JP4329014B2 - 微細構造体の製造方法および微細構造体、表示装置、ならびに記録装置の製造方法および記録装置 - Google Patents

微細構造体の製造方法および微細構造体、表示装置、ならびに記録装置の製造方法および記録装置 Download PDF

Info

Publication number
JP4329014B2
JP4329014B2 JP2003314106A JP2003314106A JP4329014B2 JP 4329014 B2 JP4329014 B2 JP 4329014B2 JP 2003314106 A JP2003314106 A JP 2003314106A JP 2003314106 A JP2003314106 A JP 2003314106A JP 4329014 B2 JP4329014 B2 JP 4329014B2
Authority
JP
Japan
Prior art keywords
cylindrical structure
substrate
convex portion
catalyst
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003314106A
Other languages
English (en)
Other versions
JP2005081465A5 (ja
JP2005081465A (ja
Inventor
パル ゴサイン ダラム
尚志 梶浦
洋介 村上
誠文 阿多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003314106A priority Critical patent/JP4329014B2/ja
Application filed by Sony Corp filed Critical Sony Corp
Priority to PCT/JP2004/012520 priority patent/WO2005023705A1/ja
Priority to CNA2004800251485A priority patent/CN1845872A/zh
Priority to KR1020067004424A priority patent/KR20060073611A/ko
Priority to EP04772476A priority patent/EP1661851A1/en
Priority to US10/570,077 priority patent/US20080315746A1/en
Priority to TW093126732A priority patent/TW200526516A/zh
Publication of JP2005081465A publication Critical patent/JP2005081465A/ja
Publication of JP2005081465A5 publication Critical patent/JP2005081465A5/ja
Application granted granted Critical
Publication of JP4329014B2 publication Critical patent/JP4329014B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/855Coating only part of a support with a magnetic layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • H01J1/3042Field-emissive cathodes microengineered, e.g. Spindt-type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24744Longitudinal or transverse tubular cavity or cell

Description

本発明は、触媒を用いてカーボンなどよりなる筒状構造を形成する微細構造体の製造方法、およびその方法により得られた微細構造体、ならびにこの微細構造体を電界電子放出素子として用いた表示装置に関する。また、本発明は、この微細構造体の製造方法を用いた記録装置の製造方法、およびその方法により得られた記録装置に関する。
近年のナノテクノロジーの進歩は著しく,なかでもカーボンナノチューブ等の分子構造体は、熱伝導性,電気伝導性,機械的強度などで優れた特性を持つ安定した材料であることから、トランジスタ,メモリ,電界電子放出素子など幅広い用途への応用が期待されている。
例えば、カーボンナノチューブの用途の1つとして、冷陰極電界電子放出(以下、「電界電子放出」という)を実現するのに好適であることが知られている(例えば、非特許文献1ないし非特許文献5参照。)。電界電子放出とは、真空中に置かれた金属または半導体に所定のしきい値以上の大きさの電界を与えると、金属または半導体の表面近傍のエネルギー障壁を電子が量子トンネル効果により通過し、常温においても真空中に電子が放出されるようになる現象である。
最近では、カーボンナノシートなどと呼ばれるカーボン微細構造体が注目されている。カーボンナノシートは、尖鋭な端縁(シャープエッジ)を有すると共に表面積が大きいという特性があり、カーボンナノチューブよりも更に高い電界電子放出特性が期待できるといわれている。非特許文献6および非特許文献7によれば、カーボンナノシートで電界電子放出が生じるしきい値は0.16V/μmであり、この値は従来のカーボンナノチューブよりもはるかに低い。また、この非特許文献7には、超音波プラズマCVD法により基板上にカーボンナノシートを成長させた例が報告されている。
また、本発明に関連する他の技術として、磁気記録素子および磁気記録装置がある。これらの原理は、磁気材料に着磁して、その保磁力により着磁方向を1あるいは0、または着磁における磁化の度合いを記録する信号のアナログ量に対応させるものである。ここで、着磁は記録面に水平方向の面内着磁と、記録面に垂直な垂直着磁のいずれもが実用に供されている。近年では、記録密度の更なる向上が要求されているが、従来では、着磁の長さをより小さくすることにより対応してきた。このような磁気記録技術においてカーボンナノチューブあるいはカーボンナノシートを応用する試みは、本発明者の知り得るところでは開示されていない。
J.-M. Bonard et al.,「Applied Physics A 」, 1999年,第69巻,p.245 J.-M. Bonard et al.,「Solid State Electronics 」, 2001年,第45巻,p.893 Y. Saito et al.,「Applied Physics A 」, 1998年,第67巻,p.95 Zheng-wei Pan et al .,「Chemical Physics Letters」, 2003年,第371巻,p.433 「ナノテク2003+フューチャー(nano tech 2003 + Future )ナノテクノロジーに関する国際会議および国際展示会、プログラムアンドアブストラクツ(Program & Abstracts )」,2003年,第14巻,p.204 Y.Wu,「Nano Lett.」,2002年,第2巻,p.355 ウー・イーホン(WU Yihong )、外3名,超音波プラズマCVD法により成長させたカーボンナノウォール(Carbon Nanowalls Grown by Microwave Plasma Enhanced Chemical Vapor Deposition ),アドバンストマテリアルズ(Advanced Materials),(独国),2002年,第14巻,第1号、p64−67)
しかしながら、非特許文献7では、カーボンナノシートの形成位置を制御できていないので、FEDへの応用は困難であった。
カーボンナノシートの形成位置を精確に制御するためには、遷移金属等からなる触媒のパターンを高い位置精度で形成する必要がある。触媒をナノメートル単位の微細な間隔で配置することは極めて困難であり、従来では、200nmよりも狭い間隔で触媒の微細なパターンを作製できる技術としては電子ビームリソグラフィしかなかった。電子ビームリソグラフィは、少量の試験生産には有用であるが、大規模・大量生産には向いていない。
本発明はかかる問題点に鑑みてなされたもので、その第1の目的は、カーボンなどよりなる筒状構造の形成位置を精確に制御することのできる微細構造体の製造方法、およびこれを用いた記録装置の製造方法を提供することにある。
本発明の第2の目的は、所望の位置に精確に形成された微細構造体、ならびにこれを用いた表示装置および記録装置を提供することにある。
本発明による微細構造体の製造方法は、基板に凸部を形成する凸部形成工程と、凸部の側面に、触媒機能を有する物質よりなる触媒パターンを形成する触媒パターン形成工程と、触媒パターンを用いて筒状構造を成長させる筒状構造形成工程とを含むものである。触媒パターンの形状は、直線状,曲線状などの閉じていない形状であってもよいし、環状などの閉じた形状であってもよい。例えば、凸部を円柱状に形成し、触媒パターンを環状に形成し、筒状構造を円筒状に形成することが可能である。
本発明による微細構造体は、凸部が形成された基板と、凸部の側面に配置された触媒機能を有する物質と、凸部の側面から起立すると共に先端が開放された筒状構造とを備えたものである。
本発明による表示装置は、凸部が形成された基板と、凸部の側面に配置された触媒機能を有する物質と、凸部の側面から起立すると共に先端が開放された筒状構造とを有する微細構造体と、筒状構造に所定の電圧を印加し、筒状構造から電子を放出させるための電極と、微細構造体から放出された電子を受けて発光する発光部とを備えたものである。
本発明による記録装置の製造方法は、基板に凸部を形成する凸部形成工程と、凸部の側面に、触媒機能を有する物質よりなる触媒パターンを形成する触媒パターン形成工程と、触媒パターンを用いて筒状構造を成長させる筒状構造形成工程と、筒状構造の少なくとも先端部に磁気材料を挿入する挿入工程とを含むものである。ここで、凸部形成工程は、基板の表面に対して所望のパターンに応じて変調された熱分布を与え、基板の表面を溶融させる溶融工程と、基板の表面を放熱させることにより、熱分布に応じた位置に凸部のパターンを形成する放熱工程とを含むことが好ましい。
本発明による記録装置は、複数の凸部を有する基板と、前記複数の凸部に対応した複数の記録素子とを備えたものであって、複数の記録素子の各々は、凸部の側面に配置された触媒機能を有する物質と、凸部の側面から起立すると共に先端が開放された筒状構造と、筒状構造の少なくとも先端部に挿入された磁気材料よりなる磁性層とを備えたものである。
本発明による微細構造体の製造方法では、基板に凸部が形成され、続いて、凸部の側面に、触媒機能を有する物質よりなる触媒パターンが形成される。そののち、触媒パターンを用いて筒状構造が成長させられる。
本発明による微細構造体では、凸部の側面から起立すると共に先端が開放された筒状構造を有するようにしたので、筒状構造の位置精度が向上する。
本発明による表示装置では、筒状構造に所定の電圧が印加されることにより、筒状構造の先端から電子が放出され、この電子を受けて発光部において発光が生じる。
本発明による記録装置の製造方法では、基板に凸部が形成され、次に、凸部の側面に、触媒機能を有する物質よりなる触媒パターンが形成される。続いて、触媒パターンを用いて筒状構造が成長させられ、そののち、筒状構造の少なくとも先端部に磁気材料が挿入される。
本発明による記録装置では、各々の筒状構造に挿入された磁性層は、隣接する他の筒状構造内の磁性層から隔離されるので、各々の筒状構造内の磁性層に対しての情報の書き込みまたは読み出しが確実に行われる。
本発明の微細構造体の製造方法によれば、基板に凸部を形成し、この凸部の側面に触媒機能を有する物質よりなる線状の触媒パターンを形成したのち、触媒パターンを用いて筒状構造を成長させるようにしたので、凸部の位置に精確に対応して筒状構造を形成することができる。よって、簡単な方法で筒状構造の形成位置を精確に制御し、大規模アレイ化を容易に実現することができ、大量生産にも有利である。
本発明の微細構造体によれば、凸部の側面から起立すると共に先端が開放された筒状構造を有するようにしたので、筒状構造の位置精度を向上させ、すべての筒状構造の配向および高さを容易に均一化することができる。
本発明の表示装置によれば、本発明の微細構造体を電界電子放出素子として備えているので、画面内の表示特性を均一化して大画面においても優れた表示品質を達成することができる。
本発明による記録装置の製造方法によれば、本発明の方法で微細構造体を形成し、この微細構造体の筒状構造に磁気材料を挿入するようにしたので、簡単な方法で、カーボンなどよりなる筒状構造を用いた記録装置を容易に実現することができる。また、筒状構造の先端を開放したり高さを均一化する工程が不要であり、磁性層を効率よく形成することができる。
本発明による記録装置によれば、本発明による微細構造体を記録素子として備えているので、筒状構造およびその内部に挿入された磁性層の位置精度を高め、記録装置の特性を向上させることができる。また、磁性層は筒状構造により隔離されているので、隣接する他の筒状構造内の磁性層の影響を受けることなく、所定の磁化方向を長期間安定して保持することができ、記録装置の信頼性を向上させることができる。
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
〔第1の実施の形態〕
《微細構造体の製造方法》
図1ないし図3は、本発明の第1の実施の形態に係る微細構造体の製造方法を表している。本実施の形態の方法は、例えばFEDの電界電子放出素子として用いられる微細構造体を形成するものであり、基板に凸部を形成する「凸部形成工程」と、凸部の側面に、触媒機能を有する物質(以下、「触媒物質」という)よりなる線状の触媒パターンを形成する「触媒パターン形成工程」と、触媒パターンを用いて筒状構造を成長させる「筒状構造形成工程」とを含むものである。
(凸部形成工程)
まず、図1に示したように、例えばシリコン(Si)などの半導体よりなる基板10を用意し、この基板10に、例えばフォトリソグラフィおよびエッチングにより、凸部11を周期的なアレイ状に形成する。
凸部11の形状は特に限定されないが、周期的なアレイ状に形成する場合には例えば円柱、四角柱、三角柱、星形の柱、楕円形の柱などの閉じた形状であることが好ましく、なかでも円柱状が特に好ましい。円柱状の凸部11は、フォトリソグラフィおよびエッチングにより容易に形成することができるからである。凸部11の側面11Aは、必ずしも傾斜面である必要はなく、基板10の表面に対して垂直であってもよい。
凸部11の直径は、形成したい筒状構造の直径および凸部11の形成方法を考慮して定められ、例えばフォトリソグラフィの場合には最小200nmとすることができる。なお、ここで凸部11の直径とは、凸部11の側面11Aの下端における直径をいう。凸部11の高さは、触媒物質の原子または分子の大きさよりも大きければ特に限定されない。本実施の形態では、凸部11を、例えば、直径200nm、高さ0.5μmの円柱状に形成する。
(触媒パターン形成工程)
次に、触媒パターン形成工程として、本実施の形態では、例えば、基板10に触媒物質を付着させる「付着工程」と、基板10に熱処理を行うことにより触媒物質を溶融させて凸部11の側面11Aに凝集させる「凝集工程」とを行う。
(付着工程)
すなわち、まず、図2に示したように、例えばスパッタ法により、基板10に触媒物質20を付着させる。基板10には凸部11が形成されているので、触媒物質20は、平坦な部分よりも、凸部11の側面11Aおよびその近傍に多めに付着する。これは、プラズマが凸部11に集中するからである。また、原子は、段差あるいは凹凸などを核としてそこに集まる性質があるからである。なお、原子のこのような性質は、シリコン基板に特定の結晶面を利用して原子を配向させるために用いられるものである。
また、このとき、触媒物質20を、次の凝集工程において触媒物質20を溶融させて凸部11の側面11Aに凝集させることができる程度の厚みで付着させることが好ましい。付着させる触媒物質20の厚みが大きいと、触媒物質20の移動および凝集が困難になるからである。例えば、触媒物質20は、連続した膜を形成しない厚みで、すなわち、基板10の表面に島状に付着させてもよく、あるいは、連続していても極めて薄い膜を形成するようにしてもよい。具体的には、付着させる触媒物質20の厚みは、基板10の表面のラフネス程度、例えば1nm未満とすることができる。
ここで、触媒物質20は、炭素(C)よりなる筒状構造を形成するための金属触媒としては、鉄(Fe)の他、バナジウム(V),マンガン(Mn),コバルト(Co),ニッケル(Ni),モリブデン(Mo),タンタル(Ta),タングステン(W)または白金(Pt)が挙げられる。また、イットリウム(Y),ルテチウム(Lu),ホウ素(B),銅(Cu),リチウム(Li),シリコン(Si),クロム(Cr),亜鉛(Zn),パラジウム(Pd),銀(Ag),ルテニウム(Ru),チタン(Ti),ランタン(La),セリウム(Ce),プラセオジム(Pr),ネオジム(Nd),テルビウム(Tb),ジスプロシウム(Dy),ホルミウム(Ho)またはエルビウム(Er)を用いてもよい。なお、以上の物質は2種以上同時に使用してもよく、また、これら物質の2種以上からなる化合物を用いてもよい。また、金属フタロシアン化合物,メタセロン、金属塩を用いることも可能である。更に、酸化物あるいはシリサイドであってもよい。
加えて、用途によっては、触媒物質20は、アルミニウム(Al),シリコン(Si),タンタル(Ta),チタン(Ti),ジルコニウム(Zr),ニオブ(Nb),マグネシウム(Mg),ホウ素(B),亜鉛(Zn),鉛(Pb),カルシウム(Ca),ランタン(La),ゲルマニウム(Ge)などの金属および半金属などの元素の、窒化物,酸化物,炭化物,フッ化物,硫化物,窒酸化物,窒炭化物,または酸炭化物などからなる誘電体材料を用いることが可能である。具体的には、AlN,Al2 3 ,Si3 4 ,SiO2 ,MgO,Y2 3 ,MgAl2 4 ,TiO2 ,BaTiO3 ,SrTiO3 ,Ta2 5 ,SiC,ZnS,PbS,Ge−N,Ge−N−O,Si−N−O,CaF2 ,LaF,MgF2 ,NaF,TiF4 などである。更にまた、これらの材料を主成分とする材料や、これらの材料の混合物、例えばAlN−SiO2 を用いることも可能である。加えてまた、鉄(Fe),コバルト(Co),ニッケル(Ni),ガドリニウム(Gd)等の磁性体材料を用いることもできる。
(凝集工程)
次に、基板10に熱処理を行うことにより触媒物質20を溶融させて凸部11の側面11Aに凝集させる。熱処理は、例えば熱アニール法,レーザ照射,超音波照射,マイクロ波照射あるいはIR(infrared;赤外線)ランプ照射により行うことができる。これにより、触媒物質20よりなる小さな島を融合させて大きな島とし、図3に示したように、凸部11の側面11Aに、触媒物質20よりなる線状の触媒パターン21を形成する。本実施の形態では、凸部11を円柱状に形成しているので、触媒パターン21は、凸部11の周囲に環状に形成される。このとき、触媒パターン21の幅を、例えば、触媒物質20の付着量により制御するようにしてもよい。
(筒状構造形成工程)
続いて、図4に示したように、この触媒パターン21を用いて、例えばCVD(Chemical Vapor Deposition ;化学気相成長)法により、例えば炭素(C)よりなる筒状構造30を成長させる。筒状構造30は、凸部11の側面11Aから起立すると共に先端30Aが開放された筒状、すなわちカーボン(ナノ)パイプとなる。よって、凸部11の位置に精確に対応して筒状構造30を形成することができ、筒状構造30の形成位置を容易かつ精確に制御し、大規模アレイ化を容易に実現することができる。また、凸部11は、電子ビームリソグラフィよりも量産性に優れたフォトリソグラフィで形成することができるので、大量生産にも有利である。
また、筒状構造30は、先端30Aが開放された筒状に形成されるので、先端30Aの全体が同じ高さとなると共に、通常のカーボンナノチューブのように切断により先端を開放させたり高さを揃えるなどの煩雑な工程は不要となる。更に、筒状構造30の配向および高さを容易に均一化することができる。
特に、本実施の形態では触媒パターン21が環状なので筒状構造30は円筒状となる。よって、電界電子放出素子として利用する場合に、筒状構造30の先端30Aは周方向のすべての位置で同じ高さであると共に先端30Aと引き出し電極との距離を容易に均一にすることができ、先端30Aの全体から均一に電子を放出させることができる。
更に、筒状構造30の壁厚wt(wall thickness)は、筒状構造30で囲まれた領域の面積に比して極めて薄くなるので、先端30Aが尖鋭な端縁(シャープエッジ)となり、高い電界電子放出特性を得ることができる。なお、ここで「筒状構造30で囲まれた領域」とは、筒状構造30が閉じている場合には筒状構造30の壁で囲まれた領域をいい、筒状構造30が閉じていない場合には筒状構造30の壁の延長方向における寸法をいう。
筒状構造30の壁厚wtは、例えば、筒状構造30の直径dの2分の1以下とすることが好ましい。すなわち、筒状構造30の直径dは、例えば凸部11の直径と同じく最小200nmであるので、筒状構造30の壁厚wtは100nm以下とすることが好ましい。筒状構造30の壁厚wtが直径dに比してあまりに厚いと、電界電子放出素子として利用する場合に筒状構造30に電場が集中しにくくなるからである。更に、筒状構造30の壁厚wtは、50nm以下とすればより好ましく、30nm以下とすれば更に好ましい。先端30Aをより尖鋭な端縁(シャープエッジ)とすることができ、より高い電界電子放出特性を得られるからである。
これに対して、筒状構造30の直径dは、それほど小さくする必要はなく、例えば上述したように凸部11の直径と同じく最小200nmとすることができる。電界電子放出特性は、筒状構造30の直径dよりはむしろ壁厚wtによって決まるからである。また、筒状構造30は、カーボンナノチューブに比較して直径dは大きいものの、基板10に良好に接合されており、安定性および耐久性が向上するという利点がある。筒状構造30の高さは特に限定されず、用途に合わせて設定される。
筒状構造30が成長したのち、触媒パターン21の触媒物質20は、基板10と筒状構造30との間に配置されているが、触媒物質20は、基板10と筒状構造30との間だけでなく、図示しないが筒状構造30の先端30Aに存在している場合もある。また、触媒パターン21は線状で残存する場合もあれば多少とぎれた線状になる場合があってもよい。以上により、本実施の形態の微細構造体40が完成する。
《表示装置》
図5は、この微細構造体40を備えたFEDの一例を表している。このFEDは、電界電子放出素子としての微細構造体40と、筒状構造30に所定の電圧を印加し、筒状構造30から電子e−を放出させるためのゲート電極50および図示しないカソード電極と、微細構造体40から放出された電子e−を受けて発光する蛍光部60とを備えている。微細構造体40は、基板10にマトリクス状に設けられ、基板10に設けられたカソード電極に電気的に接続されている。ゲート電極50は、基板10に絶縁膜51を介して設けられている。蛍光部60は、ガラスなどよりなる対向基板61に、微細構造体40の各々に対向して設けられている。対向基板61には、図示しないアノード電極が設けられている。
このFEDでは、カソード電極とゲート電極50との間に選択的に電圧を印加すると、その交点に位置する微細構造体40において電界電子放出が起こり、筒状構造30から電子e−が放出される。微細構造体40から放出された電子e−は、蛍光部60に衝突し、蛍光体を発光させる。この蛍光体の発光により所望の画像表示がなされる。ここでは、微細構造体40が、凸部11の側面11Aに形成された触媒パターン21を用いて形成された筒状構造30を有しているので、筒状構造30の位置精度が高くなっていると共に、先端30Aが尖鋭な端縁(シャープエッジ)となっており、電界電子放出特性が向上する。また、筒状構造30の配向性および高さが均一化されており、画面内の表示特性が均一化される。
このように本実施の形態では、基板10に凸部11を形成し、基板10に触媒物質20を付着させて、基板10に熱処理を行うことにより触媒物質20を溶融させて凸部11の側面11Aに凝集させることにより、凸部11の側面11Aに触媒物質20よりなる線状の触媒パターン21を形成したのち、触媒パターン21を用いて筒状構造30を成長させるようにしたので、凸部11の位置に精確に対応して筒状構造30を形成することができる。よって、電子ビームリソグラフィでなく従来のリソグラフィを用いて、簡単な方法で筒状構造30の形成位置を精確に制御し、大規模アレイ化を容易に実現することができ、大量生産にも有利である。
また、筒状構造30は、先端30Aが開放された筒状に形成されるので、先端30Aの全体が同じ高さとなると共に、通常のカーボンナノチューブのように切断により先端を開放させたり高さを揃えるなどの煩雑な工程は不要となる。更に、筒状構造30の配向および高さを容易に均一化することができ、FEDを構成すれば画面内の表示特性を均一化し、大画面においても優れた表示品質を達成することができる。
更に、筒状構造30の壁厚wtは、筒状構造30の表面積に比して極めて薄くなるので、先端30Aが尖鋭な端縁(シャープエッジ)となり、高い電界電子放出特性を得ることができる。
特に、本実施の形態では、凸部11を円柱状に形成し、触媒パターン21を環状に形成し、筒状構造30を円筒状に形成するようにしたので、電界電子放出素子として利用する場合に、筒状構造30の先端30Aとゲート電極50との距離を容易に均一にすることができ、先端30Aの全体から均一に電子を放出させて、均一な電界電子放出特性を得ることができる。
〔第2の実施の形態〕
《微細構造体の製造方法》
図6ないし図10は、本発明の第2の実施の形態に係る微細構造体の製造方法を表している。本実施の形態の方法は、凸部形成工程において、絶縁性材料よりなる基板110に半導体層110Aを形成し、基板110の表面が露出するまで半導体層110Aをエッチングすることにより凸部111を形成するようにしたことを除いては、第1の実施の形態と同一である。よって、同一の構成要素には同一の符号を付してその説明を省略する。
(凸部形成工程)
まず、図6に示したように、例えばガラスなどの絶縁性材料よりなる基板110を用意し、この基板110に、例えばCVD法、プラズマCVD(PECVD;Plasma Enhanced Chemical Vapor Deposition )法またはスパッタ法により、例えば多結晶シリコンよりなる半導体層110Aを形成する。そののち、図7に示したように、半導体層110Aに、フォトリソグラフィおよびエッチングにより、凸部111を周期的なアレイ状に形成する。このとき、基板110の表面が露出するまで半導体層110Aをエッチングし、半導体層110Aの凸部111以外の部分はすべて除去する。
(触媒パターン形成工程)
次に、第1の実施の形態と同様に、触媒パターン形成工程として、「付着工程」と「凝集工程」とを行う。
(付着工程)
すなわち、まず、図8に示したように、第1の実施の形態と同様にして、例えばスパッタ法により、基板110に触媒物質20を付着させる。
(凝集工程)
次に、基板110に熱処理を行うことにより触媒物質20を溶融させて凸部111の側面111Aに凝集させる。これにより、図9に示したように、凸部111の側面111Aに、触媒物質20よりなる線状の触媒パターン21を形成する。上述したような触媒物質20は、ガラスよりなる基板110の表面との密着性が低いので、溶融した触媒物質20は容易に移動して凸部111の側面111Aに凝集することができる。
(筒状構造形成工程)
続いて、図10に示したように、この触媒パターン21を用いて、例えば炭素(C)よりなる筒状構造30を成長させる。
このように本実施の形態では、絶縁性材料よりなる基板110に半導体層110Aを形成し、基板110の表面が露出するまで半導体層110Aをエッチングすることにより凸部111を形成するようにしたので、触媒パターン21をより高精度に、すなわち細い幅で形成することができる。よって、筒状構造30の壁厚wtをより小さくし、筒状構造30の先端をより尖鋭な端縁(シャープエッジ)とし、電界電子放出特性を向上させることができる。
〔第3の実施の形態〕
《微細構造体の製造方法》
図11ないし図14は、本発明の第3の実施の形態に係る微細構造体の製造方法を表している。本実施の形態の方法は、凸部211に2段の段部211A,211Bを形成し、これらの段部211A,211Bの各々の側面211AA,211BAに触媒パターン221A,221Bを形成し、これらの触媒パターンを用いて2層構造の筒状構造230を形成するようにしたことを除いては、第1の実施の形態と同一である。よって、同一の構成要素には同一の符号を付してその説明を省略する。
(凸部形成工程)
まず、図11に示したように、基板10に、フォトリソグラフィおよびエッチングにより、第1の段部211Aおよび第2の段部211Bを有する凸部211を周期的なアレイ状に形成する。凸部211は、例えば、直径の異なる2本の円柱状の第1の段部211Aおよび第2の段部211Bを、基板10側から直径の大きい順に積み重ねた形状を有している。第1の段部211Aおよび第2の段部211Bは、必ずしも同心に形成されていなくてもよい。
(触媒パターン形成工程)
次に、第1の実施の形態と同様に、触媒パターン形成工程として、「付着工程」と「凝集工程」とを行う。
(付着工程)
すなわち、まず、図12に示したように、第1の実施の形態と同様にして、例えばスパッタ法により、基板10に触媒物質20を付着させる。
(凝集工程)
次に、基板10に熱処理を行うことにより触媒物質20を溶融させて、第1の段部211Aおよび第2の段部211Bの側面211AA,211BAに凝集させる。これにより、図13に示したように、第1の段部211Aおよび第2の段部211Bの側面211AA,211BAに、触媒物質20よりなる線状の第1の触媒パターン221Aおよび第2の触媒パターン221Bを形成する。第1の触媒パターン221Aおよび第2の触媒パターン221Bは、第1の段部211Aおよび第2の段部211Bの周囲に環状に形成される。
(筒状構造形成工程)
続いて、図14に示したように、第1の触媒パターン221Aを用いて第1の筒状構造230Aを第1の段部211Aの側面211AAから起立させると共に、第2の触媒パターン221Bを用いて第2の筒状構造230Bを第2の段部211Bの側面211BAから起立させる。これにより、第1の筒状構造230Aおよび第2の筒状構造230Bを有する2層構造の筒状構造230を成長させる。第1の筒状構造230Aおよび第2の筒状構造230Bは、第1の段部211Aおよび第2の段部211Bに応じた異なる直径を有している。
このように本実施の形態では、凸部211に第1の段部211Aおよび第2の段部211Bを形成し、これらの各々の側面211AA,211BAに触媒パターン221A,221Bを形成し、これらの触媒パターンを用いて第1の筒状構造230Aおよび第2の筒状構造230Bを形成するようにしたので、直径の異なる第1の筒状構造230Aおよび第2の筒状構造230Bを有する2層構造の筒状構造230を形成することができる。
(第4の実施の形態)
《記録装置の製造方法》
次に、本発明の第4の実施の形態に係る記録装置の製造方法について説明する。本実施の形態は、基板に極めて微細な凸部のパターンを形成し、これらの凸部を利用して成長させた筒状構造を用いて記録装置を形成するものである。すなわち、本実施の形態の方法は、「凸部形成工程」において変調された熱分布を用いて極めて微細な凸部のパターンを形成し、上記第1の実施の形態と同様にして「触媒パターン形成工程」および「筒状構造形成工程」を行って筒状構造を成長させたのち、筒状構造の先端部に磁気材料を挿入する「挿入工程」を更に含む。
(凸部形成工程)
本実施の形態では、凸部形成工程は、基板の表面に対して所望のパターンに応じて変調された熱分布を与え、基板の表面を溶融させる「溶融工程」と、基板の表面を放熱させることにより、熱分布に応じた位置に凸部のパターンを形成する「放熱工程」とを含むことが好ましい。
(溶融工程)
まず、図15を参照して溶融工程を説明する。X方向熱分布321Xは、基板310の表面温度がX方向に変調されて、X方向高温領域321XHとX方向低温領域321XLとが周期的に形成されたものである。また、Y方向分布321Yは、基板310の表面温度がY方向に変調されて、Y方向高温領域321YHとY方向低温領域321YLとが周期的に形成されたものである。
X方向熱分布321XおよびY方向熱分布321Yは、例えば、エネルギービーム322を、非透過部分323Aおよび透過部分323Bが二次元方向に配列された回折格子323で回折させることにより与えられる。回折格子323としては、例えば、非透過部分323Aにエネルギービーム322を透過させないマスクが印刷されたものなどを用いることができる。
図16は、基板310の表面においてX方向分布321XとY方向分布321Yとが重畳されることにより、熱分布324が形成された状態を表している。図16に示したように、基板310の表面には、X方向高温領域321XHとY方向高温領域321YHとの重複する位置に高温領域324Hを有し、X方向低温領域321XLとY方向低温領域321YLとの重複する位置に低温領域324Lを有するような熱分布324が形成される。これにより、高温領域324Hは、非透過部分323Aおよび透過部分323Bの配列されている方向に沿って二次元方向に配列される。
熱分布324のX方向における空間的周期TX、すなわち高温領域324HのX方向における間隔(ピッチ)は、回折格子323のX方向における周期間隔PXおよびエネルギービーム322の波長λに応じて定まる。また、熱分布324のY方向における空間的周期TY、すなわち高温領域324HのY方向における間隔(ピッチ)は、回折格子323のY方向における周期間隔PYおよびエネルギービーム322の波長λに応じて定まる。波長λを小さくするほど、または周期間隔PX,PYを微細にするほど熱分布324の空間的周期TX,TYを微細化することができる。ここで、本実施の形態では、回折格子323のX方向における周期間隔PXとは、一つの非透過部分323AのX方向における寸法と一つの透過部分323BのX方向における寸法との和をいい、回折格子323のY方向における周期間隔PYとは、一つの非透過部分323AのY方向における寸法と一つの透過部分323BのY方向における寸法との和をいう。
回折格子323のX方向における周期間隔PXとY方向における周期間隔PYとは、互いに独立に設定することができる。したがって、図17に示したように、熱分布324のX方向における空間的周期TXとY方向における空間的周期TYとを、互いに独立に設定することも可能である。
なお、回折格子323としては、マスク印刷により非透過部分323Aおよび透過部分323Bが形成されたものではなく、凹部または凸部が形成されたものを用いることも可能である。凹凸が形成された回折格子323の場合には、回折格子323のX方向における周期間隔PXとは、凹部(または凸部)のX方向における間隔(ピッチ)をいい、回折格子323のY方向における周期間隔PYとは、凹部(または凸部)のY方向における間隔(ピッチ)をいう。
エネルギービーム322のエネルギー量は、低温領域324Lにおいて基板310の表面が溶融する温度となるように設定される。これにより、基板310の表面の全体を溶融させることができる。このとき、エネルギービーム322としてエキシマレーザを用いると、パルス発光の照射回数によりエネルギー量の制御を行うことができる。本実施の形態では、エネルギービーム322のエネルギー量を一定値を超えるように制御する。例えば、エネルギービーム322のエネルギー量を350mJ/cm2 、パルス照射回数を100回とする。
(放熱工程)
溶融工程において基板310の表面を溶融させたのち、エネルギービーム322の照射を止めると、溶融工程において照射されたエネルギービーム322のエネルギー量が一定値を超えている場合には、図18および図19に示したように、高温領域324Hに対応する基板310の表面が***して、基板310に複数の凸部311が形成される。
凸部311は、高温領域324Hが基板310の表面に二次元方向に配列されているので、これに対応して、基板310の表面に二次元方向に配列された錘体状の突起のパターンとして形成される。凸部311の下端部のX方向における寸法(直径)DXおよびY方向における寸法(直径)DYは、溶融温度および冷却速度により定まる。溶融温度は、エネルギービーム322のエネルギー量、すなわちエキシマレーザの場合にはパルス照射回数によって制御することができ、溶融温度が高いほど凸部311の寸法DX,DYは大きくなる。また、冷却速度は、基板310または基板310のホルダーを真空中またはガス雰囲気中に配置する方法、ガスフローによる方法、水または液体窒素中で冷却する方法、あるいは加熱しながらゆっくり冷却する方法などによって制御することができ、冷却速度が速いほど凸部311の寸法DX,DYは大きくなる。凸部311の寸法DX,DYは、原理的には基板310の構成物質の原子の大きさより大きい任意の値をとり得るものであり、溶融温度および冷却速度を制御することにより従来のフォトリソグラフィ技術では不可能であった50nm未満を実現することができる。
また、凸部311のX方向における間隔LX、およびY方向における間隔LYは、熱分布324の空間的周期TX,TYに応じて、すなわち回折格子323の周期間隔PX,PYおよびエネルギービーム322の波長λに応じて定まる。波長λを小さくするほど、または、回折格子323の周期間隔PX,PYを微細にするほど凸部311の間隔LX,LYを微細化することができ、従来のフォトリソグラフィでは不可能な微細な間隔LX,LYで凸部311を形成することも可能である。
凸部311の間隔LX,LYは、例えば100nm以下であることが好ましい。前述のように、従来のフォトリソグラフィでは解像限界が50nmであるため、従来のフォトリソグラフィで形成可能な最小のパターンは、例えば山50nm、谷50nm、および山50nmで、その間隔は解像限界の2倍すなわち100nmとなるからである。更に、凸部311の間隔LX,LYは、50nm以下とすればより好ましい。従来の電子ビームリソグラフィの解像限界が25nm程度であるため、従来の電子ビームリソグラフィで形成可能な最小のパターンの間隔は、同様に解像限界の2倍すなわち50nmとなるからである。
なお、図17に示したように熱分布324のX方向における空間的周期TXとY方向における空間的周期TYとを、互いに独立に設定した場合には、これに対応して、図20に示したように凸部311が楕円形に形成される。
(触媒パターン形成工程および筒状構造形成工程)
次に、図21に示したように、第1の実施の形態と同様にして触媒パターン形成工程を行い、凸部311の側面311Aに触媒物質320(図21では図示せず、図22参照)よりなる触媒パターン321を形成する。続いて、図22に示したように、第1の実施の形態と同様にして筒状構造形成工程を行い、触媒パターン321(図21参照)を用いて筒状構造330を形成する。筒状構造330が成長したのち、触媒パターン321の触媒物質320は、第1の実施の形態と同様に、基板310と筒状構造330との間などに配置されている。
(挿入工程)
そののち、図23に示したように、筒状構造330が形成された基板310を磁気材料として例えば鉄を含む雰囲気中に配置することにより、筒状構造330の少なくとも先端部に磁気材料を取り込ませて磁性層340を形成する。以上により、複数の凸部311に対応して複数の記録素子350を備えた記録装置が完成する。各々の記録素子350は、触媒物質320,筒状構造330および磁性層340を有する。各々の筒状構造330に挿入された磁性層340は、隣接する他の筒状構造330内の磁性層340とは隔離されているため、各磁性層340に対する情報の書き込みまたは読み出しを確実に行うことができる。
図24は、この記録装置における記録状態の一例を表すものである。この記録装置では、図24の矢印で示したように磁性層340の磁化方向を制御することにより信号の記録(書き込み)および再生(読み出し)を行うことができる。信号の書き込みおよび読み出しは、例えば図示しない微細なコイルにより所定の磁束を発生させて書き込み、GMRヘッドで信号を読み出すようにしてもよく、あるいはいわゆる光磁気方式により行ってもよい。
以下、例えば光磁気方式による記録装置への書き込みおよび読み出しについて説明する。書き込みは、例えば次のように行われる。鉄よりなる磁性層340の温度をキュリー温度まで上昇させて、バイアス磁界により磁性層340の磁化方向を一定方向にする(消去モード)。そののち、バイアス磁界を消去モードとは逆方向の磁化方向としておいて、図示しない光学レンズによりスポット径を小さくしたレーザビームにより特定の筒状構造330の磁性層340のみの温度を上昇させ、レーザビームの照射を停止することにより磁性層340の磁化方向を消去時とは逆方向にする。また、読み出しは、例えば次のように行われる。筒状構造330内の磁性層340に対してレーザビームを照射し、レーザビームの反射光のカー回転角を検出することにより各々の磁性層340の磁化方向を再生信号として得ることができる。このとき、本実施の形態では、磁性層340が筒状構造330により隔離されているので、隣り合う筒状構造330内の磁性層340の影響を受けることなく、所定の磁化方向が長期間安定して保持される。
このように本実施の形態では、筒状構造330に磁気材料を挿入して磁性層340を形成するようにしたので、簡単な方法で、カーボンなどよりなる筒状構造330を用いた記録装置を容易に実現することができる。また、筒状構造330の先端を開放したり高さを均一化する工程が不要であり、磁性層340を効率よく形成することができる。
また、筒状構造330およびその内部に挿入された磁性層340の位置精度が高く、記録装置の特性を向上させることができる。また、磁性層340は筒状構造330により隔離されているので、隣接する他の筒状構造330内の磁性層340の影響を受けることなく、所定の磁化方向を長期間安定して保持することができ、記録装置の信頼性を向上させることができる。
特に、本実施の形態では、凸部形成工程において、基板310の表面に対して所望のパターンに応じて変調された熱分布324を与え、基板310の表面を溶融させたのち、基板310の表面を放熱させることにより、熱分布324に応じた位置に凸部311のパターンを形成するようにしたので、熱分布324を制御することにより従来のフォトリソグラフィでは不可能な微細な凸部311のパターンを形成することができる。よって、この凸部311に筒状構造330を成長させて磁性層340を形成することにより、着磁の長さを従来のフォトリソグラフィでは不可能な小さな寸法とすることができ、記録装置の記録密度を極めて高くすることができる。
更に、本発明の具体的な実施例について説明する。
(実施例1)
第1の実施の形態と同様にして、微細構造体40を作製した。その際、シリコンよりなる基板10に、直径200nm、高さ0.5μmの凸部11を形成し、触媒物質20として、54wt%の鉄(Fe)と、17wt%のコバルト(Co)と、29wt%のニッケル(ニッケル)とを含む鉄−コバルト−ニッケル合金をスパッタ法により付着させた。続いて、基板10を炉に投入し、炉の内部をスクロールポンプで30分間排気したのち、アルゴン(Ar)ガスを流量300SCCMで30分間パージした。そののち、炉の温度をアルゴン雰囲気中で15℃/minの割合で900℃まで上昇させ、触媒パターン21を形成した。続いて、触媒物質20を活性化させるため、水素(H2 )を14.8%混合したヘリウム(He)ガスを流量200SCCMで供給した。更に、炭素の原料としてメタン(CH4 )を12.5%混合したアルゴンガスを流量200SCCMで供給すると共に、水素(H2 )を14.8%混合したヘリウム(He)ガスを流量100SCCMで供給し、筒状構造30を形成した。
得られた微細構造体のSEM(Scanning Electron Microscope;JSM−6700F,JEOL)写真を図25(A)ないし図25(C)に示す。この微細構造体を成長させるために基板に付着した触媒物質の平均厚みを水晶モニタプローブを用いて測定したところ、0.5nmであった。図25(B)および図25(C)に拡大して示したように、凸部の周囲に筒状構造が成長していることが確認され、筒状構造の壁厚wtは30nmないし100nmであった。また、凸部の周囲には、触媒物質や炭素の微細構造の存在を示す白い点状の部分は確認されなかった。このことから、凸部の周囲の触媒物質は凝集して環状の触媒パターンを形成していることが分かった。
図26(A)ないし図26(C)は、微細構造体を鉗子などで削り取ることにより様々な角度で表したSEM写真である。これらのSEM写真から、成長した筒状構造は、空洞に凸部を内包していることが明らかに分かる。
比較例として、図27に、触媒物質を付着させる前に凸部を剥離し、そののち、実施例1と同様にして触媒物質を付着および凝集させて筒状構造を形成しようとした試料のSEM写真を示す。図27から分かるように、凸部の剥離跡には触媒物質が多く付着していたが、凝集による環状の触媒パターンは形成されておらず、凸部の周囲に筒状構造ではなくカーボンナノチューブが成長していた。
(実施例2)
第3の実施の形態と同様にして微細構造体を作製した。実施例2で得られた微細構造体のSEM写真を図28に示す。直径および壁厚の異なる筒状構造が二重に形成されていることが分かる。筒状構造の壁厚wtは実施例1と同様に30nmないし100nmであった。
実施例2で得られた微細構造体について、筒状構造の構成を、TEM(Transmission Electron Microscope)を用いて分析した。その結果を図29に示す。図29から、筒状構造は非晶質材料と結晶質材料との混合物により構成されていることが分かる。図29(C)において、中央右上寄りに層状に見える部分が結晶質材料よりなる部分であり、その周囲は非晶質材料よりなる部分である。
また、実施例1で得られた筒状構造の材料を、EDX(Energy Dispersive X-ray analysis)およびEELS(Electron Energy Loss spectrum )を用いて分析した。その結果を図30および図31に示す。筒状構造はシリコンよりなる基板に形成されているので、図30および図31から分かるように、筒状構造にはシリコンが付着しているが、筒状構造それ自体はシリコンを含まず、炭素により構成されている。したがって、図29ないし図31から、筒状構造は、非晶質炭素およびグラファイトにより構成されていると結論することができる。
更に、実施例2で得られた微細構造体の電界電子放出特性を調べた。測定方法および条件としては、微細構造体と銅(Cu)よりなる電極とを100μmの距離をおいて対向配置し、微細構造体と電極との間に0ないし1000Vの電圧を印加した際のトンネル電流を高精度電流計により記録した。図32にその結果を示す。500Vでエミッション電流が上昇しており、しきい値は5V/μmであった。また、図33は、図32に対応するF−N(Fowler-Nordheim )プロットを表す。F−Nプロットには、二つの異なるF−N領域が表されているが、これらは、直径および壁厚の異なる二重の筒状構造に対応するものと考えられる。低電圧での電界電子放出は内側の筒状構造のみによるものであり、高電圧での電界電子放出は外側と内側との両方の筒状構造が寄与している。炭素の仕事関数φを5eVとし、F−Nプロットを利用して平均電界集中因子βを計算すると、約6000であった。これは、非特許文献1で報告されている他のカーボン構造体とほぼ同じ大きさ程度の値である。
このように、実施例1および実施例2によれば、壁厚wtが30nmないし100nmの炭素よりなる筒状構造を有する微細構造体を、凸部の周囲に位置精度よく形成することができた。すなわち、基板に凸部を形成し、この凸部の側面に触媒物質よりなる線状の触媒パターンを形成したのち、触媒パターンを用いて筒状構造を成長させるようにすれば、従来のリソグラフィを用いて、先端に尖鋭な端縁(シャープエッジ)を有する筒状構造を高い位置精度で形成することができ、電界電子放出特性を向上できることが分かった。
以上、実施の形態および実施例を挙げて本発明を説明したが、本発明は上記実施の形態に限定されるものではなく、種々変形が可能である。例えば、上記実施の形態において説明した各層の材料、厚みおよび壁厚、または成膜方法および成膜条件などは限定されるものではなく、他の材料、厚みおよび壁厚としてもよく、または他の成膜方法および成膜条件としてもよい。例えば、凸部11の形成方法は、第1ないし第3の実施の形態のようなフォトリソグラフィ、あるいは第4の実施の形態で説明したような変調された熱分布を用いる方法に限られない。
また、上記第1の実施の形態では、FEDの構成を具体的に挙げて説明したが、全ての構成要素を備える必要はなく、また、他の構成要素を更に備えていてもよい。更に、本発明は、他の構成のFEDにも適用することが可能である。また、上記第2および第3の実施の形態で説明した微細構造体を用いてFEDを構成することも可能である。
加えて、上記第1の実施の形態では、凸部11を先細の円柱状として説明したが、凸部11の側面11Aは、図34に示したように、凸部11の先端に向かって直径が太くなるように傾斜していてもよい。その場合、筒状構造30は、先端に向かって広がるホーン状となる。なお、凸部11は、筒状構造30の成長のガイドとなっているわけではない。
更にまた、上記第2の実施の形態において、3段以上の段部を有する凸部を形成し、3層以上の多層構造を有する筒状構造を形成するようにしてもよい。
加えてまた、上記実施の形態では、触媒パターン形成工程において付着工程および凝集工程を行うようにしたが、触媒パターンを他の方法で形成してもよい。
更にまた、筒状構造としては、炭素(C)よりなるものに限られず、シリコン(Si),金(Au),酸化亜鉛(Zn)およびカドミウム(Cd)からなる群のうちの少なくとも1種よりなるものを成長させることが可能である。
加えてまた、上記第4の実施の形態においては、変調された熱分布を用いて凸部311を形成する場合について説明したが、凸部は、第1の実施の形態のようにフォトリソグラフィにより形成してもよく、あるいは他の方法により形成してもよい。
更にまた、例えば、上記第4の実施の形態では、パルスの照射回数によりエネルギービーム322のエネルギー量を調整するようにしたが、パルスの照射回数、照射強度およびパルス幅のそれぞれを調整することが可能である。
加えてまた、上記第4の実施の形態では、エネルギービーム322の照射による熱分布324の形成を回折格子323を用いて行う場合について説明したが、回折格子323の代わりに例えばビームスプリッタを用いるようにしてもよい。
更にまた、上記第4の実施の形態では、XeClエキシマレーザを用いてエネルギービーム322を照射するようにしたが、XeClエキシマレーザ以外のレーザを用いるようにしてもよく、更に、加熱手段として、変調により熱分布を形成できるものであれば、一般的な汎用の電気加熱炉(拡散炉)もしくはランプなどの他の方法により加熱するようにしてもよい。
加えてまた、上記第4の実施の形態では、放熱工程を溶融工程を終了したのちの常温による自然冷却としたが、常温未満の温度により強制的に冷却して放熱工程を短縮することも可能である。
更にまた、上記第4の実施の形態では、磁性層340の磁気材料として鉄(Fe)を用いた場合について説明したが、スズ(Sn),チタン(Ti),ビスマス(Bi),ゲルマニウム(Ge),アンチモン(Sb),鉛(Pb),アルミニウム(Al),インジウム(In),硫黄(S),セレン(Se),カドミウム(Cd),ガドリニウム(Gd)あるいはハフニウム(Hf)などを用いてもよい。
本発明の微細構造体は、FEDの電界電子放出素子あるいは記録装置として極めて有用である。また、この微細構造体は、基板上に高い位置精度および形状精度で形成されているので、触媒転写のためのテンプレートとしての利用も可能であるほか、STMプローブ,バイオセンサ,高周波トランジスタ,量子デバイス,LSIメモリ,論理回路および配線,MEMS(Micro Electro Mechanical Systems;微小電気機械システム)など幅広い需要および用途を有する。
本発明の第1の実施の形態に係る微細構造体の製造方法を工程順に表す斜視図である。 図1に続く工程を表す斜視図である。 図2に続く工程を表す斜視図である。 図3に続く工程を表す斜視図である。 図4に示した微細構造体を用いた表示装置の一例を表す斜視図である。 本発明の第2の実施の形態に係る微細構造体の製造方法を工程順に表す斜視図である。 図6に続く工程を表す斜視図である。 図7に続く工程を表す斜視図である。 図8に続く工程を表す斜視図である。 図9に続く工程を表す斜視図である。 本発明の第3の実施の形態に係る微細構造体の製造方法を工程順に表す斜視図である。 図11に続く工程を表す斜視図である。 図12に続く工程を表す斜視図である。 図13に続く工程を表す斜視図である。 本発明の第4の実施の形態に係る記録装置の製造方法における溶融工程を模式的に表す斜視図である。 図15に示した基板の表面に形成されている熱分布の一例を模式的に表す平面図である。 図16に示した熱分布の他の例を表す平面図である。 図15に続く工程(放熱工程)を模式的に表す斜視図である。 図18に示した基板の表面の一部を拡大して表す平面図である。 図17に示した熱分布を形成したのちに放熱工程を行った場合における基板の表面の一部を拡大して表す平面図である。 図20に続く工程(触媒パターン形成工程)を模式的に表す断面図である。 図21に続く工程(筒状構造形成工程)を模式的に表す断面図である。 図22に続く工程(挿入工程)を模式的に表す断面図である。 図23に示した記録装置における記録状態の一例を模式的に表す斜視図である。 本発明の実施例1に係る微細構造体のSEM写真である。 実施例1に係る微細構造体を様々な角度で表すSEM写真である。 比較例に係る試料のSEM写真である。 本発明の実施例2に係る微細構造体のSEM写真である。 実施例2に係る微細構造体の構成を表すTEM写真である。 実施例1に係る微細構造体の材料をTEMおよびEDXにより分析した結果を表す図である。 実施例1に係る微細構造体の材料をTEMおよびEELSにより分析した結果を表す図である。 実施例2に係る微細構造体の電界電子放出特性を表す図である。 図32に対応するF−Nプロットを表す図である。 図4に示した微細構造体の変形例を表す斜視図である。
符号の説明
10,110,310…基板、11,111,211,311…凸部、11A,111A,311A…側面、20…触媒機能を有する物質(触媒物質)、21,321…触媒パターン、30,230,330…筒状構造、40…微細構造体、110A…半導体層、211A…第1の段部、211B…第2の段部、211AA,211BA…側面、221A…第1の触媒パターン、221B…第2の触媒パターン、230A…第1の筒状構造、230B…第2の筒状構造,340…磁性層

Claims (20)

  1. 基板に凸部を形成する凸部形成工程と、
    前記凸部の側面に、触媒機能を有する物質よりなる触媒パターンを形成する触媒パターン形成工程と、
    前記触媒パターンを用いて筒状構造を成長させる筒状構造形成工程と
    を含むことを特徴とする微細構造体の製造方法。
  2. 前記凸部を円柱状に形成し、前記触媒パターンを環状に形成し、前記筒状構造を円筒状に形成する
    ことを特徴とする請求項1記載の微細構造体の製造方法。
  3. 前記触媒パターン形成工程は、
    前記基板に前記触媒機能を有する物質を付着させる付着工程と、
    前記基板に熱処理を行うことにより前記触媒機能を有する物質を溶融させて前記凸部の側面に凝集させる凝集工程と
    を含むことを特徴とする請求項1記載の微細構造体の製造方法。
  4. 前記触媒機能を有する物質を、前記凝集工程において前記触媒機能を有する物質を溶融させて前記凸部の側面に凝集させることができる程度の厚みで付着させる
    ことを特徴とする請求項3記載の微細構造体の製造方法。
  5. 前記凸部に、2段以上の段部を形成し、
    前記2段以上の段部の各々の側面に前記触媒パターンを形成し、
    前記触媒パターンを用いて前記筒状構造を前記2段以上の段部の各々の側面から起立させる
    ことを特徴とする請求項1記載の微細構造体の製造方法。
  6. 前記基板として半導体基板を用い、前記凸部をエッチングにより形成する
    ことを特徴とする請求項1記載の微細構造体の製造方法。
  7. 前記基板として絶縁性材料よりなる基板を用い、前記凸部を、前記基板に半導体層を形成し、前記基板の表面が露出するまで前記半導体層をエッチングすることにより形成する
    ことを特徴とする請求項1記載の微細構造体の製造方法。
  8. 前記筒状構造として、炭素(C),シリコン(Si),金(Au),酸化亜鉛(Zn)およびカドミウム(Cd)からなる群のうちの少なくとも1種よりなるものを形成する
    ことを特徴とする請求項1記載の微細構造体の製造方法。
  9. 凸部が形成された基板と、
    前記凸部の側面に配置された触媒機能を有する物質と、
    前記凸部の側面から起立すると共に先端が開放された筒状構造と
    を備えたことを特徴とする微細構造体。
  10. 前記凸部が円柱状であり、前記筒状構造が円筒状である
    ことを特徴とする請求項9記載の微細構造体。
  11. 前記筒状構造の壁厚が、前記筒状構造の直径の2分の1以下である
    ことを特徴とする請求項10記載の微細構造体。
  12. 前記凸部が、2段以上の段部を有し、
    前記触媒機能を有する物質が、前記2段以上の段部の各々の側面に配置され、
    前記筒状構造が前記2段以上の段部の各々の側面から起立している
    ことを特徴とする請求項9記載の微細構造体。
  13. 前記筒状構造の壁厚が50nm以下である
    ことを特徴とする請求項9記載の微細構造体。
  14. 前記筒状構造は、炭素(C),シリコン(Si),金(Au),酸化亜鉛(Zn)およびカドミウム(Cd)からなる群のうちの少なくとも1種により構成されている
    ことを特徴とする請求項9記載の微細構造体。
  15. 凸部が形成された基板と、前記凸部の側面に配置された触媒機能を有する物質と、前記凸部の側面から起立すると共に先端が開放された筒状構造とを有する微細構造体と、
    前記筒状構造に所定の電圧を印加し、前記筒状構造から電子を放出させるための電極と、
    前記微細構造体から放出された電子を受けて発光する発光部と
    を備えたことを特徴とする表示装置。
  16. 基板に凸部を形成する凸部形成工程と、
    前記凸部の側面に、触媒機能を有する物質よりなる触媒パターンを形成する触媒パターン形成工程と、
    前記触媒パターンを用いて筒状構造を成長させる筒状構造形成工程と、
    前記筒状構造の少なくとも先端部に磁気材料を挿入する挿入工程と
    を含むことを特徴とする記録装置の製造方法。
  17. 前記凸部形成工程は、
    前記基板の表面に対して所望のパターンに応じて変調された熱分布を与え、前記基板の表面を溶融させる溶融工程と、
    前記基板の表面を放熱させることにより、前記熱分布に応じた位置に前記凸部のパターンを形成する放熱工程と
    を含むことを特徴とする請求項16記載の記録装置の製造方法。
  18. 前記熱分布を、エネルギービームの照射により与える
    ことを特徴とする請求項17記載の記録装置の製造方法。
  19. エネルギービームを回折させることにより前記熱分布を二次元的に与える
    ことを特徴とする請求項17記載の記録装置の製造方法。
  20. 複数の凸部を有する基板と、前記複数の凸部に対応した複数の記録素子とを備えた記録装置であって、
    前記複数の記録素子の各々は、
    前記凸部の側面に配置された触媒機能を有する物質と、
    前記凸部の側面から起立すると共に先端が開放された筒状構造と、
    前記筒状構造の少なくとも先端部に挿入された磁気材料よりなる磁性層と
    を備えたことを特徴とする記録装置。
JP2003314106A 2003-09-05 2003-09-05 微細構造体の製造方法および微細構造体、表示装置、ならびに記録装置の製造方法および記録装置 Expired - Fee Related JP4329014B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003314106A JP4329014B2 (ja) 2003-09-05 2003-09-05 微細構造体の製造方法および微細構造体、表示装置、ならびに記録装置の製造方法および記録装置
CNA2004800251485A CN1845872A (zh) 2003-09-05 2004-08-31 制造细微结构的方法,细微结构,显示单元,制造记录装置的方法以及记录装置
KR1020067004424A KR20060073611A (ko) 2003-09-05 2004-08-31 미세 구조체의 제조 방법 및 미세 구조체, 표시 장치 및기록 장치의 제조 방법 및 기록 장치
EP04772476A EP1661851A1 (en) 2003-09-05 2004-08-31 Fine structure body-producing method, fine structure body, display device, recording device-producing method, and recording device
PCT/JP2004/012520 WO2005023705A1 (ja) 2003-09-05 2004-08-31 微細構造体の製造方法および微細構造体、表示装置、ならびに記録装置の製造方法および記録装置
US10/570,077 US20080315746A1 (en) 2003-09-05 2004-08-31 Method of Manufacturing Fine Structure, Fine Structure, Display Unit, Method of Manufacturing Recoding Device, and Recoding Device
TW093126732A TW200526516A (en) 2003-09-05 2004-09-03 Fine structure body-producing method, fine structure body, display device, recording device-producing method, and recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003314106A JP4329014B2 (ja) 2003-09-05 2003-09-05 微細構造体の製造方法および微細構造体、表示装置、ならびに記録装置の製造方法および記録装置

Publications (3)

Publication Number Publication Date
JP2005081465A JP2005081465A (ja) 2005-03-31
JP2005081465A5 JP2005081465A5 (ja) 2006-12-07
JP4329014B2 true JP4329014B2 (ja) 2009-09-09

Family

ID=34269789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003314106A Expired - Fee Related JP4329014B2 (ja) 2003-09-05 2003-09-05 微細構造体の製造方法および微細構造体、表示装置、ならびに記録装置の製造方法および記録装置

Country Status (7)

Country Link
US (1) US20080315746A1 (ja)
EP (1) EP1661851A1 (ja)
JP (1) JP4329014B2 (ja)
KR (1) KR20060073611A (ja)
CN (1) CN1845872A (ja)
TW (1) TW200526516A (ja)
WO (1) WO2005023705A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5374801B2 (ja) * 2004-08-31 2013-12-25 富士通株式会社 炭素元素からなる線状構造物質の形成体及び形成方法
KR100735488B1 (ko) * 2006-02-03 2007-07-04 삼성전기주식회사 질화갈륨계 발광다이오드 소자의 제조방법
KR101002336B1 (ko) * 2008-02-04 2010-12-20 엘지디스플레이 주식회사 나노 디바이스, 이를 포함하는 트랜지스터, 나노 디바이스및 이를 포함하는 트랜지스터의 제조 방법
US8084310B2 (en) * 2008-10-23 2011-12-27 Applied Materials, Inc. Self-aligned multi-patterning for advanced critical dimension contacts
JP5740819B2 (ja) * 2010-02-22 2015-07-01 株式会社ニコン 空間光変調器の製造方法、空間光変調器、照明光発生装置および露光装置
MX2012011301A (es) * 2010-03-31 2012-10-15 Kaneka Corp Estructura, microcircuito para detector de resonancia del plasmon superficial localizado, detector de resonancia del plasmon superficial localizado, y metodos de manufactura para los mismos.
CN102324351A (zh) * 2011-09-07 2012-01-18 郑州航空工业管理学院 一种新型碳纳米管场发射冷阴极及其制造方法
US8557675B2 (en) 2011-11-28 2013-10-15 Globalfoundries Inc. Methods of patterning features in a structure using multiple sidewall image transfer technique
US8669186B2 (en) 2012-01-26 2014-03-11 Globalfoundries Inc. Methods of forming SRAM devices using sidewall image transfer techniques
JP5888685B2 (ja) * 2014-07-01 2016-03-22 国立大学法人名古屋大学 カーボンナノウォールを用いた電子デバイス
CN104900802B (zh) * 2015-04-27 2018-02-13 江苏多维科技有限公司 用于自旋电子器件钉扎层的快速热处理方法和装置
CN112233702B (zh) * 2020-10-26 2021-10-01 东北师范大学 一种水凝胶修饰的高稳定碳基全息光盘的制备方法及应用
CN115841933B (zh) * 2023-02-24 2023-04-21 四川新能源汽车创新中心有限公司 冷阴极尖锥及其制备方法、冷阴极尖锥阵列及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06204034A (ja) * 1992-12-25 1994-07-22 Sony Corp 磁性素子及びその製造方法
JPH08321085A (ja) * 1995-03-23 1996-12-03 Sony Corp 極微小構造素子、その製造方法、記録方法、情報伝達方法、配線及び論理素子
US6146227A (en) * 1998-09-28 2000-11-14 Xidex Corporation Method for manufacturing carbon nanotubes as functional elements of MEMS devices
WO2000019494A1 (en) * 1998-09-28 2000-04-06 Xidex Corporation Method for manufacturing carbon nanotubes as functional elements of mems devices
EP1072693A1 (en) * 1999-07-27 2001-01-31 Iljin Nanotech Co., Ltd. Chemical vapor deposition apparatus and method of synthesizing carbon nanotubes using the apparatus
US6401526B1 (en) * 1999-12-10 2002-06-11 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotubes and methods of fabrication thereof using a liquid phase catalyst precursor
JP2003115259A (ja) * 2001-10-03 2003-04-18 Sony Corp 電子放出装置及びその製造方法、冷陰極電界電子放出素子及びその製造方法、冷陰極電界電子放出表示装置及びその製造方法、並びに、薄膜のエッチング方法

Also Published As

Publication number Publication date
TW200526516A (en) 2005-08-16
EP1661851A1 (en) 2006-05-31
TWI293945B (ja) 2008-03-01
KR20060073611A (ko) 2006-06-28
JP2005081465A (ja) 2005-03-31
CN1845872A (zh) 2006-10-11
US20080315746A1 (en) 2008-12-25
WO2005023705A1 (ja) 2005-03-17

Similar Documents

Publication Publication Date Title
JP4329014B2 (ja) 微細構造体の製造方法および微細構造体、表示装置、ならびに記録装置の製造方法および記録装置
US7828620B2 (en) Method of manufacturing tubular carbon molecule and tubular carbon molecule, method of manufacturing field electron emission device and field electron emission device, and method of manufacturing display unit and display unit
US8030191B2 (en) Method of manufacturing micro structure, and method of manufacturing mold material
Xu et al. Novel cold cathode materials and applications
US7820064B2 (en) Spinodally patterned nanostructures
US20070036910A1 (en) Apparatus for patterning recording media
JP5267884B2 (ja) 金属ガラス及びそれを用いた磁気記録媒体並びにその製造方法
US7115863B1 (en) Probe for scanning probe lithography and making method thereof
WO2007078316A2 (en) Tapered probe structures and fabrication
JP4965835B2 (ja) 構造体、その製造方法、及び該構造体を用いたデバイス
TWI223826B (en) Tunneling emitter with nanohole openings
JP2005059167A (ja) 微細構造体の製造方法および微細構造体、ならびに記録装置の製造方法および記録装置
JP2005162571A (ja) 筒状分子の製造方法および筒状分子構造、並びに表示装置および電子素子
JP4529479B2 (ja) 微細構造体の製造方法および表示装置
JP4161191B2 (ja) 電界電子放出素子の製造方法
Cronin et al. Bismuth nanowires for potential applications in nanoscale electronics technology
JP4161192B2 (ja) 筒状炭素分子の製造方法および記録装置の製造方法
JP4971612B2 (ja) 構造体、その製造方法、及び該構造体を用いたデバイス
WO2008056190A2 (en) Ordered array of nanostructures and method of fabrication
Wiesendanger Nanofabrication by scanning probe instruments: methods, potentail applications and key issues
Felter et al. Field emitter arrays and displays produced by ion tracking lithography
JP2003017241A (ja) 微細発光素子及びその製造方法
SIRH Nano/Femtosecond laser processing in developing nanocrystalline functional materials for multi-core orthogonal fluxgate sensor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060808

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090521

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090603

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees