JP4426752B2 - Method for producing calcium silicate hydrate - Google Patents

Method for producing calcium silicate hydrate Download PDF

Info

Publication number
JP4426752B2
JP4426752B2 JP2002286579A JP2002286579A JP4426752B2 JP 4426752 B2 JP4426752 B2 JP 4426752B2 JP 2002286579 A JP2002286579 A JP 2002286579A JP 2002286579 A JP2002286579 A JP 2002286579A JP 4426752 B2 JP4426752 B2 JP 4426752B2
Authority
JP
Japan
Prior art keywords
calcium silicate
mass
parts
heat insulating
tobermorite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002286579A
Other languages
Japanese (ja)
Other versions
JP2004123409A (en
Inventor
尚道 原
正機 大門
悦郎 坂井
常志 諸星
信一 若杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&A Material Corp
Original Assignee
A&A Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&A Material Corp filed Critical A&A Material Corp
Priority to JP2002286579A priority Critical patent/JP4426752B2/en
Publication of JP2004123409A publication Critical patent/JP2004123409A/en
Application granted granted Critical
Publication of JP4426752B2 publication Critical patent/JP4426752B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、使用等により炭酸化された珪酸カルシウム水和物系材料をゾノトライト(6CaO・6SiO2・H2O)、トバモライト(5CaO・6SiO2・5H2O)等の珪酸カルシウム系材料として再生する方法に関する。
【0002】
【従来の技術】
珪酸カルシウム水和物を主成分とする成形体は珪酸カルシウム板やALC等の建材として広く利用されており、また、保温材、断熱材等として、発電所の蒸気管周囲や排ガス管等に広く利用されている。例えばこの保温材の廃棄物は、各発電所で年間数百万トン程度産業廃棄物として発生しており、その再利用が望まれている。
【0003】
珪酸カルシウム成形体の再利用方法としては、シリカ保温材屑単独もしくはシリカ保温材屑と補強繊維を主体とする原料を半乾式で成形する再生シリカ保温材(特許文献1参照);10mm未満で且つ60メッシュ通過分が85重量%(質量%)以上である粒径を有する珪酸カルシウム保温材の廃材粉末10〜95重量%(質量%)及び10mm以上で且つ再生珪酸カルシウム保温材の厚さの80%未満の粒径を有する珪酸カルシウム保温材の廃材塊状体5〜90重量%(質量%)よりなる珪酸カルシウム保温材の廃材混合物100重量部(質量部)に対し、結合剤を2〜20重量部(質量部)及び補強繊維を0.5〜5重量部(質量部)配合してなる再生珪酸カルシウム保温材(特許文献2参照);ロックウール保温材屑を粒径5mm以下に粉砕した粉砕物及び珪酸カルシウム保温材屑を粒径5mm以下に粉砕した粉砕物から選ばれる少なくとも一種からなる骨材20〜80重量%(質量%)がアルミナセメントを固結材として所要の表面状態をもつ板状体に成形された保温廃材を用いた建築物用内・外装材(特許文献3参照);珪酸質原料とカルシウム質原料とを水熱合成して得られる、水/固体重量比(質量比)が15以上であり、且つ、沈降体積が15cm3/g以上である珪酸カルシウムの水スラリーと、固形珪酸カルシウム廃材とを混合し、該混合物を脱水成形後、乾燥する再生珪酸カルシウム保温材の製造方法(特許文献4参照)等が知られている。
【0004】
【特許文献1】
特開平5−17198号公報
【特許文献2】
特開平8−198688号公報
【特許文献3】
特開平9−20546号公報
【特許文献4】
特許第2993359号公報
【0005】
【発明が解決しようとする課題】
このように従来の珪酸カルシウム成形体、特に保温材の再利用の方法は、珪酸カルシウム保温材の廃材もしくは珪酸カルシウム保温材屑の粉砕物と補強繊維や結合剤、水熱合成した珪酸カルシウムスラリーを混合し成形体を製造するものであった。従って、珪酸カルシウム保温材をそのまま保温材として、又は充填材、骨材として再利用する方法しかなかった。
従って、本発明の目的は、珪酸カルシウム成形体、特に保温材を種々の目的に利用し得るゾノトライト、トバモライト等の珪酸カルシウム系の材料として再生する方法を提供することにある。
【0006】
【課題を解決するための手段】
そこで本発明者は、炭酸化された珪酸カルシウム系成形体廃材を、600〜800℃に加熱した後に、水熱合成処理すれば、純度が高く、保温材だけでなく種々の原材料として利用できる珪酸カルシウム水和物として再生できることを見出し、本発明を完成するに至った。
【0007】
すなわち、本発明は、ゾノトライト(6CaO・6SiO 2 ・H 2 O)系珪酸カルシウム成形体廃材又はトバモライト(5CaO・6SiO 2 ・5H 2 O)系珪酸カルシウム成形体廃材を粉砕し、湿潤状態において二酸化炭素を該材料100質量部に対して100質量部以上反応させた後、該材料がゾノトライト系材料の場合600〜750℃にて、トバモライト系材料の場合650〜800℃にて3〜24時間加熱し、次いで水熱合成処理することを特徴とする珪酸カルシウム水和物の製造法を提供するものである。
【0008】
【発明の実施の形態】
本発明においては、原料として少なくとも一部が炭酸化された珪酸カルシウム水和物を主成分とする材料を用いる。これらの材料としては、ゾノトライト(C66・H2O)系珪酸カルシウム成形体廃材、トバモライト(C56・5H2O)系珪酸カルシウム成形体廃材が挙げられ、より具体的にはゾノトライト系又はトバモライト系の珪酸カルシウム保温材や建材の廃材が挙げられる。本発明に用いる材料中のゾノトライト及びトバモライトの含有量は60質量%以上、さらに70質量%以上、特に90質量%以上であることが好ましい。これらの材料は、粉砕して用いるのが好ましく、特に75〜250μmの粒子径となるように粉砕したものを用いるのが好ましい。
【0009】
本発明に用いるこれらの材料は、使用済廃材の場合その一部が炭酸化されていることがあり、その場合はさらに炭酸化する必要はないが、これらの材料を炭酸化処理して用いるのが好ましい。
【0010】
前記材料の炭酸化処理、すなわち二酸化炭素との反応には、炭酸ガスを用いるのが好ましい。また、当該二酸化炭素の反応は、湿潤状態で行うのが好ましく、具体的には湿潤状態の前記材料に炭酸ガスを吹き込むことにより行われる。より詳細には、粉砕した前記材料100質量部に対し、炭酸ガスが流通できる空間を残して100質量部以下の水を加え、これに炭酸ガスを吹き込むことにより行われる。用いる炭酸ガスの量は、過剰であるのが通常であり、前記材料100質量部に対して100質量部以上、特に100〜200質量部が好ましい。当該二酸化炭素の反応は、20〜30℃の条件で24〜48時間行うのが好ましい。
【0011】
次いで少なくとも一部が炭酸化した前記材料を600〜800℃に加熱する。後段の水熱合成処理により珪酸カルシウム水和物を効率良く生成させるためには、この加熱により、前記材料のほとんどがβ−C2S(β−2CaO・SiO2)になっていることが重要である。加熱温度が600℃未満ではβ−C2Sが生成せず、炭酸カルシウムはそのまま残る。また、800℃を超えると、ワラストナイトが生成し、生成物がβ−C2Sではなくなる。また、加熱時間は、温度によっても異なるが、通常3〜24時間、特に12〜24時間が好ましい。
【0012】
なお、加熱温度は、前記材料がゾノトライト系材料の場合には、600〜750℃が好ましく、一方前記材料がトバモライト系材料の場合には650〜800℃が好ましい。
【0013】
前記の反応によりゾノトライト又はトバモライト系原料から、何ら成分調整せず、かつ低温条件でβ−C2Sが得られるのは、まず炭酸化反応により炭酸カルシウムと非晶質シリカが生成し、これらの成分が600〜800℃の加熱により選択的にβ−C2Sに変化することによる。
【0014】
加熱処理後、水熱合成処理する。水熱合成処理は、例えば加熱処理後の材料に水を加えて混合してスラリー化し、180〜200℃の飽和水蒸気圧下のオートクレーブ内で5〜20時間水熱反応させるのが好ましい。
【0015】
当該水熱合成処理により、珪酸カルシウム水和物が効率良く生成する。得られる珪酸カルシウム水和物はゾノトライト及び/又はトバモライトであり、珪酸カルシウム系保温材の原料として使用できるだけでなく、種々の珪酸カルシウム系建材や断熱材、その他軽量化の原料としても使用できる。
【0016】
【発明の効果】
本発明によれば大量に廃棄されている珪酸カルシウム水和物系廃材が、簡便な操作により珪酸カルシウム水和物としてリサイクルできる。
【0017】
【実施例】
次に実施例を挙げて本発明を更に詳細に説明するが、本発明はこれら実施例に何ら限定されるものではない。
【0018】
実施例1
廃棄物として回収した主成分であるゾノトライトの含有量が90質量%程度であるゾノトライト系珪酸カルシウム保温材を原料として用いた。当該保温材を粉砕し、粒子径75〜250μmとした。得られた保温材粉砕品100質量部に20質量部の水を加え、得られた湿潤粉体に炭酸ガスを0.02m3/分の流量で2日間吹き込んだ。この炭酸化処理粉体を高温電気炉に投入し、450〜800℃に12時間加熱した。得られた焼成品100質量部に水1000質量部を加え、混合しスラリーとした後、これを200℃の飽和水蒸気圧下のオートクレーブ内で20時間水熱反応させた。各加熱温度条件で得られた焼成品及び水熱反応品の鉱物組成を分析した結果を表1に示す。なお分析手段は、粉末X線回折装置により行った。ここで、X線回折による分析は以下の方法で行う。すなわち、粉末X線回折は、まず、試料をめのう乳鉢、アルミナ乳鉢等を用いて粉砕して試料粒径を約20μm以下とし、得られた粉末試料を金属製の試料ホルダーに充填する。X線回折はCu管球を用い、回折角度をθとして、測定速度を2θ=2deg./min.で2θ=5〜65deg.の範囲で測定を行う。鉱物分析は得られた回折ピークをJCPDS検索カードにより同定する。
【0019】
【表1】

Figure 0004426752
【0020】
表1から明らかなように、ゾノトライト系材料を二酸化炭素処理後600〜750℃に加熱すれば、何ら成分添加することなくβ−C2Sが得られ、これを水熱合成処理すればゾノトライト又はトバモライトが再生することがわかる。
【0021】
実施例2
廃棄物として回収した主成分であるトバモライトの含有量が90質量%程度であるトバモライト系珪酸カルシウム保温材を原料として用いた。当該保温材を粉砕し、粒子径75〜250μmとした。得られた保温材粉砕品100質量部に20質量部の水を加え、得られた湿潤粉体に炭酸ガスを0.02m3/分の流量で2日間吹き込んだ。この炭酸化処理粉体を高温電気炉に投入し、450〜900℃に12時間加熱した。得られた焼成品100質量部に水1000質量部を加え、スラリーとした後、これを180℃の飽和水蒸気圧下のオートクレーブ内で20時間水熱反応させた。各加熱温度条件で得られた焼成品及び水熱反応品の鉱物組成を分析した結果を表2に示す。なお分析手段は実施例1の場合と同じ。
【0022】
【表2】
Figure 0004426752
【0023】
表2から明らかなように、トバモライト系材料を二酸化炭素処理後650〜800℃に加熱すれば、何ら成分添加することなくβ−C2Sが得られ、これを水熱合成処理すればトバモライトが再生することがわかる。[0001]
BACKGROUND OF THE INVENTION
The present invention regenerates a calcium silicate hydrate material carbonized by use as a calcium silicate material such as zonotlite (6CaO · 6SiO 2 · H 2 O), tobermorite (5CaO · 6SiO 2 · 5H 2 O). On how to do.
[0002]
[Prior art]
Molded bodies mainly composed of calcium silicate hydrate are widely used as building materials such as calcium silicate plates and ALC, and are widely used as heat insulation and heat insulating materials around steam pipes and exhaust gas pipes of power plants. It's being used. For example, waste of this heat insulating material is generated as an industrial waste of about several million tons per year at each power plant, and its reuse is desired.
[0003]
As a method of reusing the calcium silicate molded body, silica heat insulating material waste alone or a regenerated silica heat insulating material formed by semi-drying a raw material mainly composed of silica heat insulating material waste and reinforcing fibers (see Patent Document 1); Calcium silicate heat insulating material waste powder 10 to 95% by weight (mass%) having a particle size of 60 mesh pass through 85% by weight (mass%) or more, 80 mm of 10 mm or more and recycled calcium silicate heat insulating material thickness 2-20 weight percent of binder per 100 weight parts (mass part) of the waste material mixture of calcium silicate heat insulation material consisting of 5 to 90% by weight (mass%) of the waste mass of calcium silicate heat insulation material having a particle size of less than 1% Recycled calcium silicate heat insulating material (see Patent Document 2) containing 0.5 to 5 parts by weight (parts by mass) and reinforcing fibers (parts by mass); 20 to 80% by weight (mass%) of aggregate composed of at least one kind selected from pulverized material and pulverized material obtained by pulverizing calcium silicate heat insulating material waste to a particle size of 5 mm or less has a required surface state using alumina cement as a binder. Interior / exterior material for buildings using heat insulation waste material formed into a plate-like body (see Patent Document 3); water / solid weight ratio (mass) obtained by hydrothermal synthesis of siliceous raw material and calcium raw material Ratio) is 15 or more, and a water slurry of calcium silicate having a sedimentation volume of 15 cm 3 / g or more and a solid calcium silicate waste material are mixed, and the mixture is dehydrated and dried, and then regenerated calcium silicate heat insulating material is dried. The manufacturing method (refer patent document 4) etc. are known.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 5-17198 [Patent Document 2]
JP-A-8-198688 [Patent Document 3]
Japanese Patent Laid-Open No. 9-20546 [Patent Document 4]
Japanese Patent No. 2993359 gazette
[Problems to be solved by the invention]
As described above, the conventional method of reusing the calcium silicate compact, particularly the heat insulating material, is a waste material of calcium silicate heat insulating material or a pulverized product of calcium silicate heat insulating material waste, reinforcing fibers and binders, hydrothermally synthesized calcium silicate slurry. The mixture was mixed to produce a molded body. Therefore, there has been only a method of reusing calcium silicate heat insulating material as it is as a heat insulating material, or as a filler or aggregate.
Accordingly, an object of the present invention is to provide a method for regenerating calcium silicate compacts, in particular, heat insulating materials as calcium silicate materials such as zonotlite and tobermorite that can be used for various purposes.
[0006]
[Means for Solving the Problems]
Accordingly, the present inventor has developed a high-purity silicic acid that can be used not only as a heat-retaining material but also as various raw materials by heating the carbonated calcium silicate-based molded body waste material to 600 to 800 ° C. and then hydrothermal synthesis treatment. The present inventors have found that it can be regenerated as calcium hydrate and have completed the present invention.
[0007]
That is, the present invention pulverizes zonotlite (6CaO · 6SiO 2 · H 2 O) -based calcium silicate waste material or tobermorite (5CaO · 6SiO 2 · 5H 2 O) -based calcium silicate waste material , and carbon dioxide in a wet state. the mixture was reacted 100 parts by mass or more with respect to the material 100 parts by weight, said material at 600 to 750 ° C. when xonotlite material is heated 3 to 24 hours at 650 to 800 ° C. If the tobermorite-based material Then, a method for producing a calcium silicate hydrate characterized by hydrothermal synthesis treatment is provided.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a material mainly composed of calcium silicate hydrate that is at least partially carbonated is used as a raw material. Examples of these materials include zonotlite (C 6 S 6 · H 2 O) -based calcium silicate compact waste and tobermorite (C 5 S 6 · 5H 2 O) -based calcium silicate compact, and more specifically Examples include zonotlite-based or tobermorite-based calcium silicate heat insulating materials and building materials waste materials. The content of zonotlite and tobermorite in the material used in the present invention is preferably 60% by mass or more, more preferably 70% by mass or more, and particularly preferably 90% by mass or more. These materials are preferably used after being pulverized, and in particular, those pulverized to have a particle diameter of 75 to 250 μm are preferably used.
[0009]
Some of these materials used in the present invention may be carbonized in the case of used waste materials. In this case, it is not necessary to further carbonate, but these materials are used after being carbonized. Is preferred.
[0010]
Carbonic acid gas is preferably used for the carbonation treatment of the material, that is, the reaction with carbon dioxide. In addition, the carbon dioxide reaction is preferably performed in a wet state. Specifically, the carbon dioxide reaction is performed by blowing carbon dioxide into the wet material. More specifically, 100 parts by mass or less of water is added to 100 parts by mass of the pulverized material, leaving a space where carbon dioxide gas can flow, and carbon dioxide gas is blown into this. The amount of carbon dioxide used is usually excessive, and is preferably 100 parts by mass or more, particularly 100 to 200 parts by mass with respect to 100 parts by mass of the material. The carbon dioxide reaction is preferably performed at 20 to 30 ° C. for 24 to 48 hours.
[0011]
The material, at least partially carbonated, is then heated to 600-800 ° C. In order to efficiently produce calcium silicate hydrate by the subsequent hydrothermal synthesis treatment, it is important that most of the material is β-C 2 S (β-2CaO · SiO 2 ) by this heating. It is. When the heating temperature is less than 600 ° C., β-C 2 S is not generated and calcium carbonate remains as it is. If it exceeds 800 ° C., wollastonite is produced, the product is not a β-C 2 S. Moreover, although heating time changes also with temperature, it is 3 to 24 hours normally, and especially 12 to 24 hours are preferable.
[0012]
The heating temperature is preferably 600 to 750 ° C. when the material is a zonotlite-based material, and preferably 650 to 800 ° C. when the material is a tobermorite-based material.
[0013]
From the zonotolite or tobermorite raw material by the above reaction, β-C 2 S can be obtained under low temperature conditions without adjusting any components. First, calcium carbonate and amorphous silica are produced by carbonation reaction. This is because the component is selectively changed to β-C 2 S by heating at 600 to 800 ° C.
[0014]
After the heat treatment, a hydrothermal synthesis treatment is performed. In the hydrothermal synthesis treatment, for example, water is preferably added to the heat-treated material and mixed to form a slurry, which is preferably subjected to a hydrothermal reaction for 5 to 20 hours in an autoclave under a saturated water vapor pressure of 180 to 200 ° C.
[0015]
By the hydrothermal synthesis treatment, calcium silicate hydrate is efficiently produced. The obtained calcium silicate hydrate is zonotolite and / or tobermorite, and can be used not only as a raw material for a calcium silicate heat insulating material but also as various calcium silicate building materials, heat insulating materials, and other light weight raw materials.
[0016]
【The invention's effect】
According to the present invention, the calcium silicate hydrate waste material discarded in large quantities can be recycled as calcium silicate hydrate by a simple operation.
[0017]
【Example】
EXAMPLES Next, although an Example is given and this invention is demonstrated still in detail, this invention is not limited to these Examples at all.
[0018]
Example 1
A zonotlite-based calcium silicate heat insulating material having a content of zonotlite, which is a main component recovered as waste, of about 90% by mass was used as a raw material. The heat insulating material was pulverized to a particle diameter of 75 to 250 μm. 20 parts by mass of water was added to 100 parts by mass of the obtained heat insulating material pulverized product, and carbon dioxide gas was blown into the obtained wet powder at a flow rate of 0.02 m 3 / min for 2 days. This carbonation-treated powder was put into a high-temperature electric furnace and heated to 450 to 800 ° C. for 12 hours. 1000 parts by mass of water was added to 100 parts by mass of the obtained fired product and mixed to obtain a slurry, which was then hydrothermally reacted in an autoclave at 200 ° C. under a saturated water vapor pressure for 20 hours. Table 1 shows the results of analyzing the mineral composition of the fired product and the hydrothermal reaction product obtained under each heating temperature condition. The analysis means was a powder X-ray diffractometer. Here, analysis by X-ray diffraction is performed by the following method. That is, in powder X-ray diffraction, first, a sample is pulverized using an agate mortar, an alumina mortar, or the like to reduce the sample particle size to about 20 μm or less, and the obtained powder sample is filled in a metal sample holder. For X-ray diffraction, a Cu tube is used, the diffraction angle is θ, and the measurement speed is 2θ = 2 deg./min. Mineral analysis identifies the resulting diffraction peaks with a JCPDS search card.
[0019]
[Table 1]
Figure 0004426752
[0020]
As is apparent from Table 1, if the zonotorite-based material is heated to 600 to 750 ° C. after carbon dioxide treatment, β-C 2 S can be obtained without adding any components, and if this is hydrothermally synthesized, zonotlite or It can be seen that the tobermorite plays.
[0021]
Example 2
A tobermorite-based calcium silicate heat insulating material having a content of tobermorite as a main component recovered as waste of about 90% by mass was used as a raw material. The heat insulating material was pulverized to a particle diameter of 75 to 250 μm. 20 parts by mass of water was added to 100 parts by mass of the obtained heat insulating material pulverized product, and carbon dioxide gas was blown into the obtained wet powder at a flow rate of 0.02 m 3 / min for 2 days. This carbonation-treated powder was put into a high-temperature electric furnace and heated to 450 to 900 ° C. for 12 hours. After adding 1000 mass parts of water to 100 mass parts of the obtained baked product to make a slurry, this was hydrothermally reacted in an autoclave under a saturated water vapor pressure of 180 ° C. for 20 hours. Table 2 shows the results of analyzing the mineral composition of the fired product and hydrothermal reaction product obtained under each heating temperature condition. The analysis means is the same as in the first embodiment.
[0022]
[Table 2]
Figure 0004426752
[0023]
As is apparent from Table 2, if the tobermorite-based material is heated to 650-800 ° C. after the carbon dioxide treatment, β-C 2 S can be obtained without adding any components. You can see it playing.

Claims (2)

ゾノトライト(6CaO・6SiO 2 ・H 2 O)系珪酸カルシウム成形体廃材又はトバモライト(5CaO・6SiO 2 ・5H 2 O)系珪酸カルシウム成形体廃材を粉砕し、湿潤状態において二酸化炭素を該材料100質量部に対して100質量部以上反応させた後、該材料がゾノトライト系材料の場合600〜750℃にて、トバモライト系材料の場合650〜800℃にて3〜24時間加熱し、次いで水熱合成処理することを特徴とする珪酸カルシウム水和物の製造法。 Zonotolite (6CaO · 6SiO 2 · H 2 O) -based calcium silicate waste material or Tobermorite (5CaO · 6SiO 2 · 5H 2 O) -based calcium silicate waste material is pulverized and carbon dioxide is 100 parts by mass in a wet state. after reacting for 100 parts by mass or more with respect to, said material at 600 to 750 ° C. when xonotlite material is heated 3 to 24 hours at 650 to 800 ° C. If the tobermorite-based material, and then a hydrothermal synthesis process A method for producing calcium silicate hydrate, characterized by comprising: 水熱合成処理が、加熱処理後の材料に水を加えて混合してスラリー化し、180〜200℃の飽和水蒸気圧下のオートクレーブ内で5〜20時間水熱反応させる処理である請求項1記載の製造法。  The hydrothermal synthesis treatment is a treatment in which water is added to the heat-treated material, mixed to form a slurry, and subjected to a hydrothermal reaction in an autoclave under a saturated water vapor pressure of 180 to 200 ° C for 5 to 20 hours. Manufacturing method.
JP2002286579A 2002-09-30 2002-09-30 Method for producing calcium silicate hydrate Expired - Lifetime JP4426752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002286579A JP4426752B2 (en) 2002-09-30 2002-09-30 Method for producing calcium silicate hydrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002286579A JP4426752B2 (en) 2002-09-30 2002-09-30 Method for producing calcium silicate hydrate

Publications (2)

Publication Number Publication Date
JP2004123409A JP2004123409A (en) 2004-04-22
JP4426752B2 true JP4426752B2 (en) 2010-03-03

Family

ID=32279602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002286579A Expired - Lifetime JP4426752B2 (en) 2002-09-30 2002-09-30 Method for producing calcium silicate hydrate

Country Status (1)

Country Link
JP (1) JP4426752B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104709914B (en) * 2013-12-12 2017-02-15 神华集团有限责任公司 Xonotlite material and xonotlite thermal-insulation material and their preparation methods

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103209925B (en) * 2010-11-11 2015-06-10 电气化学工业株式会社 Production method for beta-2CaOSiO2
JP5765982B2 (en) * 2011-03-23 2015-08-19 株式会社エーアンドエーマテリアル Method for producing calcium silicate material
JP5856891B2 (en) * 2012-03-29 2016-02-10 株式会社エーアンドエーマテリアル Manufacturing method of inorganic board
JP5674835B2 (en) * 2013-02-01 2015-02-25 関西保温工業株式会社 Fireproof coating material mainly composed of aluminum hydroxide and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104709914B (en) * 2013-12-12 2017-02-15 神华集团有限责任公司 Xonotlite material and xonotlite thermal-insulation material and their preparation methods

Also Published As

Publication number Publication date
JP2004123409A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
KR20080077002A (en) Multi-function composition for settable composite materials and methods of making the composition
Abadel et al. Effect of molar ratios on strength, microstructure & embodied energy of metakaolin geopolymer
Smalakys et al. Peculiarities of xonotlite synthesis from the raw materials with different SiO 2 activities
JP4426752B2 (en) Method for producing calcium silicate hydrate
FI61025B (en) SILICATE POLYMER MATERIAL VELVET FOER FARANDE FOER TILLVERKNING AV DETSAMMA
JP5190399B2 (en) Method for producing calcium silicate plate
JP2009215151A (en) Cement-based solidifying material using dry powder of sludge and method for producing the same
JP5871685B2 (en) Calcium silicate molded body and method for producing the same
JP4827045B2 (en) Water purification material and method for producing water purification material
KR20170058890A (en) Method of manufacturing kalium type artificial zeolite from coal fly ash
JP3653523B2 (en) Carbonated cured body
Faisal et al. Geopolymerization with bagasse bottom ash and china clay, effect of calcination temperature and silica to alumina ratio
KR20150079481A (en) Method of manufacturing kalium type artificial zeolite from coal fly ash
Cao et al. Preparation of calcium silicate board from tobermorite-rich residue for energy conservation in buildings
JP2022148720A (en) Method for manufacturing calcium silicate molding
JP2021075439A (en) Method for producing tobermorite-containing housing material, tobermorite, and tobermorite-containing housing material
JP2993359B2 (en) Method for producing recycled calcium silicate insulation
JPH0672753A (en) Production of calcium silicate molding
JPH08301639A (en) Solidification and materialization of fly ash powder with geopolymer
JPH0437006B2 (en)
JPS6213299B2 (en)
JPH0158147B2 (en)
JP2005187324A (en) Carbonated hardened body
JPS59141414A (en) Formed amorphous silica
Heikal et al. Characteristics and durability of alkali activated Egyptian blast-furnace slag-silica fume pastes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091211

R150 Certificate of patent or registration of utility model

Ref document number: 4426752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term