JP4339582B2 - Fuel cell separator and method for producing the same - Google Patents

Fuel cell separator and method for producing the same Download PDF

Info

Publication number
JP4339582B2
JP4339582B2 JP2002360351A JP2002360351A JP4339582B2 JP 4339582 B2 JP4339582 B2 JP 4339582B2 JP 2002360351 A JP2002360351 A JP 2002360351A JP 2002360351 A JP2002360351 A JP 2002360351A JP 4339582 B2 JP4339582 B2 JP 4339582B2
Authority
JP
Japan
Prior art keywords
weight
parts
powder
gas flow
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002360351A
Other languages
Japanese (ja)
Other versions
JP2004192981A (en
Inventor
一郎 稲田
悦郎 菅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP2002360351A priority Critical patent/JP4339582B2/en
Publication of JP2004192981A publication Critical patent/JP2004192981A/en
Application granted granted Critical
Publication of JP4339582B2 publication Critical patent/JP4339582B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池用セパレータ、とくに自動車、小型分散型電源などに使用される固体高分子型燃料電池用セパレータおよびその製造方法に関する。
【0002】
【従来の技術】
固体高分子型燃料電池は、リン酸型燃料電池などの燃料電池に比較して低温で且つ高出力の発電が可能であるため、自動車の電源をはじめ小型の移動型電源として期待されている。固体高分子型燃料電池は、図1に示すように、通常、スルホン酸基を有するフッ素樹脂系イオン交換膜のような高分子イオン交換膜からなる電解質膜7を挟んで配置される一対の電極4、5(アノード4、カソード5)と、これをさらに両側から挟むセパレータ1よりなる単セルを複数積層したスタックおよびその外側に設けた2つの集電体から構成される。8はフッ素樹脂、フッ化ゴムなどからなるシール材である。
【0003】
電極4、5は、白金触媒を担持させた触媒電極であり、セパレータ1は、緻密な炭素質材料から成形され、直線状または格子状に延びる複数の溝6が形成されており、溝6とカソード5の表面の間に形成される空間を酸素含有ガス流路とし、溝6とアノード4の表面の間に形成される空間を燃料ガス(例えば水素ガスや、水素ガスを主成分とする混合ガスなど)流路として、酸素含有ガスと燃料ガスとが電極に接触して起こる化学反応(水素ガス側:H2 →2H+ +2e- 、酸素含有ガス側:(1/2)O2 +2H+ +2e- →H2 O)を利用して電極間から電気を取り出すようになっている。
【0004】
図1に示すように、セパレータ1は、片面または両面に複数のガス流通用の溝6が形成されている反応ガスの流路部(ガス流路部)Aと、ガス流路部Aの端縁部(周縁部)を構成する枠体Bからなる。
【0005】
セパレータの材質特性としては、燃料ガスと酸化剤ガスとを完全に分離した状態で電極に供給するために高度のガス不透過性が要求される。また、発電効率を高くするために電池の内部抵抗を小さくすることが必要である。さらに、電池スタックは、単セルを数十層積層して組立てられるが、電池性能を確保するために、各セル間が十分に密着するように組み立てることが必要であり、組立ては、通常、0.05〜1MPa程度の締め付け力で周囲をボルト締めすることにより行われるためセパレータに割れが生じ易く、従って組立て時の締め付け力に耐える常温強度をそなえるとともに、電池の作動温度である80〜100℃の高温においても十分な材質強度を有するものでなければならず、一般には、緻密質の炭素質材料から成形される。
【0006】
電池性能の高出力化と小型化を図るために、セパレータを薄肉化して単セルの厚さを薄くすることが考えられるが、セパレータの厚さは、発電効率を考慮しガス圧損失に配慮した反応ガス流通路としての厚さと気体不透過性に必要な厚さを加味した厚さをそなえたものであるため、薄肉化には限界がある。
【0007】
セパレータのうち、ガス流路部(A)の部材には、高効率の発電に寄与させるために、ガス遮断性(気体不透過性)をそなえた電気比抵抗の低い材質性状のものを選択しなければならず、枠体(B)には、必要に応じてガス導入部が形成されるので、外部への反応ガス漏れを防止し、燃料電池反応により生じる電流漏れ、ガス漏れを防止することが重要な要件となるから、その部材には、ガス流路部と同様の気体不透過性を有し、且つガス流路部より電気比抵抗の高い材質性状のもので形成する必要がある。
【0008】
上記のような観点から、炭素系材料からなる種々のセパレータが提案されてきた。これらのセパレータは、黒鉛などの炭素粉末を、熱硬化性樹脂をバインダーとして成形してなる炭素/樹脂硬化成形体であり、当該成形体の製造は、炭素材に耐食性樹脂を含浸した複合材を機械加工する方法や、炭素粉末と耐食性樹脂との混合粉を熱圧成形する方法により行われ、ガス流路部と枠体が一体となったセパレータが成形される。
【0009】
このうち、炭素粉末と耐食性樹脂との混合粉を熱圧成形し、最終形状を付与してセパレータとする方法によれば、炭素化工程や黒鉛化工程、機械加工が不要であり、材質特性を制御し易い上に短期間で製造できる利点があるため、この方法で製造されるセパレータについて、いくつかの提案が行われている。
【0010】
熱圧成形による方法は、同一金型中で、枠体とガス流路部とを一体に成形するもので、例えば、天然黒鉛と人造黒鉛とが重量比で80:20〜60:40の割合で混合された黒鉛粉末100重量部と熱硬化性樹脂10〜25重量部からなる粉末を板状に成形したセパレータが提案されている(特許文献1参照)。このセパレータにおいては、天然黒鉛の持つ可撓性により枠体には高い靱性が与えられるが、ガス流路部では適正な特性が維持できず、通電方向の電気比抵抗の増大を招き電池性能が低下するという問題が生じる。
【0011】
人造黒鉛、天然黒鉛、膨張黒鉛などの炭素粉末100重量部とバインダー樹脂18〜45重量部との混合粉末から形成したガス流路部の予備成形体と、炭素粉末100重量部とバインダー樹脂38〜95重量部からなり、バインダー樹脂量を前記ガス流路部の予備成形体のバインダー樹脂量より20〜50重量部多くした混合粉末から形成した枠体の予備成形体を金型に装入して、一体に熱圧成形することによりセパレータ部材を製造することも提案されている(特許文献2参照)が、この方法においては、組立時にセパレータに割れが生じる場合があり、必ずしも信頼性の高いセパレータ部材を得ることはできない。
【0012】
【特許文献1】
特開2000−40517号公報(請求項1)
【特許文献2】
特願2000−062884号公報(請求項3)
【0013】
【発明が解決しようとする課題】
本発明は、炭素粉末と耐食性樹脂との混合粉を熱圧成形することにより得られる炭素/樹脂硬化成形体からなるセパレータにおいて、高靱性を付与し得る天然黒鉛の使用に着目し、その配合比率および樹脂の配合比率とセパレータとして必要とされる特性との関係について多角的に試験、検討を重ねた結果としてなされたものであり、その目的は、靱性に優れた枠体をそなえ、組立時に割れを生じることのない優れた強度を有する高性能の燃料電池とくに固体高分子型燃料電池用セパレータおよびその製造方法を提供することにある。
【0014】
【課題を解決するための手段】
上記の目的を達成するための本発明の請求項1による燃料電池用セパレータは、片面または両面に複数のガス流通用溝部が形成されたガス流路部とガス流路部の周縁部に位置する枠体から構成され、該ガス流路部および枠体は炭素粉末と熱硬化性樹脂との混合粉末から成形された板状の成形体からなる燃料電池のセパレータにおいて、前記炭素粉末が天然黒鉛または膨張黒鉛の粉末と人造黒鉛の粉末からなり、枠体における天然黒鉛または膨張黒鉛の含有量(X重量部)がガス流路部における天然黒鉛または膨張黒鉛の含有量(Y重量部)より多く、枠体の破壊靭性値とガス流路部の破壊靭性値との比が1.1以上、枠体とガス流路部のガス透過率が10−6cc/cm・分以下であり、枠体とガス流路部とが一体に成形されていることを特徴とする。但し、X=A/(A+B)(A:枠体における天然黒鉛または膨張黒鉛の重量部、B:枠体における人造黒鉛の重量部、A+B=100)、Y=C/(C+D)(C:ガス流路部における天然黒鉛または膨張黒鉛の重量部、D:ガス流路部における人造黒鉛の重量部、C+D=100)。
【0016】
請求項による燃料電池用セパレータの製造方法は、天然黒鉛または膨張黒鉛0〜100重量部(X)と人造黒鉛100〜0重量部からなる炭素粉末100重量部と熱硬化性樹脂38〜95重量部との混合粉末からなる枠体用粉末と、天然黒鉛または膨張黒鉛0〜100重量部(Y)と人造黒鉛100〜0重量部からなる炭素粉末100重量部と熱硬化性樹脂18〜45重量部との混合粉末からなるガス流路部用粉末を、X>Yの関係になるよう配合し、枠体用粉末とガス流路部粉末を同一の金型内の所定個所に装入した後、一体に熱圧成形することを特徴とする。
【0017】
請求項による燃料電池用セパレータの製造方法は、天然黒鉛または膨張黒鉛50〜100重量部と人造黒鉛0〜50重量部からなる炭素粉末100重量部と熱硬化性樹脂38〜95重量部との混合粉末からなる枠体用粉末と、天然黒鉛または膨張黒鉛0重量部以上50重量部未満と人造黒鉛50〜100重量部からなる炭素粉末100重量部と熱硬化性樹脂18〜45重量部との混合粉末からなるガス流路部用粉末を、同一の金型内の所定個所に装入した後、一体に熱圧成形することを特徴とする。
【0018】
また、請求項による燃料電池用セパレータの製造方法は、請求項またはにおいて、枠体用粉末およびガス流路部用粉末が常温で成形された予備成形体として同一の金型内の所定個所に装入されることを特徴とする。
【0019】
【発明の実施の形態】
本発明の燃料電池用セパレータにおいて、ガス流路部の原料構成は、天然黒鉛または膨張黒鉛0〜100重量部(Y)と人造黒鉛100〜0重量部からなる炭素粉末100重量部と熱硬化性樹脂18〜45重量部との混合粉末、さらに好ましくは、天然黒鉛または膨張黒鉛0重量部以上50重量部未満と人造黒鉛50〜100重量部からなる炭素粉末100重量部と熱硬化性樹脂18〜45重量部との混合粉末からからなり、異方性が大きい天然黒鉛または膨張黒鉛の配合量を少なくし、熱硬化性樹脂の配合量を枠体の原料構成における熱硬化性樹脂の配合量より少なく設定することにより、ガス遮断性(気体不透過性)をそなえ且つ通電方向に低い電気比抵抗を有するガス流路部が得られ、高効率の発電を行うことができる。
【0020】
枠体の原料構成は、天然黒鉛または膨張黒鉛0〜100重量部(X、X>Y)と人造黒鉛100〜0重量部からなる炭素粉末100重量部と熱硬化性樹脂38〜95重量部との混合粉末、さらに好ましくは、天然黒鉛または膨張黒鉛50〜100重量部と人造黒鉛0〜50重量部からなる炭素粉末100重量部と熱硬化性樹脂38〜95重量部との混合粉末からなり、熱硬化性樹脂の配合量を多くして気体不透過性、高電気比抵抗、高強度を確保し、且つ高靱性を得るために天然黒鉛または膨張黒鉛の配合量を多く設定する。
【0021】
上記の原料構成により、枠体の破壊靱性値とガス流路部の破壊靱性値との比(枠体の破壊靱性値/ガス流路部の破壊靱性値)が1.1以上となって、枠体に組立時の締め付け力に耐えるに十分な常温強度と靱性が与えられ、電池の作動温度である80〜120℃の温度に耐える高温強度が付与される。また、枠体とガス流路部のガス透過率が10-6cc/cm2 ・分以下となり、枠体とガス流路部における気体不透過性が確保されて、反応ガスの外部への漏れが防止され、枠体の電気比抵抗値が大きくなって、燃料電池反応により生じる電流の漏れが防止される。枠体の破壊靱性値とガス流路部の破壊靱性値との比が1.1未満の場合には、燃料電池スタック組み立ての締め付け時にセパレータのガス流路部より枠体部に締め付け加重が負荷されるためクラックの発生割合が増加するためである。
【0022】
以下、本発明の燃料電池用セパレータの製造方法について説明する。
(ガス流路部の原料調製)
ガス流路部を構成する材質は、炭素粉末とバインダーとしての熱硬化性樹脂を混練したものを原料として使用するが、ガス流路部のように、薄型で複雑な形状の板状成形体を得るためには、混練物の流動性の良好なことが必要であり、また、成形後の強度や緻密性、導電性などが所定のレベルに維持されることも必要である。
【0023】
そのため、炭素粉末としては、平均粒子径が50μm以下、最大粒子径が300μm以下で、粒子径10μm以下の粒子の割合が20重量%以下に調整された粒度特性をそなえたものを使用するのが好ましい。
【0024】
平均粒子径が50μmを越え、最大粒子径が300μmを越えると、薄型で溝を設けた複雑な形状のガス流通部の成形が難しくなり、とくに成形体の周縁部や溝部の角などの強度が不十分となり、欠落が生じ易くなる。また、粒子径が小さい微粉末は表面積が大きいため、表面に吸着、捕捉される樹脂量が増大し、樹脂との混練物の流動性が著しく低下するため、粒子径が10μm以下の粒子の割合は20重量%以下に調整するのが好ましい。
【0025】
炭素粉末としては、天然黒鉛または膨張黒鉛と、人造黒鉛を使用し、バインダー(結合剤)として機能する樹脂は、固体高分子型燃料電池の作動温度の80〜120℃の温度に耐える耐熱性、pH2〜3程度のスルフォン酸や硫酸酸性に耐え得る耐酸性があればよく、例えば、フェノール系樹脂、フラン系樹脂、エポキシ系樹脂、フェノール−エポキシ系樹脂などの熱硬化性樹脂を単独または混合して使用される。
【0026】
これらの炭素粉末とバインダー樹脂は、天然黒鉛または膨張黒鉛0〜100重量部(Y)と人造黒鉛100〜0重量部からなる炭素粉末100重量部と熱硬化性樹脂18〜45重量部の量比、さらに好ましくは、天然黒鉛または膨張黒鉛0重量部以上50重量部未満と人造黒鉛50〜100重量部からなる炭素粉末100重量部と熱硬化性樹脂18〜45重量部の量比で混合して混練する。
【0027】
バインダー樹脂の量比が45重量部を越えると、導電性が著しく低下し、18重量部未満では、混練物の流動性が低下して、熱圧成形により形状精度の良い板状成形体を得ることが困難となり、成形性の悪化によりガス不透過性や強度の低下が生じる。また、天然黒鉛または膨張黒鉛の量比が50重量部を越えると、混練物の流動性が良くなるが、通電方向の導電性に著しい低下が生じる傾向がある。
【0028】
混練は、ニーダー、加圧型ニーダー、二軸スクリュー式混練機など常用の混練機を使用して行う。炭素粉末とバインダー樹脂をより均一に混合するために、樹脂をアルコール、エーテルなど、適宜の有機溶媒に溶解し、粘度を下げて混練した後、必要に応じて、有機溶媒を除去する方法を適用することもできる。
【0029】
(枠体の原料調製)
炭素粉末としては、天然黒鉛または膨張黒鉛と、人造黒鉛が使用され、バインダー(結合剤)として機能する樹脂は、固体高分子型燃料電池の作動温度の80〜120℃の温度に耐える耐熱性、pH2〜3程度のスルフォン酸や硫酸酸性に耐え得る耐酸性があればよく、例えば、フェノール系樹脂、フラン系樹脂、エポキシ系樹脂、フェノール−エポキシ系樹脂などの熱硬化性樹脂を単独または混合して使用される。
【0030】
これらの炭素粉末とバインダー樹脂は、天然黒鉛または膨張黒鉛0〜100重量部(X、X>Y)と人造黒鉛100〜0重量部からなる炭素粉末100重量部と熱硬化性樹脂38〜95重量部の量比、さらに好ましくは、天然黒鉛または膨張黒鉛50〜100重量部と人造黒鉛0〜50重量部からなる炭素粉末100重量部と熱硬化性樹脂38〜95重量部の量比で混合して混練する。
【0031】
バインダー樹脂の量比が95重量部を越えると、ガス流路部との境界部にクラックが生じ易くなり一体成形が困難となる。38重量部未満では、強度の低下が著しくなる。また、天然黒鉛または膨張黒鉛の量比が50重量部未満では、靱性に著しい低下が生じる傾向がある。
【0032】
(混合粉末による一体成形)
本発明においては、枠体とガス流路部との境界部の気体不透過性が十分に確保されるよう、枠体とガス流路部とを一体に成形するものであり、一体に成形する方法としては、ガス流路部用として調製された炭素粉末と熱硬化性樹脂との混合粉末および枠体用として調製された炭素粉末と熱硬化性樹脂との混合粉末を、同一の成形用金型内の所定個所に同時に装填して、金型を150〜280℃の温度に保持し、10〜50MPaの圧力で熱圧成形する方法が適用される。また、以下に述べるように、混合粉末により予備成形体に成形し、これを金型に装填して一体成形する方法も適用できる。
【0033】
(予備成形体を用いる一体成形)
ガス流路部用として配合された混合粉末、および枠体用として配合された混合粉末を、ニーダーなどの混練機で混練した後、室温に保持した金型に装入し、3〜30MPaの圧力で加圧することにより、図2に示すような、ガス流路用の予備成形体2および枠体用の予備成形体3を作製する。
【0034】
つぎに、これらの予備成形体2、3を金型の所定位置に、予備成形体2が予備成形体3の内側になるよう装着して、金型を150〜280℃の温度に保持し、10〜50MPaの圧力で熱圧成形する。予備成形体を使用する方法によれば、枠体部とガス流路部とが明確に分けられるため、予備成形体を使用する方法がより好ましい。
【0035】
上記のように、特定範囲に配合調製された原料粉末を使用し、好ましくは特定された粒度特性の炭素粉末を用い、一体に熱圧成形することによって、枠体とガス流路部における好ましい電気比抵抗の組み合わせによる高出力化、高分極特性が実現され、気体不透過性をそなえ、単セルを積層して電池スタックを組立てる際の締め付け力に抗してクラックや破損を生じることのない燃料電池用セパレータを得ることができる。
【0036】
【実施例】
以下、本発明の実施例を比較例と対比して説明し、効果を実証する。なお、これらの実施例は本発明の一実施態様を示すものであり、本発明はこれに限定されるものではない。
【0037】
実施例1〜4、比較例1〜6
ガス流路部用の原料粉末、枠体用の原料粉末を、表1に示すように配合し、配合された原料粉末を加圧ニーダーにより十分に混練した。バインダー樹脂としては、いずれも液状フェノール樹脂を使用した。得られた混練物を金型に装入し、室温で10MPaの圧力を加え、図2に示すような形状の予備成形体を作製した。なお、表1〜2において、本発明の条件を外れたものには下線を付した。
【0038】
得られた予備成形体を、金型内に、ガス流路用の予備成形体の外側に枠体部用の予備成形体が配置されるよう装入し、金型を180℃の温度に保持して、30MPaの圧力で熱圧成形を行い、ガス流路部と枠体部とが一体となった燃料電池用セパレータを作製した。
【0039】
成形されたセパレータについて、以下の方法によって電気比抵抗、気体透過度、曲げ強度および破壊靱性を測定した。測定結果を表2および表3に示す。
【0040】
電気比抵抗(Ωm):JIS R7202に準拠して測定。
気体透過度(m3 /m2 ・秒):窒素ガスにより0.1MPaの圧力をかけた際の窒素ガスの透過量を測定。
曲げ強度(MPa):JIS K6911に準拠して測定。
破壊靱性(MPam1/2 ):JIS R1607に準拠して測定。
【0041】
【表1】

Figure 0004339582
【0042】
【表2】
Figure 0004339582
【0043】
【表3】
Figure 0004339582
【0044】
表2〜3にみられるように、実施例1〜4においては、ガス流路部は電気比抵抗値が低く十分な気体不透過性を有しており、枠体は高強度、高靱性をそなえている。
【0045】
これに対して、比較例1は、枠体の樹脂含有量が少ないため枠体の強度が低く、比較例3は、ガス流路部の樹脂含有量が少ないためガス流路部の強度が低く、比較例4は、ガス流路部の樹脂含有量が多いため電気比抵抗を高くなっており導電性が劣る。比較例5は、枠体における人造黒鉛の配合比率が大きいため、枠体の破壊靱性が劣っており、比較例6は、ガス流路部における天然黒鉛の量比が大きいため電気比抵抗値が高く導電性に劣る。比較例2は、枠体における樹脂の量比が大きいため、ガス流路部との境界部にクラック発生によるガス漏れが生じた。
【0046】
【発明の効果】
以上のとおり、本発明の燃料電池用セパレータによれば、電池の高出力化を達成することができ、枠体も優れた強度、靱性をそなえているから、セパレータの薄肉化が可能となり、電池性能を維持した上で、積層した電池スタックの高さを小さくすることができ、電池の小型化を図ることが可能となる。
【図面の簡単な説明】
【図1】固体高分子型燃料電池の概略構造を示す一部断面図である。
【図2】セパレータのガス流路部用と枠体用の予備成形体、およびそれらの配置を示す概略斜視図である。
【符号の説明】
1 セパレータ
2 ガス流路用の予備成形体
3 枠体部用の予備成形体
4 カソード
5 アノード
6 溝
7 電解質膜
8 シール材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a separator for a fuel cell, in particular, a separator for a polymer electrolyte fuel cell used for an automobile, a small distributed power source, and the like, and a manufacturing method thereof.
[0002]
[Prior art]
Solid polymer fuel cells are expected to be used as small mobile power sources including automobile power sources because they can generate power at a lower temperature and higher output than fuel cells such as phosphoric acid fuel cells. As shown in FIG. 1, a polymer electrolyte fuel cell is usually a pair of electrodes arranged with an electrolyte membrane 7 made of a polymer ion exchange membrane such as a fluororesin ion exchange membrane having a sulfonic acid group interposed therebetween. 4 and 5 (anode 4 and cathode 5) and a stack in which a plurality of single cells made of a separator 1 sandwiching the anode and cathode 5 from both sides are stacked, and two current collectors provided outside the stack. Reference numeral 8 denotes a sealing material made of fluororesin, fluororubber or the like.
[0003]
The electrodes 4 and 5 are catalyst electrodes carrying a platinum catalyst, and the separator 1 is formed from a dense carbonaceous material and has a plurality of grooves 6 extending linearly or in a lattice pattern. The space formed between the surfaces of the cathode 5 is an oxygen-containing gas flow path, and the space formed between the grooves 6 and the surface of the anode 4 is a fuel gas (for example, hydrogen gas or a mixture containing hydrogen gas as a main component). As a flow path, a chemical reaction (hydrogen gas side: H 2 → 2H + + 2e , oxygen-containing gas side: (1/2) O 2 + 2H +, which occurs when an oxygen-containing gas and a fuel gas contact the electrode + 2e → H 2 O) is used to extract electricity from between the electrodes.
[0004]
As shown in FIG. 1, the separator 1 includes a reaction gas flow path section (gas flow path section) A in which a plurality of gas flow grooves 6 are formed on one side or both sides, and an end of the gas flow path section A. It consists of the frame B which comprises an edge part (peripheral part).
[0005]
As a material characteristic of the separator, a high degree of gas impermeability is required in order to supply the fuel gas and the oxidant gas to the electrode in a completely separated state. Moreover, it is necessary to reduce the internal resistance of the battery in order to increase the power generation efficiency. Furthermore, the battery stack can be assembled by stacking several tens of single cells. However, in order to ensure battery performance, it is necessary to assemble the cells so that the cells are in close contact with each other. Since it is performed by bolting the periphery with a tightening force of about 0.05 to 1 MPa, the separator is easily cracked. The material must have sufficient material strength even at a high temperature, and is generally formed from a dense carbonaceous material.
[0006]
In order to achieve higher output and smaller battery performance, it is conceivable to reduce the thickness of the single cell by reducing the thickness of the separator, but the thickness of the separator takes into account gas pressure loss in consideration of power generation efficiency. Since the thickness of the reaction gas flow path and the thickness necessary for gas impermeability are included, there is a limit to reducing the thickness.
[0007]
Of the separators, the material of the gas flow path section (A) is selected to have a material property with a low electrical specific resistance and a gas barrier property (gas impermeability) in order to contribute to highly efficient power generation. Since a gas introduction part is formed in the frame (B) as necessary, it is necessary to prevent leakage of reaction gas to the outside, and to prevent current leakage and gas leakage caused by fuel cell reaction. Therefore, it is necessary to form the member with a material property having gas impermeability similar to that of the gas flow path portion and higher electrical resistivity than the gas flow path portion.
[0008]
From the above viewpoint, various separators made of a carbon-based material have been proposed. These separators are carbon / resin-cured molded bodies formed by molding carbon powder such as graphite using a thermosetting resin as a binder, and the molded bodies are manufactured using a composite material in which a carbon material is impregnated with a corrosion-resistant resin. This is performed by a method of machining or a method of hot pressing a mixed powder of carbon powder and corrosion-resistant resin, and a separator in which the gas flow path portion and the frame are integrated is formed.
[0009]
Among these, according to the method in which a mixed powder of carbon powder and corrosion-resistant resin is hot-press molded and given a final shape to make a separator, the carbonization process, graphitization process, and machining are unnecessary, and the material characteristics are Since it is easy to control and can be manufactured in a short period of time, several proposals have been made on separators manufactured by this method.
[0010]
The method by hot pressing is a method in which the frame and the gas flow path are integrally formed in the same mold. For example, natural graphite and artificial graphite are in a ratio of 80:20 to 60:40 by weight. A separator is proposed in which a powder composed of 100 parts by weight of graphite powder and 10 to 25 parts by weight of a thermosetting resin is formed into a plate shape (see Patent Document 1). In this separator, the toughness of the frame is imparted by the flexibility of natural graphite, but proper characteristics cannot be maintained in the gas flow path section, leading to an increase in the electrical resistivity in the energizing direction and battery performance. The problem of deteriorating arises.
[0011]
A preform for a gas flow path formed from a mixed powder of 100 parts by weight of carbon powder such as artificial graphite, natural graphite, and expanded graphite and 18 to 45 parts by weight of binder resin, and 100 parts by weight of carbon powder and 38 to 38 parts of binder resin. A frame preform formed from a mixed powder comprising 95 parts by weight and having a binder resin amount of 20 to 50 parts by weight greater than the binder resin amount of the preform of the gas flow path portion was charged into a mold. In addition, it has also been proposed to manufacture a separator member by integrally hot pressing (see Patent Document 2). However, in this method, the separator may be cracked during assembly, and the separator is not always highly reliable. The member cannot be obtained.
[0012]
[Patent Document 1]
JP 2000-40517 A (Claim 1)
[Patent Document 2]
Japanese Patent Application No. 2000-062884 (Claim 3)
[0013]
[Problems to be solved by the invention]
The present invention focuses on the use of natural graphite capable of imparting high toughness in a separator made of a carbon / resin-cured molded body obtained by hot pressing a mixed powder of carbon powder and a corrosion-resistant resin, and its blending ratio In addition, it was made as a result of repeated testing and examination of the relationship between the blending ratio of the resin and the properties required for the separator, and its purpose was to provide a frame body with excellent toughness and crack during assembly. It is an object of the present invention to provide a high-performance fuel cell, particularly a polymer electrolyte fuel cell separator, and a method for producing the same.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, a fuel cell separator according to claim 1 of the present invention is located at a gas channel portion in which a plurality of gas flow grooves are formed on one side or both sides, and a peripheral portion of the gas channel unit. In the separator of a fuel cell comprising a plate-shaped molded body formed from a mixed powder of carbon powder and a thermosetting resin, the carbon powder is composed of natural graphite or It is composed of expanded graphite powder and artificial graphite powder, and the content of natural graphite or expanded graphite (X parts by weight) in the frame is greater than the content of natural graphite or expanded graphite (Y parts by weight) in the gas flow path part, The ratio of the fracture toughness value of the frame body to the fracture toughness value of the gas flow path section is 1.1 or more, and the gas permeability between the frame body and the gas flow path section is 10 −6 cc / cm 2 · min or less, The body and the gas flow path are molded integrally And features. However, X = A / (A + B) (A: parts by weight of natural graphite or expanded graphite in the frame, B: parts by weight of artificial graphite in the frame, A + B = 100), Y = C / (C + D) (C: Parts by weight of natural graphite or expanded graphite in the gas channel part, D: parts by weight of artificial graphite in the gas channel part, C + D = 100).
[0016]
The method for producing a fuel cell separator according to claim 2 comprises 100 parts by weight of carbon powder comprising 0 to 100 parts by weight of natural graphite or expanded graphite (X) and 100 to 0 parts by weight of artificial graphite, and 38 to 95 parts by weight of thermosetting resin. Frame powder composed of a mixed powder of 100 parts by weight, carbon powder composed of 0 to 100 parts by weight of natural graphite or expanded graphite (Y) and 100 to 0 parts by weight of artificial graphite, and 18 to 45 parts by weight of thermosetting resin. a gas flow path part-forming powder comprising a mixed powder of parts, X> formulated so that a relationship of Y, was charged with powder and the powder gas channel portion for the frame in a predetermined position in the same mold Then, it is characterized in that it is integrally formed by hot pressing.
[0017]
According to a third aspect of the present invention, there is provided a method for producing a fuel cell separator comprising: 100 parts by weight of carbon powder comprising 50 to 100 parts by weight of natural graphite or expanded graphite; 0 to 50 parts by weight of artificial graphite; and 38 to 95 parts by weight of a thermosetting resin. Frame powder composed of mixed powder, 100 parts by weight of carbon powder composed of 0 to 50 parts by weight of natural graphite or expanded graphite, 50 to 100 parts by weight of artificial graphite, and 18 to 45 parts by weight of thermosetting resin The gas channel part powder made of mixed powder is inserted into a predetermined location in the same mold and then integrally hot-pressed.
[0018]
According to a fourth aspect of the present invention, there is provided a method for producing a fuel cell separator according to the second or third aspect, wherein the frame body powder and the gas flow path portion powder are molded in the same mold as a preform formed at room temperature. It is characterized by being inserted into a place.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
In the fuel cell separator of the present invention, the raw material composition of the gas flow path is composed of 100 parts by weight of carbon powder composed of natural graphite or 0 to 100 parts by weight of expanded graphite (Y) and 100 to 0 parts by weight of artificial graphite, and thermosetting. Mixed powder with 18 to 45 parts by weight of resin, more preferably 100 parts by weight of carbon powder consisting of 0 to 50 parts by weight of natural graphite or expanded graphite and 50 to 100 parts by weight of artificial graphite and 18 to It consists of mixed powder with 45 parts by weight, reduces the blending amount of natural graphite or expanded graphite with large anisotropy, and blends the thermosetting resin blending amount with the thermosetting resin blending amount in the frame material composition By setting it to a small value, a gas flow path section having gas barrier properties (gas impermeability) and having a low electric resistivity in the energizing direction can be obtained, and highly efficient power generation can be performed.
[0020]
The raw material constitution of the frame is composed of 100 to 0 parts by weight of carbon powder composed of 0 to 100 parts by weight of natural graphite or expanded graphite (X, X> Y) and 100 to 0 parts by weight of artificial graphite, and 38 to 95 parts by weight of thermosetting resin. More preferably, it is composed of a mixed powder of 100 parts by weight of carbon powder consisting of 50 to 100 parts by weight of natural graphite or expanded graphite and 0 to 50 parts by weight of artificial graphite and 38 to 95 parts by weight of thermosetting resin, In order to increase the blending amount of the thermosetting resin to ensure gas impermeability, high electrical resistivity, high strength, and to obtain high toughness, the blending amount of natural graphite or expanded graphite is set to be large.
[0021]
With the above raw material configuration, the ratio of the fracture toughness value of the frame body and the fracture toughness value of the gas channel portion (fracture toughness value of the frame body / fracture toughness value of the gas channel portion) is 1.1 or more, The frame body is given sufficient room temperature strength and toughness to withstand the tightening force at the time of assembly, and high temperature strength to withstand the temperature of 80 to 120 ° C., which is the operating temperature of the battery. In addition, the gas permeability between the frame body and the gas flow path portion is 10 −6 cc / cm 2 · min or less, and gas impermeability is secured in the frame body and the gas flow path portion, so that the reaction gas leaks to the outside. Is prevented, and the electrical resistivity of the frame is increased, thereby preventing current leakage caused by the fuel cell reaction. When the ratio of the fracture toughness value of the frame body to the fracture toughness value of the gas flow path section is less than 1.1, a tightening load is applied to the frame body section from the gas flow path section of the separator when tightening the fuel cell stack. This is because the crack generation rate increases.
[0022]
Hereinafter, the manufacturing method of the separator for fuel cells of this invention is demonstrated.
(Preparation of raw material for gas flow path)
The material that constitutes the gas flow path part is a material obtained by kneading carbon powder and a thermosetting resin as a binder, but a thin and complex shaped plate-like molded body like the gas flow path part is used. In order to obtain the kneaded product, it is necessary that the flowability of the kneaded product is good, and it is also necessary to maintain the strength, denseness, conductivity and the like after molding at a predetermined level.
[0023]
Therefore, carbon powder having an average particle size of 50 μm or less, a maximum particle size of 300 μm or less, and a particle size characteristic in which the ratio of particles having a particle size of 10 μm or less is adjusted to 20% by weight or less is used. preferable.
[0024]
If the average particle diameter exceeds 50 μm and the maximum particle diameter exceeds 300 μm, it becomes difficult to form a thin gas channel having a complicated shape with grooves, especially the strength of the periphery of the molded body and the corners of the groove. Insufficient and easy to lack. In addition, since the fine powder with a small particle size has a large surface area, the amount of the resin adsorbed and trapped on the surface increases, and the fluidity of the kneaded product with the resin significantly decreases. Is preferably adjusted to 20% by weight or less.
[0025]
As the carbon powder, natural graphite or expanded graphite and artificial graphite are used, and the resin functioning as a binder (binder) is heat resistant to withstand a temperature of 80 to 120 ° C. of the operating temperature of the polymer electrolyte fuel cell. It only needs to have acid resistance that can withstand sulfonic acid or sulfuric acid having a pH of about 2 to 3, for example, a thermosetting resin such as a phenol resin, a furan resin, an epoxy resin, or a phenol-epoxy resin alone or in combination. Used.
[0026]
These carbon powders and binder resin are composed of natural graphite or expanded graphite 0 to 100 parts by weight (Y) and artificial graphite 100 to 0 parts by weight carbon powder 100 parts by weight and thermosetting resin 18 to 45 parts by weight. More preferably, natural graphite or expanded graphite is mixed in an amount ratio of 100 parts by weight of carbon powder composed of 0 to 50 parts by weight of artificial graphite and 50 to 100 parts by weight of artificial graphite and 18 to 45 parts by weight of thermosetting resin. Knead.
[0027]
When the amount ratio of the binder resin exceeds 45 parts by weight, the conductivity is remarkably reduced, and when it is less than 18 parts by weight, the fluidity of the kneaded product is lowered, and a plate-like molded body having good shape accuracy is obtained by hot pressing. It becomes difficult, and gas impermeability and strength decrease due to deterioration of moldability. On the other hand, if the amount ratio of natural graphite or expanded graphite exceeds 50 parts by weight, the fluidity of the kneaded product is improved, but there is a tendency that the conductivity in the energizing direction is significantly reduced.
[0028]
Kneading is performed using a conventional kneader such as a kneader, a pressure kneader, or a twin screw kneader. In order to mix the carbon powder and binder resin more uniformly, a method is adopted in which the resin is dissolved in an appropriate organic solvent such as alcohol or ether, the viscosity is lowered and kneaded, and then the organic solvent is removed as necessary. You can also
[0029]
(Raw material preparation)
As the carbon powder, natural graphite or expanded graphite and artificial graphite are used, and the resin functioning as a binder (binder) is heat resistant to withstand a temperature of 80 to 120 ° C. of the operating temperature of the polymer electrolyte fuel cell, It only needs to have acid resistance that can withstand sulfonic acid or sulfuric acid having a pH of about 2 to 3, for example, a thermosetting resin such as a phenol resin, a furan resin, an epoxy resin, or a phenol-epoxy resin alone or in combination. Used.
[0030]
These carbon powder and binder resin are natural graphite or expanded graphite 0-100 parts by weight (X, X> Y) and artificial graphite 100-100 parts by weight and thermosetting resin 38-95 parts by weight. Part ratio, more preferably 50 parts by weight of natural graphite or expanded graphite and 100 parts by weight of carbon powder consisting of 0 to 50 parts by weight of artificial graphite and 38 to 95 parts by weight of thermosetting resin. Knead.
[0031]
If the amount ratio of the binder resin exceeds 95 parts by weight, cracks are likely to occur at the boundary with the gas flow path part, making integral molding difficult. If it is less than 38 parts by weight, the strength is remarkably reduced. Further, if the amount ratio of natural graphite or expanded graphite is less than 50 parts by weight, the toughness tends to be significantly reduced.
[0032]
(Integrated molding with mixed powder)
In the present invention, the frame and the gas flow path are integrally formed so that the gas impermeability at the boundary between the frame and the gas flow path is sufficiently secured. As a method, a mixed powder of carbon powder and a thermosetting resin prepared for a gas flow path part and a mixed powder of a carbon powder and a thermosetting resin prepared for a frame body are mixed with the same molding metal. A method is used in which a mold is simultaneously loaded at a predetermined location in the mold, the mold is held at a temperature of 150 to 280 ° C., and hot-pressure molded at a pressure of 10 to 50 MPa. Further, as described below, a method in which a preform is formed with a mixed powder, and this is loaded into a mold and integrally molded can be applied.
[0033]
(Integrated molding using preforms)
The mixed powder blended for the gas flow passage and the mixed powder blended for the frame body are kneaded with a kneader such as a kneader, and then charged into a mold kept at room temperature, and a pressure of 3 to 30 MPa. To produce a preform 2 for a gas flow path and a preform 3 for a frame, as shown in FIG.
[0034]
Next, these preforms 2 and 3 are mounted at predetermined positions of the mold so that the preform 2 is inside the preform 3 and the mold is held at a temperature of 150 to 280 ° C. Hot pressing is performed at a pressure of 10 to 50 MPa. According to the method using the preform, the frame body portion and the gas flow path portion are clearly separated, so the method using the preform is more preferable.
[0035]
As described above, by using the raw material powder blended and prepared in a specific range, preferably by using the carbon powder having the specified particle size characteristics, and by integrally hot pressing, the frame body and the gas flow passage portion are preferably High output and high polarization characteristics achieved by combining specific resistance, gas impermeability, and fuel that does not crack or break against the clamping force when assembling a battery stack by stacking single cells A battery separator can be obtained.
[0036]
【Example】
Examples of the present invention will be described below in comparison with comparative examples to demonstrate the effects. These examples show one embodiment of the present invention, and the present invention is not limited thereto.
[0037]
Examples 1-4, Comparative Examples 1-6
The raw material powder for the gas flow path and the raw material powder for the frame were blended as shown in Table 1, and the blended raw material powder was sufficiently kneaded with a pressure kneader. As the binder resin, liquid phenol resin was used for all. The obtained kneaded product was charged into a mold, and a pressure of 10 MPa was applied at room temperature to prepare a preform having a shape as shown in FIG. In Tables 1 and 2, those outside the conditions of the present invention are underlined.
[0038]
The obtained preform is placed in the mold so that the preform for the frame part is disposed outside the preform for the gas flow path, and the mold is maintained at a temperature of 180 ° C. Then, hot pressure molding was performed at a pressure of 30 MPa to produce a fuel cell separator in which the gas flow path portion and the frame portion were integrated.
[0039]
With respect to the molded separator, electrical resistivity, gas permeability, bending strength and fracture toughness were measured by the following methods. The measurement results are shown in Table 2 and Table 3.
[0040]
Electrical specific resistance (Ωm): Measured according to JIS R7202.
Gas permeability (m 3 / m 2 · sec): The amount of nitrogen gas permeated when a pressure of 0.1 MPa is applied with nitrogen gas.
Bending strength (MPa): Measured according to JIS K6911.
Fracture toughness (MPam 1/2 ): Measured according to JIS R1607.
[0041]
[Table 1]
Figure 0004339582
[0042]
[Table 2]
Figure 0004339582
[0043]
[Table 3]
Figure 0004339582
[0044]
As can be seen from Tables 2 to 3, in Examples 1 to 4, the gas flow path portion has a low electrical specific resistance value and sufficient gas impermeability, and the frame has high strength and high toughness. I have it.
[0045]
On the other hand, Comparative Example 1 has a low strength of the frame because the resin content of the frame is small, and Comparative Example 3 has a low strength of the gas flow path because the resin content of the gas flow path is small. In Comparative Example 4, since the resin content in the gas flow path portion is large, the electrical specific resistance is high and the conductivity is poor. In Comparative Example 5, since the blending ratio of artificial graphite in the frame is large, the fracture toughness of the frame is inferior. In Comparative Example 6, the electrical resistivity value is large because of the large amount ratio of natural graphite in the gas flow path. High and inferior in conductivity. In Comparative Example 2, since the amount ratio of the resin in the frame body is large, gas leakage due to the occurrence of cracks occurred at the boundary with the gas flow path.
[0046]
【The invention's effect】
As described above, according to the separator for a fuel cell of the present invention, high output of the battery can be achieved, and since the frame body has excellent strength and toughness, the separator can be thinned, and the battery While maintaining the performance, the height of the stacked battery stack can be reduced, and the battery can be miniaturized.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view showing a schematic structure of a polymer electrolyte fuel cell.
FIG. 2 is a schematic perspective view showing preformed bodies for a gas flow path portion and a frame body of separators and their arrangement.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Separator 2 Preliminary body for gas flow path 3 Preliminary body for frame part 4 Cathode 5 Anode 6 Groove 7 Electrolyte membrane 8 Sealing material

Claims (4)

片面または両面に複数のガス流通用溝部が形成されたガス流路部とガス流路部の周縁部に位置する枠体から構成され、該ガス流路部および枠体は炭素粉末と熱硬化性樹脂との混合粉末から成形された板状の成形体からなる燃料電池のセパレータにおいて、前記炭素粉末が天然黒鉛または膨張黒鉛の粉末と人造黒鉛の粉末からなり、枠体における天然黒鉛または膨張黒鉛の含有量(X重量部)がガス流路部における天然黒鉛または膨張黒鉛の含有量(Y重量部)より多く、枠体の破壊靭性値とガス流路部の破壊靭性値との比が1.1以上、枠体とガス流路部のガス透過率が10 −6 cc/cm ・分以下であり、枠体とガス流路部とが一体に成形されていることを特徴とする燃料電池用セパレータ。但し、X=A/(A+B)(A:枠体における天然黒鉛または膨張黒鉛の重量部、B:枠体における人造黒鉛の重量部、A+B=100)、Y=C/(C+D)(C:ガス流路部における天然黒鉛または膨張黒鉛の重量部、D:ガス流路部における人造黒鉛の重量部、C+D=100)。 It is composed of a gas flow path portion in which a plurality of gas flow grooves are formed on one side or both sides, and a frame body located at the peripheral edge of the gas flow path portion. The gas flow path portion and the frame body are made of carbon powder and thermosetting. In a fuel cell separator comprising a plate-like molded body formed from a mixed powder with a resin, the carbon powder comprises natural graphite or expanded graphite powder and artificial graphite powder. the ratio of the content (X parts by weight) is a natural graphite or content of the expanded graphite (Y parts by weight) than rather high, fracture toughness values of fracture toughness value and the gas flow passage portion of the frame body in the gas flow path portion 1 .1 or more, the gas permeability of the frame body and the gas flow path section is 10 −6 cc / cm 2 · min or less, and the frame body and the gas flow path section are integrally molded Battery separator. However, X = A / (A + B) (A: parts by weight of natural graphite or expanded graphite in the frame, B: parts by weight of artificial graphite in the frame, A + B = 100), Y = C / (C + D) (C: Parts by weight of natural graphite or expanded graphite in the gas channel part, D: parts by weight of artificial graphite in the gas channel part, C + D = 100). 天然黒鉛または膨張黒鉛0〜100重量部(X)と人造黒鉛100〜0重量部からなる炭素粉末100重量部と熱硬化性樹脂38〜95重量部との混合粉末からなる枠体用粉末と、天然黒鉛または膨張黒鉛0〜100重量部(Y)と人造黒鉛100〜0重量部からなる炭素粉末100重量部と熱硬化性樹脂18〜45重量部との混合粉末からなるガス流路部用粉末を、X>Yの関係になるよう配合し、枠体用粉末とガス流路部用粉末を同一の金型内の所定個所に装入した後、一体に熱圧成形することを特徴とする燃料電池用セパレータの製造方法。A powder for a frame comprising a mixed powder of natural graphite or 0 to 100 parts by weight of expanded graphite (X), 100 parts by weight of carbon powder comprising 100 to 0 parts by weight of artificial graphite, and 38 to 95 parts by weight of thermosetting resin; Powder for gas flow path part which consists of mixed powder of carbon powder consisting of natural graphite or expanded graphite 0-100 parts by weight (Y), artificial graphite 100-0 parts by weight and thermosetting resin 18-45 parts by weight Are mixed so as to satisfy the relationship of X> Y, and the powder for the frame body and the powder for the gas flow path portion are charged into a predetermined location in the same mold, and then integrally formed by hot pressing. Manufacturing method of separator for fuel cell. 天然黒鉛または膨張黒鉛50〜100重量部と人造黒鉛0〜50重量部からなる炭素粉末100重量部と熱硬化性樹脂38〜95重量部との混合粉末からなる枠体用粉末と、天然黒鉛または膨張黒鉛0重量部以上50重量部未満と人造黒鉛50〜100重量部からなる炭素粉末100重量部と熱硬化性樹脂18〜45重量部との混合粉末からなるガス流路部用粉末を、同一の金型内の所定個所に装入した後、一体に熱圧成形することを特徴とする燃料電池用セパレータの製造方法。A powder for a frame body composed of a mixed powder of 100 to 100 parts by weight of carbon powder composed of 50 to 100 parts by weight of natural graphite or expanded graphite, 0 to 50 parts by weight of artificial graphite, and 38 to 95 parts by weight of a thermosetting resin; The same powder for a gas flow path comprising a mixed powder of 0 to 50 parts by weight of expanded graphite, 100 parts by weight of carbon powder comprising 50 to 100 parts by weight of artificial graphite, and 18 to 45 parts by weight of thermosetting resin. A method for producing a separator for a fuel cell, comprising: hot-pressing integrally after inserting into a predetermined location in the mold. 枠体用粉末およびガス流路部用粉末が常温で成形された予備成形体として同一の金型内の所定個所に装入されることを特徴とする請求項または記載の燃料電池用セパレータの製造方法。The fuel cell separator according to claim 2 or 3 , wherein the powder for the frame body and the powder for the gas flow path portion are inserted into a predetermined location in the same mold as a preformed body molded at room temperature. Manufacturing method.
JP2002360351A 2002-12-12 2002-12-12 Fuel cell separator and method for producing the same Expired - Fee Related JP4339582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002360351A JP4339582B2 (en) 2002-12-12 2002-12-12 Fuel cell separator and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002360351A JP4339582B2 (en) 2002-12-12 2002-12-12 Fuel cell separator and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004192981A JP2004192981A (en) 2004-07-08
JP4339582B2 true JP4339582B2 (en) 2009-10-07

Family

ID=32759449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002360351A Expired - Fee Related JP4339582B2 (en) 2002-12-12 2002-12-12 Fuel cell separator and method for producing the same

Country Status (1)

Country Link
JP (1) JP4339582B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3838470A1 (en) 2019-12-17 2021-06-23 Bystronic Laser AG Detection of foreign bodies and slag detection on a work desk

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073360A (en) * 2004-09-02 2006-03-16 Nichias Corp Separator for fuel cell and composition therefor
JP5057263B2 (en) * 2005-12-21 2012-10-24 東海カーボン株式会社 Separator material for polymer electrolyte fuel cell and method for producing the same
JP5793452B2 (en) * 2012-03-06 2015-10-14 日本ピラー工業株式会社 Fuel cell separator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3838470A1 (en) 2019-12-17 2021-06-23 Bystronic Laser AG Detection of foreign bodies and slag detection on a work desk

Also Published As

Publication number Publication date
JP2004192981A (en) 2004-07-08

Similar Documents

Publication Publication Date Title
EP2192644B1 (en) Molding material for fuel cell separator
KR101815134B1 (en) Fuel cell separator plate and fabrication method thereof
CA2295275C (en) Separator for fuel battery and method of producing the same
TWI382579B (en) Isolation material for fuel cell and manufacturing method thereof
KR20050021027A (en) Anode-supported flat-tubular solid oxide fuel cell stack and fabrication method of it
CA2534590A1 (en) Stack supported solid oxide fuel cell
JP3573444B2 (en) Carbonaceous separator member for polymer electrolyte fuel cell and method of manufacturing the same
KR20070085506A (en) Separator material for solid polymer fuel cell and process for producing the same
JP3824795B2 (en) Method for producing separator member for polymer electrolyte fuel cell
US6815112B2 (en) Fuel cell separator and polymer electrolyte fuel cell
JP4037955B2 (en) Method for producing polymer electrolyte fuel cell separator member
JP4339582B2 (en) Fuel cell separator and method for producing the same
JP2001250566A (en) Separator for fuel cell and method of manufacturing the same
JP3561241B2 (en) Separator for direct methanol fuel cell and direct methanol fuel cell
JP4725872B2 (en) Separator for polymer electrolyte fuel cell
KR101316006B1 (en) Mesh type separator for fuel cell and manufacturing method thereof
JP4455810B2 (en) Method for producing separator for polymer electrolyte fuel cell
JP2001216977A (en) Separator material for fuel cell
JP2009140849A (en) Fuel cell and fuel cell separator
KR20200099332A (en) Sealing composition for separator of fuel cell
JP3980229B2 (en) Separator member for polymer electrolyte fuel cell
KR101698584B1 (en) Fuel Cell Separator
JP2005122974A (en) Fuel cell separator and fuel cell
JP2002208411A (en) Separator material for solid polymer fuel cell and method of manufacturing it
KR20170010611A (en) Fuel cell separator plate and a method of fabriation thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees