JP4332845B2 - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery Download PDF

Info

Publication number
JP4332845B2
JP4332845B2 JP2003319413A JP2003319413A JP4332845B2 JP 4332845 B2 JP4332845 B2 JP 4332845B2 JP 2003319413 A JP2003319413 A JP 2003319413A JP 2003319413 A JP2003319413 A JP 2003319413A JP 4332845 B2 JP4332845 B2 JP 4332845B2
Authority
JP
Japan
Prior art keywords
particles
negative electrode
sio
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003319413A
Other languages
Japanese (ja)
Other versions
JP2005085717A (en
Inventor
厚志 船引
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2003319413A priority Critical patent/JP4332845B2/en
Publication of JP2005085717A publication Critical patent/JP2005085717A/en
Application granted granted Critical
Publication of JP4332845B2 publication Critical patent/JP4332845B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、一般式SiO(0<x<2)で表される物質を負極活物質とする非水電解質電池に関する。 The present invention relates to a nonaqueous electrolyte battery using a material represented by the general formula SiO x (0 <x <2) as a negative electrode active material.

近年、携帯用電話、PDA、デジタルカメラ等の電源として、高エネルギー密度を有する非水電解質電池が広く用いられている。電子機器のコードレス化が進む中で、非水電解質電池への期待はますます大きくなっている。   In recent years, non-aqueous electrolyte batteries having a high energy density have been widely used as power sources for mobile phones, PDAs, digital cameras, and the like. As electronic devices become cordless, expectations for non-aqueous electrolyte batteries are increasing.

現在、非水電解質電池の負極活物質として黒鉛等の炭素材料が、正極活物質としてコバルト酸リチウム(LiCoO)等のリチウム遷移金属酸化物が主に用いられている。しかし、これらの正・負極活物質を用いた非水電解質電池のエネルギー密度は、次世代電子機器用電源としては不十分である。このため近年、活物質単位質量当たりの放電容量を大きくする研究が盛んにおこなわれている。 Currently, carbon materials such as graphite are mainly used as a negative electrode active material for nonaqueous electrolyte batteries, and lithium transition metal oxides such as lithium cobaltate (LiCoO 2 ) are mainly used as a positive electrode active material. However, the energy density of non-aqueous electrolyte batteries using these positive and negative electrode active materials is insufficient as a power source for next-generation electronic devices. For this reason, in recent years, active research has been conducted to increase the discharge capacity per unit mass of active material.

高エネルギー密度電池用負極活物質としては、炭素材料よりも大きな放電容量を示すケイ素やケイ素酸化物が注目されている。中でもケイ素酸化物は良好なサイクル性能を示すため、次世代リチウム二次電池用負極活物質として注目されている。   As a negative electrode active material for a high energy density battery, silicon and silicon oxide showing a larger discharge capacity than a carbon material have attracted attention. Among these, silicon oxides have attracted attention as negative electrode active materials for next-generation lithium secondary batteries because they exhibit good cycle performance.

特許文献1では、非水電解質電池の負極活物質として、リチウムイオンを収蔵放出可能なケイ素の酸化物を用いること、そして、ケイ素の酸化物中のケイ素と酸素の原子数の比を1:yで表したとき、2>y>0であることが開示されている。   In Patent Document 1, a silicon oxide capable of storing and releasing lithium ions is used as a negative electrode active material of a non-aqueous electrolyte battery, and the ratio of the number of silicon and oxygen atoms in the silicon oxide is 1: y. It is disclosed that 2> y> 0.

また、特許文献2では、非水電解質電池の負極活物質として、一般式LiSiO(但し、0≦x、0<y≦2)リチウム含有ケイ素酸化物を用いる技術が開示され、特許文献3では、一般式SiO(但し、1.05≦x≦1.5)で表されるケイ素酸化物を用いる技術が開示されている。 Patent Document 2 discloses a technique using a lithium-containing silicon oxide having a general formula Li x SiO y (where 0 ≦ x, 0 <y ≦ 2) as a negative electrode active material of a non-aqueous electrolyte battery. 3 discloses a technique using a silicon oxide represented by a general formula SiO x (where 1.05 ≦ x ≦ 1.5).

さらに、非特許文献1には、非水電解質電池の負極活物質として、各種酸化物粒子を検討し、SiOが炭素材料よりも大きな放電容量を示すことが報告されている。   Further, Non-Patent Document 1 studies various oxide particles as a negative electrode active material of a non-aqueous electrolyte battery, and reports that SiO exhibits a larger discharge capacity than a carbon material.

また、特許文献4には、一般式SiO(0.6<x<1.5)で表されるケイ素酸化物粒子の表面を導電材物質で被覆し、その導電材物質として、Al、Ti等の金属粉末や金属繊維、黒鉛、炭素繊維などの炭素材料を用いる技術が開示されている。 In Patent Document 4, the surface of silicon oxide particles represented by the general formula SiO x (0.6 <x <1.5) is coated with a conductive material, and Al, Ti are used as the conductive material. A technique using a carbon material such as metal powder, metal fiber, graphite, or carbon fiber is disclosed.

特許第2997741号公報Japanese Patent No. 2999741 特開平11−273675号公報JP-A-11-273675 特開2002−260651号公報JP 2002-260651 A 特開2002−373653号公報JP 2002-373653 A 第38回電池討論会講演要旨集、p179(1997年11月)Proceedings of the 38th Battery Discussion Meeting, p179 (November 1997)

非水電解質電池の負極活物質にケイ素酸化物を用いた場合、負極活物質に黒鉛などの炭素質材料を用いた場合と比較して、電池の放電容量が大きくなるが、一方でそのサイクル性能が低いという問題があった。   When silicon oxide is used as the negative electrode active material of a nonaqueous electrolyte battery, the discharge capacity of the battery is larger than when a carbonaceous material such as graphite is used as the negative electrode active material. There was a problem of low.

負極活物質としてケイ素酸化物を用いた電池を充放電した場合、リチウムの吸蔵・放出に伴うケイ素酸化物の体積膨張・収縮が大きいことに起因して、負極合剤層内において、負極活物質であるケイ素酸化物と炭素材料などの導電剤との接触不良がおこり、ケイ素酸化物の集電性が低下する。その結果、電池反応に寄与するケイ素酸化物が少なくなり、電池の放電容量が低下するという問題があった。   When a battery using a silicon oxide as a negative electrode active material is charged / discharged, the negative electrode active material in the negative electrode mixture layer is caused by the large volume expansion / contraction of the silicon oxide accompanying the insertion / release of lithium. The poor contact between the silicon oxide and the conductive agent such as the carbon material occurs, and the current collecting property of the silicon oxide decreases. As a result, there is a problem that the silicon oxide contributing to the battery reaction decreases and the discharge capacity of the battery decreases.

そこで本発明は、ケイ素酸化物を負極活物質に用いた非水電解質電池のサイクル性能が低いという問題を解決し、サイクル性能に優れた非水電解質電池を提供することを目的とする。   Accordingly, an object of the present invention is to solve the problem of low cycle performance of a nonaqueous electrolyte battery using silicon oxide as a negative electrode active material, and to provide a nonaqueous electrolyte battery excellent in cycle performance.

請求項1の発明は、一般式SiO(0<x<2)で表される物質を負極活物質とする非水電解質電池において、前記一般式中のxの値を、表面ではx、中心部ではxとした場合、x<xであり、さらに前記物質におけるx=(x+x)/2となる表面からの深さをz(nm)とした場合、5≦z≦50であることを特徴とする。 The invention of claim 1 is a non-aqueous electrolyte battery using a material represented by the general formula SiO x (0 <x <2) as a negative electrode active material, wherein the value x in the general formula is x s on the surface, When x b is set at the center, x b <x s , and when the depth from the surface where x = (x s + x b ) / 2 in the substance is z a (nm), 5 ≦ z a ≦ 50.

請求項2の発明は、請求項1の非水電解質電池において、一般式SiO(0<x<2)で表される物質がその表面の少なくとも一部に電子導電性材料を備えたことを特徴とする。 According to a second aspect of the present invention, in the nonaqueous electrolyte battery of the first aspect, the substance represented by the general formula SiO x (0 <x <2) is provided with an electron conductive material on at least a part of the surface thereof. Features.

非水電解質電池の負極活物質として本発明の物質を用いることにより、負極活物質である本発明物質と導電剤との電気的接触が良好に保持され、その結果、サイクル性能に優れた非水電解質電池が得られるものである。   By using the material of the present invention as the negative electrode active material of the nonaqueous electrolyte battery, the electrical contact between the present material, which is a negative electrode active material, and the conductive agent is favorably maintained, and as a result, the nonaqueous water having excellent cycle performance. An electrolyte battery is obtained.

さらに、酸化ケイ素の表面の少なくとも一部を電子導電性材料で被覆しておくことにより、酸化ケイ素と導電剤との電気的接触がより良好な状態に保たれ、より充放電サイクル性能に優れた非水電解質電池が得られるものである。   Furthermore, by covering at least a part of the surface of the silicon oxide with an electronic conductive material, the electrical contact between the silicon oxide and the conductive agent is kept in a better state, and the charge / discharge cycle performance is more excellent. A nonaqueous electrolyte battery can be obtained.

非水電解質二次電池の負極活物質として酸化ケイ素を用いた場合、1サイクル目の充電時に酸化物特有の大きな不可逆容量が観察される。この原因は酸化物中の酸素とリチウムとの反応に伴ってLiOが生成するからと考えられる。この考えに基づくと、酸化ケイ素がリチウムを吸蔵する反応はつぎの式で表されると推定される。 When silicon oxide is used as the negative electrode active material of the nonaqueous electrolyte secondary battery, a large irreversible capacity peculiar to the oxide is observed at the time of charging in the first cycle. This is considered to be because Li 2 O is generated with the reaction between oxygen in the oxide and lithium. Based on this idea, it is estimated that the reaction in which silicon oxide occludes lithium is represented by the following equation.

SiO+αLi→Li(α−2δ)SiO(x−β)+βLiO(0<β≦x<2)…(1)
ただし、βの値はxの値が大きくなるにつれて大きくなる。また、引き続く放電反応はつぎの式で表されると推定される。
SiO x + αLi → Li (α-2δ) SiO (x−β) + βLi 2 O (0 <β ≦ x <2) (1)
However, the value of β increases as the value of x increases. The subsequent discharge reaction is presumed to be expressed by the following equation.

Li(α−2δ)SiO(x−δ)→(α−2β)Li+SiO(x−δ)……(2)
SiOがリチウムを吸蔵・脱離すると、その体積が大きく膨張・収縮する。この大きな体積変化は酸化ケイ素と炭素等の導電剤との電子伝導性の欠如をもたらし、その結果サイクル性能が低下する。したがって、酸化ケイ素のサイクル性能を向上させるためには、その体積変化を抑制することが必要である。
Li (α-2δ) SiO (x−δ) → (α-2β) Li + SiO (x−δ) (2)
When SiO x occludes / desorbs lithium, its volume greatly expands and contracts. This large volume change results in a lack of electronic conductivity between the silicon oxide and the conductive agent such as carbon, resulting in poor cycle performance. Therefore, in order to improve the cycle performance of silicon oxide, it is necessary to suppress the volume change.

(1)式を考慮すると、Li(α−2δ)SiO(x−δ)相の占める体積をLiO相のそれと比較して小さくする、つまりxの値を大きくすることにより、酸化ケイ素の体積変化を抑制することが可能である。一方、前者の占める体積を小さくしすぎると(2)式から放電容量が低下することは明らかである。 Considering the equation (1), the volume occupied by the Li (α-2δ) SiO (x-δ) phase is made smaller than that of the Li 2 O phase, that is, by increasing the value of x, Volume change can be suppressed. On the other hand, if the volume occupied by the former is made too small, it is clear from the equation (2) that the discharge capacity decreases.

そこで本発明者は鋭意努力して調べた結果、酸化ケイ素の表面付近の酸素濃度を内部よりも高くし、さらに濃度が高い範囲を限定することによって、酸化ケイ素を負極活物質として用いた電池の放電容量が大きく低下することなく、そのサイクル性能が飛躍的に向上することを見出した。その条件は、SiOのxの値を、表面ではx、中心部または底部(SiOが粒子の場合はその中心部、板または薄膜の場合はそれらの底部とする。)ではxとした場合、x<xであり、SiOにおけるx=(x+x)/2となる表面からの深さをz(nm)とした場合、5≦z≦50である。 Therefore, as a result of diligent research, the present inventor found that the oxygen concentration in the vicinity of the surface of the silicon oxide is higher than the inside, and further, the range in which the concentration is high is limited, so that the battery using silicon oxide as the negative electrode active material. It has been found that the cycle performance is dramatically improved without greatly reducing the discharge capacity. The conditions, the value of x in SiO x, x s, center or bottom surface (the center in the case of SiO x particles, in the case of the plate or film and their bottom.) And the x b When x b <x s and the depth from the surface where x = (x s + x b ) / 2 in SiO x is z a (nm), 5 ≦ z a ≦ 50.

ここで、SiOの表面とは、その活物質を電池に組み込んだ場合に、電解質と接触する部分を意味する。また、SiOの中心部または底部とは、電池の中で電解質と接触しない部分であって、前者は粒子の重心部、後者は板または薄膜と金属等の集電体とが接触する部分を意味する。 Here, the surface of SiO x means a portion that comes into contact with the electrolyte when the active material is incorporated in a battery. The center or bottom of the SiO x is a portion that does not contact the electrolyte in the battery, the former being the center of gravity of the particle, and the latter being the portion where the plate or thin film is in contact with the current collector such as metal. means.

活物質と電解質とが接触した部分では、接触していない部分とくらべて、電解質に溶解した塩に由来する元素が著しく高い濃度で存在するので、この接触の有無をエネルギー分散型蛍光X線分析装置(EPMA)を用いて判別することが可能である。例えば、電解質塩としてLiPF等のフッ素含有塩を用いた場合、活物質と電解質とが接触した部分では、リンまたはフッ素が高い濃度で存在する。 In the part where the active material and the electrolyte are in contact, the element derived from the salt dissolved in the electrolyte is present in a significantly higher concentration than in the part where the active material is not in contact. It is possible to discriminate using an apparatus (EPMA). For example, when a fluorine-containing salt such as LiPF 6 is used as the electrolyte salt, phosphorus or fluorine is present at a high concentration in a portion where the active material is in contact with the electrolyte.

SiOの表面組成は、表面から中心部または底部に向かって2nmの深さまでの部分の組成を意味する。また「中心部」とは、粒子内部でSiOのxの値が一定値となる部分を意味する。 The surface composition of SiO x means the composition of the portion from the surface to the depth of 2 nm toward the center or bottom. The “center portion” means a portion where the value of x of SiO x becomes a constant value inside the particle.

SiOのxの値がx<xを満たすということは、SiOの中心部または底部よりも表面における酸素濃度が高いことを意味している。また、5≦z≦50であることは、酸素濃度の高い層の表面からの深さが5nm以上、50nm以下であることを意味している。 That the value of x of SiO x satisfies x b <x s means that the oxygen concentration on the surface is higher than the center or bottom of SiO x . Moreover, 5 ≦ z a ≦ 50 means that the depth from the surface of the layer having a high oxygen concentration is 5 nm or more and 50 nm or less.

本発明の負極活物質に用いるSiOのzとxとの関係のモデルを図1および図2に示す。中心部または底部にあたる部分のxの値がx、表面層のxの値がxである。図1は、酸素濃度が粒子の表面から内部に向かって連続的に減少しているモデルを示したもので、x=(x+x)/2となる表面からの深さはz(nm)となり、5≦z≦50を満たすものである。図2は、中心部または底部にあたる部分のxの値がx、表面層のxの値がxである。zは同様にして5≦z≦50を満たす。なお、図1および図2において、中心部が酸素を含まず、ケイ素のみの場合には、x=0となる。また、図2において、表面層がxの異なる2層以上で構成され、最外側から内部に向かって、順に酸素濃度が減少していてもよい。 A model of the relationship between z and x of SiO x used for the negative electrode active material of the present invention is shown in FIGS. The value of x at the center or bottom portion is x b , and the value of x at the surface layer is x s . FIG. 1 shows a model in which the oxygen concentration continuously decreases from the surface of the particle toward the inside, and the depth from the surface where x = (x s + x b ) / 2 is z a ( nm) and satisfies 5 ≦ z a ≦ 50. In FIG. 2, the value of x in the center or bottom portion is x b , and the value of x in the surface layer is x s . z a satisfies 5 ≦ z a ≦ 50 in the same manner. In FIGS. 1 and 2, when the center portion does not contain oxygen and is only silicon, x b = 0. Further, in FIG. 2, the surface layer is composed of different two or more layers of x s, inwardly from the outermost turn the oxygen concentration may be decreased.

本発明に用いるSiOにおいて、zが5よりも小さい場合には、表面において酸素濃度が高い層が薄すぎて、リチウムを吸蔵した場合の粒子の膨張を抑制することができなくなり、電池のサイクル性能が低下する。一方、zが50よりも大きい場合には、表面の電子伝導性が著しく低下するため、電池の放電容量が小さくなる。 In the SiO x used in the present invention, when z a is smaller than 5, the layer having a high oxygen concentration on the surface is too thin to suppress the expansion of particles when lithium is occluded. Cycle performance decreases. On the other hand, when z a is larger than 50, the surface electron conductivity is remarkably lowered, so that the discharge capacity of the battery is reduced.

図1または図2に示した関係をもつ本発明のSiOを、RFスパッタ法(高周波励起イオンプレーティング法)または不活性雰囲気中での焼成法によって作製することができる。RFスパッタリング法では、ターゲットに用いるSiOのxの値と、雰囲気の酸素分圧とを、それぞれ順次変化させることにより、酸素濃度と表面からの深さとの関係を制御することができる。また、SiOを不活性雰囲気中で焼成する場合、不活性雰囲気の酸素分圧、温度および時間とをそれぞれ変化させることにより、同様にして深さ方向の酸素濃度プロファイルを制御することができる。 The SiO x of the present invention having the relationship shown in FIG. 1 or FIG. 2 can be produced by an RF sputtering method (high frequency excitation ion plating method) or a baking method in an inert atmosphere. In the RF sputtering method, the relationship between the oxygen concentration and the depth from the surface can be controlled by sequentially changing the value of x of SiO x used for the target and the oxygen partial pressure of the atmosphere. When baking SiO x in an inert atmosphere, the oxygen concentration profile in the depth direction can be controlled in the same manner by changing the oxygen partial pressure, temperature, and time of the inert atmosphere.

さらに、SiOの表面の少なくとも一部が電子導電性材料を備えることが好ましい。その合成方法としては、CVD法、機械的混合法、液相法、焼成法等を用いることができる。電子導電性材料としては、炭素材料、または金属を用いることができる。この金属はリチウムと合金化しないことが好ましい。 Furthermore, it is preferable that at least a part of the surface of SiO x comprises an electron conductive material. As the synthesis method, a CVD method, a mechanical mixing method, a liquid phase method, a baking method, or the like can be used. As the electron conductive material, a carbon material or a metal can be used. This metal is preferably not alloyed with lithium.

炭素材料としては黒鉛および低結晶性炭素、リチウムと合金化しない金属としては銅、ニッケル、鉄、コバルト、マンガン、クロム、チタン、ジルコニウム、バナジウム、ニオブからなる群から選ばれた少なくとも一種の金属、または二種以上の金属からなる合金が例示される。これら電子導電性材料の中でもとくに炭素材料が好ましい。なぜなら、炭素は上記金属と異なり、その層間にリチウムを挿入・脱離することが可能であるため、炭素を備えた負極活物質を用いた電池の方が、上記金属を備えた負極活物質を用いた電池とくらべて、大きい放電容量を示すからである。また、活物質表面に備えた炭素の形状は薄膜または粒子のいずれでもよい。   The carbon material is graphite and low crystalline carbon, and the metal that is not alloyed with lithium is at least one metal selected from the group consisting of copper, nickel, iron, cobalt, manganese, chromium, titanium, zirconium, vanadium, niobium, Or the alloy which consists of 2 or more types of metals is illustrated. Among these electronic conductive materials, carbon materials are particularly preferable. Because carbon is different from the above metals and lithium can be inserted and desorbed between the layers, a battery using a negative electrode active material provided with carbon has a negative electrode active material provided with the above metal. This is because the battery has a larger discharge capacity than the battery used. The shape of the carbon provided on the active material surface may be either a thin film or particles.

炭素材料で被覆したSiOの合成方法としては、メタン、エタン、エチレン、アセチレン、ブタン、ベンゼン、トルエン、キシレンのような有機化合物を気相中分解し、その分解性生物をSiO(0<x<2)の表面に付着させる方法(CVD法)や、ピッチ、タールまたはフルフリルアルコールなどの熱可塑性樹脂をSiO(0<x<2)表面に塗布した後にそれらを焼成する方法、SiO(0<x<2)粒子と黒鉛粒子とを造粒し、この造粒体表面上にCVDで炭素を付着させる方法、および機械的方法によってSiO(0<x<2)と炭素材料とを付着させる方法が例示される。 As a method for synthesizing SiO x coated with a carbon material, an organic compound such as methane, ethane, ethylene, acetylene, butane, benzene, toluene, and xylene is decomposed in a gas phase, and the decomposable organism is converted into SiO x (0 < a method of adhering to the surface of x <2) (CVD method), a method of firing a thermoplastic resin such as pitch, tar or furfuryl alcohol on the surface of SiO x (0 <x <2) and then baking them; A method of granulating x (0 <x <2) particles and graphite particles and depositing carbon on the surface of the granulated body by CVD, and a mechanical method, SiO x (0 <x <2) and carbon material The method of attaching is attached.

機械的方法には、メカニカルミリング法、メカノフュージョン法、およびハイブリダイゼーション法が例示される。これら種々の合成方法のなかでも、SiO(0<x<2)の表面上に炭素材料を均一に被覆することができるCVD法がとくに好ましい。 Examples of the mechanical method include a mechanical milling method, a mechanofusion method, and a hybridization method. Among these various synthesis methods, the CVD method that can uniformly coat the carbon material on the surface of SiO x (0 <x <2) is particularly preferable.

本発明負極活物質の形態としては、板、薄膜、粒子および繊維が例示される。   Examples of the form of the negative electrode active material of the present invention include plates, thin films, particles, and fibers.

本発明に用いるSiOを粒子として用いる場合、その大きさとしては、数平均粒子径0.1〜20μmの範囲のものが好ましく、数平均粒子径1〜10μmの範囲のものがより好ましい。平均粒子径が0.1μmよりも小さい場合は、取り扱いが困難となり、さらに、電極合剤中での導電剤の量を多くしなければならず、平均粒子径が20μmよりも大きい場合には、粒子の中心までリチウムが拡散するのに時間がかかることに起因して、低温、とくに0℃以下でSiO粒子の利用率が低下し、その結果電池の放電容量が低下するためである。なお、粒子の数平均粒径は、それを溶媒中超音波分散した後、レーザー法によって求められる値である。 When SiO x used in the present invention is used as particles, the size thereof is preferably in the range of number average particle size of 0.1 to 20 μm, more preferably in the range of number average particle size of 1 to 10 μm. When the average particle size is smaller than 0.1 μm, handling becomes difficult, and furthermore, the amount of the conductive agent in the electrode mixture must be increased, and when the average particle size is larger than 20 μm, This is because it takes time for lithium to diffuse to the center of the particles, and the utilization rate of the SiO x particles decreases at a low temperature, particularly at 0 ° C. or lower. As a result, the discharge capacity of the battery decreases. The number average particle diameter of the particles is a value determined by a laser method after ultrasonically dispersing the particles in a solvent.

作製したSiO粒子の、表面からの深さ(z)と酸素濃度(x)との関係を、二次イオン質量分析法(SIMS)、高周波誘導結合プラズマ(ICP)等を用いて求めることが可能である。ICPでバルクSiOの酸素濃度を特定することができ、さらにSIMSでイオンエッチング法により表面から一定の厚さを除去し、残った表面のSiとOとを分析する操作を繰り返すことにより、zとxとの関係を求めることができる。 The relationship between the depth (z) from the surface and the oxygen concentration (x) of the produced SiO x particles can be determined using secondary ion mass spectrometry (SIMS), high frequency inductively coupled plasma (ICP), or the like. Is possible. The oxygen concentration of bulk SiO x can be specified by ICP, and a certain thickness is removed from the surface by ion etching with SIMS, and the operation of analyzing Si and O on the remaining surface is repeated, whereby z And x can be obtained.

本発明負極活物質の製造法としては、未処理のSiO(za<5)を非酸化性雰囲気中または減圧下、熱処理した後、フッ素含有化合物またはアルカリ水溶液と反応させる方法が例示される。SiOをフッ素含有化合物またはアルカリ水溶液と反応させることによって、SiO表面上に存在するSiO量を低減することができる。 Examples of the method for producing the negative electrode active material of the present invention include a method in which untreated SiO x (za <5) is heat-treated in a non-oxidizing atmosphere or under reduced pressure and then reacted with a fluorine-containing compound or an aqueous alkali solution. By reacting SiO x with a fluorine-containing compound or an aqueous alkali solution, the amount of SiO 2 present on the SiO x surface can be reduced.

熱処理温度としては、1500℃未満が好ましい。SiO(0<x<2)としては、SiO1.5(Si)、SiO1.33(Si)、SiOなどの化学量論組成の物質、および、xが0より大きく2未満である任意の組成の物質が例示される。また、この組成で表されるならば、SiとSiOとを任意の割合で含む物質でもよい。 The heat treatment temperature is preferably less than 1500 ° C. As SiO x (0 <x <2), a substance having a stoichiometric composition such as SiO 1.5 (Si 2 O 3 ), SiO 1.33 (Si 3 O 4 ), SiO, and x is 0 or more. Substances of any composition that are largely less than 2 are exemplified. Also, if represented by the composition, it may be a material containing Si and SiO 2 at an arbitrary ratio.

非酸化性雰囲気に用いるガスとしては、窒素、アルゴンなどの不活性ガス、水素などの還元性ガスおよびこれらの混合ガスが例示される。フッ素含有化合物には、フッ化水素、フッ化水素アンモニウム等、SiOを溶解しうるいかなる化合物も用いることができる。また、これらフッ素含有化合物を単体もしくは水溶液として用いてもよい。 Examples of the gas used in the non-oxidizing atmosphere include an inert gas such as nitrogen and argon, a reducing gas such as hydrogen, and a mixed gas thereof. As the fluorine-containing compound, any compound capable of dissolving SiO 2 such as hydrogen fluoride and ammonium hydrogen fluoride can be used. These fluorine-containing compounds may be used alone or as an aqueous solution.

さらに、アルカリ水溶液としては、アルカリ金属またはアルカリ土類金属を含む水酸化物を用いることができる。この水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウムが例示される。SiOの溶解を促進するために、アルカリ水溶液の温度が40℃以上であることが好ましい。フッ素含有化合物またはアルカリ水溶液の濃度が高すぎないことが好ましい。 Furthermore, as the alkaline aqueous solution, a hydroxide containing an alkali metal or an alkaline earth metal can be used. Examples of the hydroxide include lithium hydroxide, sodium hydroxide, and potassium hydroxide. In order to promote dissolution of SiO 2 , the temperature of the alkaline aqueous solution is preferably 40 ° C. or higher. It is preferred that the concentration of the fluorine-containing compound or aqueous alkali solution is not too high.

また、前記化合物または溶液による反応時間が長すぎないことが好ましい。その理由は、それらの濃度が高すぎる、または反応時間が長すぎる場合、SiOの溶解以外にSiの溶解も促進されるため、活物質中のSi含有率が大きく減少するからである。Si含有率が減少すると、それを用いた負極の放電容量が低下する。好適な濃度および反応時間はそれぞれ1gのSiO(0<x<2)当たり5mol以下、24h以下であり、とくに好ましくは0.5mol以下、6h以下である。 Moreover, it is preferable that the reaction time by the said compound or solution is not too long. The reason is that, if the concentration is too high or the reaction time is too long, the dissolution of Si is promoted in addition to the dissolution of SiO 2 , so that the Si content in the active material is greatly reduced. When the Si content decreases, the discharge capacity of the negative electrode using the Si content decreases. The preferred concentration and reaction time are 5 mol or less and 24 h or less, respectively preferably 0.5 mol or less and 6 h or less, per 1 g of SiO x (0 <x <2).

また、上記したように、本発明による負極活物質の製造方法においては、SiO(0<x<2)の熱処理は非酸化性雰囲気中または減圧下でおこなわれるが、ここにおける減圧下についてさらに好適な条件を記述すると、より好ましくは30Torr以下であり、さらに好ましくは3Torr以下であり、さらに好ましくは0.3Torr以下である。ただし、言うまでもなく、10Torrよりも高い圧力下であっても、減圧下であれば本発明の効果は得られる。 In addition, as described above, in the method for producing a negative electrode active material according to the present invention, the heat treatment of SiO x (0 <x <2) is performed in a non-oxidizing atmosphere or under reduced pressure. When a suitable condition is described, it is more preferably 30 Torr or less, further preferably 3 Torr or less, and further preferably 0.3 Torr or less. However, it goes without saying that the effect of the present invention can be obtained even under a pressure higher than 10 Torr if the pressure is reduced.

本発明においては、負極活物質中に、B、C、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu等の遷移金属元素を含んでいてもよい。   In the present invention, typical nonmetallic elements such as B, C, N, P, F, Cl, Br, and I, Li, Na, Mg, Al, K, Ca, Zn, Ga, and Ge are contained in the negative electrode active material. Typical metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu may be included.

本発明非水電解質電池の正極活物質としては、二酸化マンガン、五酸化バナジウムのような遷移金属化合物や、硫化鉄、硫化チタンのような遷移金属カルコゲン化合物、リチウム含有オリビン形化合物、およびリチウム遷移金属酸化物を用いることができる。リチウム遷移金属酸化物としては、LiM1M2(M1、M2は、Ti、V、Cr、Mn、Fe、Co、Ni、Cuを表し、0.5≦x≦1、y+z=1)、LiM3Mn2−y(M3は、Ti、V、Cr、Fe、Co、Ni、Cuを表し、0.9≦x≦1.1、0.4≦y≦0.6)が例示される。 As the positive electrode active material of the nonaqueous electrolyte battery of the present invention, transition metal compounds such as manganese dioxide and vanadium pentoxide, transition metal chalcogen compounds such as iron sulfide and titanium sulfide, lithium-containing olivine compounds, and lithium transition metals An oxide can be used. As the lithium transition metal oxide, Li x M1 y M2 z O 2 (M1, M2 represents Ti, V, Cr, Mn, Fe, Co, Ni, Cu, 0.5 ≦ x ≦ 1, y + z = 1), Li x M3 y Mn 2-y O 4 (M3 represents Ti, V, Cr, Fe, Co, Ni, and Cu, 0.9 ≦ x ≦ 1.1,0.4 ≦ y ≦ 0 .6) is exemplified.

さらに、これらの化合物や酸化物にAl、P、B、またはそれ以外の典型非金属元素、典型金属元素を含有した物質を使用することができる。これら正極活物質のなかでも、リチウムとコバルトとの複合酸化物や、リチウム、コバルトおよびニッケルを含む複合酸化物が好ましい。その理由は、これらの正極活物質を用いることにより、高電圧、高エネルギー密度および良好なサイクル性能をもつ電池が得られるからである。   Furthermore, substances containing Al, P, B, or other typical nonmetallic elements or typical metal elements in these compounds and oxides can be used. Among these positive electrode active materials, composite oxides of lithium and cobalt and composite oxides including lithium, cobalt, and nickel are preferable. The reason is that a battery having a high voltage, a high energy density and good cycle performance can be obtained by using these positive electrode active materials.

本発明の非水電解質電池で用いられる負極は、負極活物質を含む負極層および負極集電体からなる。負極層は、負極活物質および結着剤を溶媒中混合し、得られたスラリーを負極集電体に塗布し、さらに乾燥することにより製造することができる。また、負極層中に、負極活物質とは別に導電剤が含まれていてもよい。   The negative electrode used in the nonaqueous electrolyte battery of the present invention comprises a negative electrode layer containing a negative electrode active material and a negative electrode current collector. The negative electrode layer can be produced by mixing a negative electrode active material and a binder in a solvent, applying the resulting slurry to a negative electrode current collector, and further drying. The negative electrode layer may contain a conductive agent separately from the negative electrode active material.

負極活物質としては、本発明活物質を単独で用いてもよいし、リチウムイオンを吸蔵・放出することが可能な物質または金属リチウムの中ですくなくとも一種と本発明活物質との混合物を用いてもよい。リチウムイオンを吸蔵・放出することが可能な物質には、炭素材料、酸化物、Li3−PN(ただし、Mは遷移金属、0≦P≦0.8)などの窒化物およびリチウム合金が例示される。炭素材料としては、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維等の易黒鉛化性炭素、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体等の難黒鉛化性炭素、天然黒鉛、人造黒鉛、黒鉛化MCMB、黒鉛化メソフェーズピッチ系炭素繊維、黒鉛ウイスカー等の黒鉛質材料、さらに、これらの混合物を用いることができる。リチウム合金としては、リチウムとアルミニウム、亜鉛、ビスマス、カドミウム、アンチモン、シリコン、鉛、錫、ガリウム、またはインジウムとの合金を用いることができる。酸化物としては、前記リチウム合金の酸化物を用いることができる。 As the negative electrode active material, the active material of the present invention may be used alone, or a material capable of occluding and releasing lithium ions or a mixture of at least one of the metallic lithium and the active material of the present invention. Also good. Substances capable of inserting and extracting lithium ions include carbon materials, oxides, nitrides such as Li 3 -P M P N (where M is a transition metal, 0 ≦ P ≦ 0.8), and lithium Alloys are exemplified. Carbon materials include coke, mesocarbon microbeads (MCMB), mesophase pitch-based carbon fibers, pyrolytic vapor-grown carbon fibers and other graphitizable carbon, phenol resin fired bodies, polyacrylonitrile-based carbon fibers, pseudo-isotropic Carbon, non-graphitizable carbon such as fired furfuryl alcohol resin, natural graphite, artificial graphite, graphitized MCMB, graphitized mesophase pitch-based carbon fiber, graphite whisker and other graphite materials, and also a mixture thereof be able to. As the lithium alloy, an alloy of lithium and aluminum, zinc, bismuth, cadmium, antimony, silicon, lead, tin, gallium, or indium can be used. As the oxide, an oxide of the lithium alloy can be used.

本発明の非水電解質電池で用いられる正極は、正極活物質を含む正極層および正極集電体からなる。正極層は、正極活物質、導電剤および結着剤を溶媒中混合し、得られたスラリーを正極集電体に塗布し、さらに乾燥することにより製造することができる。   The positive electrode used in the nonaqueous electrolyte battery of the present invention includes a positive electrode layer containing a positive electrode active material and a positive electrode current collector. The positive electrode layer can be produced by mixing a positive electrode active material, a conductive agent and a binder in a solvent, applying the resulting slurry to a positive electrode current collector, and further drying.

正極または負極に用いられる導電剤としては、種々の炭素材料を用いることができる。炭素材料には、天然黒鉛、人造黒鉛等の黒鉛や、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素が例示される。   As the conductive agent used for the positive electrode or the negative electrode, various carbon materials can be used. Examples of the carbon material include graphite such as natural graphite and artificial graphite, carbon black such as acetylene black, and amorphous carbon such as needle coke.

正極または負極に用いられる結着剤としては、例えば、PVdF(ポリフッ化ビニリデン)、P(VdF/HFP)(ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体)、PTFE(ポリテトラフルオロエチレン)、フッ素化ポリフッ化ビニリデン、EPDM(エチレン−プロピレン−ジエン三元共重合体)、SBR(スチレン−ブタジエンゴム)、NBR(アクリロニトリル−ブタジエンゴム)、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース、またはこれらの誘導体を、単独でまたは混合して用いることができる。   Examples of the binder used for the positive electrode or the negative electrode include PVdF (polyvinylidene fluoride), P (VdF / HFP) (polyvinylidene fluoride-hexafluoropropylene copolymer), PTFE (polytetrafluoroethylene), and fluorination. Polyvinylidene fluoride, EPDM (ethylene-propylene-diene terpolymer), SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), fluororubber, polyvinyl acetate, polymethyl methacrylate, polyethylene, nitrocellulose, Or these derivatives can be used individually or in mixture.

正極活物質または負極活物質と結着剤とを混合する際に用いる溶媒または溶液としては、結着剤を溶解または分散する溶媒または溶液を用いることができる。その溶媒または溶液としては、非水溶媒または水溶液を用いることができる。非水溶媒には、N―メチル−2−ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N−N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン等をあげることができる。一方、水溶液には、水、または分散剤、増粘剤等を加えた水溶液を用いることができる。後者の水溶液中で、SBR等のラテックスと活物質とを混合し、それらをスラリー化することができる。   As the solvent or solution used for mixing the positive electrode active material or the negative electrode active material and the binder, a solvent or a solution in which the binder is dissolved or dispersed can be used. As the solvent or solution, a non-aqueous solvent or an aqueous solution can be used. Non-aqueous solvents include N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, NN-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran, etc. Can do. On the other hand, as the aqueous solution, water or an aqueous solution to which a dispersant, a thickener, or the like is added can be used. In the latter aqueous solution, latex such as SBR and an active material can be mixed and slurried.

正極または負極の集電体としては、鉄、銅、アルミニウム、ステンレス、ニッケルを用いることができる。また、その形状としては、シート、発泡体、焼結多孔体、エキスパンド格子が例示される。さらに、集電体として、前記集電体に任意の形状で穴を開けたものを用いてもよい。   As the current collector for the positive electrode or the negative electrode, iron, copper, aluminum, stainless steel, or nickel can be used. Examples of the shape include a sheet, a foam, a sintered porous body, and an expanded lattice. Furthermore, as the current collector, a current collector having a hole in an arbitrary shape may be used.

本発明の非水電解質電池用セパレーターには、微多孔性高分子膜を用いることができ、その材質としては、ナイロン、セルロースアセテート、ニトロセルロース、ポリスルホン、ポリアクリロニトリル、ポリフッ化ビニリデン、およびポリプロピレン、ポリエチレン、ポリブテン等のポリオレフィンが例示される。これらの中では、ポリオレフィンの微多孔性膜がとくに好ましい。または、ポリエチレンとポリプロピレンとを積層した微多孔製膜を用いてもよい。   The separator for a nonaqueous electrolyte battery of the present invention can use a microporous polymer membrane, and the material thereof is nylon, cellulose acetate, nitrocellulose, polysulfone, polyacrylonitrile, polyvinylidene fluoride, polypropylene, polyethylene And polyolefins such as polybutene. Of these, polyolefin microporous membranes are particularly preferred. Alternatively, a microporous film in which polyethylene and polypropylene are laminated may be used.

本発明の非水電解質電池で用いられる非水電解質としては、非水電解液、高分子固体電解質、ゲル状電解質、無機固体電解質を用いることができる。電解質には孔があってもよい。非水電解液は、非水溶媒および溶質から構成される。   As the non-aqueous electrolyte used in the non-aqueous electrolyte battery of the present invention, a non-aqueous electrolyte, a polymer solid electrolyte, a gel electrolyte, and an inorganic solid electrolyte can be used. The electrolyte may have pores. The non-aqueous electrolyte is composed of a non-aqueous solvent and a solute.

非水電解液に用いられる溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1、2−ジメトキシエタン、1、2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、メチルアセテート、酢酸メチル等の溶媒、およびこれらの混合溶媒が例示される。   Solvents used for the non-aqueous electrolyte include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane. , 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, methyl acetate, methyl acetate, and mixed solvents thereof.

また、非水電解液に用いられる溶質としては、LiPF、LiBF、LiAsF、LiClO、LiSCN、LiCFCO、LiCFSO、LiN(SOCF、LiN(SOCFCF、LiN(COCFおよびLiN(COCFCF等の塩、およびこれらの混合物が例示される。 As the solute to be used in the nonaqueous electrolyte, LiPF 6, LiBF 4, LiAsF 6, LiClO 4, LiSCN, LiCF 3 CO 2, LiCF 3 SO 3, LiN (SO 2 CF 3) 2, LiN (SO 2 Examples include salts such as CF 2 CF 3 ) 2 , LiN (COCF 3 ) 2 and LiN (COCF 2 CF 3 ) 2 , and mixtures thereof.

高分子固体電解質としては、ポリエチレンオキサイド、ポリプロビレンオキサイド、ポリエチレンイミド等の高分子、またはこれらの混合物に上記のような溶質を加えて得られる物質を用いることができる。また、ゲル状電解質としては、上記高分子に、上記のような溶媒および溶質を加えて得られる物質を用いることができる。   As the polymer solid electrolyte, a polymer obtained by adding a solute as described above to a polymer such as polyethylene oxide, polypropylene oxide, polyethylene imide, or a mixture thereof can be used. As the gel electrolyte, a substance obtained by adding the above solvent and solute to the above polymer can be used.

無機固体電解質としては、結晶質または非晶質の固体電解質を用いることができる。前者には、LiI、LiN、Li1+xTi2−x(PO(M=Al、Sc、Y、La)、Li0.5−3x0.5+xTiO(R=La、Pr、Nd、Sm)、またはLi4−xGe1−xに代表されるチオLISICONを用いることができ、後者にはLiI−Li2O−B25系、Li2O−SiO2系等の酸化物ガラス、またはLiI−Li2S−B23系、LiI−Li2S−SiS2系、LiS−SiS−LiPO系等の硫化物ガラスを用いることができる。また、これらの混合物を用いることができる。 As the inorganic solid electrolyte, a crystalline or amorphous solid electrolyte can be used. The former includes LiI, Li 3 N, Li 1 + x M x Ti 2-x (PO 4 ) 3 (M = Al, Sc, Y, La), Li 0.5-3x R 0.5 + x TiO 3 (R = La, Pr, Nd, Sm), or thio LISICON represented by Li 4-x Ge 1-x P x S 4 can be used, the latter being LiI-Li 2 O—B 2 O 5 system, Li Oxide glass such as 2 O—SiO 2 system, or sulfur such as LiI—Li 2 S—B 2 S 3 system, LiI—Li 2 S—SiS 2 system, Li 2 S—SiS 2 —Li 3 PO 4 system A physical glass can be used. Moreover, these mixtures can be used.

また、負極の利用率向上を目的として、上記溶媒中に、エチレンサルファイド(ES)、フッ化水素(HF)、トリアゾール系環状化合物、フッ素含有エステル系溶媒、テトラエチルアンモニウムフルオライドのフッ化水素錯体(TEAFHF)、またはこれらの誘導体、または、CO、NO、CO、SO等のガスを、添加剤として加えてもよい。 In addition, for the purpose of improving the utilization factor of the negative electrode, in the above solvent, ethylene sulfide (ES), hydrogen fluoride (HF), triazole-based cyclic compound, fluorine-containing ester solvent, hydrogen fluoride complex of tetraethylammonium fluoride ( TEAFHF), or derivatives thereof, or gases such as CO 2 , NO 2 , CO, SO 2 may be added as additives.

また、電池の形状は特に限定されるものではなく、角形、楕円形、コイン形、ボタン形、シート形電池等の様々な形状の非水電解質電池に適用可能である。   The shape of the battery is not particularly limited, and can be applied to various shapes of non-aqueous electrolyte batteries such as a square, an ellipse, a coin, a button, and a sheet battery.

以下に、本発明非水電解質電池を実施例に基づいて、さらに詳細に説明する。しかしながら、本発明は、以下の実施例によって限定されるものではない。   Hereinafter, the nonaqueous electrolyte battery of the present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples.

[実施例1〜4および比較例1、2]
[実施例1]
まず、zとxとの間に図1に示した関係をもち、x=2.0、x=1.0、z=5であり、数平均粒径5μmのSiO粒子(以後、粒子Aとする)を酸素分圧が0.01Torrである減圧下1000℃で1時間加熱し、つぎに、得られた粒子1g当たり0.1molのフッ化水素酸が存在する溶液中で1h浸漬した。その後、粒子をろ過、水洗し、最後に真空中100℃で乾燥した。このようにして、負極活物質として、ZとXとの間に図1に示した関係をもち、x=1.5、x=1.0、z=5であり、数平均粒径5μmのSiO粒子を得た。なお、数平均粒径の値を粒度分析装置(島津製作所(株)製SALD2000J)を用いて測定した。試料を水溶媒中20分超音波分散した。屈折率としては、2.00−0.05iを用いた。
[Examples 1 to 4 and Comparative Examples 1 and 2]
[Example 1]
First, SiO x particles having the relationship shown in FIG. 1 between z and x, x s = 2.0, x b = 1.0, z a = 5, and a number average particle diameter of 5 μm , Particles A) for 1 hour at 1000 ° C. under reduced pressure with an oxygen partial pressure of 0.01 Torr, and then for 1 hour in a solution containing 0.1 mol of hydrofluoric acid per 1 g of the obtained particles. Soaked. Thereafter, the particles were filtered, washed with water, and finally dried at 100 ° C. in a vacuum. In this way, the negative electrode active material has the relationship shown in FIG. 1 between Z and X, x s = 1.5, x b = 1.0, z a = 5, and the number average particle size SiO x particles having a diameter of 5 μm were obtained. The value of the number average particle diameter was measured using a particle size analyzer (SALD2000J, manufactured by Shimadzu Corporation). The sample was ultrasonically dispersed in an aqueous solvent for 20 minutes. As a refractive index, 2.00-0.05i was used.

負極活物質70質量%と、導電剤としてのアセチレンブラック10質量%と、結着剤としてのPVdF20質量%とを混合し、NMPを加えて分散させ、負極ペーストを作製した。この負極ペーストを、厚さ15μmの銅箔上に塗布し、つぎに、150℃で乾燥することにより、NMPを蒸発させた。以上の操作を銅箔の両面に対しておこない、さらに、両面をロールプレスで圧縮成型した。このようにして、両面に負極合剤層を備えたシート状負極を製作した。   70% by mass of the negative electrode active material, 10% by mass of acetylene black as a conductive agent, and 20% by mass of PVdF as a binder were mixed and dispersed by adding NMP to prepare a negative electrode paste. This negative electrode paste was applied onto a copper foil having a thickness of 15 μm, and then dried at 150 ° C. to evaporate NMP. The above operation was performed on both sides of the copper foil, and both sides were compression molded with a roll press. Thus, the sheet-like negative electrode provided with the negative mix layer on both surfaces was manufactured.

つぎに、正極活物質としてのコバルト酸リチウム(LiCoO)90質量%と、導電剤としてのアセチレンブラック5質量%と、結着剤としてのPVdF5質量%とを混合し、NMPを加えて分散させ、負極ペーストを作製した。この負極ペーストを厚さ20μmのアルミニウム箔上に塗布し、つぎに150℃で乾燥することにより、NMPを蒸発させた。以上の操作をアルミニウム箔の両面に対しておこない、さらに両面をロールプレスで圧縮成型した。このようにして、両面に正極合剤層を備えたシート状正極を製作した。 Next, 90% by mass of lithium cobaltate (LiCoO 2 ) as a positive electrode active material, 5% by mass of acetylene black as a conductive agent, and 5% by mass of PVdF as a binder are mixed and dispersed by adding NMP. A negative electrode paste was prepared. This negative electrode paste was applied onto an aluminum foil having a thickness of 20 μm, and then dried at 150 ° C. to evaporate NMP. The above operation was performed on both sides of the aluminum foil, and both sides were compression molded with a roll press. Thus, the sheet-like positive electrode provided with the positive mix layer on both surfaces was manufactured.

このようにして準備した正極および負極を、厚さ20μm、多孔度40%の連通多孔体であるポリエチレンセパレータを間に挟んで重ねて巻き、高さ48mm、幅30mm、厚さ4.2mmの容器中に挿入して、角形電池を組み立てた。最後に、この電池の内部に、エチレンカーボネート(EC)とジエチルカーボネート(DEC)との体積比1:1の混合溶媒に1mol/lのLiPFを溶解した非水電解液を注入することによって、実施例1の電池を得た。電池の設計容量を400mAhとした。 The positive electrode and the negative electrode prepared in this way are rolled up with a polyethylene separator, which is a continuous porous body having a thickness of 20 μm and a porosity of 40%, interposed between them, and a container having a height of 48 mm, a width of 30 mm, and a thickness of 4.2 mm The prismatic battery was assembled by inserting it inside. Finally, by injecting a non-aqueous electrolyte solution in which 1 mol / l LiPF 6 is dissolved in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 1: 1, into this battery, The battery of Example 1 was obtained. The design capacity of the battery was 400 mAh.

[実施例2]
負極活物質として、zとxとの間に図1に示した関係をもち、x=1.5、x=1.0、z=10であり、数平均粒径5μmのSiO粒子を用いたこと以外は実施例1と同様にして、実施例2の電池を作製した。負極活物質の合成方法は、粒子Aを酸素分圧が0.01Torrである減圧下1000℃で1.5時間加熱したこと以外は実施例1と同様である。
[Example 2]
As the negative electrode active material, SiO x having the relationship shown in FIG. 1 between z and x, x s = 1.5, x b = 1.0, z a = 10, and a number average particle diameter of 5 μm. A battery of Example 2 was made in the same manner as Example 1 except that the particles were used. The method for synthesizing the negative electrode active material was the same as in Example 1 except that the particles A were heated at 1000 ° C. under reduced pressure at an oxygen partial pressure of 0.01 Torr for 1.5 hours.

[実施例3]
負極活物質として、zとxとの間に図1に示した関係をもち、x=1.5、x=1.0、z=30であり、数平均粒径5μmのSiO粒子を用いたこと以外は実施例1と同様にして、実施例3の電池を作製した。負極活物質の合成方法は、粒子Aを酸素分圧が0.01Torrである減圧下1000℃で2時間加熱したこと以外は実施例1と同様である。
[Example 3]
As the negative electrode active material, SiO x having the relationship shown in FIG. 1 between z and x, x s = 1.5, x b = 1.0, z a = 30, and a number average particle diameter of 5 μm. A battery of Example 3 was made in the same manner as Example 1 except that the particles were used. The method for synthesizing the negative electrode active material was the same as in Example 1 except that the particles A were heated at 1000 ° C. for 2 hours under reduced pressure with an oxygen partial pressure of 0.01 Torr.

[実施例4]
負極活物質として、zとxとの間に図1に示した関係をもち、x=1.5、x=1.0、z=50であり、数平均粒径5μmのSiO粒子を用いたこと以外は実施例1と同様にして、実施例4の電池を作製した。負極活物質の合成方法は、粒子Aを酸素分圧が0.01Torrである減圧下1000℃で3時間加熱したこと以外は実施例1と同様である。
[Example 4]
As the negative electrode active material, SiO x having the relationship shown in FIG. 1 between z and x, x s = 1.5, x b = 1.0, z a = 50, and a number average particle diameter of 5 μm. A battery of Example 4 was made in the same manner as Example 1 except that the particles were used. The method for synthesizing the negative electrode active material was the same as in Example 1 except that the particles A were heated at 1000 ° C. for 3 hours under reduced pressure at an oxygen partial pressure of 0.01 Torr.

[比較例1]
負極活物質として、zとxとの間に図1に示した関係をもち、x=1.5、x=1.0、z=2であり、数平均粒径5μmのSiO粒子を用いたこと以外は実施例1と同様にして、比較例1の電池を作製した。負極活物質の合成方法は、粒子Aを粒子1g当たり0.1molのフッ化水素酸が存在する溶液中で1h浸漬した。その後、粒子をろ過、水洗し、最後に真空中100℃で乾燥した。
[Comparative Example 1]
As the negative electrode active material, SiO x having the relationship shown in FIG. 1 between z and x, x s = 1.5, x b = 1.0, z a = 2 and a number average particle diameter of 5 μm. A battery of Comparative Example 1 was produced in the same manner as Example 1 except that the particles were used. In the synthesis method of the negative electrode active material, the particles A were immersed in a solution containing 0.1 mol of hydrofluoric acid per 1 g of the particles for 1 hour. Thereafter, the particles were filtered, washed with water, and finally dried at 100 ° C. in a vacuum.

[比較例2]
負極活物質として、zとxとの間に図1に示した関係をもち、x=1.5、x=1.0、z=60であり、数平均粒径5μmのSiO粒子を用いたこと以外は実施例1と同様にして、比較例2の電池を作製した。負極活物質の合成方法は、粒子Aを酸素分圧が0.01Torrである減圧下1000℃で3.5時間加熱したこと以外は実施例1と同様である。
[Comparative Example 2]
As a negative electrode active material, SiO x having the relationship shown in FIG. 1 between z and x, x s = 1.5, x b = 1.0, z a = 60, and a number average particle diameter of 5 μm. A battery of Comparative Example 2 was produced in the same manner as Example 1 except that the particles were used. The method for synthesizing the negative electrode active material was the same as in Example 1 except that the particles A were heated at 1000 ° C. for 3.5 hours under reduced pressure at an oxygen partial pressure of 0.01 Torr.

実施例1〜4および比較例1、2の電池について、次の条件で充放電試験をおこない、初期放電容量と50サイクル目の容量維持率を求めた。   The batteries of Examples 1 to 4 and Comparative Examples 1 and 2 were subjected to a charge / discharge test under the following conditions to determine the initial discharge capacity and the capacity maintenance ratio at the 50th cycle.

各電池を、25℃において、400mA定電流で4.2Vまで充電し、続いて4.2V定電圧で3時間充電した。その後、400mA定電流で2.5Vまで放電し、これを1サイクルとする。そして、1サイクル目の放電容量を「初期放電容量」とし、初期放電容量に対する50サイクル目の放電容量の比率(%)を「容量維持率」とした。   Each battery was charged to 4.2 V at a constant current of 400 mA at 25 ° C., and then charged at a constant voltage of 4.2 V for 3 hours. Then, it discharges to 2.5V with a 400 mA constant current, and makes this 1 cycle. The discharge capacity at the first cycle was defined as “initial discharge capacity”, and the ratio (%) of the discharge capacity at the 50th cycle to the initial discharge capacity was defined as “capacity maintenance ratio”.

実施例1〜4および比較例1、2の電池の試験結果を表1に示す。   Table 1 shows the test results of the batteries of Examples 1 to 4 and Comparative Examples 1 and 2.

Figure 0004332845
Figure 0004332845

表1の結果から、2≦z≦50を満たす実施例1〜4の電池では比較例電池とくらべて良好なサイクル性能を示すことがわかった。zが50nmを超えて大きくなると容量維持率が大きく低下した。zが大きいということは、SiO粒子内において酸素濃度の高い層が粒子表面からより深く内部に向かって広がっていることを意味する。 From the results of Table 1, it was found that the batteries of Examples 1 to 4 satisfying 2 ≦ z a ≦ 50 exhibit better cycle performance than the comparative example batteries. When z a increased beyond 50 nm, the capacity retention rate decreased significantly. When z a is large, it means that a layer having a high oxygen concentration spreads deeper from the particle surface toward the inside in the SiO x particle.

粒子表面における酸素濃度の高い層が厚いほどSiO粒子の電子伝導性は低下する。したがって、zが50nmを超えて大きくなると、粒子自体の電子伝導性の低下に起因して負極のサイクル性能が低下し、その結果、電池のサイクル性能が低下したものと考えられる。 The thicker the oxygen concentration layer on the particle surface, the lower the electronic conductivity of the SiO X particles. Therefore, when z a increases beyond 50 nm, it is considered that the cycle performance of the negative electrode is lowered due to the decrease in the electronic conductivity of the particles themselves, and as a result, the cycle performance of the battery is lowered.

また、zが5nmを下回ると容量維持率が低下した。zが小さいということは、SiO粒子内において酸素濃度の高い層が薄いことを意味する。粒子表面における酸素濃度の高い層が薄いほど、リチウムの吸蔵に伴ってSiO粒子が膨張する程度は大きくなる。したがって、zが5nmを下回ると、SiO粒子同士または粒子と導電剤との電子伝導性の低下に起因して負極のサイクル性能が低下し、その結果、電池のサイクル性能が低下したものと考えられる。 Further, when z a was less than 5 nm, the capacity retention rate was lowered. That z a is small means that the layer having a high oxygen concentration is thin in the SiO X particle. The thinner the layer with a higher oxygen concentration on the particle surface, the greater the extent to which the SiO X particles expand with the occlusion of lithium. Therefore, when z a is less than 5 nm, the cycle performance of the negative electrode is reduced due to the decrease in the electronic conductivity between the SiO X particles or between the particles and the conductive agent, and as a result, the cycle performance of the battery is reduced. Conceivable.

[実施例5〜13および比較例3〜8]
[実施例5]
まず、zとxとの間に図1に示した関係をもち、x=2.0、x=0.5、z=5であり、数平均粒径5μmのSiO粒子(以後、粒子Bとする)を酸素分圧が0.01Torrである減圧下1000℃で1時間加熱し、つぎに、得られた粒子1g当たり0.1molのフッ化水素酸が存在する溶液中で1h浸漬した。その後、粒子をろ過、水洗し、最後に真空中100℃で乾燥した。このようにして、負極活物質として、zとxとの間に図1に示した関係をもち、x=1.5、x=0.5、z=5であり、数平均粒径5μmのSiO粒子を得た。この粒子を負極活物質として用いたこと以外は実施例1と同様にして、実施例5の電池を作製した。
[Examples 5 to 13 and Comparative Examples 3 to 8]
[Example 5]
First, there is a relationship shown in FIG. 1 between z and x, where x s = 2.0, x b = 0.5, z a = 5, and a number average particle diameter of 5 μm SiO x particles (hereinafter referred to as “ x s”). , Particles B) for 1 hour at 1000 ° C. under reduced pressure with an oxygen partial pressure of 0.01 Torr, and then for 1 hour in a solution containing 0.1 mol of hydrofluoric acid per gram of the obtained particles. Soaked. Thereafter, the particles were filtered, washed with water, and finally dried at 100 ° C. in a vacuum. In this way, the negative electrode active material has the relationship shown in FIG. 1 between z and x, x s = 1.5, x b = 0.5, z a = 5, and the number average particle size SiO x particles having a diameter of 5 μm were obtained. A battery of Example 5 was made in the same manner as Example 1 except that these particles were used as the negative electrode active material.

[実施例6]
負極活物質として、zとxとの間に図1に示した関係をもち、x=1.5、x=0.5、z=10であり、数平均粒径5μmのSiO粒子を用いたこと以外は実施例1と同様にして、実施例6の電池を作製した。負極活物質の合成方法は、粒子Bを酸素分圧が0.01Torrである減圧下1000℃で1.5時間加熱したこと以外は実施例5と同様である。
[Example 6]
As the negative electrode active material, SiO x having the relationship shown in FIG. 1 between z and x, x s = 1.5, x b = 0.5, z a = 10, and a number average particle diameter of 5 μm. A battery of Example 6 was made in the same manner as Example 1 except that the particles were used. The method for synthesizing the negative electrode active material was the same as in Example 5 except that the particles B were heated at 1000 ° C. under reduced pressure at an oxygen partial pressure of 0.01 Torr for 1.5 hours.

[実施例7]
負極活物質として、zとxとの間に図1に示した関係をもち、x=1.5、x=0.5、z=50であり、数平均粒径5μmのSiO粒子を用いたこと以外は実施例1と同様にして、実施例7の電池を作製した。負極活物質の合成方法は、粒子Bを酸素分圧が0.01Torrである減圧下1000℃で2時間加熱したこと以外は実施例5と同様である。
[Example 7]
As the negative electrode active material, SiO x having the relationship shown in FIG. 1 between z and x, x s = 1.5, x b = 0.5, z a = 50, and a number average particle diameter of 5 μm. A battery of Example 7 was made in the same manner as Example 1 except that the particles were used. The method for synthesizing the negative electrode active material was the same as in Example 5 except that the particles B were heated at 1000 ° C. for 2 hours under reduced pressure at an oxygen partial pressure of 0.01 Torr.

[比較例3]
負極活物質として、zとxとの間に図1に示した関係をもち、x=1.5、x=0.5、z=2であり、数平均粒径5μmのSiO粒子を用いたこと以外は実施例1と同様にして、比較例3の電池を作製した。負極活物質の合成方法は、粒子Bを粒子1g当たり0.1molのフッ化水素酸が存在する溶液中で1h浸漬した。その後、粒子をろ過、水洗し、最後に真空中100℃で乾燥した。
[Comparative Example 3]
As the negative electrode active material, SiO x having the relationship shown in FIG. 1 between z and x, x s = 1.5, x b = 0.5, z a = 2 and a number average particle diameter of 5 μm. A battery of Comparative Example 3 was produced in the same manner as Example 1 except that the particles were used. In the method for synthesizing the negative electrode active material, the particles B were immersed in a solution containing 0.1 mol of hydrofluoric acid per 1 g of the particles for 1 hour. Thereafter, the particles were filtered, washed with water, and finally dried at 100 ° C. in a vacuum.

[比較例4]
負極活物質として、zとxとの間に図1に示した関係をもち、x=1.5、x=0.5、z=60であり、数平均粒径5μmのSiO粒子を用いたこと以外は実施例1と同様にして、比較例4の電池を作製した。負極活物質の合成方法は、粒子Bを酸素分圧が0.01Torrである減圧下1000℃で3.5時間加熱したこと以外は実施例5と同様である。
[Comparative Example 4]
As the negative electrode active material, SiO x having the relationship shown in FIG. 1 between z and x, x s = 1.5, x b = 0.5, z a = 60, and a number average particle diameter of 5 μm. A battery of Comparative Example 4 was produced in the same manner as Example 1 except that the particles were used. The synthesis method of the negative electrode active material was the same as that of Example 5 except that the particles B were heated for 3.5 hours at 1000 ° C. under reduced pressure at an oxygen partial pressure of 0.01 Torr.

[実施例8]
まず、zとxとの間に図1に示した関係をもち、x=2.0、x=0.3、z=5であり、数平均粒径5μmのSiO粒子(以後、粒子Cとする)を酸素分圧が0.01Torrである減圧下1000℃で1時間加熱し、つぎに、得られた粒子1g当たり0.1molのフッ化水素酸が存在する溶液中で1h浸漬した。その後、粒子をろ過、水洗し、最後に真空中100℃で乾燥した。このようにして、負極活物質として、zとxとの間に図1に示した関係をもち、x=1.5、x=0.3、z=5であり、数平均粒径5μmのSiO粒子を得た。この粒子を負極活物質として用いたこと以外は実施例1と同様にして、実施例8の電池を作製した。
[Example 8]
First, there is the relationship shown in FIG. 1 between z and x, where x s = 2.0, x b = 0.3, z a = 5, and the number average particle diameter of SiO x particles (hereinafter referred to as 5 μm). , Particles C) for 1 hour at 1000 ° C. under reduced pressure with an oxygen partial pressure of 0.01 Torr, and then for 1 hour in a solution containing 0.1 mol of hydrofluoric acid per 1 g of the obtained particles. Soaked. Thereafter, the particles were filtered, washed with water, and finally dried at 100 ° C. in a vacuum. In this way, the negative electrode active material has the relationship shown in FIG. 1 between z and x, x s = 1.5, x b = 0.3, z a = 5, and the number average particle size SiO x particles having a diameter of 5 μm were obtained. A battery of Example 8 was made in the same manner as Example 1 except that these particles were used as the negative electrode active material.

[実施例9]
負極活物質として、zとxとの間に図1に示した関係をもち、x=1.5、x=0.3、z=10であり、数平均粒径5μmのSiO粒子を用いたこと以外は実施例1と同様にして、実施例9の電池を作製した。負極活物質の合成方法は、粒子Cを酸素分圧が0.01Torrである減圧下1000℃で1.5時間加熱したこと以外は実施例8と同様である。
[Example 9]
As a negative electrode active material, SiO x having the relationship shown in FIG. 1 between z and x, x s = 1.5, x b = 0.3, z a = 10, and a number average particle diameter of 5 μm. A battery of Example 9 was made in the same manner as Example 1 except that the particles were used. The method for synthesizing the negative electrode active material was the same as in Example 8 except that the particles C were heated at 1000 ° C. under reduced pressure with an oxygen partial pressure of 0.01 Torr for 1.5 hours.

[実施例10]
負極活物質として、zとxとの間に図1に示した関係をもち、x=1.5、x=0.3、z=50であり、数平均粒径5μmのSiO粒子を用いたこと以外は実施例1と同様にして、実施例10の電池を作製した。負極活物質の合成方法は、粒子Cを酸素分圧が0.01Torrである減圧下1000℃で2時間加熱したこと以外は実施例8と同様である。
[Example 10]
As the negative electrode active material, SiO x having the relationship shown in FIG. 1 between z and x, x s = 1.5, x b = 0.3, z a = 50, and a number average particle diameter of 5 μm. A battery of Example 10 was made in the same manner as Example 1 except that the particles were used. The method for synthesizing the negative electrode active material was the same as in Example 8, except that the particles C were heated at 1000 ° C. for 2 hours under reduced pressure at an oxygen partial pressure of 0.01 Torr.

[比較例5]
負極活物質として、zとxとの間に図1に示した関係をもち、x=1.5、x=0.3、z=2であり、数平均粒径5μmのSiO粒子を用いたこと以外は実施例1と同様にして、比較例5の電池を作製した。負極活物質の合成方法は、粒子Cを粒子1g当たり0.1molのフッ化水素酸が存在する溶液中で1h浸漬した。その後、粒子をろ過、水洗し、最後に真空中100℃で乾燥した。
[Comparative Example 5]
As the negative electrode active material, SiO x having the relationship shown in FIG. 1 between z and x, x s = 1.5, x b = 0.3, z a = 2 and a number average particle diameter of 5 μm. A battery of Comparative Example 5 was produced in the same manner as Example 1 except that the particles were used. In the synthesis method of the negative electrode active material, the particles C were immersed for 1 h in a solution containing 0.1 mol of hydrofluoric acid per 1 g of the particles. Thereafter, the particles were filtered, washed with water, and finally dried at 100 ° C. in a vacuum.

[比較例6]
負極活物質として、zとxとの間に図1に示した関係をもち、x=1.5、x=0.3、z=60であり、数平均粒径5μmのSiO粒子を用いたこと以外は実施例1と同様にして、比較例6の電池を作製した。負極活物質の合成方法は、粒子Cを酸素分圧が0.01Torrである減圧下1000℃で3.5時間加熱したこと以外は実施例8と同様である。
[Comparative Example 6]
As the negative electrode active material, SiO x having the relationship shown in FIG. 1 between z and x, x s = 1.5, x b = 0.3, z a = 60, and a number average particle diameter of 5 μm. A battery of Comparative Example 6 was produced in the same manner as Example 1 except that the particles were used. The synthesis method of the negative electrode active material was the same as that of Example 8 except that the particles C were heated at 1000 ° C. for 3.5 hours under reduced pressure at an oxygen partial pressure of 0.01 Torr.

[実施例11]
まず、zとxとの間に図1に示した関係をもち、x=2.0、x=0、z=2であり、数平均粒径5μmのSiO粒子(以後、粒子Dとする)を酸素分圧が0.01Torrである減圧下600℃で1時間加熱し、つぎに、得られた粒子1g当たり0.1molのフッ化水素酸が存在する溶液中で1h浸漬した。その後、粒子をろ過、水洗し、最後に真空中100℃で乾燥した。このようにして、負極活物質として、zとxとの間に図1に示した関係をもち、x=1.5、x=0、z=5であり、数平均粒径5μmのSiOx粒子を得た。この粒子を負極活物質として用いたこと以外は実施例1と同様にして、実施例11の電池を作製した。
[Example 11]
First, SiO x particles having the relationship shown in FIG. 1 between z and x, x s = 2.0, x b = 0, z a = 2 and a number average particle diameter of 5 μm (hereinafter referred to as particles) D) was heated for 1 hour at 600 ° C. under reduced pressure with an oxygen partial pressure of 0.01 Torr, and then immersed in a solution containing 0.1 mol of hydrofluoric acid per 1 g of the obtained particles. . Thereafter, the particles were filtered, washed with water, and finally dried at 100 ° C. in a vacuum. In this way, the negative electrode active material has the relationship shown in FIG. 1 between z and x, x s = 1.5, x b = 0, z a = 5, and the number average particle diameter is 5 μm. SiOx particles were obtained. A battery of Example 11 was made in the same manner as Example 1 except that these particles were used as the negative electrode active material.

[実施例12]
負極活物質として、zとxとの間に図1に示した関係をもち、x=1.5、x=0.3、z=10であり、数平均粒径5μmのSiO粒子を用いたこと以外は実施例1と同様にして、実施例12の電池を作製した。負極活物質の合成方法は、粒子Dを酸素分圧が0.01Torrである減圧下600℃で1.5時間加熱したこと以外は実施例11と同様である。
[Example 12]
As a negative electrode active material, SiO x having the relationship shown in FIG. 1 between z and x, x s = 1.5, x b = 0.3, z a = 10, and a number average particle diameter of 5 μm. A battery of Example 12 was made in the same manner as Example 1 except that the particles were used. The method for synthesizing the negative electrode active material was the same as in Example 11 except that the particles D were heated at 600 ° C. under reduced pressure with an oxygen partial pressure of 0.01 Torr for 1.5 hours.

[実施例13]
負極活物質として、zとxとの間に図1に示した関係をもち、x=1.5、x=0、z=50であり、数平均粒径5μmのSiO粒子を用いたこと以外は実施例1と同様にして、実施例13の電池を作製した。負極活物質の合成方法は、粒子Dを酸素分圧が0.01Torrである減圧下600℃で2時間加熱したこと以外は実施例11と同様である。
[Example 13]
As a negative electrode active material, SiO x particles having the relationship shown in FIG. 1 between z and x, x s = 1.5, x b = 0, z a = 50, and a number average particle diameter of 5 μm are used. A battery of Example 13 was made in the same manner as Example 1 except for the use. The method for synthesizing the negative electrode active material was the same as in Example 11 except that the particles D were heated at 600 ° C. for 2 hours under reduced pressure at an oxygen partial pressure of 0.01 Torr.

[比較例7]
負極活物質として、zとxとの間に図1に示した関係をもち、x=1.5、x=0、z=2であり、数平均粒径5μmのSiO粒子を用いたこと以外は実施例1と同様にして、比較例7の電池を作製した。負極活物質の合成方法は、粒子Dを粒子1g当たり0.1molのフッ化水素酸が存在する溶液中で1h浸漬した。その後、粒子をろ過、水洗し、最後に真空中100℃で乾燥した。
[Comparative Example 7]
As a negative electrode active material, SiO x particles having the relationship shown in FIG. 1 between z and x, x s = 1.5, x b = 0, z a = 2 and a number average particle diameter of 5 μm are used. A battery of Comparative Example 7 was made in the same manner as Example 1 except that it was used. In the synthesis method of the negative electrode active material, the particles D were immersed for 1 h in a solution containing 0.1 mol of hydrofluoric acid per 1 g of the particles. Thereafter, the particles were filtered, washed with water, and finally dried at 100 ° C. in a vacuum.

[比較例8]
負極活物質として、zとxとの間に図1に示した関係をもち、x=1.5、x=0、z=60であり、数平均粒径5μmのSiO粒子を用いたこと以外は実施例1と同様にして、比較例8の電池を作製した。負極活物質の合成方法は、粒子Dを酸素分圧が0.01Torrである減圧下600℃で3.5時間加熱したこと以外は実施例11と同様である。
[Comparative Example 8]
As a negative electrode active material, SiO x particles having the relationship shown in FIG. 1 between z and x, x s = 1.5, x b = 0, z a = 60, and a number average particle diameter of 5 μm are used. A battery of Comparative Example 8 was produced in the same manner as Example 1 except that it was used. The method for synthesizing the negative electrode active material was the same as in Example 11 except that the particles D were heated at 600 ° C. under reduced pressure with an oxygen partial pressure of 0.01 Torr for 3.5 hours.

実施例5〜13および比較例3〜8の電池を、実施例1と同じ条件で充放電試験をおこない、容量維持率を求めた。電池の試験結果を表2に示す。   The batteries of Examples 5 to 13 and Comparative Examples 3 to 8 were subjected to a charge / discharge test under the same conditions as in Example 1 to determine the capacity retention rate. The test results of the battery are shown in Table 2.

Figure 0004332845
Figure 0004332845


表2の結果から、負極活物質に用いたSiO粒子のx、x、zが異なる場合においても、容量維持率は5≦z≦50を満たす場合良好となることがわかった。

From the results of Table 2, it was found that even when x s , x b , and z a of the SiO x particles used for the negative electrode active material are different, the capacity retention rate is good when 5 ≦ z a ≦ 50 is satisfied. .

[実施例14〜17および比較例9、10]
[実施例14]
まず、zとxとの間に図2に示した関係をもち、x=2.0、x=1.0、z=5であり、数平均粒径5μmのSiO粒子(以後、粒子Dとする)を酸素分圧が0.01Torrである減圧下1000℃で1時間加熱し、つぎに、得られた粒子1g当たり0.1molのフッ化水素酸が存在する溶液中で1h浸漬した。その後、粒子をろ過、水洗し、最後に真空中100℃で乾燥した。このようにして、負極活物質として、zとxとの間に図2に示した関係をもち、x=1.5、x=1.0、z=5であり、数平均粒径5μmのSiOx粒子を得た。この粒子を負極活物質として用いたこと以外は実施例1と同様にして、実施例14の電池を作製した。
[Examples 14 to 17 and Comparative Examples 9 and 10]
[Example 14]
First, SiO x particles having the relationship shown in FIG. 2 between z and x, x s = 2.0, x b = 1.0, z a = 5, and a number average particle diameter of 5 μm (hereinafter referred to as “ x”) , Particles D) for 1 hour at 1000 ° C. under reduced pressure with an oxygen partial pressure of 0.01 Torr, and then in a solution containing 0.1 mol of hydrofluoric acid per 1 g of the obtained particles. Soaked. Thereafter, the particles were filtered, washed with water, and finally dried at 100 ° C. in a vacuum. In this way, the negative electrode active material has the relationship shown in FIG. 2 between z and x, where x s = 1.5, x b = 1.0, z a = 5, and the number average particle size SiOx particles having a diameter of 5 μm were obtained. A battery of Example 14 was made in the same manner as Example 1 except that these particles were used as the negative electrode active material.

[実施例15]
負極活物質として、zとxとの間に図2に示した関係をもち、x=1.5、x=1.0、z=10であり、数平均粒径5μmのSiO粒子を用いたこと以外は実施例1と同様にして、実施例15の電池を作製した。負極活物質の合成方法は、粒子Dを酸素分圧が0.01Torrである減圧下1000℃で1.5時間加熱したこと以外は実施例15と同様である。
[Example 15]
As the negative electrode active material, SiO x having the relationship shown in FIG. 2 between z and x, x s = 1.5, x b = 1.0, z a = 10, and a number average particle diameter of 5 μm. A battery of Example 15 was made in the same manner as Example 1 except that the particles were used. The synthesis method of the negative electrode active material was the same as that of Example 15 except that the particles D were heated at 1000 ° C. under reduced pressure at an oxygen partial pressure of 0.01 Torr for 1.5 hours.

[実施例16]
負極活物質として、zとxとの間に図2に示した関係をもち、x=1.5、x=1.0、z=30であり、数平均粒径5μmのSiOx粒子を用いたこと以外は実施例1と同様にして、実施例16の電池を作製した。負極活物質の合成方法は、粒子Dを酸素分圧が0.01Torrである減圧下1000℃で2時間加熱したこと以外は実施例14と同様である。
[Example 16]
As the negative electrode active material, SiO x particles having the relationship shown in FIG. 2 between z and x, x s = 1.5, x b = 1.0, z a = 30, and a number average particle diameter of 5 μm A battery of Example 16 was made in the same manner as Example 1 except that was used. The synthesis method of the negative electrode active material is the same as that of Example 14 except that the particles D were heated at 1000 ° C. for 2 hours under reduced pressure with an oxygen partial pressure of 0.01 Torr.

[実施例17]
負極活物質として、zとxとの間に図2に示した関係をもち、x=1.5、x=1.0、z=50であり、数平均粒径5μmのSiOx粒子を用いたこと以外は実施例1と同様にして、実施例17の電池を作製した。負極活物質の合成方法は、粒子Dを酸素分圧が0.01Torrである減圧下1000℃で3時間加熱したこと以外は実施例14と同様である。
[Example 17]
As a negative electrode active material, SiO x particles having the relationship shown in FIG. 2 between z and x, x s = 1.5, x b = 1.0, z a = 50, and a number average particle diameter of 5 μm A battery of Example 17 was made in the same manner as Example 1 except that was used. The synthesis method of the negative electrode active material was the same as that of Example 14 except that the particles D were heated at 1000 ° C. for 3 hours under reduced pressure with an oxygen partial pressure of 0.01 Torr.

[比較例9]
負極活物質として、zとxとの間に図2に示した関係をもち、x=1.5、x=1.0、z=2であり、数平均粒径5μmのSiOx粒子を用いたこと以外は実施例1と同様にして、比較例9の電池を作製した。負極活物質の合成方法は、粒子Dを粒子1g当たり0.1molのフッ化水素酸が存在する溶液中で1h浸漬した。その後、粒子をろ過、水洗し、最後に真空中100℃で乾燥した。
[Comparative Example 9]
As the negative electrode active material, SiO x particles having the relationship shown in FIG. 2 between z and x, x s = 1.5, x b = 1.0, z a = 2 and a number average particle diameter of 5 μm A battery of Comparative Example 9 was produced in the same manner as Example 1 except that was used. In the synthesis method of the negative electrode active material, the particles D were immersed for 1 h in a solution containing 0.1 mol of hydrofluoric acid per 1 g of the particles. Thereafter, the particles were filtered, washed with water, and finally dried at 100 ° C. in a vacuum.

[比較例10]
負極活物質として、zとxとの間に図2に示した関係をもち、x=1.5、x=1.0、z=60であり、数平均粒径5μmのSiO粒子を用いたこと以外は実施例1と同様にして、比較例10の電池を作製した。負極活物質の合成方法は、粒子Dを酸素分圧が0.01Torrである減圧下1000℃で3.5時間加熱したこと以外は実施例14と同様である。
[Comparative Example 10]
As the negative electrode active material, SiO x having the relationship shown in FIG. 2 between z and x, x s = 1.5, x b = 1.0, z a = 60, and a number average particle diameter of 5 μm. A battery of Comparative Example 10 was produced in the same manner as Example 1 except that the particles were used. The method for synthesizing the negative electrode active material was the same as in Example 14 except that the particles D were heated at 1000 ° C. under reduced pressure with an oxygen partial pressure of 0.01 Torr for 3.5 hours.

実施例14〜17および比較例9、10の電池を、実施例1と同じ条件で充放電試験をおこない、容量維持率を求めた。電池の試験結果を表3に示す。   The batteries of Examples 14 to 17 and Comparative Examples 9 and 10 were subjected to a charge / discharge test under the same conditions as in Example 1 to determine the capacity retention rate. The test results of the battery are shown in Table 3.

Figure 0004332845
Figure 0004332845

表3の結果から、zとxとの間に図2に示した関係をもつSiO粒子を負極活物質として用いた電池の場合も、zとxとの間に図1に示した関係をもつSiO粒子を用いた実施例1〜4および比較例1、2とほぼ同様の傾向を示した。ただし、容量維持率は、実施例1〜4および比較例1、2の電池の方がやや優れていた。 From the results of Table 3, in the case of a battery using SiO x particles having the relationship shown in FIG. 2 between z and x as the negative electrode active material, the relationship shown in FIG. The same tendency as in Examples 1 to 4 and Comparative Examples 1 and 2 using the SiO x particles possessed was shown. However, the capacity retention ratios of the batteries of Examples 1 to 4 and Comparative Examples 1 and 2 were slightly better.

[実施例18〜21]
ここでは、負極活物質として、SiO粒子の表面の少なくとも一部を炭素材料で被覆したものを用いた。炭素被覆量は、SiOおよび炭素の質量の総和に対して10%であった。
[Examples 18 to 21]
Here, a negative electrode active material in which at least a part of the surface of the SiO x particles was coated with a carbon material was used. The carbon coating amount was 10% with respect to the total mass of SiO x and carbon.

[実施例18]
まず、実施例2と同様にして、zとxとの間に図1に示した関係をもち、x=1.5、x=1.0、z=10であり、数平均粒径5μmのSiO粒子(以後、粒子Eとする)を作製し、つぎに、トルエンをアルゴン雰囲気下1000℃で熱分解して得られた分解性生物を粒子E表面に付着させることによって、粒子Eの表面をほぼ完全に炭素材料で被覆した。この炭素材料で被覆したSiO粒子を負極活物質としたこと以外は実施例1と同様にして、実施例18の電池を作製した。
[Example 18]
First, as in Example 2, the relationship shown in FIG. 1 was established between z and x, x s = 1.5, x b = 1.0, z a = 10, and the number average particle size By producing SiO x particles (hereinafter referred to as particle E) having a diameter of 5 μm, and then attaching degradable organisms obtained by thermally decomposing toluene at 1000 ° C. in an argon atmosphere to the particle E surface, particles are obtained. The surface of E was almost completely covered with the carbon material. A battery of Example 18 was made in the same manner as Example 1 except that the SiO x particles coated with this carbon material were used as the negative electrode active material.

[実施例19]
粒子Eの表面にピッチを塗布し、これをアルゴン雰囲気下1000℃で焼成することによって、粒子E表面の約半分を炭素材料で被覆した。この炭素材料で被覆したSiO粒子を負極活物質としたこと以外は実施例1と同様にして、実施例19の電池を作製した。
[Example 19]
About half of the surface of the particle E was coated with a carbon material by applying a pitch to the surface of the particle E and firing it at 1000 ° C. in an argon atmosphere. A battery of Example 19 was made in the same manner as Example 1 except that the SiO x particles coated with the carbon material were used as the negative electrode active material.

[実施例20]
実施例15と同様にして、zとxとの間に図2に示した関係をもち、x=1.5、x=1.0、z=10であり、数平均粒径5μmのSiO粒子(以後、粒子Fとする)を作製し、この粒子Fの表面を実施例18と同様の方法でほぼ完全に炭素材料で被覆し、これを負極活物質としたこと以外は実施例1と同様にして、実施例20の電池を作製した。
[Example 20]
As in Example 15, the relationship shown in FIG. 2 was established between z and x, x s = 1.5, x b = 1.0, z a = 10, and the number average particle diameter was 5 μm. This was carried out except that a SiO x particle (hereinafter referred to as particle F) was prepared, and the surface of the particle F was almost completely covered with a carbon material in the same manner as in Example 18 to make it a negative electrode active material. A battery of Example 20 was made in the same manner as Example 1.

[実施例21]
粒子Fの表面の約半分を実施例19と同様の方法で炭素材料で被覆し、これを負極活物質としたこと以外は実施例1と同様にして、実施例21の電池を作製した。
[Example 21]
A battery of Example 21 was fabricated in the same manner as in Example 1 except that about half of the surface of the particle F was coated with a carbon material in the same manner as in Example 19 and this was used as the negative electrode active material.

実施例18〜21の電池を、実施例1と同じ条件で充放電試験をおこない、容量維持率を求めた。電池の試験結果を表4に示す。なお、表4には、比較のため、実施例2および実施例15のデータも掲載した。   The batteries of Examples 18 to 21 were subjected to a charge / discharge test under the same conditions as in Example 1 to determine the capacity retention rate. The test results of the battery are shown in Table 4. In Table 4, the data of Example 2 and Example 15 are also shown for comparison.

Figure 0004332845
Figure 0004332845

表4の結果から、SiO粒子表面の半分に炭素被膜があることにより、容量維持率はやや良くなり、粒子表面の全面に炭素被膜があることにより、容量維持率はさらに良くなることがわかった。 From the results in Table 4, it can be seen that the capacity retention rate is slightly improved by having a carbon film on the half of the SiO x particle surface, and the capacity retention ratio is further improved by having a carbon film on the entire surface of the particle surface. It was.

参考例1〜6
参考例1
負極活物質として、zとxとの間に図1に示した関係をもち、x s =1.5、x b =1.0、z a =10であり、数平均粒径0.1μmのSiO x 粒子を用いたこと以外は実施例1と同様にして、参考例1の電池を作製した。
[ Reference Examples 1 to 6 ]
[ Reference Example 1 ]
As a negative electrode active material, it has the relationship shown in FIG. 1 between z and x, x s = 1.5, x b = 1.0, z a = 10, and the number average particle diameter is 0.1 μm. A battery of Reference Example 1 was produced in the same manner as Example 1 except that SiO x particles were used.

参考例2
負極活物質として、数平均粒径1μmのSiO x 粒子を用いたこと以外は参考例1と同様にして、参考例2の電池を作製した。
[ Reference Example 2 ]
A battery of Reference Example 2 was produced in the same manner as Reference Example 1 except that SiO x particles having a number average particle diameter of 1 μm were used as the negative electrode active material.

参考例3
負極活物質として、数平均粒径10μmのSiO x 粒子を用いたこと以外は参考例1と同様にして、参考例3の電池を作製した。
[ Reference Example 3 ]
A battery of Reference Example 3 was produced in the same manner as Reference Example 1 except that SiO x particles having a number average particle size of 10 μm were used as the negative electrode active material.

参考例4
負極活物質として、数平均粒径20μmのSiO x 粒子を用いたこと以外は参考例1と同様にして、参考例4の電池を作製した。
[ Reference Example 4 ]
A battery of Reference Example 4 was produced in the same manner as Reference Example 1 except that SiO x particles having a number average particle diameter of 20 μm were used as the negative electrode active material.

参考例5
負極活物質として、数平均粒径0.05μmのSiO x 粒子を用いたこと以外は参考例1と同様にして、参考例5の電池を作製した。
[ Reference Example 5 ]
A battery of Reference Example 5 was fabricated in the same manner as Reference Example 1 except that SiO x particles having a number average particle diameter of 0.05 μm were used as the negative electrode active material.

参考例6
負極活物質として、数平均粒径30μmのSiO x 粒子を用いたこと以外は参考例1と同様にして、参考例6の電池を作製した。
[ Reference Example 6 ]
A battery of Reference Example 6 was produced in the same manner as Reference Example 1 except that SiO x particles having a number average particle size of 30 μm were used as the negative electrode active material.

参考例1〜6の電池を、実施例1と同じ条件で充放電試験をおこなった。50サイクル後に得られた容量維持率を維持率(A)とする。また、各電池を51サイクル目に25℃において、400mA定電流で4.2Vまで充電し、続いて4.2V定電圧で3時間充電した。その後、−20℃において400mA定電流で2.5Vまで放電した。このときに得られた放電容量の50サイクル目における放電容量に対する割合(%)を容量維持率(B)とする。表5に、容量維持率(A)および(B)を示す。なお、表には、比較のため、実施例2のデータも掲載した。
The batteries of Reference Examples 1 to 6 were subjected to a charge / discharge test under the same conditions as in Example 1. The capacity maintenance rate obtained after 50 cycles is defined as the maintenance rate (A). Each battery was charged to 4.2 V at a constant current of 400 mA at 25 ° C. in the 51st cycle, and then charged at a constant voltage of 4.2 V for 3 hours. Then, it discharged to 2.5V with a 400 mA constant current at -20 degreeC. The ratio (%) of the discharge capacity obtained at this time to the discharge capacity at the 50th cycle is defined as the capacity maintenance ratio (B). Table 5 shows capacity retention rates (A) and (B). In the table, the data of Example 2 is also shown for comparison.

Figure 0004332845
Figure 0004332845

表5の結果から、SiO粒子の平均粒子径が0.1μm未満の場合、室温で、サイクル後の電池の容量維持率が低いことがわかった。また、粒子径が20μmを超えた場合、低温における放電容量が小さかった。したがって、室温におけるサイクル性能および低温放電性能を考慮して、負極活物質SiO粒子の数平均粒径は0.1〜20μmの範囲にあることが好ましい。
本実施例では、SiO(0<x<2)の粒子表面に備えた電子導電性材料が炭素材料であったが、その電子導電材料がニッケル、銅、鉄等の金属である場合も同様にして電池のサイクル性能が良好であった。
From the results of Table 5, it was found that when the average particle size of the SiO x particles was less than 0.1 μm, the capacity retention rate of the battery after cycling was low at room temperature. Moreover, when the particle diameter exceeded 20 μm, the discharge capacity at low temperature was small. Therefore, in consideration of cycle performance at room temperature and low-temperature discharge performance, the number average particle size of the negative electrode active material SiO X particles is preferably in the range of 0.1 to 20 μm.
In this example, the electronic conductive material provided on the particle surface of SiO x (0 <x <2) was a carbon material, but the same applies when the electronic conductive material is a metal such as nickel, copper, or iron. Thus, the cycle performance of the battery was good.

酸素濃度が粒子の表面から内部に向かって連続的に減少しているSiOのzとxとの関係のモデルを示す図。Figure oxygen concentration shows a model of the relationship between z and x in SiO x which is decreasing continuously inwardly from the surface of the particles. 中心部の核と、この核を覆う表面層からなるSiOのzとxとの関係のモデルを示す図。Shows the central portion of the core, a model of the relationship between z and x in SiO x consisting of a surface layer covering the nucleus.

Claims (2)

一般式SiO(0<x<2)で表される物質を負極活物質とする非水電解質電池において、前記一般式中のxの値を、表面ではx、中心部ではxとした場合、x<xであり、さらに前記物質におけるx=(x+x)/2となる表面からの深さをz(nm)とした場合、5≦z≦50であることを特徴とする非水電解質電池。 In a nonaqueous electrolyte battery using a material represented by the general formula SiO x (0 <x <2) as a negative electrode active material, the value of x in the general formula is x s on the surface and x b on the center. If x b <x s and the depth from the surface where x = (x s + x b ) / 2 in the substance is z a (nm), then 5 ≦ z a ≦ 50 A non-aqueous electrolyte battery. 一般式SiO(0<x<2)で表される物質がその表面の少なくとも一部に電子導電性材料を備えたことを特徴とする請求項1記載の非水電解質電池。
































The nonaqueous electrolyte battery according to claim 1, wherein the substance represented by the general formula SiO x (0 <x <2) includes an electron conductive material on at least a part of a surface thereof.
































JP2003319413A 2003-09-11 2003-09-11 Non-aqueous electrolyte battery Expired - Fee Related JP4332845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003319413A JP4332845B2 (en) 2003-09-11 2003-09-11 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003319413A JP4332845B2 (en) 2003-09-11 2003-09-11 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2005085717A JP2005085717A (en) 2005-03-31
JP4332845B2 true JP4332845B2 (en) 2009-09-16

Family

ID=34418358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003319413A Expired - Fee Related JP4332845B2 (en) 2003-09-11 2003-09-11 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4332845B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7432015B2 (en) * 2004-02-25 2008-10-07 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same
JP4613953B2 (en) * 2005-12-28 2011-01-19 パナソニック株式会社 Nonaqueous electrolyte secondary battery
WO2007086411A1 (en) 2006-01-25 2007-08-02 Matsushita Electric Industrial Co., Ltd. Negative electrode for lithium secondary battery, method for producing same, and lithium secondary battery comprising such negative electrode for lithium secondary battery
JP2009076372A (en) * 2007-09-21 2009-04-09 Shin Etsu Chem Co Ltd Non-aqueous secondary battery
JP5390336B2 (en) * 2009-10-22 2014-01-15 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary battery, method for producing negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP4809926B2 (en) * 2009-10-22 2011-11-09 株式会社大阪チタニウムテクノロジーズ Negative electrode active material for lithium ion secondary battery
JP5842985B2 (en) * 2009-12-24 2016-01-13 ソニー株式会社 Lithium ion secondary battery, negative electrode for lithium ion secondary battery, electric tool, electric vehicle and power storage system
JP5609177B2 (en) * 2010-03-12 2014-10-22 Tdk株式会社 Active material particles, electrode, lithium ion secondary battery, and method for producing active material particles
CN102906908A (en) * 2010-05-25 2013-01-30 株式会社大阪钛技术 Powder for negative electrode material of lithium-ion rechargeable battery electrode, and method of producing same
EP2597708A4 (en) * 2010-07-20 2014-08-06 Osaka Titanium Technologies Co Powder for lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode and capacitor negative electrode, and lithium ion secondary battery and capacitor
JP5935246B2 (en) 2011-06-24 2016-06-15 ソニー株式会社 Lithium ion secondary battery, negative electrode for lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP6003015B2 (en) * 2011-06-24 2016-10-05 ソニー株式会社 Lithium ion secondary battery, negative electrode for lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP5982811B2 (en) * 2011-12-20 2016-08-31 ソニー株式会社 Secondary battery active material, secondary battery and electronic equipment
JP5917715B2 (en) * 2012-01-09 2016-05-18 イェイル エレクトロニクス カンパニー リミテッドYeil Electronics Co.,Ltd. Silicon oxide for secondary battery negative electrode material, method for producing the same, and secondary battery negative electrode material using the same
JP6079869B2 (en) * 2013-03-22 2017-02-15 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP6124996B2 (en) 2013-03-29 2017-05-10 三洋電機株式会社 Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6294219B2 (en) * 2014-12-25 2018-03-14 信越化学工業株式会社 Method for producing lithium cobalt composite oxide
JP6332258B2 (en) * 2015-12-18 2018-05-30 株式会社村田製作所 Lithium ion secondary battery, negative electrode for lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP6759051B2 (en) * 2016-10-25 2020-09-23 日立造船株式会社 All-solid-state lithium-ion secondary battery

Also Published As

Publication number Publication date
JP2005085717A (en) 2005-03-31

Similar Documents

Publication Publication Date Title
JP4965790B2 (en) Nonaqueous electrolyte secondary battery
KR101666878B1 (en) Negative active material for rechargeable lithium battery, method prepareing the same and rechargeable lithium battery including the same
KR101155909B1 (en) Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
JP4332845B2 (en) Non-aqueous electrolyte battery
JP5614307B2 (en) Nonaqueous electrolyte secondary battery
KR101155913B1 (en) Negative active material for rechargeable lithium battery and rechargeable lithium battery including same
JP4985524B2 (en) Lithium secondary battery
KR101724004B1 (en) Rechargeable lithium battery
JP2004071542A (en) Negative electrode active material, negative electrode using same, nonaqueous electrolyte battery using same, and manufacture of negative electrode active material
JP2006286599A (en) Anode for nonaqueous secondary battery
KR20210093830A (en) Silicon-based composite, negative electrode and lithium secondary battery comprising the same
EP3683871B1 (en) Negative electrode active material for lithium secondary battery and lithium secondary battery comprising same
JP4632016B2 (en) Non-aqueous electrolyte battery
EP1710855A2 (en) Negative electrode for non-aqueous secondary battery
KR20150008327A (en) Negative electrode active material for rechargeable lithium battery, method for preparing the same and rechargeable lithium battery using the same
KR20190068484A (en) Positive electrode active material for secondary battery, method for preparing the same, and secondary battery comprising the same
KR102290316B1 (en) Rechargeable lithium battery
JP2005108826A (en) Lithium-containing substance and method of manufacturing non-aqueous electrolyte electrochemical cell
KR20180083432A (en) Negative electrode material for Li ion secondary battery and production method thereof, negative electrode for Li ion secondary battery and Li ion secondary battery
KR101275789B1 (en) Positive electrode for rechargeable lithium battery and rechargeable lithium battery
JP4810794B2 (en) Nonaqueous electrolyte secondary battery
JP4635409B2 (en) Non-aqueous electrolyte battery
JP4158212B2 (en) Method for producing lithium secondary battery and method for producing positive electrode active material for lithium secondary battery
JP4581503B2 (en) Non-aqueous electrolyte battery
KR102194076B1 (en) Positive active material for rechargeable lithium battery, method of prepareing the same and rechargeable lithium battery including the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4332845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees