 to 4 cm. As a result of analyzing the exfoliated meteorite so expanded by X-ray diffraction, the characteristics inherent to the meteorite were maintained without loss. When a small piece of the exfoliated delaminated meteorite is put into 500 ml of water and stirred for 2 minutes with a domestic juicer mixer, the delaminated meteorite layer exfoliates and collapses to a 2 mm square with a thickness of about 1 μm. A meteorite slurry consisting of stone lamella was obtained. Since this meteorite slurry causes sedimentation of the meteorite lamella relatively easily, for example, 50 mg of a dispersion aid sodium tripolyphosphate was added to this meteorite slurry. Add 1 g of milk pack fragment and 1 ml of commercially available poval paste to this meteorite slurry, stir using a household juicer mixer, and filter with a filter cloth in which a broad dough is attached to a bamboo cocoon cake. A meteorite sheet could be obtained by drying.
[0031]
Example 5
Chemical treatment was carried out using the following three types of meteorites produced in China to obtain a meteorite slurry consisting of meteorite lamellas, which were then made to produce a meteorite sheet. The following table shows the crystal types of the three types of meteorites, the processing conditions, the performance of the meteorite slurry and the meteorite sheet. (1) Xinjiang meteorite
After collecting 100g of Niigata-produced meteorite (confirmed as a result of analysis by X-ray diffraction method that it is a vermiculite-phlogopite mixed layer), 4g of sulfuric acid was added to it, and 2g of hydrazine was added. The volume of the meteorite increased 1.5 times due to heat generation (treated meteorite). When 20 ml of 35% by weight hydrogen peroxide solution was added to this treated meteorite, it reacted vigorously with the treated meteorite and the volume of the treated meteorite further expanded to 14 times that of the meteorite (delamination layer). stone). As a result of analyzing the delaminated meteorite by the X-ray diffraction method, the characteristics inherent to the meteorite were retained. The delamination meteorite was put into a large amount of water and stirred to float up the delamination meteorite and precipitate impurities. The delaminated meteorite that surfaced was scraped off. At this time, the precipitated impurities were separated by a decantation method to quantify the impurities. The delaminated meteorite thus removed was put into 2 liters of water and stirred to obtain a meteorite slurry composed of a meteorite lamella obtained by peeling and collapsing the delaminated meteorite. 200 ml of the meteorite slurry obtained in this way was collected, dispersed in 5 liters of water, and then made by the paper making tester used in Example 1 and dried to obtain a meteorite sheet.
(2) Henan provincial black meteorite
When 100 g of black meteorite from Henan Province (confirmed to be hydro-biotite as a result of analysis by X-ray diffraction method) is collected, and 5 g of phosphorus pentoxide is added to it and absorbed sufficiently, the volume of the meteorite will increase. 1.5 times (treated meteorite). When 20 ml of 35 wt% hydrogen peroxide solution was added to this treated meteorite, it reacted vigorously with the treated meteorite, further expanding the treated meteorite and increasing the volume of the meteorite to 10 times (delamination layer). stone). As a result of analyzing the delaminated meteorite by the X-ray diffraction method, the characteristics inherent to the meteorite were retained. The delamination meteorite was put into a large amount of water and stirred to float up the delamination meteorite and precipitate impurities. The delaminated meteorite that surfaced was scraped off. At this time, the precipitated impurities were separated by a decantation method to quantify the impurities. The delaminated meteorite thus removed was put into 2 liters of water and stirred to obtain a meteorite slurry composed of a meteorite lamella obtained by peeling and collapsing the delaminated meteorite. 200 ml of the meteorite slurry obtained in this way was collected, dispersed in 5 liters of water, and then made by the paper making tester used in Example 1 and dried to obtain a meteorite sheet.
(3) Henan Province White Meteorite
Henan province white jade stone (analyzed by vermiculite "verified by hydro-chrolite" as a result of X-ray diffraction analysis) 100g was collected, and 3g of phosphorus pentoxide was added to this and vibrated. And homogenized. Subsequently, when 2 g of sodium azide was added, the volume of the meteorite increased 1.5 times (treated meteorite). When 20 ml of 35% by weight hydrogen peroxide solution was added to this treated meteorite, it reacted vigorously with the treated meteorite, further expanding the treated meteorite and increasing the volume of the meteorite to 9 times (delamination meteorite ). As a result of analyzing the delaminated meteorite by the X-ray diffraction method, the characteristics inherent to the meteorite were retained. The delamination meteorite was put into a large amount of water and stirred to float up the delamination meteorite and precipitate impurities. The delaminated meteorite that surfaced was scraped off. At this time, the precipitated impurities were separated by a decantation method to quantify the impurities. The delaminated meteorite thus removed was put into 2 liters of water and stirred to obtain a meteorite slurry composed of a meteorite lamella obtained by peeling and collapsing the delaminated meteorite. 200 ml of the meteorite slurry obtained in this way was collected, dispersed in 5 liters of water, and then made by the paper making tester used in Example 1 and dried to obtain a meteorite sheet.
[0032]
[Table 5]
Figure 0004349822
(1) = @,> @ and <@ are based on Example 1 to produce a meteorite slurry composed of a meteorite lamella obtained by chemical treatment of a meteorite from Parabola, South Africa, and a meteorite sheet made from the slurry. Means a comparison with the meteorite sheet. (@ Means the performance level of dispersion stability and sheet flexibility of the meteorite slurry prepared in Example 1)
(2) Gas barrier property: Performed based on the above sensory test (see FIG. 1).
(3) Dispersion stability of the meteorite slurry: by visual inspection.
[0033]
【The invention's effect】
Treating the meteorite with a hydrophilic intercalating agent, treating the meteorite with the original characteristics of the meteorite, and treating the treated meteorite with a gas-generating delamination swelling agent, and optionally further treating the treated meteorite Delaminated meteorite that retains the original properties of heated meteorites, high purity that retains the original properties of meteorites that are rich in high aspect ratio, nonflammability, softness, etc. To provide a good water-dispersible meteorite slurry composed of meteorite lamellae and a meteorite sheet that retains the original characteristics of meteorite such as moisture breathability, gas barrier property, and non-combustibility by making the meteorite slurry. Can do.
[Brief description of the drawings]
FIG. 1 is an apparatus for inspecting gas barrier properties.
FIG. 2 is a method for measuring nonflammability.
FIG. 3 isotherm adsorption / desorption isotherm.
[Explanation of symbols]
1 Test meteorite sheet
2 Gas source compounds
3 Glass containers
4 Cap
5 Test meteorite sheet
6 clothespins
7 Gas burner

Claims (2)

(イ)蛭石を、五酸化リン、五酸化リンとヒドラジン水和物との混合物、五酸化リンとアジ化ナトリウムとの混合物、発煙硫酸、発煙硫酸と硫黄粉末との混合物、又は硫酸とヒドラジンとの混合物で処理して蛭石処理物を得、(i)この蛭石処理物を過酸化水素水、若しくはヒドラジン水和物で処理して得られる層間剥離蛭石、又は(ii)上記蛭石処理物を過酸化水素水、若しくはヒドラジン水和物で処理しさらに加熱して得られる層間剥離蛭石、及び
(ロ)(i)水、又は
(ii)水、及び水溶性接着剤、パルプ、若しくは無機パルプ
を含有する蛭石スラリー。
(I) Meteorite, phosphorus pentoxide, a mixture of phosphorus pentoxide and hydrazine hydrate, a mixture of phosphorus pentoxide and sodium azide, fuming sulfuric acid, a mixture of fuming sulfuric acid and sulfur powder, or sulfuric acid and hydrazine (I) delamination meteorite obtained by treating this treated meteorite with hydrogen peroxide solution or hydrazine hydrate, or (ii) Delamination meteorite obtained by treating a stone-treated product with hydrogen peroxide or hydrazine hydrate and further heating, and
(B) (i) Water or
(ii) Water and water-soluble adhesives, pulp, or inorganic pulp
A meteorite slurry containing
請求項1に記載の蛭石スラリーを抄造してなる蛭石シート。  A meteorite sheet formed by papermaking the meteorite slurry according to claim 1.
JP2003059866A 2003-03-06 2003-03-06 Meteorite sheet Expired - Lifetime JP4349822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003059866A JP4349822B2 (en) 2003-03-06 2003-03-06 Meteorite sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003059866A JP4349822B2 (en) 2003-03-06 2003-03-06 Meteorite sheet

Publications (2)

Publication Number Publication Date
JP2004269292A JP2004269292A (en) 2004-09-30
JP4349822B2 true JP4349822B2 (en) 2009-10-21

Family

ID=33122569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003059866A Expired - Lifetime JP4349822B2 (en) 2003-03-06 2003-03-06 Meteorite sheet

Country Status (1)

Country Link
JP (1) JP4349822B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104446643A (en) * 2014-10-29 2015-03-25 武汉艾迪创研科技有限公司 Active restoring agent capable of restoring original appearance of space sand and preparation method of active restoring agent

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104741074A (en) * 2015-04-07 2015-07-01 石河子大学 Method for preparing expanded vermiculite adsorbent
EP3517501A1 (en) * 2018-01-26 2019-07-31 Mühl Engineering Systems GmbH Insulation panel comprising layered minerals
CN111573686A (en) * 2020-05-19 2020-08-25 陕西科技大学 Preparation method of vermiculite ultrafine powder
CN115231582B (en) * 2022-07-19 2023-12-19 西安交通大学 Two-dimensional montmorillonite large-scale-diameter nano sheet stripping method
CN116196889A (en) * 2023-03-09 2023-06-02 西南科技大学 Toluene adsorbent prepared from industrial vermiculite and method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104446643A (en) * 2014-10-29 2015-03-25 武汉艾迪创研科技有限公司 Active restoring agent capable of restoring original appearance of space sand and preparation method of active restoring agent
CN104446643B (en) * 2014-10-29 2016-08-24 武汉艾迪创研科技有限公司 A kind of activation recovering agent of reducible space sand plain looks and preparation method thereof

Also Published As

Publication number Publication date
JP2004269292A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
JPS61286278A (en) Low density ceramic rotary ellipsoid and manufacture
Šaponjić et al. Porous ceramic monoliths based on diatomite
JP2010527887A (en) Expanded vermiculite forming method and compressed material manufacturing method
JP4349822B2 (en) Meteorite sheet
CN106431032A (en) Microwave preparation method of alpha-calcium sulfate hemihydrate
Mouiya et al. Porous ceramic from Moroccan natural phosphate and raw clay for microfiltration applications
Alizadeh Arasi et al. Extraction of nano‐porous silica from hydrosodalite produced via modification of low‐grade kaolin for removal of methylene blue from wastewater
EP0166789B1 (en) Formed article of calcium silicate and method of the preparation thereof
CN104843729B (en) Process and its application of zeolite are prepared under a kind of normal temperature and pressure
Kurama et al. Magnesium hydroxide recovery from magnesia waste by calcinations and hydration processes
JP3960397B2 (en) Electric double layer capacitor
Parida et al. A Study on the water absorption efficiency of porous silica gel prepared from rice husk ash
JPS5964563A (en) Manufacture of lightweight formed body
JP2001031415A (en) Porous molded article based on calcium silicate or silica
JP4426752B2 (en) Method for producing calcium silicate hydrate
Zhang et al. Differential dissolution of interlayer, octahedral and tetrahedral cations of vermiculite in oxalic acid
JP2021075439A (en) Method for producing tobermorite-containing housing material, tobermorite, and tobermorite-containing housing material
JP2005179086A (en) Planar silica porous body, fibrous silica porous body and their manufacturing method
CN115010511B (en) Light functional ceramic tile and preparation method and application thereof
Lupu et al. Control over cement setting through the use of chemically modified fly ash
JP2000281340A (en) LAMINAR BaTiO3 PARTICLE AND ITS PRODUCTION
JPS6317788B2 (en)
JP3176704B2 (en) Method for producing porous fiber molded body
JPS60112663A (en) Manufacture of calcium silicate formed body
CN105439520B (en) A kind of method for preparing radiation-proof plate

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060302

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20060302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4349822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150731

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

EXPY Cancellation because of completion of term
R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371