JP2001216977A - Separator material for fuel cell - Google Patents

Separator material for fuel cell

Info

Publication number
JP2001216977A
JP2001216977A JP2000023787A JP2000023787A JP2001216977A JP 2001216977 A JP2001216977 A JP 2001216977A JP 2000023787 A JP2000023787 A JP 2000023787A JP 2000023787 A JP2000023787 A JP 2000023787A JP 2001216977 A JP2001216977 A JP 2001216977A
Authority
JP
Japan
Prior art keywords
carbon black
fuel cell
weight
parts
graphite powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000023787A
Other languages
Japanese (ja)
Inventor
Masanobu Maeda
真伸 前田
Shinji Misono
伸司 味曽野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP2000023787A priority Critical patent/JP2001216977A/en
Publication of JP2001216977A publication Critical patent/JP2001216977A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a separator material for a fuel cell comprising a rubber composition for reducing contact resistance between unit cells during laminating of the unit cells and permitting a higher output and a lighter weight. SOLUTION: The separator material for the fuel cell comprises the rubber composition incorporating a 100-150 parts by weight of graphite powder and an 80-150 parts by weight of carbon black on a 100 parts by weight of rubber component. It is preferable that the graphite powder has an average particle size 10-250 μm and a conductive carbon black is preferable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子型燃料
電池やリン酸型燃料電池などの燃料電池用のセパレータ
材に関する。
The present invention relates to a separator material for a fuel cell such as a polymer electrolyte fuel cell or a phosphoric acid fuel cell.

【0002】[0002]

【従来の技術】燃料電池は、一般に、電解質膜と、その
両面に設けた2つの触媒電極と、それぞれの電極に水素
などの燃料と酸素や空気などの酸化剤ガスを供給するガ
ス供給溝を設けたセパレータ、などで単セルを形成し、
この単セルを積層して電池スタックが構成されている。
2. Description of the Related Art A fuel cell generally comprises an electrolyte membrane, two catalyst electrodes provided on both sides thereof, and a gas supply groove for supplying a fuel such as hydrogen and an oxidizing gas such as oxygen or air to each electrode. Form a single cell with the provided separator, etc.,
A battery stack is formed by stacking the single cells.

【0003】この燃料電池の発電機構は、セルのアノー
ド側に供給された燃料ガス(水素ガスや水素含有ガス)
とカソード側に供給された酸化剤ガス(空気などの酸素
含有ガス)とが反応して生じる電子(e- )を電気エネ
ルギーとして外部に取り出すもので、例えば、燃料ガス
に水素ガス、酸化剤ガスに酸素ガスを用いた場合には次
の反応が進行して電気エネルギーが発生する。 アノード;H2 →2H+ +2e- カソード;(1/2)O2 +2H+ +2e- →H2 O 全反応 ;H2 +(1/2)O2 →H2
[0003] The power generation mechanism of this fuel cell uses a fuel gas (hydrogen gas or hydrogen-containing gas) supplied to the anode side of the cell.
Electrons (e ) generated by the reaction of the gas with an oxidizing gas (oxygen-containing gas such as air) supplied to the cathode side as electric energy. For example, hydrogen gas and oxidizing gas are used as fuel gas. When oxygen gas is used, the following reaction proceeds to generate electric energy. Anode; H 2 → 2H + + 2e cathode; (1/2) O 2 + 2H + + 2e → H 2 O Total reaction; H 2 + (1/2) O 2 → H 2 O

【0004】したがって、燃料ガスと酸化剤ガスとは完
全に分離した状態で電極に供給されることが必要であ
り、セパレータ材には高度のガス不透過性が要求され
る。すなわち、セパレータからガスリークがあると上記
の電気化学反応が円滑に進行しないために電池性能が低
下し、また燃料ガスと酸化剤ガスとが混合して爆発を起
こす危険性もある。
[0004] Therefore, it is necessary to supply the fuel gas and the oxidizing gas to the electrode in a completely separated state, and the separator material is required to have high gas impermeability. That is, if there is a gas leak from the separator, the above-mentioned electrochemical reaction does not proceed smoothly, so that the battery performance is reduced. Further, there is a risk that the fuel gas and the oxidizing gas are mixed to cause an explosion.

【0005】更に、発電効率を高くするためには電池の
内部抵抗を小さくすることが必要であり、また電池反応
に伴う発熱を効率よく放散させ、電池内の温度分布を均
一化するために熱伝導性が高く、長期間安定に作動させ
るために耐熱性および耐蝕性に優れていることなどの材
質特性が要求される。
Further, in order to increase the power generation efficiency, it is necessary to reduce the internal resistance of the battery, and to dissipate the heat generated by the battery reaction efficiently and to make the temperature distribution in the battery uniform. Material properties such as excellent heat resistance and corrosion resistance are required for high conductivity and stable operation for a long period of time.

【0006】これらの材質特性が必要とされる燃料電池
用のセパレータ材には、従来から炭素質系の材料が有用
されており、例えば黒鉛材の気孔空隙中に熱硬化性樹脂
を含浸して加熱硬化し、気孔空隙を閉塞した樹脂含浸黒
鉛材、黒鉛などの炭素粉末と熱硬化性樹脂を、熱硬化性
樹脂を結合材として成形した炭素/樹脂硬化成形体など
が用いられている。しかしながら、ガス不透過性、導電
性、熱伝導性、耐熱性および耐蝕性などをバランスよく
付与する点で充分なものではない。
Carbonaceous materials have been conventionally used as fuel cell separator materials which require these material properties. For example, a thermosetting resin is impregnated into pores of graphite material. A resin-impregnated graphite material which has been heated and cured to close pores, a carbon / resin-cured molded product obtained by molding a carbon powder such as graphite and a thermosetting resin with a thermosetting resin as a binder is used. However, it is not sufficient in terms of imparting a good balance of gas impermeability, electrical conductivity, thermal conductivity, heat resistance, corrosion resistance, and the like.

【0007】一方、フェノール系樹脂やフラン系樹脂な
どの熱硬化性樹脂を成形し、加熱硬化後、焼成炭化して
得られるガラス状カーボン材は、組織的に無孔構造でガ
ス不透過性に優れており、セパレータ材として優れた性
能を備えている(特公昭62−28546 号公報)。
On the other hand, a glassy carbon material obtained by molding a thermosetting resin such as a phenolic resin or a furan resin, heating and curing, and then calcining the carbonized material is systematically nonporous and gas-impermeable. It has excellent performance as a separator material (Japanese Patent Publication No. 62-28546).

【0008】[0008]

【発明が解決しようとする課題】しかしながら、ガラス
状カーボン材は硬度が高く、脆性であるので加工性が悪
いという欠点がある。燃料電池は、通常、単セルを数十
から数百層に積層して電池スタックが組み立てられる
が、この場合各単セル間が充分に密着するように組み立
てることが重要である。密着性が不充分であると、接触
電気抵抗が増大して内部抵抗が大きくなり、温度分布も
不均一化して電池性能の低下を招くこととなる。
However, the glassy carbon material has a drawback that it has high hardness and is brittle, so that its workability is poor. Generally, a fuel cell is assembled by stacking several tens to several hundreds of single cells to form a battery stack. In this case, it is important to assemble the individual cells so that the individual cells are in close contact with each other. If the adhesion is insufficient, the contact electric resistance increases, the internal resistance increases, the temperature distribution becomes non-uniform, and the battery performance deteriorates.

【0009】また、燃料電池の電池性能の高出力化や小
型化を図るためには単セルの厚さを薄くすることが重要
であり、単セルの厚さを薄くするためにはセパレータを
薄肉化することが効果的である。
Further, it is important to reduce the thickness of a single cell in order to increase the output of the fuel cell and to reduce the size of the fuel cell, and in order to reduce the thickness of the single cell, the thickness of the separator must be reduced. Is effective.

【0010】通常、単セルの組み立てには、0.05〜
1MPa程度の締めつけ力で周囲をボルト締めすること
により組み立てられるが、この際、破損したり変形する
ことのない材質強度が必要である。ガラス状カーボン材
は脆性であり、衝撃や振動に弱い材質上の難点があるた
めにある程度の厚さを必要とし、薄肉化には限界があ
る。
Usually, 0.05 to 0.05 is required for assembling a single cell.
It is assembled by tightening the periphery with bolts with a tightening force of about 1 MPa. At this time, a material strength that does not break or deform is required. The glassy carbon material is brittle and requires a certain thickness due to the difficulty of the material that is vulnerable to shock and vibration, and there is a limit to thinning.

【0011】そこで、本発明者らは、単セルの積層時に
各セル間の密着性を高め、セル間の接触抵抗を低減化し
得るセパレータ材について研究を進めた結果、本来導電
性のないゴム成分に炭素質充填材を配合して導電性を付
与したゴム組成物はシール性に優れているためにガス不
透過性が高く、また加工性や軽量化を図る点からも好適
であることを見出した。
The inventors of the present invention have conducted research on a separator material that can enhance the adhesion between cells and reduce the contact resistance between cells when laminating single cells. It has been found that a rubber composition in which a carbonaceous filler is blended with a conductive material to impart conductivity is excellent in sealability, has high gas impermeability, and is also suitable from the viewpoint of reducing workability and weight. Was.

【0012】本発明は上記の知見に基づいて開発された
ものであって、その目的は単セルの積層時に単セル間の
接触抵抗を低減し、高出力化および小型化を可能とする
燃料電池用セパレータ材を提供することにある。
The present invention has been developed on the basis of the above findings, and has as its object to reduce the contact resistance between single cells when stacking single cells, and to achieve high output and miniaturization. It is to provide a separator material for use.

【0013】[0013]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による燃料電池用セパレータ材は、ゴム成分
100重量部に対し、黒鉛粉末を100〜150重量部
およびカーボンブラックを80〜150重量部の割合で
配合したゴム組成物よりなることを構成上の特徴とす
る。なお、黒鉛粉末の平均粒子径は10〜250μm 、
またカーボンブラックは導電性カーボンブラックである
ことが好ましい。
In order to achieve the above object, a fuel cell separator material according to the present invention comprises 100 to 150 parts by weight of graphite powder and 100 to 150 parts by weight of carbon black and 80 to 150 parts by weight of carbon black. It is characterized in that it is composed of a rubber composition compounded in parts by weight. The average particle size of the graphite powder is 10 to 250 μm,
The carbon black is preferably a conductive carbon black.

【0014】[0014]

【発明の実施の形態】本発明の燃料電池用セパレータ材
は、ゴム成分に黒鉛粉末およびカーボンブラックを併用
して配合し、かつ相対的に多量に配合したゴム組成物よ
りなり、その配合割合をゴム成分100重量部に対し、
黒鉛粉末を100〜150重量部およびカーボンブラッ
クを80〜150重量部の量比に特定した点に特徴があ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The fuel cell separator material of the present invention is composed of a rubber composition in which graphite powder and carbon black are mixed together with a rubber component, and a relatively large amount is compounded. For 100 parts by weight of the rubber component,
It is characterized in that the graphite powder is specified in an amount ratio of 100 to 150 parts by weight and the carbon black in an amount ratio of 80 to 150 parts by weight.

【0015】ゴム成分としてはシール性に優れ、スルフ
ォン酸やリン酸などの電解質に対する耐酸性を有し、燃
料電池の作動温度に耐える耐熱性を備えていれば特に限
定されるものではないが、電気絶縁性が比較的低いブチ
ルゴム、フッ素ゴム、エピクロルヒドリンゴムなどが好
適である。
The rubber component is not particularly limited as long as it has excellent sealing properties, has acid resistance to electrolytes such as sulfonic acid and phosphoric acid, and has heat resistance enough to withstand the operating temperature of the fuel cell. Butyl rubber, fluorine rubber, epichlorohydrin rubber, etc., which have relatively low electrical insulation, are preferred.

【0016】ゴム成分に配合する黒鉛粉末およびカーボ
ンブラックはゴム組成物に導電性を付与するために配合
されるが、黒鉛粉末あるいはカーボンブラックのみを単
独に配合したのでは充分な導電性を得ることができな
い。すなわち、本発明は黒鉛粉末とカーボンブラックを
併用してゴム成分に配合することによりゴム中に分散し
た黒鉛粉末の粒子間の空隙にカーボンブラックが充填さ
れ、セパレータ材として好適な導電性、例えば比抵抗
0.03Ω・cm以下の導電性を付与することが可能とな
る。
The graphite powder and carbon black compounded in the rubber component are compounded to impart conductivity to the rubber composition, but sufficient conductivity can be obtained by mixing only graphite powder or carbon black alone. Can not. That is, in the present invention, carbon black is filled in the gaps between the particles of graphite powder dispersed in rubber by mixing graphite powder and carbon black into a rubber component in combination. It is possible to provide a conductivity of 0.03 Ω · cm or less in resistance.

【0017】配合する黒鉛粉末およびカーボンブラック
の割合が小さいと高い導電性を有するゴム組成物を得る
ことができず、一方、黒鉛粉末およびカーボンブラック
の配合割合が大きくなるとゴム成分へ配合する際の混練
時に粘度が著しく増大し、また成形性が悪化する。した
がって、それらの配合量はゴム成分100重量部に対し
て、黒鉛粉末100〜150重量部およびカーボンブラ
ック80〜150重量部の割合に設定される。
If the proportions of the graphite powder and carbon black are small, a rubber composition having high conductivity cannot be obtained. On the other hand, if the proportion of the graphite powder and carbon black is large, the rubber composition at the time of compounding with the rubber component cannot be obtained. The viscosity increases significantly during kneading, and the moldability deteriorates. Therefore, the blending amount thereof is set to a ratio of 100 to 150 parts by weight of graphite powder and 80 to 150 parts by weight of carbon black with respect to 100 parts by weight of the rubber component.

【0018】また、黒鉛粉末の粒子径が大きくなるとゴ
ム中に分散した黒鉛粒子間の空隙も大きくなって、併用
するカーボンブラックが空隙部を充分に充填することが
できず、また粒子径が小さい場合にはゴム中に均一に分
散させることが困難となる。好ましくは平均粒子径10
〜250μm の黒鉛粉末が用いられる。
If the particle size of the graphite powder is large, the voids between the graphite particles dispersed in the rubber are also large, and the carbon black used together cannot sufficiently fill the voids, and the particle size is small. In this case, it is difficult to uniformly disperse the rubber. Preferably an average particle size of 10
250250 μm graphite powder is used.

【0019】併用するカーボンブラックには特に制限は
なく、ファーネスブラック、アセチレンブラックなど適
宜に用いることができるが、好ましくは導電性カーボン
ブラックが用いられる。なお、カーボンブラックは導電
性の付与ばかりではなく、ゴムに対するカーボンブラッ
クの補強作用によりゴム組成物の機械的強度の向上にも
機能する。
The carbon black to be used in combination is not particularly limited, and can be suitably used such as furnace black and acetylene black. Preferably, conductive carbon black is used. In addition, carbon black functions not only to impart conductivity, but also to enhance the mechanical strength of the rubber composition by the reinforcing effect of carbon black on rubber.

【0020】このゴム組成物は、ゴム成分に所定の量比
で黒鉛粉末およびカーボンブラックを加え、常用される
適宜な混合機を用いて混合、混練することにより得るこ
とができるが、所定の高導電性を確保するために、加え
る黒鉛粉末およびカーボンブラックはかなりの高配合に
なるため混練後は混合機から粉状で排出される。
The rubber composition can be obtained by adding graphite powder and carbon black to the rubber component in a predetermined ratio, and mixing and kneading the mixture using an appropriate mixer that is commonly used. In order to ensure conductivity, the graphite powder and carbon black to be added have a fairly high blending ratio, so that they are discharged in a powder form from the mixer after kneading.

【0021】混練物をセパレータとして最終形状にデザ
インされた金型に充填し、熱圧成形することにより、ガ
ス供給溝となる片面もしくは両面に多数の凹凸部が形成
されたゴム組成物よりなる燃料電池用セパレータ材が作
製される。なお、熱圧成形時に粉状混練物は流動性が向
上するとともに架橋反応により一体化し、弾性ゴム体と
なる。
The kneaded material is filled as a separator in a mold designed to have a final shape, and hot-pressed to form a fuel composed of a rubber composition having a large number of irregularities formed on one or both sides serving as gas supply grooves. A battery separator material is produced. In addition, the powdery kneaded material at the time of hot pressing is improved in fluidity and is integrated by a crosslinking reaction to form an elastic rubber body.

【0022】本発明の燃料電池用セパレータ材は、この
ようなゴム組成物から構成されるので、単セルの積層時
に各セル間は密着し、セル間の接触抵抗を極めて小さく
することができる。また、ゴム体特有の弾性を示すから
単セルを積層して電池スタックを組み立てる際に衝撃や
振動などによる破損、変形を効果的に抑止することが可
能となり、更に、燃料電池の小型化、軽量化にも有効で
ある。
Since the fuel cell separator material of the present invention is composed of such a rubber composition, the cells adhere to each other when the single cells are laminated, and the contact resistance between the cells can be extremely reduced. In addition, because of the elasticity inherent in rubber, it is possible to effectively prevent damage and deformation due to shock or vibration when assembling a battery stack by stacking single cells, and furthermore, miniaturizing and lightening the fuel cell. It is also effective for conversion.

【0023】[0023]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。
Hereinafter, examples of the present invention will be described in comparison with comparative examples.

【0024】実施例1〜3、比較例1〜6 ゴム成分としてエピクロルヒドリンゴム(日本ゼオン社
製、Gechron 3100)、黒鉛粉末にオリエンタル産業社
製、AT-No.10(粒子径18〜125 μm)を用いて、表1に示
した配合割合でカーボンブラックとともにラボプラスト
ミルおよびオープンロールミキサーで混合混練した。但
し、カーボンブラックは実施例1および比較例1〜6は
東海カーボン社製トーカブラック #5500(平均粒子径25
nm)、実施例2は電気化学社製デンカブラック、実施例
3はゴム用N110級カーボンブラックを用いた。
Examples 1-3, Comparative Examples 1-6 Epichlorohydrin rubber (Gechron 3100, manufactured by Zeon Corporation) as a rubber component, AT-No. 10 (particle size: 18-125 μm) manufactured by Oriental Sangyo KK for graphite powder Was mixed and kneaded with a carbon black in a Labo Plastomill and an open roll mixer in the proportions shown in Table 1. However, in Example 1 and Comparative Examples 1 to 6, the carbon black was Toka Black # 5500 (average particle diameter 25
nm), Example 2 used Denka Black manufactured by Denki Kagaku Co., Ltd., and Example 3 used N110 grade carbon black for rubber.

【0025】[0025]

【表1】 注;*1 モノオレイン酸ソルビタン(スパン60) *2 2,4,6-トリメルカプト-S- トリアジン *3 N-(シクロヘキシルチオ)フタルイミド[Table 1] Note; * 1 Sorbitan monooleate (Span 60) * 2 2,4,6-Trimercapto-S-triazine * 3 N- (Cyclohexylthio) phthalimide

【0026】得られた粉状の混練物を金型に入れて、温
度160℃、圧力20Mpaの条件で熱圧成形するとと
もに加硫して、厚さ1mmの板状のゴム成形体を作製し
た。この板状ゴム成形体の比抵抗(×10-2Ω・cm)を測
定し、成形状態とともに表2に示した。
The obtained powdery kneaded material was placed in a mold, hot-pressed at a temperature of 160 ° C. and a pressure of 20 Mpa and vulcanized to produce a 1 mm-thick plate-like rubber molded body. . The specific resistance (× 10 −2 Ω · cm) of this plate-like rubber molded product was measured and is shown in Table 2 together with the molded state.

【0027】[0027]

【表2】 [Table 2]

【0028】表1、2の結果から、本発明の要件を全て
充足する実施例1〜3に対比して、ゴム成分に黒鉛粉末
もしくはカーボンブラックを併用せずに、それぞれ単独
に配合した比較例1および2は比抵抗が高く、また併用
しても黒鉛粉末あるいはカーボンブラックのいずれかが
本発明で特定した配合重量部を下回る比較例3、4でも
比抵抗が高くなることが認められる。一方、黒鉛粉末あ
るいはカーボンブラックのいずれかが本発明で特定した
配合重量部を上回る比較例5、6では混練物が加熱成形
後も粉状のままで成形することができなかった。なお、
導電性カーボンブラックを配合した実施例1、2はゴム
用のファーネスブラックN110を配合した実施例3に
比べて比抵抗が更に低く良好であることが認められた。
From the results shown in Tables 1 and 2, in comparison with Examples 1 to 3, which satisfy all the requirements of the present invention, comparative examples in which graphite powder or carbon black was not used in combination with the rubber component but used alone. Nos. 1 and 2 have high specific resistances, and even when used in combination, Comparative Examples 3 and 4, in which either the graphite powder or the carbon black is less than the blending weight specified in the present invention, show high specific resistances. On the other hand, in Comparative Examples 5 and 6, in which either the graphite powder or the carbon black exceeded the compounding parts by weight specified in the present invention, the kneaded product could not be formed in a powdery state even after heat molding. In addition,
In Examples 1 and 2 in which conductive carbon black was blended, it was recognized that the specific resistance was lower and better than in Example 3 in which furnace black N110 for rubber was blended.

【0029】[0029]

【発明の効果】以上のとおり、本発明の燃料電池用セパ
レータ材は、シール性に優れ、ゴム体特有の弾性を示す
ゴム組成物から構成されており、また黒鉛粉末とカーボ
ンブラックとを特定の重量割合で併用することにより高
い導電性の付与が可能となる。したがって、ゴム組成物
特有の弾性により単セルの積層時に各セル間は密着し、
セル間の接触抵抗を極めて小さくすることができる。ま
た、単セルを積層して電池スタックを組み立てる際の衝
撃や振動などによる破損や変形もゴム組成物特有の弾性
により効果的に防止することが可能であり、更に、燃料
電池の小型化、軽量化、高出力化にも有効である。
As described above, the fuel cell separator material of the present invention is composed of a rubber composition having excellent sealing properties and exhibiting elasticity peculiar to a rubber body. High conductivity can be imparted by using them together in a weight ratio. Therefore, due to the elasticity inherent in the rubber composition, the cells adhere to each other when the single cells are laminated,
The contact resistance between cells can be extremely reduced. In addition, it is possible to effectively prevent breakage and deformation due to shock and vibration when assembling the cell stack by stacking the single cells by the elasticity peculiar to the rubber composition. It is also effective for high power and high output.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ゴム成分100重量部に対し、黒鉛粉末
を100〜150重量部およびカーボンブラックを80
〜150重量部の割合で配合したゴム組成物よりなる燃
料電池用セパレータ材。
1. A rubber component containing 100 to 150 parts by weight of a graphite powder and 80 parts by weight of carbon black based on 100 parts by weight of a rubber component.
A fuel cell separator material comprising a rubber composition compounded in a proportion of up to 150 parts by weight.
【請求項2】 黒鉛粉末の平均粒子径が10〜250μ
m である、請求項1記載の燃料電池用セパレータ材。
2. The graphite powder has an average particle size of 10 to 250 μm.
The fuel cell separator material according to claim 1, wherein m 2 is m 2.
【請求項3】 カーボンブラックが導電性カーボンブラ
ックである、請求項1または2記載の燃料電池用セパレ
ータ材。
3. The fuel cell separator material according to claim 1, wherein the carbon black is a conductive carbon black.
JP2000023787A 2000-02-01 2000-02-01 Separator material for fuel cell Pending JP2001216977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000023787A JP2001216977A (en) 2000-02-01 2000-02-01 Separator material for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000023787A JP2001216977A (en) 2000-02-01 2000-02-01 Separator material for fuel cell

Publications (1)

Publication Number Publication Date
JP2001216977A true JP2001216977A (en) 2001-08-10

Family

ID=18549897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000023787A Pending JP2001216977A (en) 2000-02-01 2000-02-01 Separator material for fuel cell

Country Status (1)

Country Link
JP (1) JP2001216977A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005532666A (en) * 2002-07-10 2005-10-27 デュポン カナダ インコーポレイテッド Elastomer separator plate and manufacturing method
JP2006156131A (en) * 2004-11-30 2006-06-15 Kureha Elastomer Co Ltd Separator for fuel cell
JP2006172776A (en) * 2004-12-14 2006-06-29 Tokai Carbon Co Ltd Separator material for fuel cell, and its manufacturing method
WO2012050128A1 (en) * 2010-10-13 2012-04-19 東海ゴム工業株式会社 Flexible conductive material and transducer, flexible circuit board, and electromagnetic shield using said flexible conductive material
US8252483B2 (en) 2006-09-29 2012-08-28 Showa Denko K.K. Fuel cell separator having a corrugated electrically conducting flow path
US8252484B2 (en) 2006-09-29 2012-08-28 Showa Denko K.K. Separator for fuel cell having electrically conducting flow path part

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005532666A (en) * 2002-07-10 2005-10-27 デュポン カナダ インコーポレイテッド Elastomer separator plate and manufacturing method
JP2006156131A (en) * 2004-11-30 2006-06-15 Kureha Elastomer Co Ltd Separator for fuel cell
JP4676191B2 (en) * 2004-11-30 2011-04-27 クレハエラストマー株式会社 Fuel cell separator
JP2006172776A (en) * 2004-12-14 2006-06-29 Tokai Carbon Co Ltd Separator material for fuel cell, and its manufacturing method
JP4650673B2 (en) * 2004-12-14 2011-03-16 東海カーボン株式会社 Separator material for fuel cell and manufacturing method thereof
US8252483B2 (en) 2006-09-29 2012-08-28 Showa Denko K.K. Fuel cell separator having a corrugated electrically conducting flow path
US8252484B2 (en) 2006-09-29 2012-08-28 Showa Denko K.K. Separator for fuel cell having electrically conducting flow path part
WO2012050128A1 (en) * 2010-10-13 2012-04-19 東海ゴム工業株式会社 Flexible conductive material and transducer, flexible circuit board, and electromagnetic shield using said flexible conductive material
CN102893342A (en) * 2010-10-13 2013-01-23 东海橡塑工业株式会社 Flexible conductive material and transducer, flexible circuit board, and electromagnetic shield using said flexible conductive material
JPWO2012050128A1 (en) * 2010-10-13 2014-02-24 東海ゴム工業株式会社 Flexible conductive material, transducer using the same, flexible wiring board, electromagnetic wave shield
US9136035B2 (en) 2010-10-13 2015-09-15 Sumitomo Riko Company Limited Flexible conductive material and transducer, flexible wiring board, and electromagnetic shield using the same

Similar Documents

Publication Publication Date Title
EP2192644B1 (en) Molding material for fuel cell separator
KR100662539B1 (en) Composition for fuel cell bipolar plate
CZ20013124A3 (en) Highly conductive molding compounds and fuel cell bipolar plates comprising these compounds
CN1466790A (en) Separator for fuel cell production process thereof and solid polymer fuel cell using the separator
EP2605319A1 (en) Separator for fuel cell and fuel cell comprising same
JP2002008676A (en) Fuel cell separator and solid polymer type fuel cell
KR100801596B1 (en) Hydrophilic inorganic aggregate, its preparation process, hydrophilic composite material and bipolarplate for fuel cell comprising it
JP2001216977A (en) Separator material for fuel cell
JP4037955B2 (en) Method for producing polymer electrolyte fuel cell separator member
TWI244791B (en) Elastomeric separator plates and method of fabrication
JP3807708B2 (en) Method for producing separator member for polymer electrolyte fuel cell
JP3808478B2 (en) Molding material for fuel cell separator
JP4339582B2 (en) Fuel cell separator and method for producing the same
JP2006338908A (en) Separator for fuel cell
JP3296801B2 (en) Carbon composite molding
JP2001250566A (en) Separator for fuel cell and method of manufacturing the same
KR20200099332A (en) Sealing composition for separator of fuel cell
JP2004211038A (en) Adhesive composition
JP2006172776A (en) Separator material for fuel cell, and its manufacturing method
JP4702118B2 (en) Manufacturing method of fuel cell separator
JP4725872B2 (en) Separator for polymer electrolyte fuel cell
JP3980229B2 (en) Separator member for polymer electrolyte fuel cell
JP2005122974A (en) Fuel cell separator and fuel cell
KR100801593B1 (en) Bipolar plate for fuel cell
JP4236248B2 (en) Method for producing separator material for polymer electrolyte fuel cell