JP4343267B1 - Green phosphor - Google Patents

Green phosphor Download PDF

Info

Publication number
JP4343267B1
JP4343267B1 JP2009503561A JP2009503561A JP4343267B1 JP 4343267 B1 JP4343267 B1 JP 4343267B1 JP 2009503561 A JP2009503561 A JP 2009503561A JP 2009503561 A JP2009503561 A JP 2009503561A JP 4343267 B1 JP4343267 B1 JP 4343267B1
Authority
JP
Japan
Prior art keywords
phosphor
green phosphor
mesh
diffraction
maximum peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009503561A
Other languages
Japanese (ja)
Other versions
JPWO2010029654A1 (en
Inventor
理一 小川原
明日香 篠倉
純一 伊東
泰三 森中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority claimed from PCT/JP2009/000024 external-priority patent/WO2010029654A1/en
Application granted granted Critical
Publication of JP4343267B1 publication Critical patent/JP4343267B1/en
Publication of JPWO2010029654A1 publication Critical patent/JPWO2010029654A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Abstract

内部量子効率を高めることができる緑色蛍光体を提供する。
Sr、Ga及びSを含有する母体結晶と、発光中心とを含有する緑色蛍光体であって、XRDパターンにおいて、回折角2θ=21〜27°に現れる最大ピークの回折強度に対する、回折角2θ=14〜20°に現れる最大ピークの回折強度の比率が0.4以上であることを特徴とする緑色蛍光体を提案する。
【選択図】図1
A green phosphor capable of increasing the internal quantum efficiency is provided.
A green phosphor containing a host crystal containing Sr, Ga and S and an emission center, and in the XRD pattern, the diffraction angle 2θ = the diffraction intensity of the maximum peak appearing at a diffraction angle 2θ = 21 to 27 °. A green phosphor characterized in that the ratio of the diffraction intensity of the maximum peak appearing at 14 to 20 ° is 0.4 or more.
[Selection] Figure 1

Description

本発明は、緑色蛍光体に関する。詳しくは、青色LEDや近紫外LEDで励起することができ、照明用蛍光体として用いたり、液晶のバックライトや、FED(電界放射型ディスプレイ)、PDP(プラズマディスプレイ)、EL(エレクトロルミネッセンス)などのディスプレイ用蛍光体として用いたりすることができる緑色蛍光体に関する。   The present invention relates to a green phosphor. Specifically, it can be excited by a blue LED or a near-ultraviolet LED, used as an illumination phosphor, a liquid crystal backlight, FED (field emission display), PDP (plasma display), EL (electroluminescence), etc. The present invention relates to a green phosphor that can be used as a display phosphor.

現在の照明用光源の主流は、蛍光灯や白熱電球であるが、LED(発光ダイオード)を光源に用いたものは、蛍光灯等に比べて消費電力が少なく、寿命も長く、手で触っても熱くないなど安全性の面でも優れている上、水銀等の有害物質を含まず環境面でも優れており、近い将来、照明用光源の主流となることが期待されている。   The current mainstream of light sources for illumination is fluorescent lamps and incandescent lamps, but those using LEDs (light-emitting diodes) as light sources consume less power and have longer lifespans than those of fluorescent lamps. It is not hot, so it is excellent in terms of safety and does not contain harmful substances such as mercury and is also excellent in terms of the environment. It is expected to become the mainstream of lighting light sources in the near future.

現行の白色LEDは、青色LEDとYAG:Ce(黄)とを組み合わせて構成されているが、自然な発色性を示す演色性に劣り、特に赤色物体や人肌をこのような現行の白色LEDで照らしても自然光に照らされた色を再現できないという問題を抱えていた。そこで、このような現行白色LEDの演色性を改善する手法として、近紫外LEDと赤、緑、青の3種類の蛍光体とを組み合わせたり、青色LEDと赤、緑の2種類の蛍光体とを組み合わせたりして白色LEDを構成することが検討されており、かかる目的に使用する緑色蛍光体として、SrGa24:Euが開示されている(特許文献1、2及び3参照)。The current white LED is composed of a combination of a blue LED and YAG: Ce (yellow), but it is inferior in color rendering that exhibits a natural color development property. Even if it was illuminated with, it had a problem that it could not reproduce the color illuminated by natural light. Therefore, as a method for improving the color rendering properties of such current white LEDs, a combination of a near-ultraviolet LED and three types of phosphors of red, green and blue, or a blue LED and two types of phosphors of red and green, As a green phosphor used for this purpose, SrGa 2 S 4 : Eu is disclosed (see Patent Documents 1, 2, and 3).

特開2002−060747号公報JP 2002-060747 A 特開2007−056267号公報JP 2007-056267 A 特開2007−214579号公報JP 2007-214579 A

従来、開示されていたSrGa24:Euからなる緑色蛍光体は、発光効率をさらに高める必要があった。発光効率を高めるためには、外部量子効率(=内部量子効率×吸収率)の高い蛍光体を用いることが重要であると言われている。しかし、例えば前記の如く、近紫外LEDや青色LEDと、緑色蛍光体を含む蛍光体と組み合わせて白色光を得る場合には、LEDが発光した光と、このLEDの光を蛍光体が吸収して発光する光と組み合わせて白色光を得るため、LEDが発光した光を適度に透過する必要がある。よって、このような用途においては、蛍光体の内部量子効率を高めて外部量子効率を高めるか、或いは蛍光体の発光強度を高める必要がある。Conventionally disclosed green phosphors composed of SrGa 2 S 4 : Eu have had to further increase the luminous efficiency. In order to increase the luminous efficiency, it is said that it is important to use a phosphor having a high external quantum efficiency (= internal quantum efficiency × absorption rate). However, for example, as described above, when white light is obtained by combining a near-ultraviolet LED, a blue LED, and a phosphor including a green phosphor, the phosphor absorbs the light emitted from the LED and the light of this LED. In order to obtain white light in combination with emitted light, it is necessary to appropriately transmit the light emitted by the LED. Therefore, in such applications, it is necessary to increase the external quantum efficiency by increasing the internal quantum efficiency of the phosphor, or to increase the emission intensity of the phosphor.

そこで本発明は、内部量子効率がより一層高い緑色蛍光体を提供せんとするものである。   Therefore, the present invention intends to provide a green phosphor having a higher internal quantum efficiency.

本発明は、Sr、Ga及びSを含有する母体結晶と、発光中心とを含有する緑色蛍光体であって、CuKα線を用いたXRDパターンにおいて、回折角2θ=21〜27°に現れる最大ピークの回折強度に対する、回折角2θ=14〜20°に現れる最大ピークの回折強度の比率が0.4以上であることを特徴とする緑色蛍光体を提案する。   The present invention is a green phosphor containing a host crystal containing Sr, Ga and S and an emission center, and in an XRD pattern using CuKα rays, a maximum peak appearing at a diffraction angle 2θ = 21 to 27 °. A green phosphor is proposed in which the ratio of the diffraction intensity of the maximum peak appearing at a diffraction angle 2θ = 14 to 20 ° with respect to the diffraction intensity is 0.4 or more.

本発明の緑色蛍光体は、XRDパターンにおいて、回折角2θ=21〜27°に現れる最大ピークの回折強度に対する、回折角2θ=14〜20°に現れる最大ピークの回折強度の比率が有意に高く、且つ、内部量子効率が高いという特徴を有しており、例えば、励起源としての近紫外LEDや青色LEDと、本発明の緑色蛍光体を含む蛍光体とを組み合わせて白色発光素子乃至装置を構成した場合、内部量子効率が高いから発光効率が高く、より十分な白色光を得ることができる。また、限られた特性のLEDに対して限られた量の緑色蛍光体を組み合わせる場合であっても、十分な発光量を得ることができる。   In the XRD pattern, the ratio of the maximum peak diffraction intensity appearing at the diffraction angle 2θ = 14 to 20 ° to the maximum peak diffraction intensity appearing at the diffraction angle 2θ = 21 to 27 ° in the XRD pattern is significantly high. And, for example, a combination of a near-ultraviolet LED or a blue LED as an excitation source and a phosphor containing the green phosphor of the present invention provides a white light emitting device or device. When configured, the internal quantum efficiency is high, so the light emission efficiency is high, and more sufficient white light can be obtained. In addition, even when a limited amount of green phosphor is combined with an LED having limited characteristics, a sufficient amount of light emission can be obtained.

横軸:2θ=21〜27°に現れる最大ピークの回折強度に対する、2θ=14〜20°に現れる最大ピークの回折強度の比率(400)/(422)、縦軸:内部量子効率(%)からなる座標上に、実施例1−12及び比較例1−6で得られた蛍光体粉末の値をプロットした図である。また、図中に示した点線は、国際回折データセンター(ICDD)の標準サンプル(00-025-0895)に示された回折強度から計算した値((400)/(422)=0.54)である。Horizontal axis: Ratio of diffraction intensity of maximum peak appearing at 2θ = 14 to 20 ° to diffraction intensity of maximum peak appearing at 2θ = 21 to 27 ° (400) / (422), vertical axis: internal quantum efficiency (%) It is the figure which plotted the value of the fluorescent substance powder obtained in Example 1-12 and Comparative Example 1-6 on the coordinate which consists of. Moreover, the dotted line shown in the figure is a value calculated from the diffraction intensity shown in the standard sample (00-025-0895) of the International Diffraction Data Center (ICDD) ((400) / (422) = 0.54). It is. 横軸:2θ=36〜42°に現れる最大ピークの回折強度に対する、2θ=32〜37°に現れる最大ピークの回折強度の比率(642)/(444)、縦軸:内部量子効率(%)からなる座標上に、実施例1−12及び比較例1−6で得られた蛍光体粉末の値をプロットした図である。また、図中に示した点線は、国際回折データセンター(ICDD)の標準サンプル(00-025-0895)に示された回折強度から計算した値((642)/(444)=2.2)である。Horizontal axis: ratio of diffraction intensity of maximum peak appearing at 2θ = 32 to 37 ° to diffraction intensity of maximum peak appearing at 2θ = 36 to 42 ° (642) / (444), vertical axis: internal quantum efficiency (%) It is the figure which plotted the value of the fluorescent substance powder obtained in Example 1-12 and Comparative Example 1-6 on the coordinate which consists of. Moreover, the dotted line shown in the figure is a value calculated from the diffraction intensity shown in the standard sample (00-025-0895) of the International Diffraction Data Center (ICDD) ((642) / (444) = 2.2) It is. 横軸:2θ=27〜34°に現れる最大ピークの回折強度に対する、2θ=21〜27°に現れる最大ピークの回折強度の比率(422)/(062)、縦軸:内部量子効率(%)からなる座標上に、実施例1−12及び比較例1−6で得られた蛍光体粉末の値をプロットした図である。また、図中に示した点線は、国際回折データセンター(ICDD)の標準サンプル(00-025-0895)に示された回折強度から計算した値((422)/(062)=2.6)である。Horizontal axis: Ratio of diffraction intensity of maximum peak appearing at 2θ = 21 to 27 ° to diffraction intensity of maximum peak appearing at 2θ = 27 to 34 ° (422) / (062), vertical axis: Internal quantum efficiency (%) It is the figure which plotted the value of the fluorescent substance powder obtained in Example 1-12 and Comparative Example 1-6 on the coordinate which consists of. Moreover, the dotted line shown in the figure is a value calculated from the diffraction intensity shown in the standard sample (00-025-0895) of the International Diffraction Data Center (ICDD) ((422) / (062) = 2.6). It is. SrS−Ga23系状態図である。A SrS-Ga 2 S 3 phase diagram. 実施例7のXRDパターンである。10 is an XRD pattern of Example 7. FIG. 比較例3のXRDパターンである。10 is an XRD pattern of Comparative Example 3.

発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

以下に本発明の実施形態について詳細に述べるが、本発明の範囲が以下に説明する実施形態に限定されるものではない。   Embodiments of the present invention will be described in detail below, but the scope of the present invention is not limited to the embodiments described below.

本実施形態に係る緑色蛍光体(以下「本緑色蛍光体」という)は、Sr、Ga及びSを含有する母体結晶に、発光中心としてEu2+をドープしてなる緑色蛍光体であり、好ましくは一般式SrGa24:Eu2+で示される結晶を含む蛍光体である。The green phosphor according to the present embodiment (hereinafter referred to as “the present green phosphor”) is a green phosphor obtained by doping a host crystal containing Sr, Ga and S with Eu 2+ as the emission center. Is a phosphor containing a crystal represented by the general formula SrGa 2 S 4 : Eu 2+ .

この際、本緑色蛍光体の発光中心(発光イオン)は、2価のEu2+を含むもの、特に2価のEu2+のみであるのが好ましい。Eu2+の発光波長(色)は、母結晶に強く依存し、母結晶によって多彩な波長を示すことが知られているが、本緑色蛍光体が特定する母結晶であれば緑色を示す発光スペクトルを得ることができる。
Eu2+の濃度は、母結晶中のSrの濃度の0.1〜10mol%であることが好ましく、中でも0.5〜7mol%、その中でも特に1〜5mol%であるのが好ましい。
なお、発光中心(発光イオン)として、Eu2+以外のイオン、例えば希土類イオン及び遷移金属イオンからなる群より選ばれた1種又は2種以上のイオンを用いても同様の効果を期待することができる。希土類イオンとしては、例えばSc、Tb、Er、Ce等のイオンが挙げられ、遷移金属イオンとしては、例えばMn、Cu、Ag、Cr、Ti等のイオンが挙げられる。
At this time, it is preferable that the emission center (luminescent ion) of the green phosphor is one containing divalent Eu 2+ , in particular, only divalent Eu 2+ . The emission wavelength (color) of Eu 2+ strongly depends on the mother crystal and is known to exhibit various wavelengths depending on the mother crystal. A spectrum can be obtained.
The concentration of Eu 2+ is preferably 0.1 to 10 mol% of the concentration of Sr in the mother crystal, preferably 0.5 to 7 mol%, and more preferably 1 to 5 mol%.
It should be noted that the same effect can be expected even if an ion other than Eu 2+ , for example, one or more ions selected from the group consisting of rare earth ions and transition metal ions is used as the luminescent center (luminescent ion). Can do. Examples of rare earth ions include ions such as Sc, Tb, Er, and Ce. Examples of transition metal ions include ions such as Mn, Cu, Ag, Cr, and Ti.

本緑色蛍光体は、SrGa24:Eu2+の単一相であっても、不純物相を含んでいてもよい。すなわち、SrS−Ga23系状態図(図4参照)における「液相+SrGa24」に到達後冷却されたもの、中でもGa2350mol%以上の領域の「液相+SrGa24」に到達後冷却されたものが好ましいため、当該液相成分が冷却されてなる不純物相を含んでいてもよい。The green phosphor may be a single phase of SrGa 2 S 4 : Eu 2+ or may contain an impurity phase. That is, in the SrS-Ga 2 S 3 system phase diagram (see FIG. 4), the liquid was cooled after reaching “liquid phase + SrGa 2 S 4 ”, and in particular, “liquid phase + SrGa 2 S in the region of 50 mol% or more of Ga 2 S 3. Since it is preferably cooled after reaching 4 ", it may contain an impurity phase formed by cooling the liquid phase component.

また、SrGa24で示される量論組成からすれば、Sr1.0モルに対してGaを2.00モルの割合で含むものであるが、上述のように本緑色蛍光体は、SrGa24:Eu2+の単一相であっても、不純物相を含んでいてもよく、中でも特にGa2350mol%以上の領域の「液相+SrGa24」に到達後冷却されたものが好ましいため、本緑色蛍光体は、SrGa24で示される量論組成よりも所定量だけGaを過剰に含有する場合を包含するものである。この際、Sr含有量に対するGa含有量のモル比率(Ga/Sr)が2.02〜3.02となるようにGaを過剰に含有するのが好ましい。特にその下限値は2.02以上、中でも特に2.21以上であるのが好ましく、上限値は2.72以下、中でも特に2.45以下であるのが好ましい。
但し、SrGa24で示される量論組成よりもGaを過剰に含有するものに限定される訳ではない。後述するように、Gaを過剰に含有させるほかにも、本緑色蛍光体を得る方法は存在するからである。
Further, according to the stoichiometric composition represented by SrGa 2 S 4 , it contains Ga at a ratio of 2.00 mol with respect to 1.0 mol of Sr. As described above, the green phosphor is composed of SrGa 2 S 4. : It may be a single phase of Eu 2+ or may contain an impurity phase, and in particular, one that has been cooled after reaching “liquid phase + SrGa 2 S 4 ” in a region of 50 mol% or more of Ga 2 S 3 Since it is preferable, this green phosphor includes a case where Ga is excessively contained by a predetermined amount rather than the stoichiometric composition represented by SrGa 2 S 4 . Under the present circumstances, it is preferable to contain Ga excessively so that the molar ratio (Ga / Sr) of Ga content with respect to Sr content may be set to 2.02-3.02. In particular, the lower limit value is 2.02 or more, particularly preferably 2.21 or more, and the upper limit value is preferably 2.72 or less, particularly preferably 2.45 or less.
However, it is not necessarily limited to what contains Ga more excessively than the stoichiometric composition shown by SrGa 2 S 4 . This is because, as will be described later, there is a method for obtaining the green phosphor other than containing Ga excessively.

(X線回折による特徴)
本緑色蛍光体は、X線回折装置(XRD)で測定されるCuKα線を用いたXRDパターンにおいて、回折角2θ=21〜27°に現れる最大ピークの回折強度に対する、回折角2θ=14〜20°に現れる最大ピークの回折強度の比率(400)/(422)が0.4以上であることが重要である。
なお、2θ=21〜27°に現れる最大ピークは、ICDD 00-025-0895を参酌すると(422)面の回折ピークと推察され、2θ=14〜20°に現れる最大ピークは、ICDD 00-025-0895を参酌すると(400)面の回折ピークであると推察されるため、本明細書では、当該比率を(400)/(422)とも表示する。
(400)/(422)が0.4以上であれば、内部量子効率が高くなることが判明している。
かかる観点から、本緑色蛍光体の(400)/(422)は0.4以上3以下であることが好ましく、さらに下限値は0.45以上であるのが好ましく、特に0.6以上であるのが好ましい。他方、上限値は2.8以下であるのが好ましく、特に2.5以下であるのが好ましい。
(Characteristics by X-ray diffraction)
This green phosphor has a diffraction angle 2θ = 14 to 20 with respect to the maximum peak diffraction intensity appearing at a diffraction angle 2θ = 21 to 27 ° in an XRD pattern using CuKα rays measured by an X-ray diffractometer (XRD). It is important that the ratio (400) / (422) of the diffraction intensity of the maximum peak appearing at ° is 0.4 or more.
Note that the maximum peak appearing at 2θ = 21 to 27 ° is assumed to be a diffraction peak of (422) plane in consideration of ICDD 00-025-0895, and the maximum peak appearing at 2θ = 14 to 20 ° is ICDD 00-025 If -0895 is taken into account, it is assumed that the diffraction peak is on the (400) plane, and therefore this ratio is also expressed as (400) / (422) in this specification.
It has been found that if (400) / (422) is 0.4 or more, the internal quantum efficiency is increased.
From this viewpoint, (400) / (422) of the green phosphor is preferably 0.4 or more and 3 or less, and the lower limit value is preferably 0.45 or more, particularly 0.6 or more. Is preferred. On the other hand, the upper limit is preferably 2.8 or less, and particularly preferably 2.5 or less.

また、回折角2θ=36〜42°に現れる最大ピークの回折強度に対する、回折角2θ=32〜37°に現れる最大ピークの回折強度の比率(642)/(444)は0.7以上であるのが好ましい。
なお、2θ=36〜42°に現れる最大ピークは、ICDD 00-025-0895を参酌すると(444)面の回折ピークと推察され、2θ=32〜37°に現れる最大ピークは、ICDD 00-025-0895を参酌すると(642)面の回折ピークであると推察されるため、本明細書では、当該比率を(642)/(444)とも表示する。
(642)/(444)が0.7以上であれば、内部量子効率が高くなることが判明している。
かかる観点から、本緑色蛍光体の(642)/(444)は0.7以上15.0以下であることが好ましく、さらに下限値は1.0以上、中でも1.5以上であるのが特に好ましく、上限値は12.0以下、中でも10.0以下であるのが特に好ましい。
The ratio (642) / (444) of the maximum peak diffraction intensity appearing at the diffraction angle 2θ = 32 to 37 ° to the maximum peak diffraction intensity appearing at the diffraction angle 2θ = 36 to 42 ° is 0.7 or more. Is preferred.
The maximum peak appearing at 2θ = 36 to 42 ° is assumed to be a diffraction peak of (444) plane in consideration of ICDD 00-025-0895, and the maximum peak appearing at 2θ = 32 to 37 ° is ICDD 00-025. When -0895 is taken into account, it is assumed that the diffraction peak is on the (642) plane. Therefore, in this specification, the ratio is also expressed as (642) / (444).
It has been found that if (642) / (444) is 0.7 or more, the internal quantum efficiency is increased.
From this point of view, (642) / (444) of the green phosphor is preferably 0.7 or more and 15.0 or less, and the lower limit is 1.0 or more, particularly 1.5 or more. The upper limit is preferably 12.0 or less, and particularly preferably 10.0 or less.

また、回折角2θ=27〜34°に現れる最大ピークの回折強度に対する、回折角2θ=21〜27°に現れる最大ピークの回折強度の比率(422)/(062)が2.6以上であるのが好ましい。
なお、2θ=27〜34°に現れる最大ピークは、ICDD 00-025-0895を参酌すると(062)面の回折ピークと推察され、2θ=21〜27°に現れる最大ピークは、ICDD 00-025-0895を参酌すると(422)面の回折ピークであると推察されるため、本明細書では、当該比率を(422)/(062)とも表示する。
(422)/(062)が2.6以上であれば、内部量子効率が高くなることが判明している。
かかる観点から、本緑色蛍光体の(422)/(062)は2.6以上8.0以下であることが好ましく、さらに下限値2.8以上、中でも3.0以上であるのが特に好ましく、上限値は7.0以下、中でも6.5以下であるのが特に好ましい。
The ratio (422) / (062) of the diffraction intensity of the maximum peak appearing at the diffraction angle 2θ = 21 to 27 ° to the diffraction intensity of the maximum peak appearing at the diffraction angle 2θ = 27 to 34 ° is 2.6 or more. Is preferred.
The maximum peak appearing at 2θ = 27 to 34 ° is assumed to be a diffraction peak of (062) plane in consideration of ICDD 00-025-0895, and the maximum peak appearing at 2θ = 21 to 27 ° is ICDD 00-025 Since -0895 is considered to be a diffraction peak of (422) plane, in this specification, the ratio is also expressed as (422) / (062).
It has been found that if (422) / (062) is 2.6 or more, the internal quantum efficiency is increased.
From this viewpoint, (422) / (062) of the green phosphor is preferably 2.6 or more and 8.0 or less, more preferably a lower limit value of 2.8 or more, and particularly preferably 3.0 or more. The upper limit is 7.0 or less, particularly 6.5 or less.

(本緑色蛍光体の特徴)
本緑色蛍光体は、近紫外領域〜青色領域の波長(300nm〜510nm程度)の光によって励起され、緑色光を発光するものである。
(Features of this green phosphor)
The green phosphor is excited by light having a wavelength in the near ultraviolet region to the blue region (about 300 nm to 510 nm) and emits green light.

本緑色蛍光体の発光スペクトルに関して言えば、波長300nm〜510nm程度の光励起によって、波長502nm±30nm〜557nm±30nmの領域に発光ピークを有する。
なお、本緑色蛍光体は、同一組成であれば、近紫外領域〜青色領域の波長(300nm〜510nm程度)のいずれの波長で励起しても、発光スペクトルの幅、位置が変わらない点にも一つの特徴がある。
With regard to the emission spectrum of the present green phosphor, it has an emission peak in the region of wavelengths of 502 nm ± 30 nm to 557 nm ± 30 nm by photoexcitation at a wavelength of about 300 nm to 510 nm.
In addition, if this green fluorescent substance is the same composition, even if it excites with any wavelength of the near ultraviolet region-blue region wavelength (about 300 nm-510 nm), the point that the width and position of the emission spectrum do not change. There is one feature.

CIE色度座標について言えば、本緑色蛍光体は、Srの一部をCa及びBaで置換することにより、x=0.05〜0.40、y=0.50〜0.80で示される緑色光、特にx=0.15〜0.35、y=0.60〜0.75で示される緑色光、中でもx=0.25〜0.33、y=0.65〜0.73で示される緑色光を発光することができる。   Speaking of CIE chromaticity coordinates, this green phosphor is expressed by x = 0.05 to 0.40 and y = 0.50 to 0.80 by substituting a part of Sr with Ca and Ba. Green light, especially x = 0.15 to 0.35, y = 0.60 to 0.75, especially x = 0.25 to 0.33, y = 0.65 to 0.73 The indicated green light can be emitted.

(製造方法)
次に、本緑色蛍光体の好ましい製造方法の一例について説明する。但し、下記に説明する製造方法に限定されるものではない。
(Production method)
Next, an example of a preferable method for producing the green phosphor will be described. However, it is not limited to the manufacturing method demonstrated below.

本緑色蛍光体は、Sr原料、Ga原料、S原料およびEu原料などの原料をそれぞれ秤量して混合し、還元雰囲気中900〜1400℃で焼成し、スタンプミルやらいかい機などで解砕した後、篩などで分級し、必要に応じてアニールし、好ましくはさらにエタノールをはじめとする非水系有機溶媒や水に沈降させ、上澄みを除いて乾燥させるようにして得ることができる。   In this green phosphor, raw materials such as Sr raw material, Ga raw material, S raw material and Eu raw material are weighed and mixed, fired at 900 to 1400 ° C. in a reducing atmosphere, and crushed with a stamp mill or a rough machine. It can be obtained by classifying with a sieve or the like, annealing as necessary, preferably by further precipitating in a non-aqueous organic solvent such as ethanol or water, and drying the supernatant.

かかる製造方法において、上記の如きX線回折による特徴を得るためには、例えば量論組成よりもGaを過剰に配合したり、焼成温度を調整したり、フラックスを配合して焼成したり、アニールしたりする方法が考えられる。   In such a production method, in order to obtain the above-described characteristics by X-ray diffraction, for example, Ga is added in excess of the stoichiometric composition, the firing temperature is adjusted, the flux is blended and fired, or annealing is performed. The method of doing is conceivable.

Sr原料としては、Srの酸化物の他、複酸化物、炭酸塩等のストロンチウム塩を挙げることができる
Ga原料としては、Ga23などのガリウム塩を挙げることができる。
S原料としては、SrSのほか、S、BaS、SiS2、Ce23、H2Sガス等を挙げることができる。
Eu原料としては、EuF、Eu、EuCl等のユウロピウム化合物(Eu塩)を挙げることができる。
Examples of the Sr material include strontium salts such as double oxides and carbonates in addition to the oxide of Sr. Examples of the Ga material include gallium salts such as Ga 2 O 3 .
Examples of the S raw material include SrS, S, BaS, SiS 2 , Ce 2 S 3 , and H 2 S gas.
Examples of the Eu raw material include europium compounds (Eu salts) such as EuF 3 , Eu 2 O 3 and EuCl 3 .

この際、SrGa24で示される量論組成からすれば、Sr1.0モルに対してGaを2.00モルの割合で混合して製造するのが一般的であるが、本緑色蛍光体の場合には、SrGa24で示される量論組成よりも所定量だけGaを過剰に混合して含有させてもよい。具体的には、Sr含有量に対するGa含有量のモル比率(Ga/Sr)が2.02〜3.02となる程度、特に2.02〜2.72、中でも特に2.21〜2.45となる程度にGa過剰に含有させてもよい。
このように、Sr含有量に対するGa含有量のモル比率(Ga/Sr)を2.00より多くすることによっても、上記の如きX線回折による特徴を得ることができる。
At this time, according to the stoichiometric composition represented by SrGa 2 S 4 , it is common to manufacture by mixing 2.00 mol of Ga with respect to 1.0 mol of Sr. In this case, Ga may be mixed and contained by a predetermined amount in excess of the stoichiometric composition represented by SrGa 2 S 4 . Specifically, the molar ratio of the Ga content to the Sr content (Ga / Sr) is 2.02 to 3.02, particularly 2.02 to 2.72, especially 2.21 to 2.45. It may be contained in excess of Ga to such an extent that
Thus, the characteristic by X-ray diffraction as described above can also be obtained by increasing the molar ratio (Ga / Sr) of the Ga content to the Sr content from 2.00.

また、MgCl2、CaCl2、NaCl2、NaCl、KCl、KI、SrF2、EuF3などのフラックスを添加することによっても、上記の如きX線回折による特徴を得ることができる。Further, the above-mentioned characteristics by X-ray diffraction can be obtained also by adding a flux such as MgCl 2 , CaCl 2 , NaCl 2 , NaCl, KCl, KI, SrF 2 , EuF 3 .

なお、演色性を向上させるために、Pr、Smなどの希土類元素を色目調整剤として原料に添加してもよい。
励起効率の向上のために、Sc、La、Gd、Lu等の希土類族元素から選択される1種以上の元素を増感剤として原料に添加するようにしてもよい。
ただし、これらの添加量は、それぞれSrに対して5モル%以下とするのが好ましい。これらの元素の含有量が5モル%を超えると、異相が多量に析出し、輝度が著しく低下するおそれがある。
また、アルカリ金属元素、Ag等の1価の陽イオン金属、Cl-、F-、I-等のハロゲンイオンを電荷補償剤として原料に添加するようにしてもよい。その添加量は、電荷補償効果及び輝度の点で、アルミニウム族や希土類族の含有量と等量程度とするのが好ましい。
In order to improve color rendering properties, rare earth elements such as Pr and Sm may be added to the raw material as a color adjusting agent.
In order to improve excitation efficiency, one or more elements selected from rare earth elements such as Sc, La, Gd, and Lu may be added to the raw material as a sensitizer.
However, these addition amounts are preferably 5 mol% or less with respect to Sr. When the content of these elements exceeds 5 mol%, a large amount of heterogeneous phases are precipitated, and the luminance may be remarkably lowered.
Further, alkali metal elements, monovalent cation metals such as Ag + , and halogen ions such as Cl , F and I may be added to the raw material as charge compensators. The amount added is preferably about the same as the content of aluminum group or rare earth group in terms of charge compensation effect and luminance.

原料の混合は、乾式、湿式いずれで行なってもよい。
乾式混合する場合、その混合方法を特に限定するものではなく、例えばジルコニアボールをメディアに用いてペイントシェーカーやボールミル等で混合し、必要に応じて乾燥させて、原料混合物を得るようにすればよい。
湿式混合する場合は、原料を懸濁液の状態とし、上記同様にジルコニアボールをメディアに用いてペイントシェーカーやボールミル等で混合した後、篩等でメディアを分離し、減圧乾燥や真空乾燥、スプレードライなどの適宜乾燥法によって懸濁液から水分を除去して乾燥原料混合物を得るようにすればよい。
Mixing of the raw materials may be performed either dry or wet.
In the case of dry mixing, the mixing method is not particularly limited. For example, zirconia balls may be used as a medium, mixed with a paint shaker or a ball mill, and dried as necessary to obtain a raw material mixture. .
In the case of wet mixing, the raw material is in a suspension state, and after mixing with a paint shaker or a ball mill using zirconia balls as the medium, the medium is separated with a sieve, and dried under reduced pressure, vacuum dried, or sprayed. Water may be removed from the suspension by an appropriate drying method such as drying to obtain a dry raw material mixture.

焼成する前に、必要に応じて、上記如く得られた原料混合物を粉砕、分級、乾燥を施すようにしてもよい。但し、必ずしも粉砕、分級、乾燥を施さなくてもよい。   Before firing, the raw material mixture obtained as described above may be pulverized, classified and dried as necessary. However, crushing, classification, and drying are not necessarily performed.

焼成は、1000℃〜1400℃で焼成するのが好ましい。
この際の焼成雰囲気としては、少量の水素ガスを含有する窒素ガス雰囲気、一酸化炭素を含有する二酸化炭素雰囲気、硫化水素、二硫化炭素、その他の不活性ガス又は還元性ガスの雰囲気などを採用することができるが、中でも硫化水素雰囲気で焼成するのが好ましい。
焼成温度によっても、X線回折による特徴を調整することができる。例えばSrGa24で示される量論組成よりもGaを少なく配合した場合には、1100℃以上、特に1150℃以上で焼成するのが好ましい。また、SrGa24で示される量論組成よりもGaを過剰に配合した場合には、1000℃以上、特に1050℃以上で焼成するのが好ましい。
焼成温度の上限は焼成炉の耐久温度、生成物の分解温度等によって決まるが、本緑色蛍光体の製造方法においては1000〜1200℃で焼成することが特に好ましい。また、焼成時間は焼成温度と関連するが、2時間〜24時間の範囲内で適宜調整するのが好ましい。
Firing is preferably performed at 1000 ° C. to 1400 ° C.
As the firing atmosphere at this time, a nitrogen gas atmosphere containing a small amount of hydrogen gas, a carbon dioxide atmosphere containing carbon monoxide, an atmosphere of hydrogen sulfide, carbon disulfide, other inert gas or reducing gas, etc. are adopted. Of these, firing in a hydrogen sulfide atmosphere is preferable.
The characteristics by X-ray diffraction can also be adjusted by the firing temperature. For example, when less Ga is blended than the stoichiometric composition represented by SrGa 2 S 4, it is preferable to fire at 1100 ° C. or higher, particularly 1150 ° C. or higher. In addition, when Ga is added in excess of the stoichiometric composition represented by SrGa 2 S 4, it is preferably fired at 1000 ° C. or higher, particularly 1050 ° C. or higher.
The upper limit of the firing temperature is determined by the durability temperature of the firing furnace, the decomposition temperature of the product, etc., but in the method for producing the green phosphor, firing at 1000 to 1200 ° C. is particularly preferable. Moreover, although baking time is related with baking temperature, it is preferable to adjust suitably within the range of 2 hours-24 hours.

上記焼成において、原料混合物がイオウ原料を含まない場合には、硫化水素又は二硫化炭素の雰囲気中で焼成するのが好ましい。しかし、原料混合物中にイオウ原料を含む場合には、硫化水素、二硫化炭素又は不活性ガスの雰囲気中で焼成することができる。この場合の硫化水素及び二硫化炭素はイオウ化合物となることもあり、また生成物の分解を抑制する機能もある。
他方、焼成雰囲気に硫化水素又は二硫化炭素を用いる場合には、これらの化合物もイオウ化合物となるため、例えば、原料成分としてBaSを用いる場合には、バリウム化合物及びイオウ化合物を用いたことになる。
In the above firing, when the raw material mixture does not contain a sulfur raw material, it is preferably fired in an atmosphere of hydrogen sulfide or carbon disulfide. However, when the raw material mixture contains a sulfur raw material, it can be fired in an atmosphere of hydrogen sulfide, carbon disulfide, or an inert gas. In this case, hydrogen sulfide and carbon disulfide may become a sulfur compound, and also have a function of suppressing decomposition of the product.
On the other hand, when hydrogen sulfide or carbon disulfide is used in the firing atmosphere, these compounds are also sulfur compounds. For example, when BaS is used as a raw material component, a barium compound and a sulfur compound are used. .

本緑色蛍光体の製造においては、焼成後、スタンプミルやらいかい機、ペイントシェーカーなどで解砕し、次いで篩などで分級するのが好ましい。解砕する際、粒度が細かくなり過ぎることのないように解砕時間を調整するのが好ましい。
また、篩などによる分級では、150μmより大きい粒径、特に130μmより大きい粒径、中でも特に110μmより大きい粒径をカットするように分級するのが好ましい。また、2μmより小さい粒径、特に3μmより小さい粒径、中でも特に4μmより小さい粒径をカットするように分級するのが好ましい。
In the production of the present green phosphor, it is preferable that after firing, it is crushed with a stamp mill, a rough machine, a paint shaker or the like, and then classified with a sieve or the like. When crushing, it is preferable to adjust the crushing time so that the particle size does not become too fine.
In the classification using a sieve or the like, it is preferable to classify so as to cut a particle size larger than 150 μm, particularly a particle size larger than 130 μm, especially a particle size larger than 110 μm. Further, it is preferable to classify so as to cut a particle size smaller than 2 μm, particularly smaller than 3 μm, especially smaller than 4 μm.

上記の如く解砕した後、アニールすることでも、上記の如きX線回折による特徴を得ることができる。
アニールする際の雰囲気としては、少量の水素ガスを含有する窒素ガス雰囲気、一酸化炭素を含有する二酸化炭素雰囲気、硫化水素、二硫化炭素、その他の不活性ガス又は還元性ガスの雰囲気などを採用することができるが、中でも硫化水素雰囲気でアニールするのが好ましい。
アニール温度としては、例えばSrGa24で示される量論組成よりもGaを少なく配合した場合には、1100℃以上、特に1150℃以上でアニールするのが好ましい。また、SrGa24で示される量論組成よりもGaを過剰に配合した場合には、1000℃以上、特に1050℃以上でアニールするのが好ましい。
アニール温度の上限は、炉の耐久温度、生成物の分解温度等によって決まるが、本緑色蛍光体の製造方法においては1000〜1200℃でアニールすることが特に好ましい。また、アニール時間はアニール温度と関連するが、1時間〜10時間の範囲内で適宜調整するのが好ましい。
The characteristics by X-ray diffraction as described above can also be obtained by annealing after crushing as described above.
As the atmosphere for annealing, a nitrogen gas atmosphere containing a small amount of hydrogen gas, a carbon dioxide atmosphere containing carbon monoxide, an atmosphere of hydrogen sulfide, carbon disulfide, other inert gas or reducing gas, etc. are adopted. Among these, annealing in a hydrogen sulfide atmosphere is preferable.
As the annealing temperature, for example, when Ga is blended less than the stoichiometric composition represented by SrGa 2 S 4, it is preferable to anneal at 1100 ° C. or more, particularly 1150 ° C. or more. Further, when Ga is added in excess of the stoichiometric composition represented by SrGa 2 S 4, it is preferable to anneal at 1000 ° C. or higher, particularly 1050 ° C. or higher.
The upper limit of the annealing temperature is determined by the durability temperature of the furnace, the decomposition temperature of the product, etc., but in the method for producing the green phosphor, it is particularly preferable to anneal at 1000 to 1200 ° C. Moreover, although annealing time is related with annealing temperature, it is preferable to adjust suitably within the range of 1 hour-10 hours.

さらに、エタノールをはじめとする非水系有機溶媒や水などに投入し、超音波振動を与えつつ攪拌した後に静置させ、上澄みを除いて沈降物を回収し、次いで乾燥させることが好ましい。この最後の溶媒沈降分級処理により、内部量子効率及び外部量子効率を顕著に高めることができる。   Furthermore, it is preferable to put in a non-aqueous organic solvent such as ethanol or water, stir while applying ultrasonic vibration, and let stand, collect the precipitate except for the supernatant, and then dry. By this final solvent precipitation classification treatment, the internal quantum efficiency and the external quantum efficiency can be remarkably increased.

(用途)
本緑色蛍光体は、励起源と組合わせて緑色発光素子乃至装置を構成することができ、各種用途に用いることができる。例えば一般照明のほか、特殊光源、液晶のバックライトやEL、FED、CRT用表示デバイスなどの表示デバイスなどに利用することができる。
(Use)
The green phosphor can be combined with an excitation source to form a green light emitting element or device, and can be used for various applications. For example, in addition to general illumination, it can be used for special light sources, liquid crystal backlights, display devices such as EL, FED, and CRT display devices.

本緑色蛍光体とこれを励起し得る励起源とを組合わせた緑色発光素子乃至装置の一例として、例えば波長300nm〜510nmの光(すなわち、紫光〜青色光)を発生する発光体の近傍、すなわち該発光体が発光した光を受光し得る位置に本緑色蛍光体を配置することにより構成することができる。具体的には、発光体からなる発光体層上に、本緑色蛍光体からなる蛍光体層を積層するようにすればよい。
この際、蛍光体層は、例えば、粉末状の本緑色蛍光体を、結合剤と共に適当な溶剤に加え、充分に混合して均一に分散させ、得られた塗布液を、発光層の表面に塗布及び乾燥して塗膜(蛍光体層)を形成するようにすればよい。
また、本緑色蛍光体をガラス組成物や樹脂組成物に混練してガラス層内或いは樹脂層内に本緑色蛍光体を分散させるようにして蛍光体層を形成することもできる。
さらにまた、本緑色蛍光体をシート状に成形し、このシートを発光体層上に積層するようにしてもよいし、また、本緑色蛍光体を発光体層上に直接スパッタリングさせて製膜するようにしてもよい。
As an example of a green light emitting element or device that combines the green phosphor and an excitation source that can excite the green phosphor, for example, in the vicinity of a light emitter that generates light having a wavelength of 300 nm to 510 nm (that is, purple light to blue light), that is, The green phosphor can be configured at a position where the light emitted from the light emitter can be received. Specifically, a phosphor layer made of the green phosphor may be laminated on a light emitter layer made of a light emitter.
At this time, the phosphor layer is prepared by, for example, adding the powdery green phosphor together with a binder to an appropriate solvent, thoroughly mixing and dispersing uniformly, and applying the obtained coating liquid to the surface of the light emitting layer. What is necessary is just to make it apply | coat and dry and form a coating film (phosphor layer).
Alternatively, the phosphor layer can be formed by kneading the green phosphor into a glass composition or a resin composition and dispersing the green phosphor in the glass layer or the resin layer.
Furthermore, the green phosphor may be formed into a sheet shape, and this sheet may be laminated on the phosphor layer, or the green phosphor may be directly sputtered onto the phosphor layer to form a film. You may do it.

また、本緑色蛍光体と、赤色蛍光体と、必要に応じて青色蛍光体と、これらを励起し得る励起源とを組合わせて白色発光素子乃至装置を構成することができ、例えば一般照明のほか、特殊光源、液晶のバックライトやEL、FED、CRT用表示デバイスなどの表示デバイスなどに利用することができる。   Further, a white light emitting element or device can be configured by combining the green phosphor, the red phosphor, the blue phosphor as necessary, and an excitation source that can excite them, for example, for general illumination. In addition, it can be used for special light sources, liquid crystal backlights, display devices such as EL, FED, and CRT display devices.

本緑色蛍光体と、赤色蛍光体と、必要に応じて青色蛍光体と、これらを励起し得る励起源とを組合わせて構成する白色発光素子乃至装置の一例として、例えば波長300nm〜510nmの光(すなわち、紫光〜青色光)を発生する発光体の近傍、すなわち該発光体が発光した光を受光し得る位置に本緑色蛍光体を配置すると共に赤色蛍光体と必要に応じて青色蛍光体とを配置することにより構成することができる。
具体的には、発光体からなる発光体層上に、本緑色蛍光体からなる蛍光体層と、赤色蛍光体からなる蛍光体層と、必要に応じて青色蛍光体からなる蛍光体層とを積層するようにすればよい。
また、粉末状の本緑色蛍光体と赤色蛍光体と必要に応じて青色蛍光体とを、結合剤と共に適当な溶剤に加え、充分に混合して均一に分散させ、得られた塗布液を、発光層の表面に塗布及び乾燥して塗膜(蛍光体層)を形成するようにすればよい。
また、本緑色蛍光体と赤色蛍光体と必要に応じて青色蛍光体とを、ガラス組成物や樹脂組成物に混練してガラス層内或いは樹脂層内に蛍光体を分散させるようにして蛍光体層を形成することもできる。
また、青色LED或いは近紫外LEDからなる励起源上に、本緑色蛍光体と赤色蛍光体を樹脂中に混練してなる蛍光体層を形成すればよい。
さらにまた、本緑色蛍光体と赤色蛍光体と必要に応じて青色蛍光体とをそれぞれシート状に成形し、このシートを発光体層上に積層するようにしてもよいし、また、本緑色蛍光体と赤色蛍光体とを発光体層上に直接スパッタリングさせて製膜するようにしてもよい。
As an example of a white light emitting element or device configured by combining the green phosphor, the red phosphor, the blue phosphor as necessary, and an excitation source capable of exciting these, for example, light having a wavelength of 300 nm to 510 nm The green phosphor is disposed in the vicinity of a light emitter that generates (i.e., purple light to blue light), i.e., a position where the light emitted from the light emitter can be received, and a red phosphor and, if necessary, a blue phosphor It can comprise by arrange | positioning.
Specifically, a phosphor layer made of the green phosphor, a phosphor layer made of a red phosphor, and a phosphor layer made of a blue phosphor if necessary. What is necessary is just to laminate | stack.
In addition, the powdery green phosphor, red phosphor and, if necessary, the blue phosphor are added to a suitable solvent together with a binder, mixed thoroughly and dispersed uniformly, and the resulting coating solution is What is necessary is just to make it apply | coat and dry on the surface of a light emitting layer, and to form a coating film (phosphor layer).
Further, the green phosphor, the red phosphor and, if necessary, the blue phosphor are kneaded into a glass composition or a resin composition so that the phosphor is dispersed in the glass layer or the resin layer. Layers can also be formed.
In addition, a phosphor layer formed by kneading the green phosphor and the red phosphor in a resin may be formed on an excitation source composed of a blue LED or a near ultraviolet LED.
Furthermore, the green phosphor, the red phosphor and, if necessary, the blue phosphor may be formed into a sheet shape, and this sheet may be laminated on the phosphor layer. The phosphor and the red phosphor may be directly sputtered onto the phosphor layer to form a film.

(用語の解説)
本発明において「緑色発光素子乃至装置」或いは「白色発光素子乃至装置」における「発光素子」とは、少なくとも蛍光体とその励起源としての発光源とを備えた、比較的小型の光を発する発光デバイスを意図し、「発光装置」とは、少なくとも蛍光体とその励起源としての発光源とを備えた、比較的大型の光を発する発光デバイスを意図するものである。
本発明において「X〜Y」(X、Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と記載した場合、「Xより大きいことが好ましい」或いは「Yより小さいことが好ましい」旨の意図を包含する。
(Glossary of terms)
In the present invention, the “light emitting element” in the “green light emitting element or apparatus” or “white light emitting element or apparatus” is a light emitting element that emits a relatively small light and includes at least a phosphor and a light emitting source as its excitation source. A device is intended, and a “light-emitting device” is intended to mean a light-emitting device that emits a relatively large amount of light and includes at least a phosphor and a light-emitting source as its excitation source.
In the present invention, when “X to Y” (X and Y are arbitrary numbers) is described, it means “preferably greater than X” or “preferably greater than Y” with the meaning of “X to Y” unless otherwise specified. The meaning of “small” is also included.
Further, when “X or more” (X is an arbitrary number) or “Y or less” (Y is an arbitrary number), the intention of “preferably larger than X” or “preferably smaller than Y” Is included.

以下、実施例に基づいて本発明を説明する。但し、本発明はこれらに限定されて解釈されるものではない。   Hereinafter, the present invention will be described based on examples. However, the present invention is not construed as being limited to these.

<XRD測定>
実施例1−12及び比較例1−6で得られた蛍光体粉末をX線回折用のサンプルとし、このサンプルをホルダーに装着し、MXP18(ブルカー・エイエックスエス(株)社製)を使用し、下記条件で回折線の角度と強度を測定した。
<XRD measurement>
The phosphor powder obtained in Example 1-12 and Comparative Example 1-6 was used as a sample for X-ray diffraction, and this sample was mounted on a holder and MXP18 (Bruker AXS Co., Ltd.) was used. Then, the angle and intensity of the diffraction line were measured under the following conditions.

(管球)CuKα線
(管電圧)40kV
(管電流)150mA
(サンプリング間隔)0.02°
(スキャンスピード)4.0°/min
(開始角度)5.02°
(終了角度)80°
(Tube) CuKα ray (Tube voltage) 40 kV
(Tube current) 150 mA
(Sampling interval) 0.02 °
(Scanning speed) 4.0 ° / min
(Starting angle) 5.02 °
(End angle) 80 °

<吸収率、内部量子効率および外部量子効率の測定>
実施例1−12及び比較例1−6で得られた蛍光体粉末について、次のようにして吸収率、内部量子効率および外部量子効率を測定した。
分光蛍光光度計FP−6500、積分球ユニットISF−513(日本分光株式会社製)を用い、固体量子効率計算プログラムに従い行った。なお、分光蛍光光度計は、副標準光源およびローダミンBを用いて補正した。
励起光466nmとした場合のSrGa24:Eu蛍光体の吸収率、内部量子効率および外部量子効率の計算式を以下に示す。
<Measurement of absorption rate, internal quantum efficiency and external quantum efficiency>
For the phosphor powders obtained in Example 1-12 and Comparative Example 1-6, the absorptance, internal quantum efficiency, and external quantum efficiency were measured as follows.
A spectrofluorophotometer FP-6500 and an integrating sphere unit ISF-513 (manufactured by JASCO Corporation) were used and the calculation was performed according to a solid quantum efficiency calculation program. The spectrofluorometer was corrected using a sub-standard light source and rhodamine B.
Formulas for calculating the absorption rate, internal quantum efficiency, and external quantum efficiency of the SrGa 2 S 4 : Eu phosphor when the excitation light is 466 nm are shown below.

Figure 0004343267
Figure 0004343267

<PL発光スペクトル及びCIE色度座標の測定>
実施例1−12及び比較例1−6で得られた蛍光体粉末について、分光蛍光度計(日立社製、F−4500)を用いてPL (フォトルミネッセンス)スペクトルを測定し、PL発光強度を求めた。
また、PL発光スペクトルから、輝度発光色(CIE色度座標xy値)を求めた。
<Measurement of PL emission spectrum and CIE chromaticity coordinates>
About the phosphor powder obtained in Example 1-12 and Comparative Example 1-6, a PL (photoluminescence) spectrum was measured using a spectrofluorometer (manufactured by Hitachi, F-4500), and PL emission intensity was measured. Asked.
Moreover, the luminance emission color (CIE chromaticity coordinate xy value) was obtained from the PL emission spectrum.

(実施例1)
出発原料としてSrS、Ga23及びEuSを用い、Ga/Srの原子比が1.98となるようにSrS及びGa23を配合し、Srに対して1.0モル%となるようにEuSを配合し、φ3mmのジルコニアボールをメディアに用いてペイントシェーカーで100分間混合した。得られた混合物を、硫化水素雰囲気中、1130℃で4時間焼成した。次に、焼成した得たものを、らいかい機(日陶科学社製「ALM−360T」)で1分間解砕し、目開き140メッシュ及び440メッシュの篩を用いて、目開き140メッシュの篩下で且つ目開き440メッシュの篩上を回収し、蛍光体粉末(サンプル)を得た。
Example 1
SrS, Ga 2 S 3 and EuS are used as starting materials, and SrS and Ga 2 S 3 are blended so that the atomic ratio of Ga / Sr is 1.98, so as to be 1.0 mol% with respect to Sr. EuS was blended in, and mixed with a paint shaker for 100 minutes using φ3 mm zirconia balls as media. The resulting mixture was calcined at 1130 ° C. for 4 hours in a hydrogen sulfide atmosphere. Next, the fired product was pulverized for 1 minute with a raibai machine (“ALM-360T” manufactured by Nichido Kagaku Co., Ltd.), and using a 140 mesh mesh and a 440 mesh sieve, The top of the sieve having a mesh size of 440 mesh was collected under the sieve to obtain a phosphor powder (sample).

(実施例2)
出発原料としてSrS、Ga23及びEuSを用い、Ga/Srの原子比が2.00となるようにSrS及びGa23を配合し、Srに対して1.0モル%となるようにEuSを配合すると共に、SrGa24に対して0.5wt%となるようにフラックスとしてのMgCl2を配合し、φ3mmのジルコニアボールをメディアに用いてペイントシェーカーで100分間混合した。得られた混合物を、硫化水素雰囲気中、1100℃で4時間焼成した。次に、焼成した得たものを、らいかい機(日陶科学社製「ALM−360T」)で1分間解砕し、目開き140メッシュ及び440メッシュの篩を用いて、目開き140メッシュの篩下で且つ目開き440メッシュの篩上を回収し、蛍光体粉末(サンプル)を得た。
(Example 2)
SrS, Ga 2 S 3 and EuS are used as starting materials, and SrS and Ga 2 S 3 are blended so that the atomic ratio of Ga / Sr is 2.00, so that it becomes 1.0 mol% with respect to Sr. EuS was mixed with MgCl 2 as a flux so as to be 0.5 wt% with respect to SrGa 2 S 4 , and Φ 3 mm zirconia balls were used as media and mixed for 100 minutes with a paint shaker. The resulting mixture was calcined at 1100 ° C. for 4 hours in a hydrogen sulfide atmosphere. Next, the fired product was pulverized for 1 minute with a raibai machine (“ALM-360T” manufactured by Nichido Kagaku Co., Ltd.), and using a 140 mesh mesh and a 440 mesh sieve, The top of the sieve having a mesh size of 440 mesh was collected under the sieve to obtain a phosphor powder (sample).

(実施例3)
出発原料としてSrS、Ga23及びEuSを用い、Ga/Srの原子比が2.15となるようにSrS及びGa23を配合し、Srに対して1.0モル%となるようにEuSを配合し、φ3mmのジルコニアボールをメディアに用いてペイントシェーカーで100分間混合した。得られた混合物を、硫化水素雰囲気中、1100℃で6時間焼成した。次に、焼成した得たものを、らいかい機(日陶科学社製「ALM−360T」)で1分間解砕し、さらにアルゴン雰囲気中1100℃で4時間のアニールを行い、目開き140メッシュ及び440メッシュの篩を用いて、目開き140メッシュの篩下で且つ目開き440メッシュの篩上を回収し、蛍光体粉末(サンプル)を得た。
(Example 3)
SrS, Ga 2 S 3 and EuS are used as starting materials, and SrS and Ga 2 S 3 are blended so that the atomic ratio of Ga / Sr is 2.15, so that it becomes 1.0 mol% with respect to Sr. EuS was blended in, and mixed with a paint shaker for 100 minutes using φ3 mm zirconia balls as media. The resulting mixture was calcined at 1100 ° C. for 6 hours in a hydrogen sulfide atmosphere. Next, the fired product was crushed for 1 minute with a rakai machine (“ALM-360T” manufactured by Nissho Scientific Co., Ltd.), further annealed at 1100 ° C. for 4 hours in an argon atmosphere, and a mesh size of 140 mesh And a 440-mesh sieve were used to collect the mesh under the 140-mesh sieve and the top of the 440-mesh sieve to obtain phosphor powder (sample).

(実施例4)
出発原料としてSrS、Ga23及びEuSを用い、Ga/Srの原子比が2.00となるようにSrS及びGa23を配合し、Srに対して1.0モル%となるようにEuSを配合し、φ3mmのジルコニアボールをメディアに用いてペイントシェーカーで100分間混合した。得られた混合物を、硫化水素雰囲気中、1100℃で2時間焼成した。次に、焼成した得たものを、らいかい機(日陶科学社製「ALM−360T」)で1分間解砕し、さらにアルゴン雰囲気中1150℃で2時間のアニールを行い、目開き140メッシュ及び440メッシュの篩を用いて、目開き140メッシュの篩下で且つ目開き440メッシュの篩上を回収し、蛍光体粉末(サンプル)を得た。
(Example 4)
SrS, Ga 2 S 3 and EuS are used as starting materials, and SrS and Ga 2 S 3 are blended so that the atomic ratio of Ga / Sr is 2.00, so that it becomes 1.0 mol% with respect to Sr. EuS was blended in, and mixed with a paint shaker for 100 minutes using φ3 mm zirconia balls as media. The resulting mixture was calcined at 1100 ° C. for 2 hours in a hydrogen sulfide atmosphere. Next, the fired product was crushed for 1 minute with a rakai machine (“ALM-360T” manufactured by Nichido Kagaku Co., Ltd.), further annealed at 1150 ° C. for 2 hours in an argon atmosphere, and a mesh size of 140 mesh And a 440-mesh sieve were used to collect the mesh under the 140-mesh sieve and the top of the 440-mesh sieve to obtain phosphor powder (sample).

(実施例5)
出発原料としてSrS、Ga23及びEuSを用い、Ga/Srの原子比が2.00となるようにSrS及びGa23を配合し、Srに対して1.0モル%となるようにEuSを配合すると共に、SrGa24に対して0.5wt%となるようにフラックスとしてのKIを配合し、φ3mmのジルコニアボールをメディアに用いてペイントシェーカーで100分間混合した。得られた混合物を、硫化水素雰囲気中、1180℃で4時間焼成した。次に、焼成した得たものを、らいかい機(日陶科学社製「ALM−360T」)で1分間解砕し、目開き140メッシュ及び440メッシュの篩を用いて、目開き140メッシュの篩下で且つ目開き440メッシュの篩上を回収し、蛍光体粉末(サンプル)を得た。
(Example 5)
SrS, Ga 2 S 3 and EuS are used as starting materials, and SrS and Ga 2 S 3 are blended so that the atomic ratio of Ga / Sr is 2.00, so that it becomes 1.0 mol% with respect to Sr. EuS was blended with KI as a flux so as to be 0.5 wt% with respect to SrGa 2 S 4 , and Φ3 mm zirconia balls were used as media and mixed for 100 minutes with a paint shaker. The resulting mixture was calcined at 1180 ° C. for 4 hours in a hydrogen sulfide atmosphere. Next, the fired product was pulverized for 1 minute with a raibai machine (“ALM-360T” manufactured by Nichido Kagaku Co., Ltd.), and using a 140 mesh mesh and a 440 mesh sieve, The top of the sieve having a mesh size of 440 mesh was collected under the sieve to obtain a phosphor powder (sample).

(実施例6)
出発原料としてSrS、Ga23及びEuSを用い、Ga/Srの原子比が2.21となるようにSrS及びGa23を配合し、Srに対して1.0モル%となるようにEuSを配合し、φ3mmのジルコニアボールをメディアに用いてペイントシェーカーで100分間混合した。得られた混合物を、硫化水素雰囲気中、1100℃で4時間焼成した。次に、焼成した得たものを、らいかい機(日陶科学社製「ALM−360T」)で1分間解砕し、目開き140メッシュ及び440メッシュの篩を用いて、目開き140メッシュの篩下で且つ目開き440メッシュの篩上を回収し、蛍光体粉末(サンプル)を得た。
(Example 6)
SrS, Ga 2 S 3 and EuS are used as starting materials, and SrS and Ga 2 S 3 are blended so that the atomic ratio of Ga / Sr is 2.21, so as to be 1.0 mol% with respect to Sr. EuS was blended in, and mixed with a paint shaker for 100 minutes using φ3 mm zirconia balls as media. The resulting mixture was calcined at 1100 ° C. for 4 hours in a hydrogen sulfide atmosphere. Next, the fired product was pulverized for 1 minute with a raibai machine (“ALM-360T” manufactured by Nichido Kagaku Co., Ltd.), and using a 140 mesh mesh and a 440 mesh sieve, The top of the sieve having a mesh size of 440 mesh was collected under the sieve to obtain a phosphor powder (sample).

(実施例7)
出発原料としてSrS、Ga23及びEuSを用い、Ga/Srの原子比が3.02となるようにSrS及びGa23を配合し、Srに対して1.0モル%となるようにEuSを配合し、φ3mmのジルコニアボールをメディアに用いてペイントシェーカーで100分間混合した。得られた混合物を、硫化水素雰囲気中、1150℃で4時間焼成した。次に、焼成した得たものを、らいかい機(日陶科学社製「ALM−360T」)で1分間解砕し、目開き140メッシュ及び440メッシュの篩を用いて、目開き140メッシュの篩下で且つ目開き440メッシュの篩上を回収し、蛍光体粉末(サンプル)を得た。
(Example 7)
SrS, Ga 2 S 3 and EuS are used as starting materials, and SrS and Ga 2 S 3 are blended so that the atomic ratio of Ga / Sr is 3.02, so that it becomes 1.0 mol% with respect to Sr. EuS was blended in, and mixed with a paint shaker for 100 minutes using φ3 mm zirconia balls as media. The resulting mixture was calcined at 1150 ° C. for 4 hours in a hydrogen sulfide atmosphere. Next, the fired product was pulverized for 1 minute with a raibai machine (“ALM-360T” manufactured by Nichito Kagaku Co., Ltd.), and using a 140 mesh and 440 mesh sieve, The top of the sieve having a mesh size of 440 mesh was collected under the sieve to obtain a phosphor powder (sample).

(実施例8)
出発原料としてSrS、Ga23及びEuSを用い、Ga/Srの原子比が2.00となるようにSrS及びGa23を配合し、Srに対して1.0モル%となるようにEuSを配合し、φ3mmのジルコニアボールをメディアに用いてペイントシェーカーで100分間混合した。得られた混合物を、硫化水素雰囲気中、1190℃で6時間焼成した。次に、焼成した得たものを、らいかい機(日陶科学社製「ALM−360T」)で1分間解砕し、目開き140メッシュ及び440メッシュの篩を用いて、目開き140メッシュの篩下で且つ目開き440メッシュの篩上を回収し、蛍光体粉末(サンプル)を得た。
(Example 8)
SrS, Ga 2 S 3 and EuS are used as starting materials, and SrS and Ga 2 S 3 are blended so that the atomic ratio of Ga / Sr is 2.00, so that it becomes 1.0 mol% with respect to Sr. EuS was blended in, and mixed with a paint shaker for 100 minutes using φ3 mm zirconia balls as media. The resulting mixture was calcined at 1190 ° C. for 6 hours in a hydrogen sulfide atmosphere. Next, the fired product was pulverized for 1 minute with a raibai machine (“ALM-360T” manufactured by Nichido Kagaku Co., Ltd.), and using a 140 mesh mesh and a 440 mesh sieve, The top of the sieve having a mesh size of 440 mesh was collected under the sieve to obtain a phosphor powder (sample).

(実施例9)
出発原料としてSrS、Ga23及びEuSを用い、Ga/Srの原子比が2.72となるようにSrS及びGa23を配合し、Srに対して1.0モル%となるようにEuSを配合し、φ3mmのジルコニアボールをメディアに用いてペイントシェーカーで100分間混合した。得られた混合物を、硫化水素雰囲気中、1050℃で4時間焼成した。次に、焼成した得たものを、らいかい機(日陶科学社製「ALM−360T」)で1分間解砕し、目開き140メッシュ及び440メッシュの篩を用いて、目開き140メッシュの篩下で且つ目開き440メッシュの篩上を回収し、蛍光体粉末(サンプル)を得た。
Example 9
SrS, Ga 2 S 3 and EuS are used as starting materials, and SrS and Ga 2 S 3 are blended so that the atomic ratio of Ga / Sr is 2.72, so that it becomes 1.0 mol% with respect to Sr. EuS was blended in, and mixed with a paint shaker for 100 minutes using φ3 mm zirconia balls as media. The resulting mixture was calcined at 1050 ° C. for 4 hours in a hydrogen sulfide atmosphere. Next, the fired product was pulverized for 1 minute with a raibai machine (“ALM-360T” manufactured by Nichido Kagaku Co., Ltd.), and using a 140 mesh mesh and a 440 mesh sieve, The top of the sieve having a mesh size of 440 mesh was collected under the sieve to obtain a phosphor powder (sample).

(実施例10)
出発原料としてSrS、Ga23及びEuSを用い、Ga/Srの原子比が2.45となるようにSrS及びGa23を配合し、Srに対して1.0モル%となるようにEuSを配合し、φ3mmのジルコニアボールをメディアに用いてペイントシェーカーで100分間混合した。得られた混合物を、硫化水素雰囲気中、1100℃で4時間焼成した。次に、焼成した得たものを、らいかい機(日陶科学社製「ALM−360T」)で1分間解砕し、目開き140メッシュ及び440メッシュの篩を用いて、目開き140メッシュの篩下で且つ目開き440メッシュの篩上を回収し、蛍光体粉末(サンプル)を得た。
(Example 10)
SrS, Ga 2 S 3 and EuS are used as starting materials, SrS and Ga 2 S 3 are blended so that the atomic ratio of Ga / Sr is 2.45, and 1.0 mol% with respect to Sr. EuS was blended in, and mixed with a paint shaker for 100 minutes using φ3 mm zirconia balls as media. The resulting mixture was calcined at 1100 ° C. for 4 hours in a hydrogen sulfide atmosphere. Next, the fired product was pulverized for 1 minute with a raibai machine (“ALM-360T” manufactured by Nichito Kagaku Co., Ltd.), and using a 140 mesh and 440 mesh sieve, The top of the sieve having a mesh size of 440 mesh was collected under the sieve to obtain a phosphor powder (sample).

(実施例11)
出発原料としてSrS、Ga23及びEuSを用い、Ga/Srの原子比が2.45となるようにSrS及びGa23を配合し、Srに対して1.0モル%となるようにEuSを配合し、φ3mmのジルコニアボールをメディアに用いてペイントシェーカーで100分間混合した。得られた混合物を、硫化水素雰囲気中、1100℃で4時間焼成した。次に、焼成した得たものを、らいかい機(日陶科学社製「ALM−360T」)で1分間解砕し、さらに硫化水素雰囲気中1100℃で4時間のアニールを行い、目開き140メッシュ及び440メッシュの篩を用いて、目開き140メッシュの篩下で且つ目開き440メッシュの篩上を回収し、蛍光体粉末(サンプル)を得た。
Example 11
SrS, Ga 2 S 3 and EuS are used as starting materials, SrS and Ga 2 S 3 are blended so that the atomic ratio of Ga / Sr is 2.45, and 1.0 mol% with respect to Sr. EuS was blended in, and mixed with a paint shaker for 100 minutes using φ3 mm zirconia balls as media. The resulting mixture was calcined at 1100 ° C. for 4 hours in a hydrogen sulfide atmosphere. Next, the fired product was pulverized for 1 minute with a rakai machine (“ALM-360T” manufactured by Nisto Kagaku Co., Ltd.), and further annealed at 1100 ° C. in a hydrogen sulfide atmosphere for 4 hours. Using a mesh and a 440 mesh sieve, the mesh was collected under the 140 mesh mesh and on the 440 mesh sieve to obtain phosphor powder (sample).

(実施例12)
出発原料としてSrS、Ga23及びEuSを用い、Ga/Srの原子比が2.45となるようにSrS及びGa23を配合し、Srに対して1.0モル%となるようにEuSを配合し、φ3mmのジルコニアボールをメディアに用いてペイントシェーカーで100分間混合し、得られた混合物を、硫化水素雰囲気中、1200℃で4時間焼成した。次に、焼成した得たものを、らいかい機(日陶科学社製「ALM−360T」)で1分間解砕し、さらにアルゴン雰囲気中1150℃で6時間のアニールを行い、目開き140メッシュ及び440メッシュの篩を用いて、目開き140メッシュの篩下で且つ目開き440メッシュの篩上を回収した。さらに、このように回収した粉末を、99.5%エタノール溶液(25℃)に入れて攪拌しながら超音波(本多電子株式会社製「W−113」)を28kHz、45kHz、100kHzの順番にかけて分散させ、30秒静置した後、上澄みを除いて沈降したものだけを回収し、乾燥機(100℃)で10分乾燥させて蛍光体粉末(サンプル)を得た。
Example 12
SrS, Ga 2 S 3 and EuS are used as starting materials, SrS and Ga 2 S 3 are blended so that the atomic ratio of Ga / Sr is 2.45, and 1.0 mol% with respect to Sr. EuS was blended, and zirconia balls with a diameter of 3 mm were used as media and mixed for 100 minutes with a paint shaker. The resulting mixture was fired at 1200 ° C. for 4 hours in a hydrogen sulfide atmosphere. Next, the fired product was crushed for 1 minute with a rakai machine (“ALM-360T” manufactured by Nisto Kagaku Co., Ltd.), further annealed at 1150 ° C. for 6 hours in an argon atmosphere, and 140 mesh openings And a 440-mesh sieve were collected under a 140-mesh sieve and on a 440-mesh sieve. Furthermore, the powder collected in this manner was placed in a 99.5% ethanol solution (25 ° C.) and stirred, and ultrasonic waves (“W-113” manufactured by Honda Electronics Co., Ltd.) were applied in the order of 28 kHz, 45 kHz, and 100 kHz. After dispersing and allowing to stand for 30 seconds, only the sediment that had been removed except the supernatant was collected and dried for 10 minutes with a dryer (100 ° C.) to obtain a phosphor powder (sample).

(比較例1)
出発原料としてSrS、Ga23及びEuSを用い、Ga/Srの原子比が1.95となるようにSrS及びGa23を配合し、Srに対して1.0モル%となるようにEuSを配合し、φ3mmのジルコニアボールをメディアに用いてペイントシェーカーで100分間混合した。得られた混合物を、硫化水素雰囲気中、1100℃で2時間焼成した。次に、焼成した得たものを、らいかい機(日陶科学社製「ALM−360T」)で1分間解砕し、目開き140メッシュ及び440メッシュの篩を用いて、目開き140メッシュの篩下で且つ目開き440メッシュの篩上を回収し、蛍光体粉末(サンプル)を得た。
(Comparative Example 1)
SrS, Ga 2 S 3 and EuS are used as starting materials, and SrS and Ga 2 S 3 are blended so that the atomic ratio of Ga / Sr is 1.95, so that it becomes 1.0 mol% with respect to Sr. EuS was blended in, and mixed with a paint shaker for 100 minutes using φ3 mm zirconia balls as media. The resulting mixture was calcined at 1100 ° C. for 2 hours in a hydrogen sulfide atmosphere. Next, the fired product was pulverized for 1 minute with a raibai machine (“ALM-360T” manufactured by Nichido Kagaku Co., Ltd.), and using a 140 mesh mesh and a 440 mesh sieve, The top of the sieve having a mesh size of 440 mesh was collected under the sieve to obtain a phosphor powder (sample).

(比較例2)
Ga/Srの原子比が2.00となるようにSrS及びGa23を配合した以外は、比較例1と同様に蛍光体粉末(サンプル)を得た。
(Comparative Example 2)
A phosphor powder (sample) was obtained in the same manner as in Comparative Example 1 except that SrS and Ga 2 S 3 were blended so that the atomic ratio of Ga / Sr was 2.00.

(比較例3)
出発原料としてSrS、Ga23及びEuSを用い、Ga/Srの原子比が2.00となるようにSrS及びGa23を配合し、Srに対して1.0モル%となるようにEuSを配合し、φ3mmのジルコニアボールをメディアに用いてペイントシェーカーで100分間混合した。得られた混合物を、硫化水素雰囲気中、1100℃で4時間焼成した。次に、焼成した得たものを、らいかい機(日陶科学社製「ALM−360T」)で1分間解砕し、さらに硫化水素雰囲気中1050℃で2時間のアニールを行い、目開き140メッシュ及び440メッシュの篩を用いて、目開き140メッシュの篩下で且つ目開き440メッシュの篩上を回収し、蛍光体粉末(サンプル)を得た。
(Comparative Example 3)
SrS, Ga 2 S 3 and EuS are used as starting materials, and SrS and Ga 2 S 3 are blended so that the atomic ratio of Ga / Sr is 2.00, so that it becomes 1.0 mol% with respect to Sr. EuS was blended in, and mixed with a paint shaker for 100 minutes using φ3 mm zirconia balls as media. The resulting mixture was calcined at 1100 ° C. for 4 hours in a hydrogen sulfide atmosphere. Next, the fired product was pulverized for 1 minute with a rakai machine (“ALM-360T” manufactured by Nisto Kagaku Co., Ltd.), and further annealed at 1050 ° C. for 2 hours in a hydrogen sulfide atmosphere. Using a mesh and a 440 mesh sieve, the mesh was collected under the 140 mesh mesh and on the 440 mesh sieve to obtain phosphor powder (sample).

(比較例4)
出発原料としてSrS、Ga23及びEuSを用い、Ga/Srの原子比が4.00となるようにSrS及びGa23を配合し、Srに対して1.0モル%となるようにEuSを配合し、φ3mmのジルコニアボールをメディアに用いてペイントシェーカーで100分間混合した。得られた混合物を、硫化水素雰囲気中、950℃で4時間焼成した。次に、焼成した得たものを、らいかい機(日陶科学社製「ALM−360T」)で1分間解砕し、目開き140メッシュ及び440メッシュの篩を用いて、目開き140メッシュの篩下で且つ目開き440メッシュの篩上を回収し、蛍光体粉末(サンプル)を得た。
(Comparative Example 4)
SrS, Ga 2 S 3 and EuS are used as starting materials, SrS and Ga 2 S 3 are blended so that the atomic ratio of Ga / Sr is 4.00, and 1.0 mol% with respect to Sr. EuS was blended in, and mixed with a paint shaker for 100 minutes using φ3 mm zirconia balls as media. The resulting mixture was calcined at 950 ° C. for 4 hours in a hydrogen sulfide atmosphere. Next, the fired product was pulverized for 1 minute with a raibai machine (“ALM-360T” manufactured by Nichido Kagaku Co., Ltd.), and using a 140 mesh mesh and a 440 mesh sieve, The top of the sieve having a mesh size of 440 mesh was collected under the sieve to obtain a phosphor powder (sample).

(比較例5)
Ga/Srの原子比が2.00となるようにSrS及びGa23を配合した以外は、比較例4と同様に蛍光体粉末(サンプル)を得た。
(Comparative Example 5)
A phosphor powder (sample) was obtained in the same manner as in Comparative Example 4 except that SrS and Ga 2 S 3 were blended so that the atomic ratio of Ga / Sr was 2.00.

(比較例6)
Ga/Srの原子比が2.30となるようにSrS及びGa23を配合した以外は、比較例4と同様に蛍光体粉末(サンプル)を得た。
(Comparative Example 6)
A phosphor powder (sample) was obtained in the same manner as in Comparative Example 4 except that SrS and Ga 2 S 3 were blended so that the atomic ratio of Ga / Sr was 2.30.

Figure 0004343267
Figure 0004343267

Figure 0004343267
Figure 0004343267

(考察)
実施例1−12及び比較例1−6で得られた蛍光体粉末について、励起スペクトル及び発光スペクトルを測定したところ、波長300nm〜510nmの光(すなわち、紫光〜青色光)により十分励起され、励起スペクトルに2つのピークが見られたことから、近紫外光及び青色光によってより十分励起されることを確認した。
また、波長502nm±30nm〜557nm±30nmの範囲内の発光ピーク位置を示し、CIE色度座標x=0.05〜0.40、y=0.50〜0.80の範囲の緑色を発光することを確認した。
(Discussion)
When the excitation spectrum and the emission spectrum were measured for the phosphor powders obtained in Example 1-12 and Comparative Example 1-6, they were sufficiently excited and excited by light having a wavelength of 300 nm to 510 nm (that is, purple light to blue light). Since two peaks were observed in the spectrum, it was confirmed that the spectrum was more fully excited by near ultraviolet light and blue light.
In addition, the light emission peak position within a wavelength range of 502 nm ± 30 nm to 557 nm ± 30 nm is shown, and green light with a CIE chromaticity coordinate x = 0.05 to 0.40 and y = 0.50 to 0.80 is emitted. It was confirmed.

実施例1−12のXRDパターンの代表例として実施例7のXRDパターンを図5に示し、対比として比較例3のXRDパターンを図6に示した。
比較例3及び通常の緑色蛍光体(SrGa24)のXRDパターンに比べて、本緑色蛍光体(実施例1−12)のXRDパターンは、回折角2θ=14〜20°及び2θ=32〜37°に現れる最大ピークの回折強度が大きい一方、2θ=21〜27°、27〜34°及び36〜42°に現れる最大ピークの回折強度が小さいことが判明した。
したがって、2θ=21〜27°に現れる最大ピークの回折強度に対する2θ=14〜20°に現れる最大ピークの回折強度の比率(400)/(422)、2θ=36〜42°に現れる最大ピークの回折強度に対する2θ=32〜37°に現れる最大ピークの回折強度の比率(642)/(444)、或いは、2θ=27〜34°に現れる最大ピークの回折強度に対する2θ=21〜27°に現れる最大ピークの回折強度の比率(422)/(062)によって、本緑色蛍光体の特徴を示すことができるものと考えられる。
As a representative example of the XRD pattern of Example 1-12, the XRD pattern of Example 7 is shown in FIG. 5, and the XRD pattern of Comparative Example 3 is shown in FIG. 6 as a comparison.
Compared to the XRD pattern of Comparative Example 3 and the normal green phosphor (SrGa 2 S 4 ), the XRD pattern of the green phosphor (Example 1-12) has diffraction angles 2θ = 14 to 20 ° and 2θ = 32 It was found that the diffraction intensity of the maximum peak appearing at ˜37 ° is large, whereas the diffraction intensity of the maximum peak appearing at 2θ = 21 to 27 °, 27 to 34 ° and 36 to 42 ° is small.
Therefore, the ratio of the diffraction intensity of the maximum peak appearing at 2θ = 14-20 ° to the diffraction intensity of the maximum peak appearing at 2θ = 21-27 ° (400) / (422), and the maximum peak appearing at 2θ = 36-42 °. Ratio of diffraction intensity of maximum peak appearing at 2θ = 32 to 37 ° with respect to diffraction intensity (642) / (444), or appearing at 2θ = 21 to 27 ° with respect to diffraction intensity of maximum peak appearing at 2θ = 27 to 34 ° It is considered that the characteristics of the green phosphor can be shown by the ratio (422) / (062) of the diffraction intensity of the maximum peak.

図1より、実施例1−12は、比較例1−6に比べ、(400)/(422)が有意に高く、内部量子効率が高いことが判明した。特に実施例2〜12は内部量子効率が71%以上となり、中でも特に実施例7〜12は内部量子効率が75%以上となることが分かった。
また、実施例2−12は、国際回折データセンター(ICDD)の標準サンプル(00-025-0895、SrGa24)に比べても、(400)/(422)が有意に高いことが判明した。
かかる観点から、本緑色蛍光体の(400)/(422)は0.40以上であるのが好ましく、特に0.45以上、中でも特に0.6以上であるのがより好ましいと考えられる。また、上限値は、3を超えると溶融して粉末となり難いため、3以下であるのが好ましいと考えられる。
1 that Example 1-12 has a significantly higher (400) / (422) and higher internal quantum efficiency than Comparative Example 1-6. It turned out that especially Examples 2-12 become internal quantum efficiency 71% or more, and especially Examples 7-12 become internal quantum efficiency 75% or more especially.
Further, in Example 2-12, (400) / (422) was found to be significantly higher than the standard sample (00-025-0895, SrGa 2 S 4 ) of the International Diffraction Data Center (ICDD). did.
From this viewpoint, (400) / (422) of the green phosphor is preferably 0.40 or more, particularly 0.45 or more, and more preferably 0.6 or more. Moreover, since it will be hard to melt | dissolve and become a powder when the upper limit exceeds 3, it is considered to be preferably 3 or less.

図2より、実施例1−12は、比較例1−6に比べて内部量子効率が高く、且つ(642)/(444)が有意に高いことが判明した。
かかる観点から、本緑色蛍光体の(642)/(444)は0.70以上であるのが好ましく、特に1.0以上、中でも特に1.5以上であるのがより好ましいと考えられる。また、上限値は、10.0を超えると溶融して粉末となり難いため、10.0以下であるのが好ましいと考えられる。
2 that Example 1-12 has higher internal quantum efficiency and (642) / (444) is significantly higher than Comparative Example 1-6.
From this viewpoint, (642) / (444) of the green phosphor is preferably 0.70 or more, particularly 1.0 or more, and more preferably 1.5 or more. Moreover, since it will be hard to melt | dissolve and become a powder when 10.0 is exceeded, it is thought that it is preferable that it is 10.0 or less.

図3より、実施例1−12は、比較例1−6に比べ、(422)/(062)が有意に高く、内部量子効率が高いことが判明した。
また、実施例1−12のいずれも、国際回折データセンター(ICDD)の標準サンプル(00-025-0895、SrGa24)に比べて、(422)/(062)が高いことが判明した。
かかる観点から、本緑色蛍光体の(422)/(062)は、2.6以上であるのが好ましく、特に2.8以上、中でも特に3.0以上であるのが好ましいと考えられる。また、上限値は、8.0を超えると溶融して粉末となり難いため、8.0以下であるのが特に好ましいことが分かった。
From FIG. 3, it was found that Example 1-12 had significantly higher (422) / (062) and higher internal quantum efficiency than Comparative Example 1-6.
Moreover, none of the Examples 1-12, standard sample (00-025-0895, SrGa 2 S 4) of the International Center for Diffraction Data (ICDD) as compared with and found to be high (422) / (062) .
From this viewpoint, (422) / (062) of the present green phosphor is preferably 2.6 or more, particularly 2.8 or more, and particularly preferably 3.0 or more. Moreover, since it was hard to melt | dissolve and become a powder when an upper limit exceeds 8.0, it turned out that it is especially preferable that it is 8.0 or less.

これまでの試験結果を総合して検討すると、本緑色蛍光体の中でも、SrS−Ga23系状態図(図4参照)における「液相+SrGa24」に到達後冷却されたもの、中でもGa2350mol%以上の領域の「液相+SrGa24」に到達後冷却されたものが、内部量子効率を高める観点から好ましいと考えられる。Examining the test results so far, among the green phosphors, those cooled after reaching the “liquid phase + SrGa 2 S 4 ” in the SrS—Ga 2 S 3 phase diagram (see FIG. 4), In particular, it is considered preferable to be cooled after reaching “liquid phase + SrGa 2 S 4 ” in a region of 50 mol% or more of Ga 2 S 3 from the viewpoint of increasing the internal quantum efficiency.

Claims (6)

Sr、Ga及びSを含有する母体結晶と、発光中心とを含有する緑色蛍光体であって、CuKα線を用いたXRDパターンにおいて、回折角2θ=21〜27°に現れる最大ピークの回折強度に対する、回折角2θ=14〜20°に現れる最大ピークの回折強度の比率が0.4以上であることを特徴とする緑色蛍光体。  A green phosphor containing a host crystal containing Sr, Ga and S and an emission center, and in the XRD pattern using CuKα rays, the diffraction intensity of the maximum peak appearing at a diffraction angle 2θ = 21 to 27 ° A green phosphor, wherein the ratio of the diffraction intensity of the maximum peak appearing at a diffraction angle 2θ = 14 to 20 ° is 0.4 or more. 回折角2θ=36〜42°に現れる最大ピークの回折強度に対する、回折角2θ=32〜37°に現れる最大ピークの回折強度の比率が0.7以上であることを特徴とする請求項1記載の緑色蛍光体。  The ratio of the diffraction intensity of the maximum peak appearing at the diffraction angle 2θ = 32 to 37 ° to the diffraction intensity of the maximum peak appearing at the diffraction angle 2θ = 36 to 42 ° is 0.7 or more. Green phosphor. 回折角2θ=27〜34°に現れる最大ピークの回折強度に対する、回折角2θ=21〜27°に現れる最大ピークの回折強度の比率が2.6以上であることを特徴とする請求項1又は2に記載の緑色蛍光体。  The ratio of the diffraction intensity of the maximum peak appearing at the diffraction angle 2θ = 21 to 27 ° to the diffraction intensity of the maximum peak appearing at the diffraction angle 2θ = 27 to 34 ° is 2.6 or more. 2. The green phosphor according to 2. 発光中心としてEu2+を含むことを特徴とする請求項1〜3の何れかに記載の緑色蛍光体。The green phosphor according to any one of claims 1 to 3, wherein Eu 2+ is contained as an emission center. 励起源と、請求項1〜3の何れかに記載の緑色蛍光体とを備えた緑色発光素子乃至装置。  The green light emitting element thru | or apparatus provided with the excitation source and the green fluorescent substance in any one of Claims 1-3. 励起源と、請求項1〜3の何れかに記載の緑色蛍光体と、赤色蛍光体とを備えた白色発光素子乃至装置。  The white light emitting element thru | or apparatus provided with the excitation source, the green fluorescent substance in any one of Claims 1-3, and a red fluorescent substance.
JP2009503561A 2008-09-11 2009-01-07 Green phosphor Active JP4343267B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008233810 2008-09-11
JP2008233810 2008-09-11
PCT/JP2009/000024 WO2010029654A1 (en) 2008-09-11 2009-01-07 Green phosphor

Publications (2)

Publication Number Publication Date
JP4343267B1 true JP4343267B1 (en) 2009-10-14
JPWO2010029654A1 JPWO2010029654A1 (en) 2012-02-02

Family

ID=41253485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009503561A Active JP4343267B1 (en) 2008-09-11 2009-01-07 Green phosphor

Country Status (1)

Country Link
JP (1) JP4343267B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102171A (en) * 2010-11-08 2012-05-31 Sumitomo Metal Mining Co Ltd Sulfide phosphor
WO2019107285A1 (en) 2017-11-30 2019-06-06 デクセリアルズ株式会社 Green phosphor, phosphor sheet, and light-emitting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102171A (en) * 2010-11-08 2012-05-31 Sumitomo Metal Mining Co Ltd Sulfide phosphor
WO2019107285A1 (en) 2017-11-30 2019-06-06 デクセリアルズ株式会社 Green phosphor, phosphor sheet, and light-emitting device
US11312903B2 (en) 2017-11-30 2022-04-26 Dexerials Corporation Green phosphor, phosphor sheet, and light-emitting device

Also Published As

Publication number Publication date
JPWO2010029654A1 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
WO2010029654A1 (en) Green phosphor
JP4975269B2 (en) Phosphor and method for producing the same, and light emitting device using the phosphor
KR101660618B1 (en) Oxynitride phosphor powder
JP4188404B2 (en) White phosphor and white light emitting element or device
JP4708507B2 (en) Phosphor
JP2014043539A (en) Alkaline earth metal silicate phosphor and method for producing the same
JP4756104B2 (en) Green phosphor
WO2016076380A1 (en) Phosphor, light-emitting device, illumination device, and image display device
JP2007063365A (en) Yellow fluorophor and method for producing the same, and yellow light-emitting device
JP2009293022A (en) Green phosphor
JP4343267B1 (en) Green phosphor
JP4708506B2 (en) Yellow phosphor
JP2017190434A (en) Fluophor, light-emitting device, luminaire and image display device
JP5066104B2 (en) Blue phosphor
JP6035978B2 (en) Red phosphor and method for producing the same
CN109810695B (en) Fluorescent substance and light-emitting device made of same
TWI527880B (en) Phosphor and light emitting apparatus
JP2017014370A (en) Phosphor, light emitting device, illumination device and image display device
JP2016199675A (en) Phosphor, light emitting device, illumination device and image display device
JP2017043728A (en) Phosphor, light emitting device, illumination device and image display device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4343267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140717

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250