JP4309675B2 - チタン合金の製造方法 - Google Patents

チタン合金の製造方法 Download PDF

Info

Publication number
JP4309675B2
JP4309675B2 JP2003038809A JP2003038809A JP4309675B2 JP 4309675 B2 JP4309675 B2 JP 4309675B2 JP 2003038809 A JP2003038809 A JP 2003038809A JP 2003038809 A JP2003038809 A JP 2003038809A JP 4309675 B2 JP4309675 B2 JP 4309675B2
Authority
JP
Japan
Prior art keywords
titanium
chloride
magnesium
metal
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003038809A
Other languages
English (en)
Other versions
JP2004244715A (ja
Inventor
英一 深澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP2003038809A priority Critical patent/JP4309675B2/ja
Publication of JP2004244715A publication Critical patent/JP2004244715A/ja
Application granted granted Critical
Publication of JP4309675B2 publication Critical patent/JP4309675B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【0001】
【発明の属する技術分野】
本発明は、チタン合金の製造法に係り、特に、合金チタンスクラップを利用した安価なチタン合金の製造技術に関する。
【0002】
【従来の技術】
金属チタンの製造方法としては、従来より四塩化チタンを金属マグネシウムで還元してスポンジチタンを得るクロール法が一般的である。しかしながら、クロール法はバッチ処理であるため、金属チタンの製造コストを大幅に低減するには多くの課題が残されている。一方、チタン材は近年需要が伸びてきており、スクラップの発生量も増加する傾向にあると考えられるものの、その有効利用が不充分であり今後の対応が望まれている。
【0003】
チタンスクラップは、チタンインゴットを鍛造して得られたスラブ表面の切削時に発生する研削屑または切削屑、あるいは、圧延板や棒あるいは線を加工する際に発生する切断片の形態で発生する。あるいは、スポンジチタンの低品位部位や、その他のチタンリサイクル材がチタンスクラップとして利用される。
【0004】
これらの一部チタンスクラップは、洗浄後、そのまま又はスポンジチタンに混合して真空アーク溶解原料や電子ビームによる溶解原料として再利用されてきた。
【0005】
しかしながら、前記のような手法で製造されたチタンインゴットには、原料であるチタンスクラップに含まれる不純物がそのまま溶製インゴット中に混入するため高い品質特性が要求される場合には問題があった。
【0006】
特許文献1(米国特許2、839、385号)においては、粒状チタンと四塩化チタンを溶融塩化マグネシウム中で反応させて二塩化チタン等のチタン低級塩化物を一旦生成した後、チタン低級塩化物を金属マグネシウムで還元してチタン粒子を連続的に製造する技術が開示されている。
【0007】
【特許文献1】
米国特許2,839,385号(コラム4)
【0008】
【発明が解決しようとする課題】
しかしながら、上記特許文献1では、合金を含むチタンスクラップの処理や不純物の分離に関しては考慮されていない。このようにチタンスクラップとりわけ合金チタンスクラップを有効活用して安価でしかも高品質の金属チタンまたはチタン合金を製造する技術が望まれている。
【0009】
【課題を解決するための手段】
本発明のチタン合金の製造方法は、合金成分のバナジウムを含みチタンを主成分としたチタン合金材と四塩化チタンとを第1の反応容器に充填した溶融塩化マグネシウム中で反応させてチタン低級塩化物およびバナジウム塩化物を生成させ、次いで、該チタン低級塩化物およびバナジウム塩化物を含む溶融塩化マグネシウムを金属マグネシウムが充填された第2の反応容器中に供給して、前記チタン低級塩化物およびバナジウム塩化物を還元して上記第2の反応容器内でチタン−バナジウム合金を生成させると共に、前記還元反応で副生した溶融塩化マグネシウムの一部を前記第1の反応容器に戻し、残りの溶融塩化マグネシウムはマグネシウム電解装置に導き、前記金属マグネシウム電解装置で製造された金属マグネシウムを前記チタン低級塩化物およびバナジウム塩化物の還元剤に用いることを特徴としている。
【0010】
上記製造方法によれば、チタンと塩素との親和力が低い鉄などの不純物は、塩化されずにその比重差によって該金属チタン材の収納部内、または第1の容器の底部へ沈降、分離する。また、同様にして酸素もそのまま酸化物の形で比重差により沈降分離させることができる。
【0011】
一方で、チタンと同様に塩素との親和力が強い合金スクラップ原料中のバナジウム等の有用金属はチタンと共に塩化物として抽出され、還元反応で再びチタンと共に回収、再利用される。したがって、本発明では、不純物が少なく市場の要求を満たす高品位の金属チタン又はチタン合金を安価なチタンスクラップを利用することで製造することができる。また、純チタンスクラップのみならず合金スクラップ原料を本発明にしたがって処理することで合金スクラップ中の有用金属を含め資源の再利用も図ることができる。
【0012】
以下に本発明の好適な実施の形態について説明する。
第1の反応容器の底部に、不純物を含むスラッジを分離、捕集することが望ましい。また、第1の反応容器中の溶融塩を外部へ取り出し、この溶融塩を第2の反応容器中に供給する溶融塩移送管を備えると好適である。このような態様によれば、溶融塩移送管を除き第1と第2の反応容器として既存のクロール法による反応容器を利用することもできる。なお、溶融塩は、ポンプや加圧圧送等の手段により移送することができる。
【0013】
本願発明の製造方法の好適な態様を図面を参照しながらさらに具体的に説明する。図1は、本発明の製造方法を実施するための金属チタンの製造装置を示す。図1において符号1は反応容器(第1の反応容器)、符号2は還元容器(第2の反応容器)であり、それらは密閉容器として構成されている。反応容器1の内部には、その頂部を貫通して底部近傍まで延在する四塩化チタン供給管12が配置されている。また、反応容器1と還元容器2の頂部には、溶融塩移送管4の両端部が貫通し、その両端部は下方に向けて伸びている。さらに、反応容器1の頂部には、塩化マグネシウム供給管6が貫通している。
【0014】
図1において符号3はマグネシウム電解装置である。電解装置3で生成した溶融マグネシウムは還元容器2の頂部から供給される。還元容器2の底部には、塩化マグネシウム抜出管6が配設され、連続的又は間欠的に塩化マグネシウムを系外に取出す。系外に取出された塩化マグネシウムの一部は、反応容器1に供給され、残りは電解装置3に戻されて、金属マグネシウムと塩素に電気分解される。反応容器1の内部には、原料として金属チタン材を装入した収容部15が四塩化チタン供給管の上方に近接して配置される。
【0015】
上記構成の金属チタンの製造装置では、金属チタン材と四塩化チタンから溶融塩中でチタン低級塩化物を生成し、次いで、チタン低級塩化物を含む溶融塩を金属マグネシウム中に投入し、チタン低級塩化物を還元して金属チタンを製造する。以下、この製造方法について詳述する。
【0016】
後述する還元容器2で副生された溶融塩化マグネシウムの一部は、反応容器1に供給され、残りはマグネシウム電解装置に送られて金属マグネシウムが再生される。次いで、チタンスクラップなどの金属チタン材を収容した収容部15が溶融塩化マグネシウム浴中に浸漬させた後、四塩化チタンが四塩化チタン供給管12を介して溶融塩化マグネシウム浴中に供給される。収容部15は、四塩化チタン供給管12の吐出口の上方に近接して配置されるので、供給された四塩化チタンは気化し収容部15中の金属チタンと容易に接触して反応し、チタン低級塩化物である二塩化チタンや三塩化チタンが生成する。
【0017】
上記の反応で溶融塩化マグネシウム中に生成したチタン低級塩化物の一部は溶融塩化マグネシウムに溶解するが、溶解度を越えたチタン低級塩化物は固体の状態で溶融塩化マグネシウム中に析出、懸濁する。このようなチタン低級塩化物を含む溶融塩化マグネシウムは、溶融塩移送管4を介して還元容器2に移送される。なお、この移送の動力として溶融塩移送管4の途中にポンプを設けたり、あるいは反応容器1の上部空間を加圧するコンプレッサー等の加圧手段を設けることができる。
【0018】
また、移送管4の代りに、専用容器を使ってバッチ式により塩化マグネシウムを還元容器2に移してもよい。このような移送手段をとることで現有設備をフルに活用することができる。
【0019】
還元容器2には、マグネシウム電解装置3で生成された溶融金属マグネシウムが予め装入されている。そこに反応容器1から移送されたチタン低級塩化物を含んだ溶融塩化マグネシウムが供給されると、溶融塩化マグネシウム浴中のチタン低級塩化物は、金属マグネシウムによって還元されて金属チタンとなり、併せて溶融塩化マグネシウムを副生する。
【0020】
生成した金属チタンは、微細な金属チタンが一部焼結し、多孔質状のスポンジチタン塊を形成する。
ただし、本発明では、溶融塩化マグネシウム中に均一分散したチタンの低級塩化物を金属マグネシウムで還元するため、クロール法と異なり局所的な発熱反応が緩和され、還元容器の熱的損傷も軽減される。
【0021】
還元反応で副生した溶融塩化マグネシウムの一部は、マグネシウム電解装置3に移送されて金属マグネシウムと塩素ガスに分解される。生成した金属マグネシウムは、還元容器2に供給されてチタン低級塩化物の還元剤として、また、塩素ガスは塩化工程へ移送され四塩化チタン原料として再利用される。
【0022】
図1に示した反応容器1は、外部から加熱して反応温度を維持するように構成することが好ましい。反応温度は、700℃〜1000℃の範囲の中から適宜選択することが好ましい。反応温度が700℃以下では反応速度が小さく生産性が低下する。一方、反応温度は高い方が好ましいものの1000℃を超えるような高温域になると、金属マグネシウムや塩化マグネシウムの蒸発ロスが大きく、また、還元容器の強度も限界に達するので好ましくない。このような事情を考慮すると、反応容器1における反応温度は、750℃〜900℃がより好適である。
【0023】
原料としての金属チタン材は、市場で入手されるチタンスクラップのみならず、低品位のスポンジチタンあるいはチタン屑等、広範囲の金属チタン材を利用することができる。市場で入手しうるチタンスクラップは、切削油やゴミが付着している場合があるので、反応容器2内の塩化マグネシウム浴内に投入する前に洗浄処理して油分を除去しておくことが好ましい。
【0024】
溶融塩化マグネシウム浴中に浸漬する金属チタン材は、1mm〜10mm程度の大きさ、厚みに破砕・整粒しておくことが好ましい。このような大きさの金属チタン材に整粒しておくことで、四塩化チタンとの反応を効率よく行わせることが可能となる。
【0025】
上記実施形態では、溶融化マグネシウム浴中に浸漬された金属チタン材は、パンチプレートや網等の通気、通液性を有する素材で構成された収容部15の中に保持されるので、四塩化チタンと金属チタン材との接触を良好に維持することができる。また、金属チタン材と四塩化チタンとの反応で生成したチタン低級塩化物の溶融塩化マグネシウム浴への溶解分散も容易となる。
【0026】
金属チタン材は収容部15に予め仕込んだものを1回ごとに溶融塩化マグネシウム浴中に沈積して反応させることも可能であるが、溶融塩化マグネシウムの上方から所定の速度で浴中の収容部15に投入し沈降させても良い。この場合には、金属チタン材を予め1〜10mm程度の大きさの塊状にしておくことが好ましい。金属チタン材をそのような大きさの塊にしておくことにより、溶融塩化マグネシウム中の金属チタン材の沈降が良好となり、四塩化チタンとの反応を連続的に行わせることができる。溶融塩化マグネシウム浴中に浸漬させる金属チタン材は、純チタンに限るものではなく、チタン合金のスクラップを利用することもできる。以下、チタン合金のスクラップとして6Al−4V合金を用いた場合について、以下に説明する。
【0027】
チタン合金スクラップ中のAl成分は、四塩化チタンと反応して塩化アルミニウムを生成するが、この塩化アルミニウムは、浴中には殆ど溶解せず気化して系外に分離除去される。これに対して、チタン合金材中のバナジウムは、四塩化チタンと反応して溶融塩化マグネシウム浴中に溶解するため、チタン低級塩化物と一緒に還元工程に持ち込まれる。従ってチタン合金スクラップ原料中の有用金属であるほとんどのバナジウムは抽出されて還元反応を経て合金向けの合金スポンジチタンとして回収される。
【0028】
合金スクラップチタン材には、アルミニウムやバナジウム以外にも鉄や酸素等の不純物も含有されている。しかしながら、そのような成分は、塩化マグネシウム浴中では四塩化チタンと殆ど反応しないためスラッジとして合金スクラップの収容部内又は反応容器底部に沈降分離する。また、還元容器に溶融塩化マグネシウムを移送する前に十分に静置してスラッジを沈降させるか、あるいは、フィルター等によりろ過する等の処理を施しておくことが好ましい。このような処理を行うことで、チタン原材料中の不純物が効率よく分離除去され、純度の高いチタン合金を製造することができる。
さらに、別途、反応容器内に予めスラッジ捕集容器または排出パイプを施設してスラッジを連続的、あるいは、間欠的に抜き出しても良い。
【0029】
図1に示した還元容器2には、反応容器1内で生成されたチタン低級塩化物を含む溶融塩化マグネシウムを供給するが、還元容器2内には、上記のように金属マグネシウムを予め装入しておくことが好ましい。このような工程とすることで溶融塩化マグネシウム中に溶解あるいは懸濁しているチタン低級塩化物と金属マグネシウムとの接触を良好にしつつ反応を継続することができる。また、反応の進行に伴い還元剤である金属マグネシウムの滞留量が減少し還元反応が不良になるので、適宜追加供給することが好ましい。
【0030】
本発明に適用するチタンスクラップは、連続的に反応容器1内に供給しても良い。この際には、還元容器2に供給する金属マグネシウムを金属チタン材の供給速度に合わせて連続的に供給することで還元工程まで連続的に操業できる。
【0031】
還元工程で生成されたスポンジチタンは、溶融塩化マグネシウム中に均一に分散したチタン低級塩化物を還元して得られるため、クロール法で得られたスポンジチタンと比較して焼結が緩やかとなり還元容器2からのスポンジチタンの抜き出しが容易となる。
また、合金スクラップを原料とした場合には、塩化物として抽出されたバナジウム等の有用金属が均一に分布した合金スポンジチタンが得られる。
【0032】
還元容器2から抜き出されたスポンジチタン中の塩化マグネシウムは、真空分離工程にて分離除去されて高品位の金属スポンジチタンを得ることができる。また、真空分離せずに、希酸にてリーチング(leaching)した場合にはスポンジチタンと共に粉末状の(合金)チタンを得ることができる。生成されたスポンジチタンから破砕・整粒工程を経た後、VAR溶解工程を経てチタンインゴットを製造することができるが、還元工程で使用されたチタンスクラップ中に含有する合金成分や不純物量の程度に応じて、原料配合することで目的の品位を有する金属チタンを製造することができる。
【0033】
本願発明の金属チタンの製造方法ないし製造装置によれば、従来のクロール法で使用された設備を利用することができるという利点がある。また、本発明の還元容器2内で行われる反応は、クロール法の場合と異なりチタン低級塩化物と金属マグネシウムとの反応であるため、反応熱がクロール法に比べて小さくクロール法の問題点である熱放散で還元反応が律速されることなく、高い生産性を維持することができる。
【0034】
【実施例】
以下、具体的な実施例を参照して本発明をさらに詳細に説明する。
6Al−4Vチタン合金スクラップを原料の金属チタン材として低酸素チタン合金を製造した。6Al−4Vチタン合金スクラップの分析値を表1に示す。
【0035】
【表1】
Figure 0004309675
【0036】
(実施例1)
上記組成を有する6Al−4Vチタン合金スクラップを800℃に加熱した溶融塩化マグネシウム浴中に浸漬した後、ついで、四塩化チタンを浴中のチタン合金スクラップと接触反応させた。溶融塩化マグネシウム中のチタン、バナジウム、アルミニウムの含有量は、それぞれ、15wt%、0.7wt%、0.1wt%以下であった。反応終了後、800℃に加熱した金属マグネシウムが装入された還元容器内に反応容器内で生成されたチタン低級塩化物を含む溶融塩化マグネシウムを供給して還元反応を開始した。還元反応終了後、還元容器からスポンジチタンを取り出した後に、1050℃に加熱された真空分離容器内にて不純物を分離して表2に示す組成の合金スポンジチタンを得た。また、原料中のアルミニウムの多くは、AlClとして、反応容器上部冷却部に付着した。
【0037】
【表2】
Figure 0004309675
【0038】
(実施例2)
実施例1で生成したスポンジチタンを破砕整粒した後、金属アルミニウム及び酸化チタンと電解鉄を添加して6Al−4Vチタン合金製造用の溶解素材を準備した後、EB溶解にて以下の組成のチタン合金インゴットを製造した。
【0039】
【表3】
Figure 0004309675
【0040】
実施例1および2の結果から判るように、本発明によれば原料チタン合金スクラップに比べてFeおよびOは、大幅に低減され、高品位のチタン合金を製造することができる。また、6Al−4Vチタン合金スクラップを原料に用いることにより有用な金属バナジウムを溶解工程で添加することなくチタン合金として回収、再生することができる。
【0041】
【発明の効果】
以上説明したように本発明によれば、金属チタン材と四塩化チタンとを第1の反応容器に充填した溶融塩中で反応させてチタン低級塩化物を生成させると共にし、次いで、チタン低級塩化物を含む溶融塩を取り出し、この溶融塩を溶融金属マグネシウムが充填された第2の反応容器中に供給し、チタン低級塩化物を還元して第2の反応容器内にてスポンジチタンを生成するので、チタンスクラップを利用することにより不純物が低減された高品位の金属チタンを安価に製造することができ、しかも合金スクラップ中の有用金属の回収利用を図ることができる。
【図面の簡単な説明】
【図1】 本発明の実施形態の金属チタンの製造装置を示す概略図である。
【符号の説明】
1 反応容器(第1の反応容器)
2 還元容器(第2の反応容器)
3 マグネシウム電解装置
4 溶融塩移送管
15 収容部

Claims (1)

  1. 合金成分のバナジウムを含みチタンを主成分としたチタン合金材と四塩化チタンとを第1の反応容器に充填した溶融塩化マグネシウム中で反応させてチタン低級塩化物およびバナジウム塩化物を生成させ、次いで、該チタン低級塩化物およびバナジウム塩化物を含む溶融塩化マグネシウムを金属マグネシウムが充填された第2の反応容器中に供給して、前記チタン低級塩化物およびバナジウム塩化物を還元して上記第2の反応容器内でチタン−バナジウム合金を生成させると共に、前記還元反応で副生した溶融塩化マグネシウムの一部を前記第1の反応容器に戻し、残りの溶融塩化マグネシウムはマグネシウム電解装置に導き、前記金属マグネシウム電解装置で製造された金属マグネシウムを前記チタン低級塩化物およびバナジウム塩化物の還元剤に用いることを特徴とするチタン合金の製造方法。
JP2003038809A 2003-02-17 2003-02-17 チタン合金の製造方法 Expired - Fee Related JP4309675B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003038809A JP4309675B2 (ja) 2003-02-17 2003-02-17 チタン合金の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003038809A JP4309675B2 (ja) 2003-02-17 2003-02-17 チタン合金の製造方法

Publications (2)

Publication Number Publication Date
JP2004244715A JP2004244715A (ja) 2004-09-02
JP4309675B2 true JP4309675B2 (ja) 2009-08-05

Family

ID=33023225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003038809A Expired - Fee Related JP4309675B2 (ja) 2003-02-17 2003-02-17 チタン合金の製造方法

Country Status (1)

Country Link
JP (1) JP4309675B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011092909A1 (ja) * 2010-01-28 2011-08-04 国立大学法人東北大学 金属部材の製造方法および金属部材
WO2013128797A1 (ja) * 2012-02-29 2013-09-06 新日鉄住金化学株式会社 多孔質金属シートからなる色素増感太陽電池用集電体の製造方法および多孔質金属シートからなる色素増感太陽電池用集電体ならびに色素増感太陽電池
CN103882476B (zh) * 2012-12-21 2017-02-15 攀钢集团攀枝花钢铁研究院有限公司 一种含有低价氯化钛的电解质及金属钛的制备方法
JP7448444B2 (ja) 2020-08-28 2024-03-12 東邦チタニウム株式会社 塩化マグネシウム貯蔵容器の使用方法及び、金属マグネシウムの製造方法

Also Published As

Publication number Publication date
JP2004244715A (ja) 2004-09-02

Similar Documents

Publication Publication Date Title
US5259862A (en) Continuous production of granular or powder Ti, Zr and Hf or their alloy products
US9567227B2 (en) Process for producing silicon, silicon, and panel for solar cells
JP4132526B2 (ja) 粉末状チタンの製造方法
JP4035323B2 (ja) 冶金品位ケイ素の精製
JP4309675B2 (ja) チタン合金の製造方法
JP2002129250A (ja) 金属チタンの製造方法
US2171439A (en) Process for the production of reguline beryllium and beryllium alloys
WO2005083135A1 (ja) Ca還元によるTi又はTi合金の製造方法
EP1995353A1 (en) METHOD OF REMOVING/CONCENTRATING METAL-FOG-FORMING METAL PRESENT IN MOLTEN SALT, APPARATUS THEREFOR, AND PROCESS AND APPARATUS FOR PRODUCING Ti OR Ti ALLOY BY USE OF THEM
JP3195156B2 (ja) チタンの製造方法
JP3981601B2 (ja) 金属チタンの精錬方法及びその精錬装置
JP2921790B2 (ja) 低酸素チタン材および低酸素チタン溶解素材の製造方法
JPH0681051A (ja) ハロゲン化金属の還元反応による金属の製造方法
JP2000327488A (ja) 太陽電池用シリコン基板の製造方法
JP2784324B2 (ja) チタンの製造方法
JP2003096588A (ja) 高純度金属マグネシウムの製造方法および高純度チタンの製造方法
JP3214836B2 (ja) 高純度シリコン及び高純度チタンの製造法
JP2005146420A (ja) 高純度インジウム
JP3809514B2 (ja) チタンの低級塩化物を還元して金属チタンを製造する方法
RU2181780C2 (ru) Способ извлечения золота из золотосодержащих полиметаллических материалов
JP3782415B2 (ja) 高純度スポンジチタン材およびチタンインゴットの製造方法
JP2004099975A (ja) ルテニウム及び/又はイリジウムの回収方法
NO153846B (no) Fremgangsmaate for rensning av silisium.
JP3564852B2 (ja) 高純度金属ルテニウム粉末の製造方法
JP3885913B2 (ja) 回収ガリウムの精製方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090122

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees