JP4341008B2 - Hydrogen doped silicon single crystal manufacturing equipment - Google Patents

Hydrogen doped silicon single crystal manufacturing equipment Download PDF

Info

Publication number
JP4341008B2
JP4341008B2 JP2003005935A JP2003005935A JP4341008B2 JP 4341008 B2 JP4341008 B2 JP 4341008B2 JP 2003005935 A JP2003005935 A JP 2003005935A JP 2003005935 A JP2003005935 A JP 2003005935A JP 4341008 B2 JP4341008 B2 JP 4341008B2
Authority
JP
Japan
Prior art keywords
hydrogen
mixed gas
gas
single crystal
silicon single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003005935A
Other languages
Japanese (ja)
Other versions
JP2004217460A (en
Inventor
渉 杉村
正隆 宝来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2003005935A priority Critical patent/JP4341008B2/en
Publication of JP2004217460A publication Critical patent/JP2004217460A/en
Application granted granted Critical
Publication of JP4341008B2 publication Critical patent/JP4341008B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水素を含む不活性雰囲気中でCZ法によりシリコン単結晶を育成する水素ドープシリコン単結晶製造装置に関する。
【0002】
【従来の技術】
シリコンウェーハの素材であるシリコン単結晶の製造方法として代表的なものは、CZ法と呼ばれる回転引上げ法である。CZ法によるシリコン単結晶の製造では、周知のとおり、石英ルツボ内に形成したシリコン融液に種結晶を浸漬し、ルツボ及び種結晶を回転させながら種結晶を引上げることにより、種結晶の下方にシリコン単結晶を育成する。
【0003】
このようなCZ引上げにおける炉内雰囲気としては、従来より不活性ガス(主にArガス)が使用されてきた。これは、シリコン融液、炉部材及び結晶との種々の化学反応を抑制し、副生成物として発生する不純物の混入を回避するためである。更に、多量にガス供給を行うことで生じる炉内のガス流れを利用して、金属汚染を回避することもでき、引上げ結晶の高品質化を実現できる。
【0004】
この炉内雰囲気に関し、最近になって、微量の水素ガスを混合することの有効性が報告され始めた(例えば特許文献1〜特許文献4)。この技術によると、結晶中に導入されたGrown−in欠陥、特にCOPに代表される空孔欠陥に水素が作用することにより、シリコン融液への窒素ドープと同様に空孔欠陥の縮小や消滅が可能になるとされている。
【0005】
【特許文献1】
特開昭61−178495号公報
【0006】
【特許文献2】
特開平11−189495号公報
【0007】
【特許文献3】
特開2000−281491号公報
【0008】
【特許文献4】
特開2001−335396号公報
【0009】
【発明が解決しようとする課題】
このようなCZ引上げにおける水素ドープ技術では、水素ガスと不活性ガスの混合ガスが、不活性ガスに代わって引上げ炉内に導入される。導入形態は、通常のCZ引上げにおける不活性ガスの場合と同様に、炉内全体を所定雰囲気に置換することを目的として、プルチャンバの上部から炉内にガス導入を行い、メインチャンバの下部から炉外へガス排出を行うものになっている。つまり引上げ炉の最上部から最下部へ混合ガスが流通される。
【0010】
しかしながら、このような混合ガス導入形態では、混合ガス中の水素ガスが空孔欠陥の発生防止に有効に機能しないことが判明した。その理由は以下のとおりである。
【0011】
水素ガスドープのそもそもの目的は、COPの基となるシリコン中の空孔が凝集する前に空孔を水素と結合させることにより、空孔の凝集を抑制することにある。このため、シリコンが空孔凝集温度(融液固化温度付近)に冷却される前に、そのシリコン中に水素を供給する必要がある。即ち、炉内に導入された水素ガスは、引き上げ結晶の外表面からも供給されるが、その水素は結晶品質に及ぼす影響が少ない。これは、引き上げ時間と水素原子のシリコン中の拡散距離を考えた場合、結晶外表面から入った水素は結晶中心部まで到達せず、結晶中心部で生成されるCOPの抑制効果があらわれないためである。したがって、結晶品質の改善に有効に作用させるためには、所定量の水素ガスを坩堝内の融液表面に供給して水素を含有させたシリコン融液から結晶を育成させることが有効であり、固液界面近傍部、あるいはシリコン融液内に直接水素ガスを供給することが有効となる。
【0012】
ところが、シリコン融液を収容するルツボは、混合ガス導入点から遠く離れた引上げ炉下部のメインチャンバ内に配置されている。加えて、混合ガス中の水素ガスは、引上げ炉の内面や炉内の各種部材、特にカーボン部材に捕捉されやすい。その上、この水素ガス量は爆発危険防止等の観点から、最大で3vol%程度と微量に制限されている。これらのために、炉内に導入された水素ガスは僅かしかルツボ内の融液表面に到達せず、COPの発生抑制に有効に作用しない結果になっているのである。
【0013】
本発明の目的は、混合ガス中の水素ガス濃度を上げずとも、CZ法により高品質な水素ドープシリコン単結晶を製造できる水素ドープシリコン単結晶製造装置を提供することにある。
【0014】
【課題を解決するための手段】
上記目的を達成するめに、本発明者らは水素を含む不活性雰囲気中でCZ法によりシリコン単結晶を育成する場合の水素ガス供給装置について鋭意検討した。その結果、以下の結論に到達した。
【0015】
前述したように、水素ガスをCOPの発生抑制に有効に作用させるには、相当量の水素ガスをルツボ内の融液表面、なかでも融液表面の固液界面近傍部分に供給する必要がある。これを阻害する最大の理由は、混合ガス中に含まれた微量の水素ガスが、シリコン融液を収容するルツボから最も離れたチャンバ最上部に導入されるために、シリコン融液に到達するまでの経路が長くなり、その経路途中で引上げ炉の内面や炉内の各種部材、特にカーボン部材などに多くが捕捉されてしまう点にある。
【0016】
したがって、混合ガス中に含まれた微量の水素ガスをCOPの発生抑制に有効に作用させるためには、その水素ガスが炉内に吐出されてからシリコン融液に到達するまでの炉内経路長を短くすることが必要となる。
【0017】
請求項1に記載の発明は、シリコン融液を収容するルツボを内部に有するメインチャンバと、このメインチャンバの上に連結されたシリコン単結晶を引き上げるプルチャンバと、水素ガスと不活性ガスとからなる混合ガスを供給する混合ガス供給源とを有するとともに、この混合ガスを、上記プルチャンバを介して上記メインチャンバに供給し、シリコン単結晶を引き上げる水素ドープシリコン単結晶製造装置において、上記混合ガス供給源から上記ルツボ内のシリコン融液表面に、上記プルチャンバを介さずに直接上記混合ガスを供給するガス吐出手段を備え、このガス吐出手段を介してシリコン融液表面に供給する混合ガスの分流比を50%とした水素ドープシリコン単結晶製造装置である。
【0018】
請求項2に記載の発明は、上記ガス吐出手段は、環状又は円筒状のヘッダーに設けられた下方に向かって混合ガスを排出する複数のノズルと、上記混合ガス供給源からこのノズルに混合ガスを供給するガス供給管とから構成されている請求項1に記載の水素ドープシリコン単結晶製造装置である。
【0019】
請求項3に記載の発明は、シリコン融液を収容するルツボを内部に有したメインチャンバと、このメインチャンバの上に連結されたシリコン単結晶を引き上げるプルチャンバと、水素ガスと不活性ガスとからなる混合ガスを供給する混合ガス供給源とを有するとともに、この混合ガスを、上記プルチャンバを介して上記メインチャンバに供給し、シリコン単結晶を引き上げる水素ドープシリコン単結晶製造装置において、上記混合ガス供給源から上記ルツボ内のシリコン融液中に、直接上記混合ガスを供給するガス吐出手段を備え、このガス吐出手段を介してシリコン融液中に供給する混合ガスの分流比を50%とした水素ドープシリコン単結晶製造装置である。
【0020】
請求項4に記載の発明は、上記ガス吐出手段は、上記メインチャンバ内に差し込まれた石英製のロート管の一方の端部に、この上記混合ガス供給源からこのロート管の他方の端部に混合ガスを供給するガス供給管が接続されている請求項3に記載の水素ドープシリコン単結晶製造装置である。
【0021】
本発明の水素ドープシリコン単結晶製造装置においては、混合ガスが炉内に導入されてからルツボ内のシリコン融液に到達するまでの経路長が短く、経路途中における炉内部材との衝突が可及的に回避されることにより、水素ガスの捕捉が抑制され、その利用度が上がる。このため、混合ガス中の水素ガス濃度を上げたり混合ガス流量を増大させずとも、シリコン融液を介して結晶中に所望量の水素をドープすることが可能となる。加えて、シリコン融液にガスの供給が行われることにより、空孔の凝集防止に有効な凝固前のシリコンに水素ガスが効率的に導入される点からも、水素ガスの利用度が上がる。
【0022】
上記混合ガスをシリコン融液の表面に直接供給する形態としては、シリコン融液の表面近傍でシリコン単結晶を包囲するようにメインチャンバ内に設けられた環状のガス吐出手段から、この混合ガスを融液表面、好ましくはその表面の固液界面近傍部分に吹き付けるものが、効率等の点から推奨される。
【0023】
【発明の実施の形態】
以下に本発明の実施形態を図面に基づいて説明する。図1は本発明の水素ドープシリコン単結晶製造装置に係るCZ引上げ炉の概略構成図である。
【0024】
CZ引上げ炉は、図1に示すように、炉体として、円筒形状のメインチャンバ1と、メインチャンバ1の下面開口部を塞ぐベースチャンバ2と、メインチャンバ1の上面開口部を塞ぐトップチャンバ3と、トップチャンバ3を介してメインチャンバ1の上に同心状に連結される細長い円筒形状のプルチャンバ4とを備えている。
【0025】
メインチャンバ1内には、ルツボ5が中心部に位置して配置されている。ルツボ5は内側の石英ルツボを外側の黒鉛ルツボで保持した二重構造であり、ベースチャンバ2を貫通してメインチャンバ1内に挿入されたペディスタルと呼ばれる支持軸の上に受け皿を介して支持されている。支持軸は、ルツボ5の昇降及び回転のために、ボトムチャンバ2の下方に配置された駆動機構により、軸方向及び周方向に駆動される。
【0026】
ルツボ5の外側には環状のヒータ6が配置されており、その更に外側には断熱材7がメインチャンバ1の内面に沿って配置されている。
【0027】
メインチャンバ1内には又、ガス吐出手段15がルツボ5の上方に位置して設けられている。ガス吐出手段15は、ルツボ5の上方に同心状に配置されたリング状のヘッダー16と、ヘッダー16をルツボ5の上方の定位置に水平に吊り下げ支持する2本の支持部材17,17とを有している。ヘッダー16は円形に曲成されたチューブであり、その底部には複数のノズル孔が全周にわたって等間隔で形成されている。2本の支持部材17,17は、トップチャンバ3の下面に逆ハ字状に傾斜して取り付けられた管状部材であり、前記ガス吐出管16に後述の混合ガスを供給するガス供給管を兼ねている。
【0028】
メインチャンバ1上のプルチャンバ4内には、引上げ軸としてのワイヤ8が垂らされている。ワイヤ8は、プルチャンバ4の上に設けられた駆動機構9により、巻き上げ及び回転を行う。
【0029】
プルチャンバ4の上部には、炉体内の雰囲気管理のために、ガス導入口11が設けられている。ガス導入口11は、水素ガスと不活性ガスの混合ガスを供給するガス源12に配管13により接続されている。ガス源12は、前述したガス供給管を兼ねる2本の支持部材17,17に、配管13とは別の独立した配管18により接続されている。プルチャンバ4の下部には、メインチャンバ1内に挿入されるドローチューブ14が設けられている。ドローチューブ14は、プルチャンバ4の周壁部と同様のジャケット構造により水冷された円筒体であり、ルツボ5内のシリコン融液から引上げられるシリコン単結晶の冷却を促進すると共に、ガス導入口11からプルチャンバ4内に導入された混合ガスを整流してメインチャンバ1内に導入する整流体筒を兼ねている。一方、ベースチャンバ2にはガス排出口19が設けられている。ガス排出口19は図示されない真空ポンプと接続されている。
【0030】
ドローチュープ14の直径は、大きすぎると単結晶を冷却する効果が薄れ、小さすぎると引き上げ時に結晶の振れ等が発生した場合、育成中の結晶とドローチューブ内壁とが接触して結晶落下の危険性がある。この観点から、ドローチューブ14の直径は育成結晶の直径の1.1〜1.3倍が適当である。そしてリング状のヘッダー16の直径については、小さすぎると結晶に接触する危険性があり、大きすぎると結晶と融液界面に直接吹き付ける作用効果が低減することから、育成結晶の1.1〜1.3倍が適当である。
【0031】
操業では、まず、ルツボ5内にシリコンの原料融液20を形成する。ワイヤ8の下端部に装着した種結晶を原料融液20に漬ける。ルツボ5及びワイヤ8を回転させながら、ワイヤ8を巻き上げることにより、種結晶の下方にシリコンの単結晶21を育成する。育成結晶は、環状のヘッダー16及びドローチューブ14の各内側を通ってプルチャンバ4内に徐々に引き込まれる。
【0032】
このとき、ガス排出口19に接続された真空ポンプを作動させることにより、炉体内を所定の真空度に減圧し、この状態で、ガス源12から配管13及びガス導入口11を介して炉体内に水素ガスと不活性ガス(Arガス)の混合ガスを導入する。ガス導入口11から炉体内に導入された混合ガスは、炉体内を上から下に流通し、ガス排出口19から炉外へ排出される。これにより、炉体内が一応混合ガス雰囲気に管理される。
【0033】
これと同時に、ガス源12から別の配管18を介して2本の支持部材17,17に前記混合ガスを供給する。支持部材17,17に供給された混合ガスは、水平なリング状のヘッダー16に送られ、ヘッダー16の底部に設けられた複数のノズル孔から、プルチャンバ4内を通過することなくメインチャンバ1内へ下向きに吐出される。メインチャンバ1内へ下向きに吐出された混合ガスは、主にルツボ5内の原料融液20の表面、より具体的には、その表面の単結晶21からその外側にかけての範囲に、至近距離からフレッシュ状態で衝突することになる。この結果、複数のノズル孔から吐出される混合ガス中の水素ガスは、単結晶21中の空孔防止に効率的に作用する。
【0034】
なぜなら、ヘッダー16から吐出される混合ガスが至近距離からルツボ5内の融液面に衝突し、水素ガスが炉内の流通経路途中でカーボン部材に捕捉されることなどによる無駄な水素消費が回避されると共に、混合ガスの衝突位置が、主にルツボ5内の融液表面の固液界面近傍部分であることにより、混合ガス中の水素ガスが空孔の凝集抑制に効果的な凝固直前のシリコンに効率よく取り込まれ、単結晶21などへの水素の無駄な取り込みが回避されるからである。
【0035】
こうした効率的な水素取り込みにより、凝固直前の段階でシリコンに所定濃度の水素がドープされ、空孔欠陥の発生が効果的に抑制された高品質な水素ドープシリコン単結晶21が製造されることになる。
【0036】
図2は本発明の水素ドープシリコン単結晶製造装置に係る別のCZ引上げ炉の概略構成図である。
【0037】
この引上げ炉は、ガス吐出手段15の構造が、前述した引上げ炉と相違する。他の構造は、前述した引上げ炉と実質同一であり、同一部分に同一番号を付して説明を省略する。
【0038】
ここにおけるガス吐出手段15は、メインチャンバ1内に挿入されるドローチューブ14の外側に設けられた円筒状のヘッダー22を有している。ヘッダー22は、ドローチューブ14とその外側に設けた円筒状の外筒とで構成された2重筒構造であり、そのヘッダー22の底面には複数のノズル孔が全周にわたって等間隔で設けられているそして、このヘッダー22には、ガス源12が、当該ガス源12をプルチャンバ4の上部に接続する配管13とは別の独立した配管18により、接続されている。
【0039】
操業中、ガス源12からプルチャンバ4内に水素ガスと不活性ガスの混合ガスが供給される。同時に、ガス吐出手段15のヘッダー22内にもこの混合ガスが供給される。ヘッダー22内に供給された混合ガスは、当該ヘッダーの底面に設けられた複数のノズル孔からメインチャンバ1内へ下向きに吐出される。メインチャンバ1内へ下向きに吐出された混合ガスは、前述した引上げ炉の場合と同様に、主にルツボ5内の原料融液20の表面、より具体的には、その表面の単結晶21からその外側にかけての範囲に至近距離から衝突する。この結果、複数のノズル孔から吐出される混合ガス中の水素ガスは、単結晶21中の空孔欠陥防止に効率的に作用することになる。
【0040】
図3は本発明の水素ドープシリコン単結晶製造装置に係る更に別のCZ引上げ炉の概略構成図である。
【0041】
この引上げ炉は、ルツボ5内の原料融液20に混合ガスを供給する形態が、前述した二つの引上げ炉と相違する。即ち、ルツボ5内の原料融液20に混合ガスを供給する形態は、前述した二つの引上げ炉では、環状のガス吐出手段15から原料融液20の表面、特に融液面の固液界面近傍部分に混合ガスを吹き付けるものであるのに対し、この引上げ炉では、ルツボ5内の原料融液20に浸漬するように、トップチャンバ3を貫通してメインチャンバ1内に差し込まれた石英からなるロート管24を用いて、原料融液20中に混合ガスを吹き込む構成になっている。
【0042】
この形態によっても、炉内に吐出される混合ガスが原料融液20に直接供給され、原料融液20に到達するまでの経路長が実質0に大幅短縮されることにより、混合ガス中の水素ガスが経路途中でカーボン部材に捕捉されることなどによる無駄な水素消費が回避される。また、その水素ガスが空孔の凝集抑制に効果的な凝固直前のシリコンに効率よく取り込まれ、単結晶21などへの水素の無駄な取り込みが回避される。こうした効率的な水素取り込みの結果、凝固直前の段階でシリコンに所定濃度の水素がドープされ、空孔欠陥の発生が効果的に抑制された高品質な水素ドープ単結晶21が製造される。
【0043】
本発明法の実施例として、図1に示す形態により、種々の水素濃度の混合ガスをプルチャンバの上部からとリング状のヘッダーからとに別けて炉内に供給し、混合ガス中の水素濃度と単結晶中の水素濃度との関係を調べた。また、従来例として、混合ガスの全量をプルチャンバの上部から供給し、この場合の混合ガス中の水素濃度と単結晶中の水素濃度との関係を調べた。結果を表1に示す。
【0044】
【表1】

Figure 0004341008
【0045】
結晶径は150mm、本発明法に用いたリング状ヘッダーの管径は10mm、リング径は内径165mm、混合ガスのガス吐出管への分流比は50%とした。また、結晶中の水素濃度の測定には光吸収測定装置(FT−IR)を用いた。結晶中の水素濃度が十分の場合には、光吸収測定装置によってシリコンと水素との複合体としての吸収ピークが観察されるため、この吸収ピークの有無によって水素濃度の適否を判断することができる。表中、○印は十分な大きさの吸収ピークが観察されたものを示し、△印は観察された吸収ピークが小さかったもの、×印は全く吸収ピークが観察されないかったものを示している。
【0046】
表1から明らかなように、本発明例の場合、混合ガス中の水素濃度が3%あたりからシリコンと水素の複合体ピークが確認され、従来法と比較して複合体ピークが確認される水素濃度が低水素濃度側にシフトしていることが分かる。これは、シリコン融液表面に直接供給した水素が効率よく結晶中に取り込まれた結果である。また、本発明例では水素濃度5%の供給で水素が十分に結晶中に取り込まれており、従来法よりもより安全な低水素濃度の操業が可能となる。
【0047】
以上より、本発明法により安全上有利である低水素濃度範囲内で十分に結晶中に水素を導入することが可能になることが分かる。
【0048】
前述した本発明法の各例では、炉内に導入すべき雰囲気ガスの全部を混合ガスとし、その混合ガスの一部をメインチャンバ内の原料融液に至近距離から直接供給し、残りの混合ガスをプルチャンバ上部から炉内に導入したが、混合ガスの全部をメインチャンバ内の原料融液に至近距離から直接供給することもできる。また、炉内に導入すべき雰囲気ガスの一部を混合ガスとしてメインチャンバ内の原料融液に至近距離から直接供給することもできる。この場合、残りの雰囲気ガスは全て不活性ガスであり、例えばプルチャンバの上部から炉内に導入される。
【0049】
【発明の効果】
以上に説明したとおり、本発明の水素ドープシリコン単結晶製造装置は、水素を含む不活性雰囲気中でCZ法によりシリコン単結晶を育成する際に、炉内に導入された水素ガスがルツボ内のシリコン融液に到達するまでの炉内経路長を短く制限することにより、その経路途中における水素ガスの捕捉及びシリコン単結晶への水素ガスの取り込みを回避でき、その水素ガスの効率的な利用を可能にする。これにより、混合ガス中の水素ガス濃度を上げずに、水素量が十分に多くかつ正確に管理された高品質な水素ドープシリコン単結晶を安全に製造できる。
【図面の簡単な説明】
【図1】本発明の水素ドープシリコン単結晶製造装置に係るCZ引上げ炉の概略構成図である。
【図2】本発明の水素ドープシリコン単結晶製造装置に係る別のCZ引上げ炉の概略構成図である。
【図3】本発明の水素ドープシリコン単結晶製造装置に係る更に別のCZ引上げ炉の概略構成図である。
【符号の説明】
1 メインチャンバ
4 プルチャンバ
5 ルツボ
6 ヒータ
8 ワイヤ
11 ガス導入口
12 ガス源
13,18 配管
14 ドローチューブ
15 ガス吐出手段
16,22 ヘッダー
17 支持部材
19 ガス排出口
20 原料融液
21 単結晶
24 ロート管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrogen-doped silicon single crystal manufacturing apparatus for growing a silicon single crystal by a CZ method in an inert atmosphere containing hydrogen.
[0002]
[Prior art]
A typical method for producing a silicon single crystal that is a material of a silicon wafer is a rotary pulling method called a CZ method. In the production of a silicon single crystal by the CZ method, as is well known, a seed crystal is immersed in a silicon melt formed in a quartz crucible, and the seed crystal is pulled up while rotating the crucible and the seed crystal. A silicon single crystal is grown.
[0003]
An inert gas (mainly Ar gas) has been conventionally used as the atmosphere in the furnace for such CZ pulling. This is to suppress various chemical reactions with the silicon melt, the furnace member, and the crystals, and to avoid contamination of impurities generated as by-products. Furthermore, metal contamination can be avoided by utilizing the gas flow in the furnace generated by supplying a large amount of gas, and the quality of the pulled crystal can be improved.
[0004]
Regarding the atmosphere in the furnace, recently, the effectiveness of mixing a small amount of hydrogen gas has begun to be reported (for example, Patent Documents 1 to 4). According to this technique, hydrogen acts on a grown-in defect introduced into a crystal, particularly a vacancy defect typified by COP, thereby reducing or eliminating the vacancy defect in the same manner as nitrogen doping in a silicon melt. It is supposed to be possible.
[0005]
[Patent Document 1]
JP-A-61-178495 [0006]
[Patent Document 2]
Japanese Patent Laid-Open No. 11-189495
[Patent Document 3]
JP 2000-281491 A
[Patent Document 4]
Japanese Patent Laid-Open No. 2001-335396
[Problems to be solved by the invention]
In such a hydrogen doping technique in CZ pulling, a mixed gas of hydrogen gas and inert gas is introduced into the pulling furnace instead of the inert gas. As in the case of the inert gas in normal CZ pulling, the introduction mode is such that gas is introduced from the upper part of the pull chamber into the furnace and the furnace is introduced from the lower part of the main chamber for the purpose of replacing the entire furnace with a predetermined atmosphere. It is designed to discharge gas to the outside. That is, the mixed gas is circulated from the uppermost part to the lowermost part of the pulling furnace.
[0010]
However, it has been found that in such a mixed gas introduction mode, the hydrogen gas in the mixed gas does not function effectively to prevent the occurrence of vacancy defects. The reason is as follows.
[0011]
The original purpose of the hydrogen gas doping is to suppress the agglomeration of vacancies by combining the vacancies with hydrogen before the vacancies in silicon that is the basis of the COP agglomerate. For this reason, it is necessary to supply hydrogen into the silicon before the silicon is cooled to the pore aggregation temperature (near the melt solidification temperature). That is, the hydrogen gas introduced into the furnace is also supplied from the outer surface of the pulling crystal, but the hydrogen has little effect on the crystal quality. This is because, considering the pulling time and the diffusion distance of hydrogen atoms in silicon, hydrogen entering from the outer surface of the crystal does not reach the center of the crystal, and the effect of suppressing COP generated at the center of the crystal does not appear. It is. Therefore, in order to effectively work to improve the crystal quality, it is effective to grow a crystal from a silicon melt containing hydrogen by supplying a predetermined amount of hydrogen gas to the melt surface in the crucible, It is effective to supply hydrogen gas directly in the vicinity of the solid-liquid interface or in the silicon melt.
[0012]
However, the crucible for storing the silicon melt is disposed in the main chamber at the lower part of the pulling furnace far from the mixed gas introduction point. In addition, the hydrogen gas in the mixed gas is easily trapped by the inner surface of the pulling furnace and various members in the furnace, particularly the carbon member. In addition, the hydrogen gas amount is limited to a very small amount of about 3 vol% from the viewpoint of preventing explosion hazard. For these reasons, only a small amount of hydrogen gas introduced into the furnace reaches the surface of the melt in the crucible, resulting in an effective action for suppressing the occurrence of COP.
[0013]
An object of the present invention is to provide a hydrogen-doped silicon single crystal production apparatus capable of producing a high-quality hydrogen-doped silicon single crystal by the CZ method without increasing the hydrogen gas concentration in the mixed gas.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors have intensively studied a hydrogen gas supply apparatus for growing a silicon single crystal by a CZ method in an inert atmosphere containing hydrogen. As a result, the following conclusion was reached.
[0015]
As described above, in order for hydrogen gas to effectively act to suppress the generation of COP, it is necessary to supply a considerable amount of hydrogen gas to the surface of the melt in the crucible, particularly the portion near the solid-liquid interface of the melt surface. . The biggest reason for hindering this is that a small amount of hydrogen gas contained in the mixed gas is introduced to the top of the chamber farthest from the crucible containing the silicon melt until it reaches the silicon melt. The length of the path becomes longer, and in the middle of the path, much is trapped by the inner surface of the pulling furnace and various members in the furnace, particularly the carbon member.
[0016]
Therefore, in order to effectively operate a small amount of hydrogen gas contained in the mixed gas in suppressing the generation of COP, the path length in the furnace from when the hydrogen gas is discharged into the furnace until it reaches the silicon melt It is necessary to shorten the length.
[0017]
The invention described in claim 1 comprises a main chamber having a crucible for containing a silicon melt, a pull chamber for pulling up a silicon single crystal connected to the main chamber, and hydrogen gas and an inert gas. A mixed gas supply source for supplying a mixed gas, and supplying the mixed gas to the main chamber via the pull chamber to pull up the silicon single crystal, in the hydrogen-doped silicon single crystal manufacturing apparatus, the mixed gas supply source A gas discharge means for supplying the mixed gas directly to the surface of the silicon melt in the crucible without going through the pull chamber, and a flow dividing ratio of the mixed gas supplied to the surface of the silicon melt via the gas discharge means. This is a 50% hydrogen-doped silicon single crystal manufacturing apparatus.
[0018]
According to a second aspect of the present invention, the gas discharge means includes a plurality of nozzles for discharging a mixed gas downwardly provided in an annular or cylindrical header, and a mixed gas from the mixed gas supply source to the nozzle. The hydrogen-doped silicon single crystal manufacturing apparatus according to claim 1, comprising a gas supply pipe for supplying
[0019]
According to a third aspect of the present invention, there is provided a main chamber having a crucible for containing a silicon melt, a pull chamber for pulling up a silicon single crystal connected to the main chamber, and hydrogen gas and an inert gas. And a mixed gas supply source for supplying the mixed gas, and supplying the mixed gas to the main chamber through the pull chamber to pull up the silicon single crystal. Hydrogen having a gas discharge means for supplying the mixed gas directly from the source into the silicon melt in the crucible and having a diversion ratio of 50% for the mixed gas supplied into the silicon melt through the gas discharge means This is a doped silicon single crystal manufacturing apparatus.
[0020]
According to a fourth aspect of the present invention, the gas discharge means is connected to one end of a quartz funnel tube inserted into the main chamber from the mixed gas supply source to the other end of the funnel tube. The hydrogen-doped silicon single crystal manufacturing apparatus according to claim 3, wherein a gas supply pipe for supplying a mixed gas is connected to the apparatus.
[0021]
In the hydrogen-doped silicon single crystal manufacturing apparatus of the present invention, the path length from when the mixed gas is introduced into the furnace until it reaches the silicon melt in the crucible is short, and collision with the in-furnace member in the middle of the path is possible. By avoiding as much as possible, the capture of hydrogen gas is suppressed and its utilization is increased. Therefore, it is possible to dope a desired amount of hydrogen into the crystal through the silicon melt without increasing the hydrogen gas concentration in the mixed gas or increasing the mixed gas flow rate. In addition, the supply of gas to the silicon melt increases the utilization of hydrogen gas from the viewpoint of efficiently introducing hydrogen gas into silicon before solidification, which is effective in preventing pore aggregation.
[0022]
As a form of supplying the mixed gas directly to the surface of the silicon melt, the mixed gas is supplied from an annular gas discharge means provided in the main chamber so as to surround the silicon single crystal near the surface of the silicon melt. Those that are sprayed on the surface of the melt, preferably the vicinity of the solid-liquid interface on the surface, are recommended from the standpoint of efficiency and the like.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram of a CZ pulling furnace according to the hydrogen-doped silicon single crystal manufacturing apparatus of the present invention.
[0024]
As shown in FIG. 1, the CZ pulling furnace has a cylindrical main chamber 1, a base chamber 2 that closes the lower surface opening of the main chamber 1, and a top chamber 3 that closes the upper surface opening of the main chamber 1. And an elongated cylindrical pull chamber 4 concentrically connected to the main chamber 1 via the top chamber 3.
[0025]
In the main chamber 1, a crucible 5 is disposed at the center. The crucible 5 has a double structure in which an inner quartz crucible is held by an outer graphite crucible, and is supported on a support shaft called a pedestal inserted through the base chamber 2 into the main chamber 1 via a tray. ing. The support shaft is driven in the axial direction and the circumferential direction by a drive mechanism disposed below the bottom chamber 2 in order to move the crucible 5 up and down and rotate.
[0026]
An annular heater 6 is disposed outside the crucible 5, and a heat insulating material 7 is disposed along the inner surface of the main chamber 1 further outside.
[0027]
A gas discharge means 15 is also provided above the crucible 5 in the main chamber 1. The gas discharge means 15 includes a ring-shaped header 16 disposed concentrically above the crucible 5, and two support members 17, 17 that horizontally support the header 16 in a fixed position above the crucible 5. have. The header 16 is a tube bent in a circular shape, and a plurality of nozzle holes are formed at equal intervals over the entire circumference at the bottom. The two support members 17 and 17 are tubular members that are attached to the lower surface of the top chamber 3 so as to be inclined in an inverted C shape, and also serve as a gas supply pipe for supplying a mixed gas described later to the gas discharge pipe 16. ing.
[0028]
A wire 8 as a pulling shaft is suspended in the pull chamber 4 on the main chamber 1. The wire 8 is wound and rotated by a drive mechanism 9 provided on the pull chamber 4.
[0029]
A gas inlet 11 is provided at the upper part of the pull chamber 4 for the atmosphere management in the furnace body. The gas inlet 11 is connected by a pipe 13 to a gas source 12 that supplies a mixed gas of hydrogen gas and inert gas. The gas source 12 is connected to the two support members 17, 17 that also serve as the gas supply pipe described above, by an independent pipe 18 that is separate from the pipe 13. A draw tube 14 to be inserted into the main chamber 1 is provided at the lower portion of the pull chamber 4. The draw tube 14 is a cylindrical body cooled by a jacket structure similar to the peripheral wall portion of the pull chamber 4, promotes cooling of the silicon single crystal pulled up from the silicon melt in the crucible 5, and pulls from the gas inlet 11 to the pull chamber. 4 also serves as a rectifier cylinder for rectifying the mixed gas introduced into the main chamber 1 and introducing it into the main chamber 1. On the other hand, the base chamber 2 is provided with a gas discharge port 19. The gas discharge port 19 is connected to a vacuum pump (not shown).
[0030]
If the diameter of the draw tube 14 is too large, the effect of cooling the single crystal is diminished, and if it is too small, if the crystal shakes during pulling, the growing crystal and the inner wall of the draw tube come into contact with each other, and there is a risk of crystal falling There is sex. From this viewpoint, the diameter of the draw tube 14 is suitably 1.1 to 1.3 times the diameter of the grown crystal. If the diameter of the ring-shaped header 16 is too small, there is a risk of contact with the crystal. If it is too large, the effect of spraying directly on the crystal-melt interface is reduced. .3 times is appropriate.
[0031]
In operation, first, a silicon raw material melt 20 is formed in the crucible 5. The seed crystal attached to the lower end of the wire 8 is immersed in the raw material melt 20. A single crystal 21 of silicon is grown below the seed crystal by winding up the wire 8 while rotating the crucible 5 and the wire 8. The grown crystal is gradually drawn into the pull chamber 4 through the inner sides of the annular header 16 and the draw tube 14.
[0032]
At this time, the furnace body is depressurized to a predetermined degree of vacuum by operating a vacuum pump connected to the gas discharge port 19, and in this state, the furnace body is connected from the gas source 12 through the pipe 13 and the gas introduction port 11. Into this, a mixed gas of hydrogen gas and inert gas (Ar gas) is introduced. The mixed gas introduced into the furnace body from the gas inlet 11 flows from the top to the bottom through the furnace body and is discharged from the gas outlet 19 to the outside of the furnace. Thereby, the furnace body is temporarily managed in a mixed gas atmosphere.
[0033]
At the same time, the mixed gas is supplied from the gas source 12 to the two support members 17 and 17 through another pipe 18. The mixed gas supplied to the support members 17, 17 is sent to a horizontal ring-shaped header 16, and passes through the pull chamber 4 from a plurality of nozzle holes provided at the bottom of the header 16. Is discharged downward. The mixed gas discharged downward into the main chamber 1 is mainly from the close distance to the surface of the raw material melt 20 in the crucible 5, more specifically, the range from the single crystal 21 on the surface to the outside. It will collide in a fresh state. As a result, the hydrogen gas in the mixed gas discharged from the plurality of nozzle holes effectively acts to prevent holes in the single crystal 21.
[0034]
This is because the gas mixture discharged from the header 16 collides with the melt surface in the crucible 5 from a short distance and the hydrogen gas is trapped by the carbon member in the middle of the flow path in the furnace to avoid unnecessary hydrogen consumption. At the same time, the collision position of the mixed gas is mainly in the vicinity of the solid-liquid interface on the surface of the melt in the crucible 5, so that the hydrogen gas in the mixed gas is immediately before solidification effective for suppressing the aggregation of vacancies. This is because silicon is efficiently incorporated into the silicon and wasteful incorporation of hydrogen into the single crystal 21 is avoided.
[0035]
By such efficient hydrogen incorporation, silicon is doped with a predetermined concentration of hydrogen immediately before solidification, and a high-quality hydrogen-doped silicon single crystal 21 in which generation of vacancy defects is effectively suppressed is manufactured. Become.
[0036]
FIG. 2 is a schematic configuration diagram of another CZ pulling furnace according to the hydrogen-doped silicon single crystal manufacturing apparatus of the present invention.
[0037]
This pulling furnace is different from the pulling furnace described above in the structure of the gas discharge means 15. The other structure is substantially the same as that of the pulling furnace described above, and the same parts are denoted by the same reference numerals and description thereof is omitted.
[0038]
The gas discharge means 15 here has a cylindrical header 22 provided outside the draw tube 14 inserted into the main chamber 1. The header 22 has a double cylinder structure composed of the draw tube 14 and a cylindrical outer cylinder provided outside thereof, and a plurality of nozzle holes are provided on the bottom surface of the header 22 at equal intervals over the entire circumference. In addition, the gas source 12 is connected to the header 22 by a pipe 18 that is independent from the pipe 13 that connects the gas source 12 to the upper portion of the pull chamber 4.
[0039]
During operation, a mixed gas of hydrogen gas and inert gas is supplied from the gas source 12 into the pull chamber 4. At the same time, this mixed gas is also supplied into the header 22 of the gas discharge means 15. The mixed gas supplied into the header 22 is discharged downward into the main chamber 1 from a plurality of nozzle holes provided on the bottom surface of the header. The mixed gas discharged downward into the main chamber 1 is mainly from the surface of the raw material melt 20 in the crucible 5, more specifically from the single crystal 21 on the surface, as in the case of the pulling furnace described above. It collides from a close range into the area over the outside. As a result, the hydrogen gas in the mixed gas discharged from the plurality of nozzle holes effectively acts to prevent vacancy defects in the single crystal 21.
[0040]
FIG. 3 is a schematic configuration diagram of still another CZ pulling furnace according to the hydrogen-doped silicon single crystal manufacturing apparatus of the present invention.
[0041]
This pulling furnace is different from the above two pulling furnaces in that the mixed gas is supplied to the raw material melt 20 in the crucible 5. That is, the mixed gas is supplied to the raw material melt 20 in the crucible 5 in the above-described two pulling furnaces from the annular gas discharge means 15 to the surface of the raw material melt 20, particularly in the vicinity of the solid-liquid interface of the melt surface. The pulling furnace is made of quartz that penetrates the top chamber 3 and is inserted into the main chamber 1 so as to be immersed in the raw material melt 20 in the crucible 5. The mixed gas is blown into the raw material melt 20 using the funnel 24.
[0042]
Also in this embodiment, the mixed gas discharged into the furnace is directly supplied to the raw material melt 20, and the path length to reach the raw material melt 20 is greatly reduced to substantially zero, so that the hydrogen in the mixed gas Wasteful hydrogen consumption due to gas being trapped by the carbon member in the middle of the path is avoided. In addition, the hydrogen gas is efficiently taken into silicon immediately before solidification, which is effective for suppressing the aggregation of vacancies, and wasteful incorporation of hydrogen into the single crystal 21 or the like is avoided. As a result of such efficient hydrogen incorporation, high-quality hydrogen-doped single crystal 21 in which silicon is doped with a predetermined concentration of hydrogen immediately before solidification and the generation of vacancy defects is effectively suppressed is produced.
[0043]
As an embodiment of the method of the present invention, a mixed gas having various hydrogen concentrations is supplied into the furnace separately from the upper part of the pull chamber and the ring-shaped header according to the form shown in FIG. The relationship with the hydrogen concentration in the single crystal was investigated. Further, as a conventional example, the entire amount of the mixed gas was supplied from the upper part of the pull chamber, and the relationship between the hydrogen concentration in the mixed gas and the hydrogen concentration in the single crystal in this case was examined. The results are shown in Table 1.
[0044]
[Table 1]
Figure 0004341008
[0045]
The crystal diameter was 150 mm, the pipe diameter of the ring header used in the method of the present invention was 10 mm, the ring diameter was 165 mm in inner diameter, and the diversion ratio of the mixed gas to the gas discharge pipe was 50%. Moreover, the light absorption measuring device (FT-IR) was used for the measurement of the hydrogen concentration in a crystal | crystallization. When the hydrogen concentration in the crystal is sufficient, an absorption peak as a complex of silicon and hydrogen is observed by a light absorption measurement device, and therefore the suitability of the hydrogen concentration can be determined by the presence or absence of this absorption peak. . In the table, ○ indicates that a sufficiently large absorption peak was observed, Δ indicates that the observed absorption peak was small, and × indicates that no absorption peak was observed. .
[0046]
As is clear from Table 1, in the case of the present invention, a complex peak of silicon and hydrogen is confirmed when the hydrogen concentration in the mixed gas is around 3%, and a complex peak is confirmed in comparison with the conventional method. It can be seen that the concentration is shifted to the low hydrogen concentration side. This is a result of efficient incorporation of hydrogen supplied directly to the silicon melt surface into the crystal. Further, in the present invention example, hydrogen is sufficiently taken into the crystal by supplying a hydrogen concentration of 5%, and operation at a low hydrogen concentration that is safer than the conventional method is possible.
[0047]
From the above, it can be seen that the method of the present invention makes it possible to sufficiently introduce hydrogen into the crystal within a low hydrogen concentration range that is advantageous in terms of safety.
[0048]
In each example of the method of the present invention described above, all of the atmospheric gas to be introduced into the furnace is a mixed gas, a part of the mixed gas is directly supplied to the raw material melt in the main chamber from a short distance, and the remaining mixing is performed. Although the gas is introduced into the furnace from the upper part of the pull chamber, the entire mixed gas can be directly supplied to the raw material melt in the main chamber from a close distance. It is also possible to supply a part of the atmospheric gas to be introduced into the furnace as a mixed gas directly to the raw material melt in the main chamber from a short distance. In this case, all the remaining atmospheric gases are inert gases, and are introduced into the furnace from the upper part of the pull chamber, for example.
[0049]
【The invention's effect】
As described above, the hydrogen-doped silicon single crystal manufacturing apparatus of the present invention is configured such that when a silicon single crystal is grown by a CZ method in an inert atmosphere containing hydrogen, the hydrogen gas introduced into the furnace is contained in the crucible. By limiting the path length in the furnace until reaching the silicon melt to a short length, it is possible to avoid the capture of hydrogen gas in the middle of the path and the incorporation of hydrogen gas into the silicon single crystal, and the efficient use of the hydrogen gas. enable. Thereby, it is possible to safely manufacture a high-quality hydrogen-doped silicon single crystal in which the amount of hydrogen is sufficiently large and accurately controlled without increasing the hydrogen gas concentration in the mixed gas.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a CZ pulling furnace according to an apparatus for producing a hydrogen-doped silicon single crystal of the present invention.
FIG. 2 is a schematic configuration diagram of another CZ pulling furnace according to the hydrogen-doped silicon single crystal manufacturing apparatus of the present invention.
FIG. 3 is a schematic configuration diagram of still another CZ pulling furnace according to the apparatus for producing a hydrogen-doped silicon single crystal of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Main chamber 4 Pull chamber 5 Crucible 6 Heater 8 Wire 11 Gas inlet 12 Gas sources 13 and 18 Pipe 14 Draw tube 15 Gas discharge means 16 and 22 Header 17 Support member 19 Gas outlet 20 Raw material melt 21 Single crystal 24 Funnel

Claims (4)

シリコン融液を収容するルツボを内部に有するメインチャンバと、
このメインチャンバの上に連結されたシリコン単結晶を引き上げるプルチャンバと、
水素ガスと不活性ガスとからなる混合ガスを供給する混合ガス供給源とを有するとともに、
この混合ガスを、上記プルチャンバを介して上記メインチャンバに供給し、シリコン単結晶を引き上げる水素ドープシリコン単結晶製造装置において、
上記混合ガス供給源から上記ルツボ内のシリコン融液表面に、上記プルチャンバを介さずに直接上記混合ガスを供給するガス吐出手段を備え、
このガス吐出手段を介してシリコン融液表面に供給する混合ガスの分流比を50%とした水素ドープシリコン単結晶製造装置。
A main chamber having a crucible for containing silicon melt therein;
A pull chamber for pulling up the silicon single crystal connected on the main chamber;
A mixed gas supply source for supplying a mixed gas composed of hydrogen gas and an inert gas;
In this hydrogen-doped silicon single crystal manufacturing apparatus for supplying this mixed gas to the main chamber through the pull chamber and pulling up the silicon single crystal,
Gas discharge means for supplying the mixed gas directly from the mixed gas supply source to the surface of the silicon melt in the crucible without going through the pull chamber;
An apparatus for producing a hydrogen-doped silicon single crystal in which the split ratio of the mixed gas supplied to the silicon melt surface via the gas discharge means is 50% .
上記ガス吐出手段は、環状又は円筒状のヘッダーに設けられた下方に向かって混合ガスを排出する複数のノズルと、
上記混合ガス供給源からこのノズルに混合ガスを供給するガス供給管とから構成されている請求項1に記載の水素ドープシリコン単結晶製造装置。
The gas discharge means includes a plurality of nozzles for discharging the mixed gas downwardly provided in an annular or cylindrical header,
The apparatus for producing a hydrogen-doped silicon single crystal according to claim 1, comprising a gas supply pipe for supplying a mixed gas from the mixed gas supply source to the nozzle.
シリコン融液を収容するルツボを内部に有したメインチャンバと、
このメインチャンバの上に連結されたシリコン単結晶を引き上げるプルチャンバと、
水素ガスと不活性ガスとからなる混合ガスを供給する混合ガス供給源とを有するとともに、
この混合ガスを、上記プルチャンバを介して上記メインチャンバに供給し、シリコン単結晶を引き上げる水素ドープシリコン単結晶製造装置において、
上記混合ガス供給源から上記ルツボ内のシリコン融液中に、直接上記混合ガスを供給するガス吐出手段を備え、
このガス吐出手段を介してシリコン融液中に供給する混合ガスの分流比を50%とした水素ドープシリコン単結晶製造装置。
A main chamber having a crucible for containing silicon melt therein;
A pull chamber for pulling up the silicon single crystal connected on the main chamber;
A mixed gas supply source for supplying a mixed gas composed of hydrogen gas and an inert gas;
In this hydrogen-doped silicon single crystal manufacturing apparatus for supplying this mixed gas to the main chamber through the pull chamber and pulling up the silicon single crystal,
Gas discharge means for supplying the mixed gas directly from the mixed gas supply source into the silicon melt in the crucible ,
An apparatus for producing a hydrogen-doped silicon single crystal in which the split ratio of the mixed gas supplied into the silicon melt through this gas discharge means is 50% .
上記ガス吐出手段は、上記メインチャンバ内に差し込まれた石英製のロート管の一方の端部に、この上記混合ガス供給源からこのロート管の他方の端部に混合ガスを供給するガス供給管が接続されている請求項3に記載の水素ドープシリコン単結晶製造装置。  A gas supply pipe for supplying a mixed gas from the mixed gas supply source to the other end of the funnel pipe at one end of a quartz funnel pipe inserted into the main chamber; The hydrogen-doped silicon single crystal manufacturing apparatus according to claim 3, wherein
JP2003005935A 2003-01-14 2003-01-14 Hydrogen doped silicon single crystal manufacturing equipment Expired - Lifetime JP4341008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003005935A JP4341008B2 (en) 2003-01-14 2003-01-14 Hydrogen doped silicon single crystal manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003005935A JP4341008B2 (en) 2003-01-14 2003-01-14 Hydrogen doped silicon single crystal manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2004217460A JP2004217460A (en) 2004-08-05
JP4341008B2 true JP4341008B2 (en) 2009-10-07

Family

ID=32896472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003005935A Expired - Lifetime JP4341008B2 (en) 2003-01-14 2003-01-14 Hydrogen doped silicon single crystal manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4341008B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4862290B2 (en) * 2005-06-20 2012-01-25 株式会社Sumco Silicon single crystal manufacturing method
US7384480B2 (en) 2005-06-20 2008-06-10 Sumco Corporation Apparatus for manufacturing semiconductor single crystal
JP4710429B2 (en) * 2005-06-20 2011-06-29 株式会社Sumco Semiconductor single crystal manufacturing equipment
US7306676B2 (en) 2005-06-20 2007-12-11 Sumco Corporation Apparatus for manufacturing semiconductor single crystal
DE102006002682A1 (en) * 2006-01-19 2007-08-02 Siltronic Ag Apparatus and method for producing a single crystal, single crystal and semiconductor wafer
JP4650345B2 (en) * 2006-05-29 2011-03-16 株式会社Sumco Method for producing silicon single crystal
JP4862836B2 (en) * 2008-02-05 2012-01-25 信越半導体株式会社 Single crystal manufacturing apparatus and single crystal manufacturing method
JP6287991B2 (en) * 2015-07-29 2018-03-07 信越半導体株式会社 Silicon single crystal growth equipment

Also Published As

Publication number Publication date
JP2004217460A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
JP4341008B2 (en) Hydrogen doped silicon single crystal manufacturing equipment
EP1895028B1 (en) Apparatus for producing semiconductor single crystal
US20080035050A1 (en) An Apparatus for Producing a Single Crystal
JP3360626B2 (en) Method for producing silicon single crystal
DK2679706T3 (en) PROCEDURE FOR MANUFACTURING N-TYPE SILICON MONO CRYSTAL
US20060254499A1 (en) Method For Manufacturing Nitrogen-Doped Silicon Single Crystal
US7300517B2 (en) Manufacturing method of hydrogen-doped silicon single crystal
JPH06247789A (en) Inert gas straightening and blowing device for device for pulling up single crystal
JP2010018446A (en) Method for producing single crystal and single crystal pulling apparatus
US7384480B2 (en) Apparatus for manufacturing semiconductor single crystal
US7306676B2 (en) Apparatus for manufacturing semiconductor single crystal
JP2002321997A (en) Apparatuses for making silicon single crystal and method for making silicon single crystal using the same
EP1895029B1 (en) Apparatus for producing semiconductor single crystal
JP4650345B2 (en) Method for producing silicon single crystal
JP2004123516A (en) Device for pulling up single crystal
JP2007204305A (en) Single crystal pulling apparatus
JP6642410B2 (en) Method for producing silicon single crystal
JP2011037643A (en) Single crystal pulling apparatus, method for producing single crystal and single crystal
JP7285197B2 (en) Single crystal pulling method and single crystal pulling apparatus
JP2002128593A (en) Method for producing silicon wafer and silicon wafer produced thereby
JP2010006657A (en) Silicon single crystal production apparatus and silicon single crystal production method
JP2004224642A (en) Single crystal manufacturing apparatus
JPH09142990A (en) Method for lowering oxygen concentration in silicone single crystal and apparatus therefor
JP2001226195A (en) Method for producing silicon single crystal ingot
JPH0446088A (en) Method and apparatus for producing single crystal

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080414

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080815

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4341008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term