JP4331124B2 - 内燃機関の始動装置及び方法 - Google Patents

内燃機関の始動装置及び方法 Download PDF

Info

Publication number
JP4331124B2
JP4331124B2 JP2005058098A JP2005058098A JP4331124B2 JP 4331124 B2 JP4331124 B2 JP 4331124B2 JP 2005058098 A JP2005058098 A JP 2005058098A JP 2005058098 A JP2005058098 A JP 2005058098A JP 4331124 B2 JP4331124 B2 JP 4331124B2
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
energy supply
energy
supply means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005058098A
Other languages
English (en)
Other versions
JP2006242088A (ja
Inventor
岡田  隆
直嗣 鵜殿
大須賀  稔
英一 大津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005058098A priority Critical patent/JP4331124B2/ja
Publication of JP2006242088A publication Critical patent/JP2006242088A/ja
Application granted granted Critical
Publication of JP4331124B2 publication Critical patent/JP4331124B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/006Starting of engines by means of electric motors using a plurality of electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N99/00Subject matter not provided for in other groups of this subclass
    • F02N99/002Starting combustion engines by ignition means
    • F02N99/006Providing a combustible mixture inside the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/005Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation
    • F02N2019/008Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation the engine being stopped in a particular position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/02Parameters used for control of starting apparatus said parameters being related to the engine
    • F02N2200/021Engine crank angle

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Description

本発明は、内燃機関の始動方法及び始動装置に係り、特に、アイドルストップを実施する車両用の内燃機関の始動方法及び始動装置に関する。
近年、内燃機関の燃料消費量及び排気の低減を目的として、アイドルストップを実施する車両が増加傾向にある。アイドルストップは、車両停止中に内燃機関がアイドル状態の時、内燃機関を自動的に停止させ、発進時には自動的に内燃機関を再始動させるものであり、このための技術が各種提案されている。
アイドルストップにおいて、内燃機関の再始動に時間がかかると、ドライバの発進意志に対して車両の発進動作が遅れ、ドライバビリティが悪化してしまう。このため、アイドルストップの実施に際しては、素早く円滑に内燃機関を再始動させることが重要となる。
また、スタータモータを用いて、クランク軸に外部より回転トルクを与えることにより、クランキングし、再始動を行うアイドルストップシステムでは、クランキングの際に電力を大量に必要とし、バッテリへの負担が大きく、バッテリの劣化を早めてしまう。
このことに対して、機関停止状態において、膨張行程にある気筒に対して燃料噴射(筒内噴射)、該当気筒の点火を行い、燃焼による回転トルクを内燃機関自身が発生することで、スタータを使用することなく内燃機関の再始動を行い、燃焼開始後の機関回転数に基づいて始動の成否を判定し、始動不良と判断された場合には、スタータモータを作動させて始動に必要な運動エネルギを補う始動装置が提案されている(例えば、特許文献1)。
しかし、この始動装置は、始動不良を判断してから、スタータモータなどによる外部エネルギによって始動させており、燃焼不良時における機関始動の対応が不十分である。
これを解決するために、内燃機関の始動に必要なエネルギを目標エネルギとして設定し、所定の始動エネルギ供給手段から、前記目標エネルギに応じて制御されたエネルギを前記内燃機関に供給することにより、始動時に始動不良を推定して最適なエネルギを供給する始動装置が提案されている(例えば、特許文献2)。
この始動装置は、始動エネルギ供給手段として、筒内噴射による気筒内の燃料の燃焼によって回転トルク(エネルギ)を得る第1のエネルギ供給手段と、スタータモータによる第2のエネルギ供給手段とを用い、第1のエネルギ供給手段によって内燃機関に与えられるエネルギを推定し、目標エネルギに対する不足分を第2のエネルギ供給手段によって補うものである。
このため、この始動装置では、第2のエネルギ供給手段によるエネルギ供給するために、燃焼にて得られるエネルギを事前に正確に演算することが必要である。しかし、燃焼エネルギを正確に演算することは困難であり、より正確に演算するためには、筒内圧センサなど高価なセンサを追加して演算する必要がある。そして、燃焼エネルギを正確に演算できない場合には、第2のエネルギ供給手段によるエネルギ供給量も正確に演算できないため、第2のエネルギ供給手段によるエネルギ供給量が不足する場合の始動不良、第2のエネルギ供給手段によるエネルギ供給量が過剰の場合の過剰エネルギ消費が発生するため、内燃機関始動のための最適なエネルギ供給と始動性能が両立できない場合がある。
特開2002−4985号公報 特開2004−108340号公報
本発明が解決しようとする課題は、回転停止中の内燃機関の膨張行程にある気筒内に燃料を噴射・点火することによって得られる燃焼エネルギによるエネルギを利用して内燃機関を始動させる上で、燃焼エネルギを正確に演算せずに、燃焼エネルギ以外のエネルギ供給手段によるエネルギ供給量を最小化するとともに、燃焼不良による始動不良を発生させずに、安定した始動を実現することにある。
この発明による内燃機関の始動装置は、内燃機関が停止している状態において膨張行程にある気筒へ燃料を筒内噴射して点火を行い、該膨張行程の気筒から順次燃焼を生じさせ、該燃焼のエネルギを利用して前記内燃機関を始動させる第1のエネルギ供給手段と、前記内燃機関のクランク軸に外部より回転トルクを与えて前記内燃機関を始動させる第2のエネルギ供給手段と、前記第2のエネルギ供給手段とは異なる方式で、前記内燃機関のクランク軸に外部より回転トルクを与えて前記内燃機関を始動させる第3のエネルギ供給手段とを有する。
この発明による内燃機関の始動装置は、内燃機関が停止している状態において膨張行程にある気筒へ燃料を筒内噴射して点火を行い、該膨張行程の気筒から順次燃焼を生じさせ、該燃焼のエネルギを利用して前記内燃機関を始動させる第1のエネルギ供給手段と、前記内燃機関のクランク軸に外部より回転トルクを与えて前記内燃機関を始動させる第2のエネルギ供給手段と、前記第2のエネルギ供給手段とは異なる方式で、前記内燃機関のクランク軸に外部より回転トルクを与えて前記内燃機関を始動させる第3のエネルギ供給手段と、前記内燃機関の運動状態を判定する運動状態判定手段と、内燃機関の始動に際して前記第1のエネルギ供給手段と前記第2のエネルギ供給手段と前記第3のエネルギ供給手段の全てよりエネルギを前記内燃機関に供給して当該内燃機関を始動させ、前記内燃機関の運動開始後の前記運動状態判定手段による判定結果に基づいて前記第2のエネルギ供給手段と前記第3のエネルギ供給手段による前記内燃機関へのエネルギの供給を停止させるエネルギ供給制御手段とを有する。
この発明による内燃機関の始動装置は、好ましくは、前記第2のエネルギ供給手段は、スターモータと、選択噛合の歯車機構とを含むスタータによって構成され、前記第3のエネルギ供給手段は、ベルト伝動による常時接続のスタータ・ジェネレータである。
この発明による内燃機関の始動装置は、好ましくは、前記運動状態判定手段は、前記第1のエネルギ供給手段の点火時点における前記内燃機関の回転速度と、該点火時点から前記内燃機関のクランク角度が所定回転角度変化した時点における回転速度の差分から前記内燃機関の回転状態が持続していると判定し、前記エネルギ供給制御手段は、前記運動状態判定手段によって回転持続すると判定した場合に前記第2のエネルギ供給手段と前記第3のエネルギ供給手段による内燃機関へのエネルギ供給を停止させる。
この発明による内燃機関の始動装置は、好ましくは、前記運動状態判定手段は、前記第1のエネルギ供給手段が前記内燃機関の停止状態にて圧縮行程にあった気筒に点火する時点における前記内燃機関の回転速度と、該点火時点から前記内燃機関のクランク角度が所定回転角度変化した時点における回転速度の差分から前記内燃機関の回転状態が持続していると判定する。
この発明による内燃機関の始動方法は、内燃機関が停止している状態において膨張行程にある気筒へ燃料を筒内噴射して点火を行い、該膨張行程の気筒から順次燃焼を生じさせ、該燃焼のエネルギを利用して前記内燃機関を始動させる第1のエネルギ供給手段と、前記内燃機関のクランク軸に外部より回転トルクを与えて前記内燃機関を始動させる第2のエネルギ供給手段と、 前記第2のエネルギ供給手段とは異なる方式で、前記内燃機関のクランク軸に外部より回転トルクを与えて前記内燃機関を始動させる第3のエネルギ供給手段とを用い、内燃機関の始動に際して前記第1のエネルギ供給手段と前記第2のエネルギ供給手段と前記第3のエネルギ供給手段の全てよりエネルギを前記内燃機関に供給して当該内燃機関を始動させ、前記内燃機関の運動開始後に、当該内燃機関の運動状態を判定し、該判定結果に基づいて前記第2のエネルギ供給手段と前記第3のエネルギ供給手段による前記内燃機関へのエネルギの供給を停止する。
この発明による内燃機関の始動方法は、好ましくは、前記第2のエネルギ供給手段は、スターモータと、選択噛合の歯車機構とを含むスタータによって構成され、前記第3のエネルギ供給手段は、ベルト伝動による常時接続のスタータ・ジェネレータである。
この発明による内燃機関の始動方法は、好ましくは、前記内燃機関の運動状態の判定は、前記第1のエネルギ供給手段の点火時点における前記内燃機関の回転速度と、該点火時点から前記内燃機関のクランク角度が所定回転角度変化した時点における回転速度の差分から前記内燃機関の回転状態が持続することを判定し、回転持続すると判定した場合に前記第2のエネルギ供給手段と前記第3のエネルギ供給手段による内燃機関へのエネルギ供給を停止する。
この発明による内燃機関の始動方法は、好ましくは、前記内燃機関の運動状態の判定は、前記第1のエネルギ供給手段が前記内燃機関の停止状態にて圧縮行程にあった気筒に点火する時点における前記内燃機関の回転速度と、該点火時点から前記内燃機関のクランク角度が所定回転角度変化した時点における回転速度の差分から前記内燃機関の運動状態が持続していると判定する。
本発明によれば、筒内噴射による燃料の燃焼のエネルギを利用して内燃機関を始動させる第1のエネルギ供給手段による内燃機関へのエネルギ供給の不足分を補う補助のエネルギ供給手段として、クランク軸に外部より回転トルクを与えて内燃機関を始動させる第2のエネルギ供給手段と、第2のエネルギ供給手段とは異なる方式で、クランク軸に外部より回転トルクを与えて内燃機関を始動させる第3のエネルギ供給手段の二つのエネルギ供給手段を用いているから、始動時の内燃機関に対する不足分のエネルギ供給を第2のエネルギ供給手段と第3のエネルギ供給手段とで分担できる。これにより、第2のエネルギ供給手段と第3のエネルギ供給手段の各々に供給する供給電流を低減でき、これに応じて第2のエネルギ供給手段と第3のエネルギ供給手段の個々の劣化が抑制される。また、第2のエネルギ供給手段と第3のエネルギ供給手段の何れか一方が故障した場合のフェールセーフが図られる。
また、本発明によれば、各エネルギ供給手段によって始動時に供給したエネルギを演算する必要がなく、始動時に供給されたエネルギによって発生した運動状態を判定することで、エネルギ供給の一部の停止を行うため、供給するエネルギを正確に演算せずに、第2又は第3のエネルギの供給量を最小化すると共に、始動不良を発生させずに、安定した始動を実現することができ、始動時の騒音を小さくすることもできる。更に、高精度なエネルギ推定を行うためのセンサの追加や、高機能なエネルギ供給手段を用いる必要がないので、安価に始動システムを構築することができる。
また、内燃機関の運動状態の判定は、点火時点における内燃機関の回転速度と、該点火時点から内燃機関のクランク角度が所定回転角度変化した時点における回転速度の差分や、内燃機関の停止状態にて圧縮行程にあった気筒にて発生する圧縮圧によるクランク軸周りの負荷トルクが最大になるクランク軸の所定の回転位置を通過したことから判定することにより、特別なセンサを追加することなく簡便に行うことができる。
本発明による始動制御装置と適用される内燃機関の一実施形態を、図を参照して説明する。
図1において、内燃機関1は、例えば自動車に搭載される4サイクルエンジンとして構成されており、複数のシリンダ(気筒)2を含んでいる。なお、図1では単一のシリンダ2のみを示すが、他のシリンダ2に関しても同じ構成である。以下の説明では、内燃機関1をエンジン1と表記することもある。
エンジン1のシリンダ2の数は3、4、6、8などがあり、それぞれ、3気筒エンジン、4気筒エンジン、6気筒エンジン、8気筒エンジンと呼ばれる。
エンジン1は、燃料噴射弁4からシリンダ2内の燃焼室5に燃料を直接噴射(筒内噴射)し、その噴射された燃料と燃焼室5内の空気とによる混合気を点火プラグ6によって点火(着火)する筒内噴射内燃機関として構成されている。燃料噴射弁4から噴射される燃料にはガソリンが好適に用いられるが、他の燃料でもよい。
エンジン1には、燃焼室5と吸気通路7、燃焼室5と排気通路8との間をそれぞれ開閉する吸気バルブ9、排気バルブ10が設けられると共に、各吸気バルブ9、排気バルブ10を開閉駆動するカム11、12、吸気通路7からの吸気量を調整するスロットル弁13、ピストン3の往復運動をクランク軸14に回転運動として伝達するコンロッド15及びクランクアーム16が設けられる。
また、吸気バルブ9、排気バルブ10の開・閉タイミングやリフト量は、自在に変更することができる場合もある。この吸気バルブ9、排気バルブ10の開・閉タイミングやリフト量は、バルブタイミング・リフト制御装置20によって変更される。
エンジン1には、これを始動させるためのエネルギ(回転トルク)を供給するエネルギ供給手段として、燃焼室5内にて燃焼を発生させて始動時に必要なエネルギを供給する手段(第1のエネルギ供給手段)が設けられている。第1のエネルギ供給手段は、エンジン1が停止している状態において膨張行程にある気筒へ燃料を筒内噴射して点火を行い、該膨張行程の気筒から順次燃焼を生じさせ、該燃焼のエネルギを利用してエンジン1を始動させるものであり、コントロールユニット19が停止した状態から、エンジン1の各気筒へ行う制御によっても実現される。第1のエネルギ供給手段によるエネルギ供給方法などについては、後で詳細に示す。
エンジン1には、第2のエネルギ供給手段(スタータ)として、スタータモータ17が設けられている。スタータモータ17は、歯車機構18を介してクランク軸14を回転させる電動モータで構成され、歯車機構18によって選択的に噛合してクランク軸14に外部より回転トルクを与えてエンジン1を始動させるものである。
なお、スタータモータ17には、供給する電流又は電圧の制御により、エンジン1に与えるエネルギを変更可能なものや、一般的に用いられているように、電流・電圧制御を行わず、通電をオン・オフでのみで制御するものなどがある。
更に、エンジン1には、第3のエネルギ供給手段(スタータ・ジェネレータ)として、ベルト駆動のISG(Integrated Starter Generater)のように、エンジン1のクランク軸14周りに、例えば、ベルト21によって伝動連結された常時接続の電動モータ22が設けられている。この電動モータ22は、発電機能とモータ機能を有してスタータ・ジェネレータをなすものであり、従来のオルタネータの設置場所に置き換えて配置することで、エンジン1の動力を用いて発電を行うオルタネータ機能に加えて、エンジン1のクランク軸14を回転駆動するスタータ機能を持たせることが可能であり、搭載性に優れている。
コントロールユニット19は、マイクロプロセッサ、RAM、ROM等の周辺装置をからなるコンピュータ式のものとして構成され、ROMに記録されたプログラムに従ってエンジン1の運転状態を制御するために必要な各種処理を行う。
例えば、排気通路8に図示しない空燃比センサを設置し、空燃比センサによる計測された空燃比が所定の空燃比となるように燃料噴射弁4の燃料噴射量を制御するなどが挙げられる。
コントロールユニット19が参照するセンサとしては、上記のセンサの他にも種々設けられるが、本発明に関連するセンサとしては、クランク軸14のクランク角に応じた信号を出力するクランク角センサ24と、吸気側のカム11のカム角に応じた信号を出力するカム角センサ25などがある。
次に、コントロールユニット19による本発明の実施形態を、図2を参照して説明する。コントロールユニット19は、エンジン1を始動・停止・稼動するために必要な状態を検出するセンサからの信号をコントロールユニット19に取り込む処理と、エンジン1の始動・停止・稼動するために必要な機器であるスロットル弁13、バルブタイミング・リフト制御装置20、燃料噴射弁4などを駆動制御するための出力処理とを行う入出力手段90と、エンジン1を通常に始動、稼動させるための通常制御手段に加えて、始動制御手段91と、停止制御手段92を有する。
始動制御手段91は、エンジン1を始動させるための制御手段であり、停止制御手段92は、エンジン1を停止させるための制御手段である。
本発明では、始動制御手段91は、エンジン1の運動状態を検出・判定するための運動状態判定手段911と、エンジン1へエネルギを供給する前述した複数のエネルギ供給手段(第1のエネルギ供給手段と第2のエネルギ供給手段と第3のエネルギ供給手段)の制御を行うエネルギ供給制御手段912を有する。
運動状態判定手段911は、第1のエネルギ供給手段の点火時点、とくにエンジン停止状態にて圧縮行程にあった気筒に点火する時点におけるエンジン1の回転速度と、該点火時点からエンジン1のクランク角度が所定回転角度変化した時点における回転速度の差分からエンジン1の回転状態が持続することを判定する。
なお、運動状態判定手段911は、エンジン1の停止状態にて圧縮行程にあった気筒にて発生する圧縮圧によるクランク軸周りの負荷トルクが最大になるクランク軸の所定の回転位置を通過したことからエンジンの回転状態が持続することを判定してもよい。
エネルギ供給制御手段912は、基本的には、エンジン1の始動に際して第1のエネルギ供給手段と第2のエネルギ供給手段(スタータモータ17)の双方よりエネルギをエンジン1に供給してエンジン1を始動させ、エンジン1の運動開始後、運動状態判定手段911による判定結果に基づき、運動状態判定手段911が回転持続すると判定した場合には、第2のエネルギ供給手段によるエンジン1へのエネルギの供給を停止させる制御を行う。
始動制御手段91の詳細を、図3を参照して説明する。始動制御手段91におけるエネルギ供給制御手段912は、供給・停止制御手段9121と、第1のエネルギ供給制御を行う燃焼制御手段9122と、第2のエネルギ供給制御を行うスタータ制御手段9123第3のエネルギ供給制御を行うスタータジェネレータ制御手段9124を有している。
燃焼制御手段9122は、燃料噴射弁4にて噴射する燃料量と噴射時期を設定する燃料噴射制御部91221と、点火プラグ6にて点火する時期を設定する点火制御部91222と、バルブタイミング・リフト制御装置20にて吸気バルブ9と排気バルブ10の開閉タイミングと開弁量を設定する吸排気弁制御部91223と、スロットル弁13の開度を設定するスロットル制御部91224から構成され、エンジン1に最適な燃焼制御を実現することで、エンジン1へエネルギを供給する。
供給・停止制御手段9121は、エンジン1を始動する際に、複数のエネルギ供給手段によるエネルギ供給や停止の制御を行う。特に、運動状態判定手段911による判定結果に基づいて、つまり、エンジン1の運動状態に応じて、適切に複数のエネルギ供給手段のエネルギ供給や停止を行う。このようにエンジン1の運動状態に応じて、エネルギ供給や停止を行うことにより、始動不良を発生することなく、かつ過剰なエネルギ供給を行うことなく、安定した始動を実現する。
次に、本発明の始動制御における制御フローについて説明する。
始動制御の制御フローの詳細を説明する前に、始動に先立って行われる停止制御とその後の始動制御の概略フローについて、図4を用いて説明する。
停止制御のフローと始動制御のフローは、コントロールユニット19の停止制御手段92と始動制御手段91にて実行処理される。
また、コントロールユニット19は、本処理とは別の処理フローにてエンジン1の停止・起動の判定を行っており、その停止要求や始動要求に基づいて停止制御フロー、始動制御フローが実行される。
ここで、停止条件は、例えば、エンジン1が暖機状態、ブレーキ操作状態、かつアクセルが踏まれないアイドリング状態にあるときに判定される。
始動条件は、そのアイドリング状態から車両の発進に関連する操作、例えば、ブレーキ解除、アクセルペダル踏み込み操作、シフト操作等があったときに判定される。
このように、図4に示されている停止制御と始動制御の処理フローは、車両の停止時に、エンジン1を停止させ、発進前に、エンジン1を再起動させるアイドリングストップを実現する。
図4において、コントロールユニット19は、エンジン稼動状態(ステップS0)において、先ず、エンジン自動停止要求の有無を判定する(ステップS1−1)。自動停止の要求がない場合には、引き続きエンジン1の通常制御を継続し(ステップS2)、その後、繰り返し、エンジン自動停止の要求有無を判定する。
自動停止の要求がある場合には、エンジン停止制御(ステップS1−2)を実施する。
エンジン停止制御(ステップS1−2)が完了し、エンジン1が停止すると、クランク角センサ25及びカム角センサ26からクランク角及びカム角を検出し、これらの検出結果から膨張行程にある気筒(シリンダ2)を判別する気筒判別処理を行う(ステップS1−3)。
次に、クランク角から膨張行程にある気筒のピストン停止位置を演算する(ステップS1−4)。このとき、膨張行程にある気筒以外の他の気筒におけるピストン停止位置も一意的に定まる。
次に、膨張行程にある気筒の空気量と、圧縮行程にある気筒の空気量を、それら気筒ののピストン停止位置より算出する(ステップS1−5、ステップS1−6)。膨張行程にある気筒と、圧縮行程にある気筒のピストン停止位置は、それぞれ算出され、気筒の直径及びピストン3の頂面形状等は設計値から予め分かっているから、これらによって膨張行程にある気筒の燃焼室5と、圧縮行程にある気筒の燃焼室5の容積は決定できる。
ここで、エンジン1の各燃焼室5内の圧力(気筒内圧)は、機関停止後、すぐに大気圧に戻ると考えて、エンジン1の水温情報などから推測した温度補正を行うことにより、膨張行程にある気筒と、圧縮行程にある気筒内の空気量を演算することができる。
膨張行程における気筒と、圧縮行程における気筒の燃焼室5の空気量が演算されると、次に、これに対応した燃料噴射量を演算する(ステップS1−7、ステップS1−8)。この燃料噴射量は、例えば、空気量と燃料量の空燃比が所定の値になるように設定することができる。このときの空燃比は、燃焼が最適になるような値に決定することが好ましい。
また、吸気行程における気筒への燃料量も同時に演算する。ステップS1−9)。吸気行程における気筒は、始動後には吸気行程から動作するから、気筒内に空気が十分に吸入されるとして、通常の始動時における燃料量と設定してもよい。
以上のように、エンジン1を始動するに必要な燃料量を予め演算することが可能である。このような始動する際に必要な燃料の演算は、コントロールユニット91の始動制御手段91にて実施するとよい。
また、エンジン1が停止した後、すぐに、上記処理で燃料量を求めてもよいし、始動要求があってから、同様な処理にて始動における各気筒への供給燃料量を演算してもよい。
次に、エンジン休止状態(ステップS1−10)で、再始動の要求を待つ(ステップS1−11)。ここで、エンジン1の始動要求の有無を判定し(ステップS1−11)、始動要求がある場合には、エンジン1の始動制御を開始する(ステップS3)。これに対し、始動要求がない場合には、エンジン1は休止した状態のままで、始動要求を待つ。
次に、エンジン自動始動要求があった場合に関する始動制御の処理フローについて、図5を用いて説明する。
エンジン1が停止した状態(ステップS1−10)にて、エンジン自動始動要求の有無を判定し(ステップS1−11)、自動始動要求があった場合には、第1のエネルギ供給手段によってエンジン1にエネルギの供給を行う第1のエネルギ供給制御(ステップS3−1)と、第2のエネルギ供給手段によってエンジン1にエネルギの供給を行う第2のエネルギ供給制御(ステップS3−2)と、第3のエネルギ供給手段によってエンジン1にエネルギの供給を行う第3のエネルギ供給制御(ステップS3−2)を行う。
第1のエネルギ供給制御(ステップS3−1)と、第2のエネルギ供給制御(ステップS3−2)は、それぞれ独立の処理フローとして行われるが、エンジン1へエネルギ供給を開始するタイミングに関しては、同時に開始、順番に開始などの協調制御を行うこともある。
例えば、第1のエネルギ供給制御(ステップS3−1)では、エンジン1の各気筒へ燃料噴射し、点火によって気筒内で燃焼を発生させてエンジン1にエネルギを供給し、第2のエネルギ供給制御(ステップS3−2)では、スタータモータ17によって回転トルクをエンジン1のクランク軸14へ加えることで、エネルギを外部よりエンジン1に供給し、第3のエネルギ供給制御(ステップS3−3)では、電動モータ22によって回転トルクをエンジン1のクランク軸14へ加えることで、エネルギを外部よりエンジン1に供給する場合には、第1のエネルギ供給制御(ステップS3−1)を最初に開始し、その後、所定時間経過後(ある時間遅れもって)に第2のエネルギ供給制御(ステップS3−2)、第3のエネルギ供給制御(ステップS3−2)を順次開始する。あるいは、第1のエネルギ供給制御(ステップS3−1)と第2のエネルギ供給制御(ステップS3−2)と第3のエネルギ供給制御(ステップS3−3)の全てを同時に開始してもよい。
上記のように、始動要求があった場合には、複数のエネルギ供給手段によってエンジン1へのエネルギの供給を開始する。第1のエネルギ供給制御(ステップS3−1)と、第2のエネルギ供給制御(ステップS3−2)と、第3のエネルギ供給制御(ステップS3−3)が行われると、エンジン1が運動を開始する。
この運動状態を定量的に評価するために、エンジン状態の演算を行う(ステップS3−4)。エンジン1の状態を定量的に演算する方法としては、例えば、エンジン1の回転数と慣性からエンジン1のエネルギから評価する方法、エンジン1の回転数変化量や回転加速度から評価する方法がある。このようにエンジン1の運動状態を評価することで、エンジン1の回転の持続性を評価することができる。
エンジン状態の演算を行うと(ステップS3−4)、次に、演算したエンジン1の状態から第2のエネルギ供給手段、つまり、スタータモータ17によるエネルギ供給の可否を判定する(ステップS3−5)。ここでは、エンジン1の運動が、第2のエネルギ供給手段および第3のエネルギ供給手段によるエネルギ供給がなくても持続するか否かを判定する。
第2および第3のエネルギ供給が必要と判定されると、引き続き、第2および第3のエネルギ供給手段によるエネルギ供給を継続し、その後、繰り返しエネルギ供給の可否判定を行う。第2および第3のエネルギ供給が不要と判定されると、第2のエネルギ供給手段による第2のエネルギ供給停止(ステップS3−6)と、第3のエネルギ供給手段による第3のエネルギ供給停止(ステップS3−7)を行う。
なお、始動要求に応じて、3つのエネルギ供給手段にてエネルギをエンジン1へ供給する場合と、2つのエネルギ供給手段にてエネルギをエンジン1へ供給する場合とを使い分けることもできる。図6は、2つのエネルギ供給手段を用いて始動時にエンジン1へエネルギ供給を行う場合の例である。始動要求には、状況に応じて早期始動を必要とする場合、瞬間的なエネルギ消費を回避する必要がある場合など要求が異なることがある。このような始動要求における異なる要求に対応して始動時に供給するエネルギを選択することができる。
次に、本発明の一実施形態である第1のエネルギ供給制御(ステップS3−1)の処理フローの詳細について、図6を用いて説明する。なお、図6において、符号#1〜#4は、エンジン1の気筒番号を示している。
第1のエネルギ供給制御(ステップS3−1)では、エンジン1の自動始動要求があると、第1のエネルギ供給制御を開始する(ステップS3−1−1)。エンジン1の始動要求前に、エンジン1の気筒へ供給する燃料量を演算していない場合には、この時点で、既に説明したように、膨張行程における気筒と、圧縮行程における気筒の燃焼室5の空気量を演算し、これに対応した燃料噴射量を演算する。
また、吸気行程における気筒への燃料量も同時に演算しておく。前述したように、吸気行程における気筒は、始動後には吸気行程から動作するため、十分に気筒へ空気が吸入されるとして、通常の始動時における燃料量と設定してもよい。
次に、第1のエネルギ供給制御が開始されると、初期状態(停止状態)で、膨張行程にある気筒(#1)への燃料噴射を行う(ステップS3−1−2)。次に、同じ初期状態(停止状態)で、吸気行程にある気筒(#2)への燃料噴射を行う(ステップS3−1−3)。更に、同じ初期状態(停止状態)で、圧縮行程にある気筒(#3)への燃料噴射を行う(ステップS3−1−4)。
なお、初期状態時に、膨張行程にある気筒への燃料噴射(ステップS3−1−2)と、吸気行程にある気筒(#2)への燃料噴射(ステップS3−1−3)と、圧縮行程にある気筒(#3)への燃料噴射(ステップS3−1−4)は、同時に行ってもよい。
次に、膨張行程にある気筒(#1)への燃料噴射実施後、所定時間待機して燃料の気化を待ち、燃料気化のための時間が経過したか否かを判定する(ステップS3−1−5)。気化時間としては、100msec程度の時間を要する。
予め設定された気化時間が経過すると、初期状態時に膨張行程にある気筒(#1)の点火プラグ6により、燃料と空気との混合気を点火する(ステップS3−1−6)。膨張行程にある気筒(#1)の混合気が燃焼すると、この気筒で燃焼によるエネルギが発生し、ピストン3が押し下げられ、クランク軸14が回転を開始する。一方、クランク軸14が回転することにより、初期状態時に圧縮行程にある気筒(#3)のピストン3は押し上げられ、上死点(TDC)へ到達する。
この際、圧縮行程にある気筒(#3)の混合気は圧縮されるため、圧縮を妨げようとする回転負荷が発生する。しかし、第2のエネルギ供給手段、すなわち、スタータモータ17によってクランク軸14を直接回転させる運動エネルギも加えられているため、クランク軸14は回転を持続する。
次に、初期状態時に圧縮行程にある気筒(#3)のピストン3が上死点(TDC)へ到達したか否かを判定し(ステップS3−1−7)、圧縮行程にある気筒(#3)の圧縮された混合気の点火を行う(ステップS3−1−8)。なお、点火のタイミングは、気筒(#3)のピストン3が上死点(TDC)へ到達したか否かで判定する以外に、TDC前の所定角度にて点火を行うこともある。
初期状態時に圧縮行程にある気筒(#3)への点火が行われると、この気筒で燃焼が発生し、更にエネルギがエンジン1に供給され、エンジン1のクランク軸14は回転を行う。
次に、初期状態時に排気行程にあった気筒(#4)が吸気行程へ遷移したか否かを判定し(ステップS3−1−9)、吸気行程へ遷移すれば、初期状態時に排気行程にあった気筒(#4)へ燃料を噴射する(ステップS3−1−10)。ここでは、吸気行程において燃料を噴射しているが、その後の圧縮行程において燃料を噴射してもよい。
さらにクランク軸14が回転すると、初期状態時に吸気行程にあった気筒(#2)が吸気行程から圧縮行程へ遷移し、圧縮行程にてピストン3がTDCに到達したか否かを判定する(ステップS3−1−11)。TDCに到達したことを判定すると、この気筒(#2)の混合気の点火を行う(ステップS3−1−12)。
以上のように、各気筒に対して、順次燃料噴射と点火を行うことで、エンジン1へのエネルギの供給を行う。クランク軸14が回転すると、エンジン1の通常制御へ遷移し、気筒判別を行いながら、最適なタイミングと最適な量の燃料噴射と、最適なタイミングでの点火を行う(ステップS3−1−13)。
次に、本発明の一実施形態であるエンジン状態演算(ステップS3−4)と、エネルギ供給可否判定(ステップS3−5)の具体例について、図8を用いて説明する。
エンジン状態演算(ステップS3−4)は、始動制御開始後に実施される。先ず、第1のエンジン状態の演算するか否かを判定する(ステップS3−4−1)。これは、エンジン1の状態を演算するか否かを判定する。ここで、演算実行と判定されると、エンジン1の点火時の回転数を演算する(ステップS3−4−2)。一方、演算しないと判定された場合には、再び、判定を継続する。
エンジン1の点火時の回転数を演算すると、次に、第2のエンジン状態の演算をするか否かの判定をする(ステップS3−4−3)。これは、点火制御後、クランク軸14が所定の回転角移動した時のエンジン状態を演算するために、クランク軸14の回転角が所定角度になったか否かを判定する。ここでは、クランク軸14の回転角度で判定しているが、点火後、所定時間が経過したか否かで判定してもよい。
ここで、クランク軸14の回転角が所定の回転角変化したことを判定すると、その時点でのエンジン1の回転数を演算する(ステップS3−4−4)。
次に、第1のエンジン状態におけるエンジン1の回転数と所定回転角回転後のエンジン1の回転数から点火前後における回転数の変化量(差分)を演算する(ステップS3−4−5)。
この点火前後の回転数の変化量がエンジン1の運転状態を演算した結果となる。この回転数の変化量が大きい場合には、エンジン1が充分なエネルギを受け取り、回転が持続することを意味する。
これに対し、この回転数の変化量が小さい場合には、エンジン1に充分ななエネルギが供給されてなく、エンジン1の回転が持続しない可能性が高くなる。
よって、エンジン1の回転数の変化量が演算されると、この回転数変化量を用いて、エネルギ供給可否の判定を行う(ステップS3−5)。
先ず、供給可否の判定を行うために用いる回転数の変化量の判定値を設定する(ステップS3−5−1)。これは、エンジン1に働く回転負荷に応じて変更することも可能である。
次に、演算したエンジン1の回転数の変化量と回転数の変更量の判定値とを比較し(ステップS3−5−2)、設定した判定値より大きい場合には、エネルギ供給を停止し、小さい場合には、エネルギ供給を継続する。
次に、本発明の一実施形態であるエンジン状態演算(ステップS3−4)と、エネルギ供給可否判定(ステップS3−5)の他の具体例について、図9を用いて説明する。
始動要求後、停止時に膨張行程にあったシリンダ2の混合気への点火を行うが、ここでは、混合気が圧縮されていないことなどから十分な燃焼エネルギが得られないことある。
そこで、最初の点火タイミング前後におけるエンジン1の運動状態とそれ以降の点火タイミング前後におけるエンジン1の運動状態を別に扱うことが好ましい。
そこで、この具体例では、停止時に膨張行程にあったシリンダ2への点火以外でのエンジン1の状態を演算する。つまり、エンジン1の初期に膨張行程にあるシリンダ2以外への点火であることを判定し(S3−4−11)、点火時のエンジン1の回転数を演算する。また、点火後のエンジン回転数の演算に関しては、点火したシリンダ2のピストン位置がATDC90°における回転数を演算することとしている。つまり、点火したシリンダ2の膨張行程におけるピストン位置がATDC90°であるか否かを判定し(S3−4−31)、その時点での回転数を演算する(S3−4−4)。
次に、始動制御に関する本発明の効果の一例について、図10、図11、図12、図13を用いて説明する。図10、図11、図12、図13は、複数のエネルギ供給手段にてエンジン1を始動させた場合において、エンジン1のクランク軸14の回転移動角度に対する第2あるいは第3エネルギ供給手段によるエネルギ供給の有無(上段)、エンジン1の回転数(中段)、及びエンジン1の気筒内の圧力である筒内圧力(下段)を示している。なお、始動開始は、クランク軸14のクランク角度90°としている。
先ず、図10は、第1のエネルギ供給手段によるエネルギ供給が要求通りに行われた場合(燃焼不良なし)の例である。この場合は、第2、3のエネルギ供給手段によるエネルギ供給及び停止は、図10の(A−1)に示すように、始動開始位置(クランク軸回転角90°の位置)からエネルギ供給を行い、初期状態時に圧縮行程にあった気筒の混合気への点火時期であるクランク軸回転角180°近傍からエネルギ供給を停止させた。
また、(A−3)に示すように、クランク軸回転角100°近傍に膨張行程での燃焼圧力が発生し、初期に圧縮行程であった気筒の燃焼圧力がクランク軸回転角180°近傍に発生しており、第1のエネルギ供給手段による燃焼を実現できている。
このように、第1のエネルギ供給手段では、間欠的にエネルギを供給する。このように第1のエネルギ供給手段及び第2、第3のエネルギ供給手段によるエネルギ供給が十分に行われると、初期状態時に圧縮行程にあった気筒の混合気への点火時点(クランク軸回転角180°)における回転数と、その後、クランク軸14が90°回転した時点(クランク軸回転角270°)における回転数との回転数差は、100rpm程度まで広がることが分かる(A−2)。そして、この場合は、エンジン1の回転は持続し(A−2)、エンジン1を始動完了させることができている。
次に、図11は、第1のエネルギ供給手段によるエネルギ供給が要求通り行われなかった場合(燃焼不良あり)の例である。この場合は、第2、3のエネルギ供給手段によるエネルギ供給及び停止は、図10の(A−1)と同じであり、図11の(B−1)に示すように始動開始位置(クランク軸回転角90°の位置)からエネルギ供給を行い、初期に圧縮行程にあった気筒の混合気への点火時期であるクランク軸回転角180°近傍からエネルギ供給を停止させた。
また、(B−3)に示すように、クランク軸回転角100°近傍に膨張行程での燃焼圧力が発生しているが、初期状態時に圧縮行程であった気筒では、圧縮による圧力のみがクランク軸回転角180°近傍に発生しており、燃焼圧力が発生していない。これは、第1のエネルギ供給手段による燃焼に不良が発生していることを意味する。
このように、第1のエネルギ供給手段及び第2、第3のエネルギ供給手段によるエネルギ供給が不十分であると、初期状態時に圧縮行程にあった気筒の混合気への点火時点(クランク軸回転角180°)における回転数と、その後、クランク軸14が90°回転した時点(クランク軸回転角270°)における回転数との回転数差は、40rpm程度までしか発生しない(B−2)。
この場合の例では、エネルギ供給が不十分であることをエンジン1の回転状態から判定していないため、エネルギ供給不足となり、エンジン1の回転を持続することができず(B−2)、結果的に始動させることができない。
次に、図12、図13にて本発明の効果を示す。図12は、第1のエネルギ供給手段によるエネルギ供給が要求通りに行われなかった場合(燃焼不良あり)の本発明の適用による結果例を示している。
(C−3)に示すように、クランク軸回転角100°近傍に膨張行程での燃焼圧力が発生しているが、初期状態時に圧縮行程であった気筒における圧縮による圧力のみがクランク軸回転角180°近傍に発生しており、十分な燃焼圧力が発生していない。これは、第1のエネルギ供給手段による燃焼に不良が発生していることを意味する。
本発明によれば、初期状態時に圧縮行程にあった気筒の混合気への点火時点(クランク軸回転角180°)における回転数と、その後、クランク軸14が90°回転した時点(クランク軸回転角270°)における回転数との回転数差を演算し、その回転数差が所定値以下である場合には、第2、第3のエネルギ供給手段による第2、第3のエネルギ供給を持続し、所定値以上である場合には、第2、第3のエネルギ供給を停止することになる。
ここで、エンジン1の回転が持続するためには、図10に示されている結果から、回転数差は、100rpm程度必要であることが分かる。そこで、この判定の回転数差を100rpmと考えると、図12の場合は、(C−2)に示すように、この条件を満足していることが分かる。
従って、第2、3のエネルギ供給手段によるエネルギ供給及び停止は、図12の(C−1)に示すように、始動開始位置(クランク軸回転角90°の位置)からエネルギ供給を行い、初期状態時に圧縮行程にあった気筒の混合気への点火時点(クランク軸回転角180°)から90°回転した位置(クランク軸回転角270°)にて、上記述べた回転数差の判定を行い、第2、3のエネルギ供給を停止する。
図12では、第1のエネルギ供給手段にて燃焼不良が発生した場合でも、エンジン1の回転数変化量から状態を判定しているので、エンジン1の回転を持続させることができ、エンジン1を良好に始動させることができる。特に、燃焼不良の場合でも、第2、3のエネルギ供給手段による過剰なエネルギ供給をすることなく、エンジン1を始動させることができる。
次に、図13は、第1のエネルギ供給手段によるエネルギ供給が要求通りに行われなかった場合(燃焼不良あり)の本発明の適用による結果の別の例を示している。
(D−3)に示すように、クランク軸回転角100°近傍に膨張行程での燃焼圧力が発生しているが、初期状態時に圧縮行程であった気筒における圧縮による圧力のみがクランク軸回転角180°近傍に発生しており、十分な燃焼圧力が発生していない。これは、第1のエネルギ供給手段による燃焼に不良が発生していることを意味する。
本発明によれば、初期状態時に圧縮行程にあった気筒の混合気への点火時点(点火1:クランク軸回転角180°)における回転数と、その後、クランク軸14が90°回転した時点(クランク軸回転角270°)における回転数との回転数差を演算し、その回転数差が所定値以下である場合には、第2、第3のエネルギ供給手段による第2、第3のエネルギ供給を持続し、所定値以上である場合には、第2、第3のエネルギ供給を停止することになる。
ここで、エンジン1の回転が持続するためには、図10に示されている結果から、回転数差は、100rpm程度必要であることが分かる。
そこで、この判定の回転数差を100rpmと考えると、図13の場合は、(D−2)に示すように、回転数変化量1=50rpmであり、この条件を満足していないことが分かる。従って、第2、3のエネルギ供給手段によるエネルギ供給は継続される。
そして、次の点火時点(点火2:クランク軸回転角360°)における回転数と、その後、クランク軸14が90°回転した時点(クランク軸回転角450°)における回転数との回転数差を演算し、再度、所定の回転数差(100rpm)以上であるかを判定する。この場合、図13(D−2)に示すように、回転数変化量2=100rpmであり、第2、3エネルギ供給停止の条件を満足する。
従って、第2、3のエネルギ供給手段によるエネルギ供給及び停止は、図12の(D−1)に示すように、始動開始位置(クランク軸回転角90°の位置)からエネルギ供給を行い、初期状態時に吸気行程にあった気筒の点火時点(点火2:クランク軸回転角360°)から90°回転した位置(クランク軸回転角450°)にて、上記述べた回転数差の判定を行い、第2、3のエネルギ供給を停止する。
図13では、第1のエネルギ供給手段にて燃焼不良が発生した場合で、エンジン1の回転数変化量から状態を判定しているので、エンジン1の回転を持続させることができ、エンジン1を良好に始動させることができる。
特に、燃焼不良の場合でも、第2、3のエネルギ供給手段による過剰なエネルギ供給をすることなく、エンジン1を始動させることができる。
図12、図13では、両方とも第1のエネルギ供給手段にて燃焼不良が発生した場合であるが、本発明によれば、エンジン1の回転数変化量、回転数差から、各状態に応じて適切に第2、第3エネルギ供給手段による供給停止を行い、始動に必要な最適なエネルギ供給・停止制御を実現することができる。
更に、第2、3のエネルギ供給手段による供給エネルギを正確に推定する必要がなく、推定するためのセンサを追加することがないため、安価に始動制御を実現することが可能であるという効果もある。
以上のように、本実施形態によれば、燃焼による供給エネルギ、スタータによる供給エネルギ、スタータ・ジェネレータによる供給エネルギを正確に推定しなくても、エンジン1の運動状態を回転数から判定し、それ応じて供給するエネルギを停止するため、始動する際に必要なエネルギがエンジン1に適切に供給され、エンジン1を無駄なく円滑に始動させることができる。
また、燃焼による供給エネルギ、スタータによる供給エネルギ、スタータ・ジェネレータによる供給エネルギを正確に制御できなくても、エンジン1の運動状態を回転数から判定し、それ応じて供給するエネルギを停止するため、始動する際に必要なエネルギがエンジン1に適切に供給され、エンジン1を無駄なく円滑に始動させることができるため、トルク制御を行うような高機能なスタータやスタータ・ジェネレータを利用する必要がなく、安価にエンジン始動システムを構築することができる。
以上のように、始動時に消費するエネルギを最小限に抑えることができるので、アイドリングストップを実行する場合のようにエンジン1の停止及び起動を頻繁に繰り返すような場合に好適である。また、本発明はアイドリングストップ時における再始動に限限らず、例えばイグニッションキーのオン操作に対応した始動時にも適用できる。
その他にも、内燃機関と電動モータとを併用するハイブリッド車両におけるエンジンの再始動時等、内燃機関を始動させるあらゆる場合に本発明は適用できる。
また、筒内噴射による燃料の燃焼のエネルギを利用して内燃機関を始動させる第1のエネルギ供給手段による内燃機関へのエネルギ供給の不足分を補う補助のエネルギ供給手段として、スタータ等による第2のエネルギ供給手段と、スタータ・ジェネレータ等による第3のエネルギ供給手段の二つのエネルギ供給手段を用いているから、始動時の内燃機関に対する不足分のエネルギ供給を第2のエネルギ供給手段と第3のエネルギ供給手段とで分担でき、第2のエネルギ供給手段と第3のエネルギ供給手段の各々に供給する供給電流を低減できる。これに応じて第2のエネルギ供給手段と第3のエネルギ供給手段の個々の劣化が抑制される。また、第2のエネルギ供給手段と第3のエネルギ供給手段の何れか一方が故障した場合のフェールセーフが図られる。
また、第2のエネルギ供給手段(スタータ)では、クランク軸に取り付けられたリングギアへスタータのピニオンに噛み合わせる必要があるから、クランク軸が完全停止していない状態にてエネルギ供給を開始することが困難であるが、第3のエネルギ供給手段(スタータ・ジェネレータ)として、ベルト駆動のISGが用いられると、これは、伝動ベルトによって電動機とクランク軸とが常時接続であるので、クランク軸が完全停止していない状態でもエネルギ供給を開始することができる。
したがって、エネルギ供給の開始時のエンジンの状態(クランク軸の回転が完全に停止しているか否か)に応じて、第2のエネルギ供給手段と第3のエネルギ供給手段とを使い分けすることができる。
以上、始動制御手段91における方法について説明したが、始動を行う上で重要になる停止制御手段92にて行う停止制御方法についても説明する。
図14は、第3のエネルギ供給制御を行うスタータ・ジェネレータ22を用いて停止制御手段92にて行う停止制御の一実施例のフローを示している。
停止制御が開始される(S4−1)と、スタータ・ジェネレータによるトルク制御を開始する(S4−2)。ここで、クランク軸の回転数が所定の回転数、あるいは、所定の角度であるか否かを判定する(S4−3)。条件が満足すると、スタータ・ジェネレータは、所定のトルク指令(トルク1)の出力を行う(S4−4)。
次に、再度クランク軸の回転数が所定の回転数、あるいは所定の角度であるか否かを判定する(S4−5)。条件が満足すると、スタータ・ジェネレータは、所定のトルク指令(トルク2)の出力を行う(4−6)。
更に、再度クランク軸の回転数が所定の回転数、あるいは、所定の角度であるか否かを判定する(S4−7)。ここで、条件が満足すると、スタータ・ジェネレータは、所定のトルク指令(トルク3)の出力を行う(4−8)。
最後に、再度クランク軸の回転数が所定の回転数、あるいは、所定の角度であるか否かを判定し(S4−9)条件が満足すると、スタータ・ジェネレータ制御を完了させる(S4−10)。
以上では、スタータ・ジェネレータのトルク指令を3段階にしているが、一定のトルクでもよいし、2段階のトルク指令としてもよい。
図15は、図14に示したスタータ・ジェネレータ22を用いて停止制御におけるトルク指令のタイムチャートの一例を示している。
時刻t1にて停止制御が開始される。次に、回転数や回転角などから判定し、時刻t1にてトルク指令は、第1のトルクとなる。次に、同様な判定にて時刻t2にてトルク指令は、第2のトルクへ変更される。
同様に、時刻t3にて判定され、第3のトルクへ変更される。最後に、時刻t4にてスタータ・ジェネレータ制御を完了する。図15の例では、第1と第2のトルクは一定であり、第3のトルクは時間的に低減していくように設定している。このトルクの設定は、エンジン軸周りの負荷トルクに応じて変化することが好ましい。
図16は、図15に示した停止制御を適用しない場合、図17は適用した場合に関する4気筒エンジン1の停止時におけるクランク角度のばらつき結果の例を示している。横軸は、クランク角度、縦軸は頻度である。
4気筒エンジンでは、始動に適する停止位置は、図16、17に示すクランク角度90°前後と270°前後である。図16に示すように、90°前後と270°前後に停止頻度のピークは存在するが、全体的に停止位置がばらついていることが分かる。これに対して、図17に示すように、図15の停止制御を導入することによって、90°前後と270°前後に停止頻度を集中させることができ、安定した停止制御を実現することができる。
以上の説明のように、本発明によれば、各エネルギ供給手段によって始動時に供給したエネルギを演算する必要がなく、始動時に供給されたエネルギによって発生した運動状態を判定することで、供給エネルギの一部の停止を行うため、供給するエネルギを正確に演算せずに、第2、第3の供給エネルギを最小化するとともに、始動不良を発生させずに、安定した始動を実現することができ、始動時の騒音を小さくすることもできる。更に、高精度な供給エネルギ推定を行うためのセンサの追加や、高機能なエネルギ手段を用いる必要がないので安価に始動システムを構築することができる。
本発明の一実施形態に係る始動装置と適用される内燃機関を示す概略構成図。 本発明の一実施形態に係る内燃機関の始動装置であるコントロールユニットの概要図。 本発明の一実施形態に係る内燃機関の始動装置の要部の詳細を示すブロック図。 本発明の一実施形態に係る内燃機関の停止・始動制御方法の概要を示すフローチャート。 本発明の一実施形態に係る内燃機関の始動方法の概要を示すフローチャート。 本発明の一実施形態に係る内燃機関の始動方法の別の例の概要を示すフローチャート。 本発明の本発明の一実施形態である第1のエネルギ供給制御の処理フローの詳細を示すフローチャート。 本発明の一実施形態に係る内燃機関の状態を演算する処理と内燃機関の状態を判定する処理のフローチャート。 本発明の一実施形態に係る内燃機関の状態を演算する別の処理と内燃機関の状態を判定する別の処理のフローチャート。 内燃機関始動時における第2、3エネルギ供給・停止とエンジン回転数、筒内圧力の変化を示すチャート。 内燃機関始動時における第2、3エネルギ供給・停止とエンジン回転数、筒内圧力の変化の別を示すチャート。 本発明を実施した場合の内燃機関始動における第2、3エネルギ供給・停止とエンジン回転数、筒内圧力の変化示すチャート。 本発明を実施した場合の内燃機関始動における第2、3エネルギ供給・停止とエンジン回転数、筒内圧力の変化示す別のチャート。 スタータ・ジェネレータを用いてエンジンの停止制御を行なうフローチャート。 スタータ・ジェネレータを用いてエンジンの停止制御を行なう場合のトルク指令のタイムチャート。 スタータ・ジェネレータを用いずに停止制御を行なった場合に関する4気筒エンジンの停止時におけるクランク角度のばらつき結果の例を示すグラフ図。 スタータ・ジェネレータを用いて停止制御を行なった場合に関する4気筒エンジンの停止時におけるクランク角度のばらつき結果の例を示すグラフ図。
符号の説明
1 内燃機関、エンジン
2 シリンダ
3 ピストン
4 燃料噴射弁
6 点火プラグ
9 吸気弁
10 排気弁
13 スロットル弁
14 クランク軸
17 スタータモータ(第2のエネルギ供給手段)
19 コントロールユニット
22 電動モータ
91 始動制御手段
911 運動状態判定手段
912 エネルギ供給制御手段
92 停止制御手段

Claims (6)

  1. 内燃機関が停止している状態において膨張行程にある気筒へ燃料を筒内噴射して点火を行い、該膨張行程の気筒から順次燃焼を生じさせ、該燃焼のエネルギを利用して前記内燃機関を始動させる第1のエネルギ供給手段と、
    前記内燃機関のクランク軸に外部より回転トルクを与えて前記内燃機関を始動させる第2のエネルギ供給手段と、
    前記第2のエネルギ供給手段とは異なる方式で、前記内燃機関のクランク軸に外部より回転トルクを与えて前記内燃機関を始動させる第3のエネルギ供給手段と、
    前記内燃機関の運動状態を判定する運動状態判定手段と、
    内燃機関の始動に際して前記第1のエネルギ供給手段と前記第2のエネルギ供給手段と前記第3のエネルギ供給手段の全てよりエネルギを前記内燃機関に供給して当該内燃機関を始動させ、前記内燃機関の運動開始後の前記運動状態判定手段による判定結果に基づいて前記第2のエネルギ供給手段と前記第3のエネルギ供給手段による前記内燃機関へのエネルギの供給を停止させるエネルギ供給制御手段と、を有し、
    前記運動状態判定手段は、前記第1のエネルギ供給手段の点火時点における前記内燃機関の回転速度と、該点火時点から前記内燃機関のクランク角度が所定回転角度変化した時点における回転速度の差分から前記内燃機関の回転状態が持続していると判定し、
    前記エネルギ供給制御手段は、前記運動状態判定手段によって回転持続すると判定した場合に前記第2のエネルギ供給手段と前記第3のエネルギ供給手段による内燃機関へのエネルギ供給を停止させることを特徴とする内燃機関の始動装置。
  2. 前記運動状態判定手段は、前記第1のエネルギ供給手段が前記内燃機関の停止状態にて圧縮行程にあった気筒に点火する時点における前記内燃機関の回転速度と、該点火時点から前記内燃機関のクランク角度が所定回転角度変化した時点における回転速度の差分から前記内燃機関の回転状態が持続していると判定することを特徴とする請求項に記載の内燃機関の始動装置。
  3. 前記第2のエネルギ供給手段は、スターモータと、選択噛合の歯車機構とを含むスタータによって構成され、前記第3のエネルギ供給手段は、ベルト伝動による常時接続のスタータ・ジェネレータであることを特徴とする請求項1または2に記載の内燃機関の始動装置。
  4. 内燃機関が停止している状態において膨張行程にある気筒へ燃料を筒内噴射して点火を行い、該膨張行程の気筒から順次燃焼を生じさせ、該燃焼のエネルギを利用して前記内燃機関を始動させる第1のエネルギ供給手段と、前記内燃機関のクランク軸に外部より回転トルクを与えて前記内燃機関を始動させる第2のエネルギ供給手段と、前記第2のエネルギ供給手段とは異なる方式で、前記内燃機関のクランク軸に外部より回転トルクを与えて前記内燃機関を始動させる第3のエネルギ供給手段とを用い、
    内燃機関の始動に際して前記第1のエネルギ供給手段と前記第2のエネルギ供給手段と前記第3のエネルギ供給手段の全てよりエネルギを前記内燃機関に供給して当該内燃機関を始動させ、前記内燃機関の運動開始後に、当該内燃機関の運動状態を判定し、該判定結果に基づいて前記第2のエネルギ供給手段と前記第3のエネルギ供給手段による前記内燃機関へのエネルギの供給を停止し、
    前記内燃機関の運動状態の判定は、前記第1のエネルギ供給手段の点火時点における前記内燃機関の回転速度と、該点火時点から前記内燃機関のクランク角度が所定回転角度変化した時点における回転速度の差分から前記内燃機関の回転状態が持続することを判定し、回転持続すると判定した場合に前記第2のエネルギ供給手段と前記第3のエネルギ供給手段による内燃機関へのエネルギ供給を停止することを特徴とする内燃機関の始動方法。
  5. 前記内燃機関の運動状態の判定は、前記第1のエネルギ供給手段が前記内燃機関の停止状態にて圧縮行程にあった気筒に点火する時点における前記内燃機関の回転速度と、該点火時点から前記内燃機関のクランク角度が所定回転角度変化した時点における回転速度の差分から前記内燃機関の運動状態が持続していると判定することを特徴とする請求項に記載の内燃機関の始動方法。
  6. 前記第2のエネルギ供給手段は、スターモータと、選択噛合の歯車機構とを含むスタータによって構成され、前記第3のエネルギ供給手段は、ベルト伝動による常時接続のスタータ・ジェネレータであることを特徴とする請求項4または5に記載の内燃機関の始動方法。
JP2005058098A 2005-03-02 2005-03-02 内燃機関の始動装置及び方法 Expired - Fee Related JP4331124B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005058098A JP4331124B2 (ja) 2005-03-02 2005-03-02 内燃機関の始動装置及び方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005058098A JP4331124B2 (ja) 2005-03-02 2005-03-02 内燃機関の始動装置及び方法

Publications (2)

Publication Number Publication Date
JP2006242088A JP2006242088A (ja) 2006-09-14
JP4331124B2 true JP4331124B2 (ja) 2009-09-16

Family

ID=37048740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005058098A Expired - Fee Related JP4331124B2 (ja) 2005-03-02 2005-03-02 内燃機関の始動装置及び方法

Country Status (1)

Country Link
JP (1) JP4331124B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4575933B2 (ja) * 2007-05-31 2010-11-04 日立オートモティブシステムズ株式会社 内燃機関の始動制御装置
US7962278B1 (en) * 2009-12-16 2011-06-14 Ford Global Technologies, Llc Method for starting an engine
DE102013017784A1 (de) * 2013-10-25 2015-04-30 Audi Ag Kraftfahrzeug sowie Verfahren zum Montieren eines Kraftfahrzeugs

Also Published As

Publication number Publication date
JP2006242088A (ja) 2006-09-14

Similar Documents

Publication Publication Date Title
JP4338659B2 (ja) 内燃機関の始動方法及び始動装置
JP4293138B2 (ja) 内燃機関の制御装置及びその制御装置を備えた自動車
US6834632B2 (en) Stop and start control apparatus of internal combustion engine
JP4550627B2 (ja) 内燃機関の停止制御方法および停止制御装置
JP3939905B2 (ja) エンジン始動装置
JP3758626B2 (ja) 内燃機関の始動方法及び始動装置並びにそれらに用いる始動エネルギの推定方法及び装置
US10145323B2 (en) Starting control device for engine
JP4811505B2 (ja) エンジンの制御方法及び制御装置
JP3951924B2 (ja) 内燃機関の停止始動制御装置
JP2008240856A (ja) 自動変速機付き車両用エンジンの自動停止装置
JP4575933B2 (ja) 内燃機関の始動制御装置
JP4331124B2 (ja) 内燃機関の始動装置及び方法
JP2006183467A (ja) 車両の制御装置
JP4367646B2 (ja) エンジンの始動装置
JP4111161B2 (ja) 筒内直接噴射式エンジンの制御装置
JP4558049B2 (ja) 筒内直接噴射式エンジンの制御装置
JP2004346770A (ja) 内燃機関の始動装置及び方法並びに動力システム
JP2006144725A (ja) ハイブリッド車両の燃料噴射制御装置
JP2007187051A (ja) エンジンの制御装置
JP4066832B2 (ja) 内燃機関の制御装置
JP4252008B2 (ja) 内燃機関の始動方法
JP2012136980A (ja) エンジン回転停止制御装置
JP4506764B2 (ja) 内燃機関の停止始動制御装置
JP4872790B2 (ja) 内燃機関の制御装置
JP2006188960A (ja) 車両の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090617

R151 Written notification of patent or utility model registration

Ref document number: 4331124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees