JP4308446B2 - Carbonaceous material and lithium secondary battery - Google Patents

Carbonaceous material and lithium secondary battery Download PDF

Info

Publication number
JP4308446B2
JP4308446B2 JP2001058399A JP2001058399A JP4308446B2 JP 4308446 B2 JP4308446 B2 JP 4308446B2 JP 2001058399 A JP2001058399 A JP 2001058399A JP 2001058399 A JP2001058399 A JP 2001058399A JP 4308446 B2 JP4308446 B2 JP 4308446B2
Authority
JP
Japan
Prior art keywords
phase
particles
fine particles
carbonaceous material
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001058399A
Other languages
Japanese (ja)
Other versions
JP2002260658A (en
Inventor
恵子 松原
利章 津野
揆允 沈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2001058399A priority Critical patent/JP4308446B2/en
Priority to KR10-2001-0068302A priority patent/KR100424636B1/en
Priority to US10/087,247 priority patent/US6733922B2/en
Priority to CNB021058458A priority patent/CN1220291C/en
Publication of JP2002260658A publication Critical patent/JP2002260658A/en
Application granted granted Critical
Publication of JP4308446B2 publication Critical patent/JP4308446B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム二次電池用の炭素質材料及びリチウム二次電池に関するものである。
【0002】
【従来の技術】
小型軽量化及び高性能化が進んでいる携帯電子機器のニーズに応えるため、リチウム二次電池の高容量化が急務となっている。
ところで、リチウム二次電池の負極活物質の一つである黒鉛は、372mAh/gの理論電気容量を有するが、これよりも高容量な負極活物質を得ようとするためには、非晶質炭素材料や、あるいは炭素材料に代わる新規材料の開発を進める必要がある。
黒鉛に代わる新規材料としては従来からケイ素やその化合物が検討されている。ケイ素やその化合物は、ケイ素自体がリチウムと合金を形成し、黒鉛よりも大きな電気容量が得られることが知られている。
そこで最近では、リチウム二次電池の負極材料として、(1)黒鉛にケイ素化合物の粉末を単に混合した材料や、(2)シランカップリング剤等を用いて黒鉛表面に微粉末のケイ素化合物等を化学的に固定した材料、(3)更に黒鉛系炭素質物とSi等の金属質物とを非晶質な炭素質物で結合または被覆した材料が提案されている。
【0003】
【発明が解決しようとする課題】
しかし、上記(1)の材料では、黒鉛とケイ素化合物とが必ずしも密着していないため、充放電サイクルの進行により黒鉛が膨張収縮した際に、ケイ素化合物が黒鉛から遊離してしまい、このケイ素化合物自体は電子伝導性が低いため、ケイ素化合物が負極活物質として十分に利用されなくなり、リチウム二次電池のサイクル特性が低下するという課題があった。
【0004】
また上記(2)の材料では、充放電サイクルが初期のうちは黒鉛にケイ素化合物が密着した状態で保たれ、従ってケイ素化合物が黒鉛と同様に負極活物質として機能するが、充放電サイクルが進むと、リチウムとの合金形成に伴ってケイ素化合物自体が膨張し、これによってシランカップリング剤による結合を破壊してケイ素化合物が黒鉛から遊離し、ケイ素化合物が負極活物質として十分に利用されなくなり、リチウム二次電池のサイクル特性が低下するという課題があった。また、負極材料の製造の際に施されるシランカップリング処理が均質に行われない場合があり、安定した品質の負極材料が容易に得られるまでには至っていないという課題があった。
【0005】
更に上記(3)の材料でも上記(2)の材料と同様な問題が発生する。即ち、充放電サイクルが進むと、リチウムとの合金形成に伴う金属質物自体の膨張により、非晶質炭素質物による結合を破壊して金属質物が黒鉛系炭素質物から遊離し、金属質物が負極活物質として十分に利用されなくなり、リチウム二次電池のサイクル特性が低下するという課題があった。
【0006】
本発明は、上記事情に鑑みてなされたものであって、充放電容量が高いと同時にサイクル特性に優れた炭素質材料を提供し、またこの炭素質材料を有するリチウム二次電池を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成するために、本発明は以下の構成を採用した。
本発明の炭素質材料は、X線広角回折による(002)面の面間隔d002が0.337nm未満である黒鉛粒子の周りに、珪素及び炭素を少なくとも含有するとともに前記黒鉛粒子より粒径が小さな複合粒子が分散して配置され、かつ前記黒鉛粒子及び前記複合粒子が0.37nm以上の面間隔d002を有する非晶質炭素膜によって被覆されてなり、前記複合粒子は、結晶質珪素からなるSi微粒子の周りに導電性炭素材が配置されるとともに前記Si微粒子及び前記導電性炭素材が硬質炭素膜により被覆されてなり、前記Si微粒子は、結晶質Si相中にSiO2相、SiC相及びSiB4相が析出したものであることを特徴とする。
【0008】
なお本発明において、「周りに」の意義は、黒鉛粒子に対する複合粒子の位置関係を表すものであって、黒鉛粒子の「表面上もしくは表面近傍」を意味する。また、「周りに」の意義は、Si微粒子に対する導電性炭素材の位置関係をも表すものであって、Si微粒子の「表面上もしくは表面近傍」を意味する。
更に「分散して配置」の意義は、複数の複合粒子が凝集することなく相互に分散した状態で黒鉛粒子の表面に接合若しくは表面からわずかに離間して位置している状態を意味する。
また「被覆」の意義は、被覆対象粒子を完全に覆うことによって被覆対象粒子同士を結合させる状態を意味する。この場合、被覆対象粒子は必ずしも直接に接していなくても良い。
具体的には、黒鉛粒子及び複合粒子を非晶質炭素膜によって被覆するとは、黒鉛粒子及び複合粒子を非晶質炭素膜によって完全に覆って黒鉛粒子と複合粒子を結合させることや、非晶質炭素膜中に複合粒子を埋め込んで黒鉛粒子表面に近接させたことを意味する。
同様に、Si微粒子及び導電性炭素材を硬質炭素膜によって被覆するとは、Si微粒子及び導電性炭素材を硬質炭素膜によって完全に覆ってSi微粒子と導電性炭素材を結合させることや、硬質炭素膜中に導電性炭素材を埋め込んでSi微粒子表面に近接させたことを意味する。
更に、「析出」の意義は、結晶相の状態を説明する用語であり、母相中に母相と組成が異なる析出相が形成された状態を意味する。即ち、即ち、SiO2相、SiC相及びSiB4相がSi相中に一体不可分に含まれた状態を意味するのであり、Si相、SiO2相、SiC相及びSiB4相が相互に物理的に分離した状態をいうものではない。
【0009】
係る炭素質材料においては、黒鉛粒子及びSi微粒子がLiを吸蔵するので、黒鉛粒子単独の場合よりも充放電容量が向上する。
また黒鉛粒子に対して高比抵抗なSi微粒子の周りに導電性炭素材を配置することで、Si微粒子の導電性を見かけ上、向上させる。
更にSi微粒子を硬質炭素膜で被覆することにより、Liの吸蔵・放出に伴うSi微粒子の体積膨張・収縮が機械的に抑えられる。
更にまた、黒鉛粒子と複合粒子を非晶質炭素膜で覆うことにより、黒鉛粒子が直接に電解液に触れることなく電解液分解が抑制されるとともに、複合粒子が黒鉛粒子から脱落することがなく、更に充電による体積膨張に起因するSi微粒子の微粉化を防止する。
【0010】
更に、結晶質Si相中にSiO2相、SiC相及びSiB4相が析出することにより、相対的にSi相の含有量が低減するとともに、Si相に歪みを与えて結晶性を低下させ、過度のLi吸蔵が抑制される。これにより、Liの吸蔵・放出によるSi微粒子の膨張・収縮が適度に抑制される。SiO2相、SiC相及びSiB4相はLiと反応しないためそれ自身は容量をもたないが、Liイオンの拡散を促進するとともに、Si微粒子の体積膨張による微粉化が抑制される。
更に、SiO2相、SiC相及びSiB4相の全てを含むため、上記の機能をより効果的に得ることができる。
以上のことから、本発明の炭素質材料では、充放電容量を高くするとともに、Si微粒子の体積膨張及び複合粒子の脱落、および充電による体積膨張に起因するSi微粒子の微粉化を抑制して、サイクル特性の低下を防止することが可能になる。
特に、Si微粒子の体積膨張による黒鉛粒子からの解離を防止してサイクル効率の低下をより効果的に防止することが可能になる。また、Liイオンの拡散速度が速まることにより、活物質が高密度に充填された電極においても素早いLiイオンの吸蔵・放出を行うことができ、充放電効率の向上が可能になる。
【0011】
また本発明の炭素質材料は、先に記載の炭素質材料であって、X線広角回折による前記Si相の(111)面の回折強度をPSiとし、前記SiO2相の(111)面の回折強度をPSiO2とし、前記SiC相の(111)面の回折強度をPSiCとし、前記SiB4相の(104)面の回折強度をPSiBとしたとき、PSiO2/PSiが0.005以上0.1以下であり、PSiC/PSiが0.005以上0.1以下であり、PSiB/PSiO2が0.1以上 5.0以下であり、PSiB/PSiCが0.1以上 5.0以下であることを特徴とする。
【0012】
係る炭素質材料においては、各相の回折強度比が上記の範囲であるため、Si相の含有量が極端に低下することがなく、Li吸蔵量が低下することがない。また、SiO2相、SiC相及びSiB4相の含有量を最適化することにより、Si微粒子の体積膨張・収縮を抑制する。
従って、炭素質材料の充放電容量を大きくし、更にSi微粒子の体積膨張による黒鉛粒子からの解離、および充電による体積膨張に起因するSi微粒子の微粉化を防いでサイクル効率の低下を防止することが可能になる。
【0013】
また本発明の炭素質材料は、先に記載の炭素質材料であって、前記黒鉛粒子の粒径が2μm以上70μm以下の範囲であり、前記複合粒子の粒径が50nmを越えて2μm以下の範囲であり、前記非晶質炭素膜の膜厚が50nm以上5μm以下の範囲であることを特徴とする。
【0014】
黒鉛粒子の粒径が2μm未満では、黒鉛粒子の粒径が複合粒子の粒径よりも相対的に小さくなり、複合粒子を黒鉛粒子の表面に均一に付着させることが困難になるので好ましくなく、粒径が70μmを越えると、集電体との密着性が低下するとともに、電極内の空隙も大きくなるので好ましくない。
また複合粒子の粒径を、50nmを越えて2μm以下、好ましくは50nmを越えて500nm以下とするのは、黒鉛粒子の表面に複合粒子を分散配置させるために複合粒子の粒径を黒鉛粒子の最小粒径である2μm以下にする必要があるためであり、さらに粒径を500nm以下とすれば膨張・収縮による複合粒子の体積変化を小さくできるからである。また粒径が50nm以下では、複合粒子に含まれるSi微粒子の結晶構造の乱れが大きくなって、Li吸蔵量が低下するので好ましくない。
更に非晶質炭素膜の膜厚を50nm未満にすると、黒鉛粒子が非晶質炭素膜によって完全に被覆されないおそれがあり、黒鉛粒子からの複合粒子の脱落を防止できなくなるとともに電解液分解を防止できなくなるおそれがあるので好ましくなく、膜厚が5μmを越えると、非晶質炭素に起因する不可逆容量の増加を招くとともに、リチウムイオンが黒鉛粒子まで到達せず、Li吸蔵量が低下して充放電容量が低下するので好ましくない。
【0015】
また本発明の炭素質材料は、先に記載の炭素質材料であって、前記Si微粒子の粒径が10nm以上2μm未満の範囲であり、前記導電性炭素材の比抵抗が10-4Ω・m以下であり、かつ前記硬質炭素膜の曲げ強度が500kg/cm2以上であるとともに膜厚が10nm以上1μm以下であることを特徴とする。
【0016】
Si微粒子の粒径を10nm以上とするのは、Si微粒子の結晶構造の乱れを防止してLi吸蔵量を向上させるためであり、粒径を2μm未満とするのは、複合粒子の粒径を黒鉛粒子の最小粒径である2μmより小さくするためである。
また、導電性炭素材の比抵抗を10-4Ω・m以下とするのは、Si微粒子に十分な導電性を付与するためである。
更に、硬質炭素膜の曲げ強度を500kg/cm2以上とするのは、Liの吸蔵、放出に伴うSi微粒子の膨張・収縮を機械的に抑えて体積変化を小さくするためであり、硬質炭素膜の膜厚を10nm以上1μm以下とするのは、膜厚が10nm未満であると導電性炭素材とSi微粒子との結着力が低下するとともに複合粒子の体積膨張を抑制する効果がなくなって好ましくないためであり、膜厚が1μmを越えると、リチウムイオンがSi微粒子まで到達せず、充放電容量が低下してしまうので好ましくないためである。
【0017】
また本発明のリチウム二次電池用の炭素質材料は、先に記載の炭素質材料であって、前記複合粒子の含有量が1重量%以上25重量%以下であることを特徴とする。
【0018】
複合粒子の含有量が1重量%未満では、炭素材料のみを活物質とした場合を上回る充分な放電容量を得ることができなくなるので好ましくない。
一方、含有量が25重量%を越えると炭素材料部分の寄与が少なくなり、放電初期からSiの反応電位近くまで電圧が増加してしまうので好ましくなく、更に複合粒子間の距離が狭まって再凝集化し、Si微粒子による体積膨張・収縮が起こりやすくなり、サイクル特性が低下するので好ましくない。
【0019】
次に、本発明のリチウム二次電池は、先のいずれかに記載の炭素質材料を備えたことを特徴とする。
係るリチウム二次電池は、例えば、正極と、電解質と、前記の負極材料を有する負極を少なくとも有するもので、円筒形、角形、コイン型、あるいはシート型等の種々の形状からなる。尚、本発明のリチウム二次電池は、ここで挙げた形態に限られるものではなく、このほかの形態からなるものであってもよい。
係るリチウム二次電池によれば、エネルギー密度が高く、サイクル特性に優れたリチウム二次電池を構成することができる。
【0020】
次に、本発明の炭素質材料の製造方法は、結晶質珪素からなるSi微粒子をB23粉末とともに炭素るつぼ中で1300℃以上1400℃以下で焼成することにより、結晶質Si相中にSiO2相、SiC相及びSiB4相を析出させる工程と、前記Si微粒子に導電性炭素材を付着するとともに、該Si微粒子を覆う高分子材料皮膜を形成して複合粒子前駆体とし、更に該複合粒子前駆体を焼成することにより前記高分子皮膜を硬質炭素膜として複合粒子を得る工程と、黒鉛粒子に前記Si微粒子を付着するとともに、該黒鉛粒子を覆う高分子材料皮膜を形成して炭素質材料前駆体とし、更に該炭素質材料前駆体を焼成することにより前記高分子皮膜を非晶質炭素膜として炭素質材料を得る工程とからなることを特徴とする
【0021】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
図1〜図4に、本発明のリチウム二次電池用の炭素質材料の断面模式図を示す。この炭素質材料は、黒鉛粒子の周りに複合粒子が分散して配置され、かつ黒鉛粒子と複合粒子とが非晶質炭素膜によって被覆されてなるものである。
【0022】
ここで、「周りに」とは、黒鉛粒子に対する複合粒子の位置関係を表すものであって、黒鉛粒子の「表面上もしくは表面近傍」を意味する。即ち、複合粒子が黒鉛粒子の表面に接合した状態と、複合粒子が黒鉛粒子の表面から離間して黒鉛粒子の周囲に位置することを含む。
更に「分散して配置」とは、複数の複合粒子が相互に分散した状態で黒鉛粒子の表面に接合若しくは表面からわずかに離間して位置している状態を意味する。尚、複合粒子同士が凝集しない程度で相互に接触していてもよい。
また、「被覆」とは、被覆対象粒子を完全に覆うことによって被覆対象粒子同士を結合させる状態を意味する。この場合、被覆対象粒子は必ずしも直接に接していなくても良い。
具体的には、黒鉛粒子及び複合粒子を非晶質炭素膜によって被覆するとは、黒鉛粒子及び複合粒子を非晶質炭素膜によって完全に覆って黒鉛粒子と複合粒子を結合させることや、非晶質炭素膜中に複合粒子を埋め込んで黒鉛粒子表面に近接させたことを意味する。
従って本発明の炭素質材料には、以下に示すような様々な形態のものが含まれる。
【0023】
例えば、図1に示す炭素質材料1は、黒鉛粒子2の表面に複数の複合粒子3…が相互に分散した状態で接合し、非晶質炭素膜4が複合粒子3…の粒径よりも小さくかつ均一な膜厚で黒鉛粒子2と複合粒子3…を被覆することにより構成されている。
【0024】
また図2に示す炭素質材料1は、複数の黒鉛粒子2…の表面に複数の複合粒子3…が相互に分散した状態で接合し、非晶質炭素膜4が複合粒子3…の粒径よりも大きくかつ均一な膜厚で黒鉛粒子2と複合粒子3…を覆うように形成されるとととともに、この非晶質炭素膜4によって複数の黒鉛粒子2…が結合されて構成されている。
図2では、2つまたは3つの黒鉛粒子2…が非晶質炭素膜4によって結合されている状態を示すが、これに限られず、4つ以上の黒鉛粒子2…が非晶質炭素膜4によって結合されていても良い。
【0025】
更に、図3に示す炭素質材料1は、黒鉛粒子2の表面に複数の複合粒子3…が相互に分散した状態で接合し、非晶質炭素膜4が黒鉛粒子2と複合粒子3…を被覆することにより構成されている。図3に示す非晶質炭素膜4の膜厚は不均一であり、例えば、黒鉛粒子2のみを覆う部分では複合粒子3…の粒径よりも大きく設定され、複合粒子3…を覆う部分では複合粒子3…の粒径よりも小さく設定されている。
【0026】
更に、図4に示す炭素質材料1は、黒鉛粒子2の表面に複数の複合粒子3…が相互に分散した状態で接合し、非晶質炭素膜4が黒鉛粒子2と複合粒子3…を被覆することにより構成されている。図4に示す非晶質炭素膜4の膜厚は不均一であり、例えば、黒鉛粒子2のみを覆う部分では複合粒子3…の粒径よりも大きく設定され、複合粒子3…を覆う部分では複合粒子3…の粒径よりも小さく設定され、しかも非晶質炭素膜4の表面は複合粒子3…の形状を反映することなく凹凸のないなめらかな面に形成されている。
【0027】
本発明の炭素質材料は図1〜4に示したものに限られず、上記の用語の意義を満足する限り、どのようなものであっても良い。
【0028】
炭素質材料に含まれる黒鉛粒子1は、X線広角回折による(002)面の面間隔d002が0.335nm以上0.337nm未満とされたものを用いることが好ましく、0.335nm以上0.34nm以下のものがより好ましい。
面間隔d002が0.337nm以上だと黒鉛粒子の結晶性が低下し、初期不可逆容量が著しく増加するとともに、電子伝導性が低下するので好ましくない。
また、黒鉛粒子2の粒径は、2μm以上70μm以下の範囲が好ましい。
黒鉛粒子2の粒径が2μm未満では、黒鉛粒子2の粒径が複合粒子3…の粒径よりも相対的に小さくなり、複合粒子3…を黒鉛粒子2の表面に均一に付着させることが困難になるので好ましくなく、粒径が70μmを越えると、集電体との密着性が低下するとともに、電極内の空隙も大きくなるので好ましくない。
【0029】
次に非晶質炭素膜4は図1〜図4に示すように、黒鉛粒子2及び複合粒子3…を覆うとともに、複合粒子3…を黒鉛粒子2の表面上に付着させている。この非晶質炭素膜4は、図2に示すように黒鉛粒子2…同士を結合させる作用もある。この非晶質炭素膜4は、熱可塑性樹脂、熱硬化性樹脂、ビニル系樹脂、セルロース系樹脂、フェノール系樹脂、石炭系ピッチ材料、石油系ピッチ材料、タール系材料等のうち少なくとも一種を熱処理して得られたもので、黒鉛化が比較的に進んでいないもので非晶質なものであり、0.37nm以上の面間隔d002を有するものである。非晶質炭素膜4が非晶質であるため、有機電解液が非晶質炭素膜4に触れても分解するおそれがなく、炭素質材料1の充放電効率を高くできる。
非晶質炭素膜4の面間隔d002が0.37nm未満であると、非晶質炭素膜4の結晶性が向上して黒鉛構造に近づき、有機電解液を分解させてしまうおそれがあるので好ましくない。
【0030】
また、非晶質炭素膜4によって複合粒子3…を黒鉛粒子2の表面上に配置させているので、比較的高比抵抗な複合粒子3…が黒鉛粒子2から遊離するのを防止して、充放電反応に寄与しない複合粒子3…の発生を防止できる。
また、この非晶質炭素膜4は、上記の高分子材料を溶解させた溶媒中に投入し、黒鉛粒子2の表面に高分子材料を析出させ、更に焼成して得られたものなので、黒鉛粒子2全体を完全に被覆させることが可能であり、また、密度が比較的低くリチウムイオンが透過しやすいので、黒鉛粒子2及び複合粒子3…とリチウムイオンとの反応を阻害することがない。
非晶質炭素膜4の膜厚は、50nm以上5μm以下の範囲であることが好ましい。膜厚が50nm未満では、黒鉛粒子2が完全に被覆されず、複合粒子3…が黒鉛粒子2から脱落するおそれがあるので好ましくなく、膜厚が5μmを越えると、非晶質炭素に起因する不可逆容量が増加するので好ましくない。
【0031】
次に複合粒子3…は、図5に示すように、Si微粒子5の周りに導電性炭素材6…が配置されるとともに、Si微粒子5と導電性炭素材6…とが硬質炭素膜7によって被覆されてなるものである。
また、Si微粒子3…は、結晶質Si相中にSiO2相、SiC相及びSiB4相が析出したものである。
ここで、「周りに」とは、Si微粒子5に対する導電性炭素材6…の位置関係を表すものであって、Si微粒子5の「表面上もしくは表面近傍」を意味する。即ち、導電性炭素材6…がSi微粒子5の表面に接合した状態と、導電性炭素材6…がSi微粒子5の表面から離間してSi微粒子5の周囲に位置することを含む。
また、Si微粒子5と導電性炭素材6…とを硬質炭素膜7によって被覆するとは、Si微粒子5及び導電性炭素材6…を硬質炭素膜7によって完全に覆ってSi微粒子5と導電性炭素材6…を結合させることや、硬質炭素膜7中に導電性炭素材6…を埋め込んでSi微粒子5表面に近接させたことを含む。
【0032】
更に、「析出」とは、結晶相の状態を説明する用語であり、母相中に母相と組成が異なる析出相が形成された状態を意味する。即ち、Si相中にSiO2相、SiC相及びSiB4相が一体不可分に含まれた状態を意味するのであり、Si相、SiO2相、SiC相及びSiB4相が相互に物理的に分離した状態をいうものではない。
【0033】
複合粒子3の粒径は、50nmを越えて2μm以下の範囲が好ましく、50nmを越えて500nm以下の範囲がより好ましい。
複合粒子3の粒径を2μm以下とするのは、黒鉛粒子2の表面に複合粒子3…を分散配置させるためには複合粒子3…の粒径を黒鉛粒子2の最小粒径である2μm以下にする必要があるためであり、更に粒径を500nm以下とすればリチウムの吸蔵、放出に伴うSi微粒子5の膨張・収縮による体積変化を小さくできるからである。また粒径の下限値を50nmを越えてとする理由は、50nm以下であると複合粒子3に含まれるSi微粒子5の結晶構造の乱れが大きくなり、Li吸蔵量が低下して充放電容量が少なくなるおそれがあるためである。
【0034】
Si微粒子5は結晶質珪素(Si相)を主体として含み、更にSiO2相、SiC相及びSiB4相が析出してなるものであり、粒径が10nm以上2μm未満の範囲のものである。
珪素はリチウムと合金を形成する元素であり、この珪素からなるSi相にリチウムイオンが作用することにより合金を形成する。特にリチウムイオンはSi微粒子5の表面若しくはSi微粒子5内部にある空隙部分に侵入して合金を形成し、これによりSi微粒子5自体が膨張する。
【0035】
また、このSi微粒子5にはSiO2相、SiC相及びSiB4相が含まれており、これらの相はリチウムと反応しないためそれ自身は容量をもたないが、リチウムイオンの拡散を促進する作用がある。
従って、Si相中にSiO2相、SiC相及びSiB4相が含まれると、Si相中におけるリチウムイオンの拡散速度が向上し、例えばこの炭素質材料が高密度に充填された電極においても素早いLiイオンの吸蔵・放出を行うことができ、充放電効率を向上させることができる。
【0036】
また、Si微粒子5にSiO2相、SiC相及びSiB4相が含まれると、相対的にSi相の含有量が低下し、またSi相に歪みを与えて結晶性を低下させる。これによりリチウムイオンの吸蔵量が若干低下するが、同時にリチウムの吸蔵・放出に伴うSi微粒子の膨張、収縮も適度に抑制される。これにより、Si微粒子の体積膨張による微粉化が抑制されるとともに、Si微粒子の体積膨張による複合粒子の脱落が少なくなり、サイクル特性の低下を防止できる。
【0037】
具体的には、X線広角回折によるSi相の(111)面の回折強度をPSiとし、SiO2相の(111)面の回折強度をPSiO2とし、SiC相の(111)面の回折強度をPSiCとし、SiB4相の(104)面の回折強度をPSiBとしたとき、PSiO2/PSiが0.005以上0.1以下であり、PSiC/PSiが0.005以上0.1以下であり、PSiB/PSiO2が0.1以上 5.0以下であり、PSiB/PSiCが0.1以上 5.0以下であることが好ましい。
SiO2/PSiが0.005未満であると、SiO2相の含有量が低下し、Si微粒子5の膨張、収縮を抑制することができなくなり、またリチウムイオンの拡散速度が低下するので好ましくない。PSiO2/PSiが0.1を越えると、Si微粒子5中のSi相の含有量が低下して充放電容量が低下してしまうので好ましくない。
また、PSiC/PSiが0.005未満の場合も、SiC相の含有量が低下し、Si微粒子5の膨張、収縮を抑制することができなくなり、またリチウムイオンの拡散速度が低下するので好ましくなく、PSiC/PSiが0.1を越えるとSi微粒子5中のSi相の含有量が低下して充放電容量が低下してしまうので好ましくない。
【0038】
更に、PSiB/PSiO2が0.1未満であると、Si微粒子5の膨張、収縮を抑制する効果がほとんどなくなるため好ましくない。また、PSiB/PSiO2が5.0を越えると、SiO2相がリチウムイオンの拡散を促進させる効果を妨げるとともに、Si相の結晶構造の歪みが大きくなりすぎて放電容量が減少してしまうため好ましくない。
更にまた、PSiB/PSiCが0.1未満であると、Si微粒子5の膨張、収縮を抑制する効果がほとんどなくなるため好ましくない。また、PSiB/PSiCが5.0を越えると、SiC相がリチウムイオンの拡散を促進させる効果を妨げるとともに、Si相の結晶構造の歪みが大きくなりすぎて放電容量が減少してしまうため好ましくない。
尚、SiO2相、SiC相は特にリチウムイオンの拡散を促進させる効果が高く、SiB4相はSi微粒子5の膨張、収縮を抑制する効果が特に強いが、それぞれ単独では上記のような効果を十分に発揮することができず、全ての相が共存することにより、高効率、高容量維持率を示す電極材料を得ることができる。従って本発明においては、SiO2相、SiC相及びSiB4相の全てを必ず含むことが好ましい。
【0039】
尚、Si微粒子5の粒径を10nm以上とするのは、Si微粒子5の結晶構造の乱れを防止してLi吸蔵量を向上させるためであり、粒径を2μm未満とするのは、複合粒子3の粒径を黒鉛粒子2の最小粒径である2μmより小さくする必要があるからである。
【0040】
次に導電性炭素材6…は、Si微粒子5の表面上または表面近傍に配置されてなるもので、図5ではSi微粒子5の周りに粒子状の導電性炭素材6…が配置されているが、導電性炭素材6…の形状は粒子状に限られず、膜状、層状、繊維状等の様々な形態でもよい。
導電性炭素材6…は、半導体であるSi微粒子5の表面に位置してSi微粒子5に見かけ上の導電性を付与する。この導電性炭素材6…の比抵抗は10-4Ω・m以下の範囲が好ましい。比抵抗が10-4Ω・mを越えると、Si微粒子5の見かけ上の導電性が低下してSi微粒子5に対するリチウムイオンの充放電反応が円滑に進行せず、炭素質材料の充放電容量を向上させることができなくなるので好ましくない。
導電性炭素材6…としては、例えば、カーボンブラック、ケッチェンブラック、気相成長炭素繊維(VGCF)等を例示できる。
【0041】
硬質炭素膜7は、Si微粒子5及び導電性炭素材6…を覆うとともに、導電性炭素材6…をSi微粒子5の表面上に配置させている。この硬質炭素膜7は、ポリビニルアルコールやフェノール樹脂等を焼成して得られたもので、曲げ強度が500kg/cm2以上であるとともに膜厚が10nm以上1μm以下のものである。
【0042】
硬質炭素膜7は、リチウムイオンの充放電反応に伴うSi微粒子5の膨張、収縮に起因して生じる黒鉛粒子2からの複合粒子3の遊離を防止するためのもので、Si微粒子5の膨張、収縮を機械的に抑制する。従って硬質炭素膜7の曲げ強度を500kg/cm2以上にすることが好ましい。曲げ強度が500kg/cm2未満であると、Si微粒子5の膨張・収縮を機械的に抑えることができなくなり、複合粒子3が黒鉛粒子2から遊離するおそれがあるので好ましくない。
また、硬質炭素膜7の膜厚が10nm未満であると、導電性炭素材6…とSi微粒子5との結着力が低下するとともに複合粒子3の体積膨張を抑制する効果が低下して好ましくない。更に膜厚が1μmを越えると、非晶質炭素に起因する負可逆容量の増加を招くため好ましくない。
【0043】
そして、本発明の炭素質材料における上記の複合粒子3の含有量は、1重量%以上25重量%以下であることが好ましい。複合粒子3の含有量が1重量%未満では、炭素材料のみを活物質とした場合を上回る充分な放電容量を得ることができないので好ましくない。また含有量が25重量%を越えると炭素材料部分の寄与が少なくなり、放電初期からSiの反応電位に達してしまい、電池の平均電圧が低下するので好ましくなく、更に複合粒子3間の距離が狭まって再凝集化し、Si微粒子5による体積膨張・収縮が起こりやすくなり、サイクル特性が低下するので好ましくない。
【0044】
上記の炭素質材料1がリチウムイオンと反応する場合は、リチウムイオンが主として黒鉛粒子2に吸蔵されるとともにSi微粒子5…と化合して合金を形成する。このSi微粒子5…の表面には導電性炭素材6が付着していて導電性が見かけ上高くなっており、Si微粒子5…に対してもリチウムイオンが容易に合金化する。
このとき、黒鉛粒子2及びSi微粒子5…の体積が膨張するが、Si微粒子5…は硬質炭素膜76により被覆されているので、体積膨張が機械的に抑制され、Si微粒子5…を含む複合粒子3…が黒鉛粒子2から解離することがない。
また、Si微粒子5…にはSi相とSiO2相、SiC相及びSiB4相が含まれることから、リチウムイオンの吸蔵量が抑制されてSi微粒子5…の体積膨張が適度に抑えられ、これによっても、Si微粒子5…を含む複合粒子3…が黒鉛粒子2から解離することがない。
従って、Si微粒子5…を常に充放電反応に寄与させることができ、充放電サイクルが進行しても炭素質材料1の充放電容量が低下することがない。
【0045】
また、黒鉛粒子2と複合粒子3…を非晶質炭素膜4で覆うことにより、黒鉛粒子2が直接に有機電解液に触れることがなく、有機電解液の分解が抑制される。また、複合粒子3…が黒鉛粒子2から脱落することがなく、更に充電による体積膨張に起因するSi微粒子5…の微粉化が防止される。
【0046】
従って上記の炭素質材料1によれば、充放電容量を高くするとともに、Si微粒子5…の体積膨張及び複合粒子3…の脱落、並びに充電に伴う体積膨張に起因するSi微粒子5…の微粉化を抑制して、サイクル特性の低下を防止することができる。
【0047】
上記の炭素質材料は、例えば、次のようにして製造することができる。
この炭素質材料の製造は、複合粒子を製造する工程と、得られた複合粒子に黒鉛粒子を混合し、これらを非晶質炭素膜で被覆する工程とからなる。
まず、複合粒子を製造する工程では、Si相のみからなるSi微粒子と、ホウ素源としてホウ素若しくは酸化ホウ素等のホウ素化合物を用意し、Si微粒子ホウ素またはホウ素化合物とを炭素製るつぼに投入して不活性雰囲気中で1300〜1400℃程度で120〜300分間加熱する。この加熱により、るつぼの構成材料である炭素とSi相とが反応してSi微粒子中にSiC相が析出し、またホウ素源に含まれるホウ素とSi相とが反応してSi微粒子中にSiB4相が析出し、更に、僅かに混入した酸素とSi相が反応してSi微粒子中にSiO2相が析出する。
ただし、加熱温度が1300℃未満及び/または加熱時間が120分未満であると、SiC相、SiO2相及びSiB4相が十分に析出しないので好ましくなく、加熱温度が1400℃を越えるとSiが溶融するため好ましくなく、加熱時間が300分を越えると、SiC相、SiO2相及びSiB4相の析出量が過大になるので好ましくない。
【0048】
また、Si微粒子とホウ素、ホウ素化合物等のホウ素源の混合割合は、10:1とすることが好ましい。
Si微粒子に対してホウ素量が少ないと、SiB4相の析出量が少なくなるので好ましくなく、ホウ素量が過剰になると、Si相の結晶構造に歪みを与えすぎて、放電容量の低下を招くため好ましくない。
【0049】
次に、加熱後のSi微粒子と導電性炭素材とを、乾式混合あるいは湿式混合により混合する。湿式混合の場合、イソプロピルアルコール、アセトン、水等の分散媒を用いることが好ましい。
【0050】
次に、高分子材料を適当な溶媒に溶解し、この溶液にSi微粒子と導電性炭素材の混合物を混合した後、溶媒を除去する。溶媒を除去することにより、Si微粒子及び導電性炭素材に高分子膜を被覆した複合粒子前駆体が形成される。
なお、上記の高分子材料は、熱可塑性樹脂、熱硬化性樹脂、ビニル系樹脂、セルロース系樹脂、フェノール系樹脂のうち少なくとも一種を用いることが好ましく、特にフェノール樹脂を用いることが好ましい。また石炭系ピッチ材料、石油系ピッチ材料、タール系材料等のを用いてもよい。
【0051】
次に、複合粒子前駆体を熱処理することにより、高分子膜を炭化させて硬質炭素膜を形成する。
熱処理は、真空雰囲気中または不活性ガス雰囲気中で行うことが好ましく、熱処理温度は800℃以上1200℃以下の範囲が好ましく、熱処理時間は120分以上行うことが好ましい。
熱処理を真空雰囲気または不活性ガス雰囲気で行うと、高分子膜の酸化が防止されて良好な硬質炭素膜が形成できる。
尚、熱処理温度が800℃未満だと炭化が完全に行われず、硬質炭素膜の比抵抗が高く、リチウムイオンの挿入・脱理が行われにくくなり好ましくなく、熱処理温度が1200℃を越えると、Si微粒子が炭化されてSiCが過剰に生成するとともに、炭素膜の黒鉛化が進行し、膜の強度が低下するので好ましくない。同様に、熱処理時間が120分未満だと均一な硬質炭素膜が形成できないので好ましくない。
このようにして、複合粒子が得られる。
【0052】
次の工程では得られた複合粒子に、乾式混合あるいは湿式混合により黒鉛粒子を混合する。湿式混合の場合、エタノール等の分散媒を用いることが好ましい。
【0053】
次に、別の高分子材料を適当な溶媒に溶解し、この溶液に複合粒子及び黒鉛粒子の混合物を混合した後、溶媒を除去する。溶媒を除去することにより、複合粒子及び黒鉛粒子に高分子膜を被覆した炭素質材料前駆体が形成される。
なお、上記の高分子材料は、熱可塑性樹脂、熱硬化性樹脂、ビニル系樹脂、セルロース系樹脂、フェノール系樹脂等の高分子材料のうち少なくとも一種を用いることが好ましく、特にフェノール樹脂を用いることが好ましい。また石炭系ピッチ材料、石油系ピッチ材料、タール系材料等を用いても良い。
【0054】
次に、炭素質材料前駆体を熱処理することにより、高分子膜を炭化させて非晶質炭素膜を形成する。
熱処理は、真空雰囲気中または不活性ガス雰囲気中で行うことが好ましく、熱処理温度は800℃以上1200℃以下の範囲が好ましく、熱処理時間は120分以上行うことが好ましい。
熱処理を真空雰囲気または不活性ガス雰囲気で行うと、高分子膜の酸化が防止されて良好な非晶質炭素膜が形成できる。
尚、熱処理温度が800℃未満だと温度が低いために炭化が完全に行われず、非晶質炭素膜の比抵抗が高く、リチウムイオンの挿入・脱理が行われにくくなり好ましくなく、熱処理温度が1200℃を越えるとSi微粒子が炭化されてSiCが過剰に生成するとともに、高分子膜の黒鉛化が進行し、非晶質炭素膜の強度が低下するので好ましくない。
同様に、熱処理時間が120分未満だと均一な硬質炭素膜が形成できないので好ましくない。
このようにして、本発明に係る炭素質材料が得られる。
【0055】
上記の炭素質材料を有する負極と、リチウムの吸蔵・放出が可能な正極及び有機電解質とにより、リチウム二次電池を構成することができる。
正極としては、例えば、LiMn24、LiCoO2、LiNiO2、LiFeO2、V25、TiS、MoS等のリチウムの吸蔵、放出が可能な正極材料や、有機ジスルフィド化合物または有機ポリスルフィド化合物等の正極材料を含むものが例示できる。
正極または負極の具体例として、上記の正極材料または炭素質材料に、結着材と更に必要に応じて導電助材を混合し、これらを金属箔若しくは金属網からなる集電体に塗布してシート状に成形したものを例示できる。
【0056】
有機電解質としては、例えば、非プロトン性溶媒にリチウム塩が溶解されてなる有機電解液を例示できる。
非プロトン性溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ベンゾニトリル、アセトニトリル、テトラヒドロフラン、2−メチルテトラヒドロフラン、γ−ブチロラクトン、ジオキソラン、4−メチルジオキソラン、N、N−ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、ジオキサン、1,2−ジメトキシエタン、スルホラン、ジクロロエタン、クロロベンゼン、ニトロベンゼン、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、エチルブチルカーボネート、ジプロピルカーボネート、ジイソプロピルカーボネート、ジブチルカーボネート、ジエチレングリコール、ジメチルエーテル等の非プロトン性溶媒、あるいはこれらの溶媒のうちの二種以上を混合した混合溶媒を例示でき、特にプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネートのいずれか1つを必ず含むとともにジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートのいずれか1つを必ず含むことが好ましい。
【0057】
また、リチウム塩としては、LiPF6、LiBF4、LiSbF6、LiAsF6、LiClO4、LiCF3SO3、Li(CF3SO22N、LiC49SO3、LiSbF6、LiAlO4、LiAlCl4、LiN(Cx2x+1SO2)(Cy2y 1SO2)(ただしx、yは自然数)、LiCl、LiI等のうちの1種または2種以上のリチウム塩を混合させてなるものを例示でき、特にLiPF6、LiBF4のいずれか1つを含むものが好ましい。
またこの他に、リチウム二次電池の有機電解液として従来から知られているものを用いることもできる。
【0058】
また有機電解質の別の例として、PEO、PVA等のポリマーに上記記載のリチウム塩のいずれかを混合させたものや、膨潤性の高いポリマーに有機電解液を含浸させたもの等、いわゆるポリマー電解質を用いても良い。
更に、本発明のリチウム二次電池は、正極、負極、電解質のみに限られず、必要に応じて他の部材等を備えていても良く、例えば正極と負極を隔離するセパレータを具備しても良い。
【0059】
上記のリチウム二次電池によれば、上記の炭素質材料1を備えているので、エネルギー密度が高く、サイクル特性に優れたリチウム二次電池を構成することができる。
【0060】
【実施例】
[実施例の炭素質材料の製造]
平均粒径2μmのSi粉末10gと、酸化ホウ素1.4〜2.8gまたはホウ素1gを、内容積200mlの炭素製るつぼに入れ、アルゴンガス雰囲気中で1400℃で240分間加熱した。Si微粒子はこの加熱処理により凝集後硬化し、加熱前より大きな粒子となる。これをボールミル等により300nmの粒度になるまで粉砕した。
次に、粉砕後のSi微粒子1重量部に、2重量部のカーボンブラックを混合した。なお、カーボンブラックは比抵抗が10-4Ω・mのものであった。
次に10重量部のフェノール樹脂をイソプロピルアルコールに溶解させた溶液を用意し、この溶液に、先程のSi微粒子及びカーボンブラックの混合物を混合し、十分に攪拌した後、溶媒を除去した。このようにして、Si微粒子の表面にカーボンブラックとフェノール樹脂被膜とが付着してなる複合粒子前駆体を形成した。
次に、この複合粒子前駆体をアルゴン雰囲気中、1000℃で180分間熱処理することにより、ポリビニルアルコール樹脂皮膜を炭化して厚さ0.05μmの硬質炭素膜を形成した。
尚、上記と同じ条件でポリビニルアルコール樹脂を単独で炭化させた場合、得られる炭化物の曲げ強度は800kg/cm2程度であることから、上記の硬質炭素膜の曲げ強度も同程度であると推定される。
このようにして複合粒子を得た。
【0061】
次に、平均粒径15μmの天然黒鉛の95重量部に、5重量部の上記複合粒子を添加し、更にイソプロピルアルコールを加えて湿式混合した。尚、天然黒鉛のX線広角回折による(002)面の面間隔d002は0.3355nmであった。次に、上記の天然黒鉛と複合粒子の混合物に、10重量部のフェノール樹脂を含むイソプロピルアルコール溶液を添加して混合した後に、イロプロピルアルコールを蒸発させた。このようにして、天然黒鉛の表面に複合粒子とポリビニルアルコール樹脂皮膜とが付着してなる炭素質材料前駆体を形成した。
【0062】
次に、この炭素質材料前駆体を、真空雰囲気中、1000℃(1273K)で焼成することにより、フェノール樹脂を炭化させて厚さ0.05μmの非晶質炭素膜とした。
尚、上記と同じ条件でフェノール樹脂を単独で炭化させた場合、得られる炭化物の(002)面の面間隔d002が0.39nm程度であることから、上記の非晶質炭素膜の面間隔d002も同程度であると推定される。
このようにして実施例1〜4の炭素質材料を得た。
【0063】
[比較例の炭素質材料の製造]
平均粒径2.0μmのSi粉末10gと、酸化ホウ素2.8gまたはホウ素1gを、内容積100mlのジルコニウム製るつぼに入れ、アルゴンガス雰囲気中で1400℃で180分間加熱したこと以外は上記実施例1〜4と同様にして、比較例1及び2の炭素質材料を得た。
実施例2において作成した加熱後のSi微粒子を、ボールミル等により平均粒径が再び2μmの粒度になるまで粉砕したのち、実施例1〜4と同様の方法で比較例3の炭素質材料を得た。
更に、天然黒鉛のみからなる炭素質材料を比較例4とした。
【0064】
[充放電試験用のテストセルの作成]
上記の実施例1〜4及び比較例1〜4の炭素質材料に、ポリフッ化ビニリデンを混合し、更にN−メチルピロリドンを加えてスラリー液とした。このスラリー液を、ドクターブレード法により厚さ14μmの銅箔に塗布し、真空雰囲気中で120℃、24時間乾燥させてN−メチルピロリドンを揮発させた。このようにして、厚さ100μmの負極合材を銅箔上に積層した。なお、負極合材中のポリフッ化ビニリデンの含有量は8重量%であり、負極合材の密度は1.5g/cm3以上であった。
そして、負極合材を積層させた銅箔を直径13mmの円形に打ち抜いて実施例1〜4及び比較例1〜4の負極電極とした。
【0065】
実施例1〜4及び比較例1〜4の負極電極を作用極とし、円形に打ち抜いた金属リチウム箔を対極とし、作用極と対極との間に多孔質ポリプロピレンフィルムからなるセパレータを挿入し、電解液としてジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)及びエチレンカーボネート(EC)の混合溶媒に溶質としてLiPF6が1(モル/L)の濃度となるように溶解させたものを用いて、コイン型のテストセルを作成した。
そして、充放電電流密度を0.2Cとし、充電終止電圧を0V(L i/L i+)、放電終止電圧を1.5V(L i/ Li+)として充放電試験を行った。
表1に、実施例1〜4及び比較例1、2の1サイクル目における放電容量及び充放電効率を示す。
また、表2に、実施例2及び比較例3、4の20サイクル目の放電容量と1サイクル目の放電容量の容量比(20th/1st)を示す。ただし、容量比の測定は、1C放電で行った。
【0066】
【表1】

Figure 0004308446
【0067】
「表2」
試料 加熱粉砕後のSi微粒子 容量比(20th/1st)
実施例2 0.3μm 88.0%
比較例3 2.0μm 81.2%
比較例4 − 84.4%
【0068】
表1に示すように、比較例1及び2の1サイクル目の放電容量が、実施例1〜4とほぼ同等か、若しくは高くなっていることがわかる。
これは、実施例1〜4の場合、Si微粒子を炭素製るつぼ中で加熱したことにより、Si微粒子のSi相中にSiC相が析出し、リチウムと合金を形成するSi相の含有量が相対的に減少したためと考えられる。
一方、比較例1及び2は、ジルコニウム製のるつぼを用いたため、Si微粒子のSi相中にはSiC相が析出せず、このためSi相の含有量が相対的に実施例1〜4よりも高くなったたためと考えられる。
【0069】
更に、実施例1〜3と実施例4とを放電容量で比較すると、実施例4が高い放電容量を示している。
これは、実施例1〜3の場合、Si微粒子とB23を混合して加熱したことにより、B23の酸素原子がSiを酸化し、SiB4相の他にSiO2相が比較的多く析出したため、Si相の含有量が相対的に減少したためと考えられる。
一方、実施例4では、Si微粒子とBとを混合して加熱したため、実施例1〜3に比べて酸素が少ない状況であり、雰囲気中の微小な残存酸素等によりわずかにSiO2相が析出するものの、実施例1〜3よりもその量は少なく、このためSi相の含有量が相対的に実施例1〜3よりも高くなったためと考えられる。
【0070】
更に、実施例1〜3については、B23の添加量が増加するにつれて放電容量が低下している。
これは、B23の添加量が増加するに従ってSiB4相が多く析出し、Si相の含有量が相対的に減少したためと考えられる。
【0071】
次に充放電効率については、表1から、実施例1〜4の充放電効率が比較例1及び2よりも高くなっていることがわかる。
これは、Si微粒子中にSiC相、SiO2相及びSiB4相が析出し、リチウムと合金を形成するSi相の含有量が相対的に減少したために、Si微粒子自体の膨張、収縮が適度に抑制され、これにより複合粒子の黒鉛からの遊離が少なくなって、充放電効率が向上したためと考えられる。
また、SiC相、SiO2相及びSiB4相の析出により、Si相の結晶性が低下し、これによりSi相中におけるリチウムの拡散速度が向上したとも、充放電効率向上の一因と考えられる。
【0072】
図6には、実施例2の炭素質材料のSi微粒子のX線回折パターンを示す。図6から明らかなように、Si相の他に、SiC相、SiO2相及びSiB4相に由来する回折ピークが観察される。
Si相の(111)面の回折強度をPSiとし、SiO2相の(111)面の回折強度をPSiO2とし、SiC相の(111)面の回折強度をPSiCとし、SiB4相の(104)面の回折強度をPSiBとしたとき、図6から、PSiO2/PSi=0.034であり、PSiC/PSi=0.044であり、PSiB/PSiO2=1.50であり、PSiB/PSiC=1.16であることがわかる。
【0073】
次に、表2から明らかなように、実施例2の容量比は、比較例4よりも大幅に向上していることがわかる。
これは、1サイクル目の充放電効率が向上した理由と同様に、Si微粒子中にSiC相、SiO2相及びSiB4相が析出し、リチウムと合金を形成するSi相の含有量が相対的に減少したために、Si微粒子自体の膨張、収縮が適度に抑制され、これにより複合粒子の黒鉛からの遊離が少なくなって、サイクル特性が向上したためと考えられる。
また、SiC相、SiO2相及びSiB4相の析出により、Si相の結晶性が低下し、これによりSi相中におけるリチウムの拡散速度が向上したとも、サイクル特性向上の一因と考えられる。
また、比較例3の結果より、加熱焼成後のSi微粒子が大きいとSi微粒子の膨脹、収縮を抑制する硬化が薄れることがわかる。
【0074】
【発明の効果】
以上、詳細に説明したように、本発明の炭素質材料によれば、黒鉛粒子及びSi微粒子がLiを吸蔵するので、黒鉛粒子単独の場合よりも充放電容量が向上する。また黒鉛粒子に対して高比抵抗なSi微粒子の周りに導電性炭素材を配置することで、Si微粒子の導電性を見かけ上、向上させる。更にSi微粒子を硬質炭素膜で被覆することにより、Liの吸蔵・放出に伴うSi微粒子の体積膨張・収縮が機械的に抑えられる。更にまた、黒鉛粒子と複合粒子を非晶質炭素膜で覆うことにより、黒鉛粒子が直接に電解液に触れることなく電解液分解が抑制されるとともに、複合粒子が黒鉛粒子から脱落することがなく、更に充電による体積膨張に起因するSi微粒子の微粉化を防止する。更に、結晶質Si相中にSiO2相、SiC相及びSiB4相が析出することにより、相対的にSi相の含有量が低減するとともに、Si相に歪みを与えて結晶性を低下させ、過度のLi吸蔵が抑制される。これにより、Liの吸蔵・放出によるSi微粒子の膨張・収縮が適度に抑制される。SiO2相、SiC相及びSiB4相はLiと反応しないためそれ自身は容量をもたないが、Liイオンの拡散を促進するとともに、Si微粒子の体積膨張による微粉化が抑制される。更に、SiO2相、SiC相及びSiB4相の全てを含むため、上記の機能をより効果的に得ることができる。
以上のことから本発明の炭素質材料では、充放電容量を高くするとともに、Si微粒子の体積膨張及び複合粒子の脱落、および充電による体積膨張に起因するSi微粒子の微粉化を抑制して、サイクル特性の低下を防止することができる。
【0075】
また、本発明のリチウム二次電池によれば、本発明に係る炭素質材料を負極として備えているので、エネルギー密度及びサイクル特性を向上させることができる。
【図面の簡単な説明】
【図1】 本発明の実施形態である炭素質材料の一例を示す断面模式図である。
【図2】 本発明の実施形態である炭素質材料の別の一例を示す断面模式図である。
【図3】 本発明の実施形態である炭素質材料の更に別の一例を示す断面模式図である。
【図4】 本発明の実施形態である炭素質材料の他の一例を示す断面模式図である。
【図5】 本発明の実施形態である炭素質材料に含まれる複合粒子の一例を示す断面模式図である。
【図6】 加熱後のSi微粒子のX線回折パターンを示す図である。
【符号の説明】
1 炭素質材料
2 黒鉛粒子
3 複合粒子
4 非晶質炭素膜
5 Si微粒子
6 導電性炭素材
7 硬質炭素膜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a carbonaceous material for a lithium secondary battery and a lithium secondary battery.
[0002]
[Prior art]
In order to meet the needs of portable electronic devices that are becoming smaller, lighter, and higher in performance, there is an urgent need to increase the capacity of lithium secondary batteries.
Incidentally, graphite, which is one of the negative electrode active materials of lithium secondary batteries, has a theoretical electric capacity of 372 mAh / g. However, in order to obtain a higher capacity negative electrode active material, it is amorphous. It is necessary to proceed with the development of carbon materials or new materials that can replace carbon materials.
Conventionally, silicon and its compounds have been studied as a new material to replace graphite. It is known that silicon and its compounds form an alloy with lithium itself and can provide a larger electric capacity than graphite.
Therefore, recently, as a negative electrode material for a lithium secondary battery, (1) a material obtained by simply mixing a silicon compound powder with graphite, or (2) a fine silicon compound on the graphite surface using a silane coupling agent or the like. A chemically fixed material, and (3) a material obtained by bonding or covering a graphite-based carbonaceous material and a metallic material such as Si with an amorphous carbonaceous material have been proposed.
[0003]
[Problems to be solved by the invention]
However, in the material of (1) above, since the graphite and the silicon compound are not necessarily in close contact with each other, the silicon compound is liberated from the graphite when the graphite expands and contracts due to the progress of the charge / discharge cycle. Since the electron conductivity itself is low, the silicon compound is not sufficiently used as the negative electrode active material, and there is a problem that the cycle characteristics of the lithium secondary battery are deteriorated.
[0004]
In the material (2), the charge / discharge cycle is maintained in a state where the silicon compound is in close contact with the graphite during the initial stage. Therefore, the silicon compound functions as a negative electrode active material like graphite, but the charge / discharge cycle proceeds. And the silicon compound itself expands along with the alloy formation with lithium, thereby breaking the bond by the silane coupling agent and releasing the silicon compound from the graphite, the silicon compound is not sufficiently utilized as the negative electrode active material, There existed a subject that the cycling characteristics of a lithium secondary battery fell. Moreover, the silane coupling process performed at the time of manufacture of negative electrode material may not be performed uniformly, but the subject that the negative electrode material of the stable quality was not obtained easily occurred.
[0005]
Further, the same problem as the material (2) occurs in the material (3). That is, as the charge / discharge cycle progresses, the expansion of the metal material itself due to the formation of an alloy with lithium breaks the bond due to the amorphous carbon material and the metal material is released from the graphite-based carbon material, and the metal material is activated by the negative electrode. There is a problem that the cycle characteristics of the lithium secondary battery are deteriorated because the material is not sufficiently used as a substance.
[0006]
The present invention has been made in view of the above circumstances, and provides a carbonaceous material having high charge / discharge capacity and at the same time excellent cycle characteristics, and also provides a lithium secondary battery having this carbonaceous material. With the goal.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention adopts the following configuration.
The carbonaceous material of the present invention contains at least silicon and carbon around graphite particles having a (002) plane spacing d002 of less than 0.337 nm by X-ray wide angle diffraction, and has a particle size smaller than that of the graphite particles. Composite particles are dispersed and the graphite particles and the composite particles are covered with an amorphous carbon film having an interplanar spacing d002 of 0.37 nm or more. The composite particles are made of Si composed of crystalline silicon. A conductive carbon material is disposed around the fine particles, and the Si fine particles and the conductive carbon material are covered with a hard carbon film. The Si fine particles are formed of SiO in the crystalline Si phase.2Phase, SiC phase and SiBFourThe phase is precipitated.
[0008]
In the present invention, the meaning of “around” represents the positional relationship of the composite particles with respect to the graphite particles, and means “on or near the surface” of the graphite particles. Further, the meaning of “around” represents the positional relationship of the conductive carbon material with respect to the Si fine particles, and means “on or near the surface” of the Si fine particles.
Further, the meaning of “dispersed and arranged” means a state in which a plurality of composite particles are located on the surface of the graphite particles in a state of being dispersed or dispersed apart from each other without being aggregated.
The meaning of “coating” means a state in which the particles to be coated are bonded together by completely covering the particles to be coated. In this case, the coating target particles do not necessarily have to be in direct contact.
Specifically, covering the graphite particles and the composite particles with the amorphous carbon film means that the graphite particles and the composite particles are completely covered with the amorphous carbon film so that the graphite particles and the composite particles are bonded, or amorphous. This means that the composite particles were embedded in the carbonaceous film and brought close to the surface of the graphite particles.
Similarly, covering the Si fine particles and the conductive carbon material with the hard carbon film means that the Si fine particles and the conductive carbon material are completely covered with the hard carbon film to bond the Si fine particles and the conductive carbon material, It means that a conductive carbon material was embedded in the film and brought close to the surface of the Si fine particles.
Furthermore, the meaning of “precipitation” is a term for explaining the state of the crystal phase, and means a state in which a precipitation phase having a composition different from that of the parent phase is formed in the parent phase. That is, SiO2Phase, SiC phase and SiBFourThis means that the phase is inseparably contained in the Si phase, and the Si phase, SiO2Phase, SiC phase and SiBFourIt does not mean that the phases are physically separated from each other.
[0009]
In such a carbonaceous material, since the graphite particles and the Si fine particles occlude Li, the charge / discharge capacity is improved as compared with the case of the graphite particles alone.
Further, the conductivity of the Si fine particles is apparently improved by arranging a conductive carbon material around the Si fine particles having a high specific resistance to the graphite particles.
Further, by coating the Si fine particles with the hard carbon film, volume expansion / contraction of the Si fine particles accompanying the insertion / release of Li can be mechanically suppressed.
Furthermore, by covering the graphite particles and composite particles with an amorphous carbon film, the decomposition of the electrolytic solution is suppressed without the graphite particles touching the electrolytic solution directly, and the composite particles are not dropped from the graphite particles. Furthermore, the micronization of Si fine particles due to volume expansion due to charging is prevented.
[0010]
Furthermore, SiO in the crystalline Si phase2Phase, SiC phase and SiBFourPrecipitation of the phase relatively reduces the content of the Si phase, strains the Si phase, lowers the crystallinity, and suppresses excessive Li occlusion. Thereby, the expansion / contraction of the Si fine particles due to the insertion / release of Li is moderately suppressed. SiO2Phase, SiC phase and SiBFourSince the phase does not react with Li, the phase itself does not have a capacity, but promotes the diffusion of Li ions and suppresses pulverization due to volume expansion of Si fine particles.
Furthermore, SiO2Phase, SiC phase and SiBFourSince all of the phases are included, the above functions can be obtained more effectively.
From the above, in the carbonaceous material of the present invention, while increasing the charge / discharge capacity, suppressing the pulverization of the Si fine particles due to the volume expansion of the Si fine particles and the dropping of the composite particles, and the volume expansion due to charging, It becomes possible to prevent deterioration of cycle characteristics.
In particular, it is possible to prevent dissociation from the graphite particles due to the volume expansion of the Si fine particles, and to more effectively prevent a decrease in cycle efficiency. Further, by increasing the diffusion rate of Li ions, it is possible to quickly occlude / release Li ions even in an electrode filled with an active material at a high density, thereby improving charge / discharge efficiency.
[0011]
The carbonaceous material of the present invention is the carbonaceous material described above, wherein the diffraction intensity of the (111) plane of the Si phase by X-ray wide angle diffraction is expressed as P.SiAnd said SiO2The diffraction intensity of the (111) plane of the phase is PSiO2And the diffraction intensity of the (111) plane of the SiC phase is PSiCAnd the SiBFourThe diffraction intensity of the (104) plane of the phase is PSiBPSiO2/ PSiIs 0.005 or more and 0.1 or less, and PSiC/ PSiIs 0.005 or more and 0.1 or less, and PSiB/ PSiO2Is 0.1 or more and 5.0 or less, and PSiB/ PSiCIs 0.1 or more and 5.0 or less.
[0012]
In such a carbonaceous material, since the diffraction intensity ratio of each phase is in the above range, the Si phase content does not extremely decrease, and the Li occlusion amount does not decrease. In addition, SiO2Phase, SiC phase and SiBFourBy optimizing the phase content, the volume expansion / contraction of the Si fine particles is suppressed.
Therefore, the charge / discharge capacity of the carbonaceous material is increased, and further, the dissociation from the graphite particles due to the volume expansion of the Si fine particles and the pulverization of the Si fine particles due to the volume expansion due to the charge are prevented, thereby preventing a decrease in cycle efficiency. Is possible.
[0013]
The carbonaceous material of the present invention is the carbonaceous material described above, wherein the graphite particles have a particle size of 2 μm or more and 70 μm or less, and the composite particles have a particle size of more than 50 nm and 2 μm or less. The thickness of the amorphous carbon film is in the range of 50 nm to 5 μm.
[0014]
If the particle size of the graphite particles is less than 2 μm, the particle size of the graphite particles is relatively smaller than the particle size of the composite particles, and it is difficult to uniformly attach the composite particles to the surface of the graphite particles. When the particle size exceeds 70 μm, the adhesion to the current collector is lowered and the voids in the electrode are increased, which is not preferable.
Also, the particle size of the composite particles is more than 50 nm and not more than 2 μm, preferably more than 50 nm and not more than 500 nm in order to disperse and arrange the composite particles on the surface of the graphite particles. This is because the minimum particle diameter needs to be 2 μm or less, and if the particle diameter is 500 nm or less, the volume change of the composite particles due to expansion / contraction can be reduced. On the other hand, when the particle size is 50 nm or less, the disorder of the crystal structure of the Si fine particles contained in the composite particles becomes large, and the Li occlusion amount decreases, which is not preferable.
Furthermore, if the film thickness of the amorphous carbon film is less than 50 nm, the graphite particles may not be completely covered with the amorphous carbon film, and it will not be possible to prevent the composite particles from falling off the graphite particles, and also prevent the electrolyte from decomposing. If the film thickness exceeds 5 μm, the irreversible capacity due to amorphous carbon is increased, and lithium ions do not reach the graphite particles, so that the Li occlusion amount is reduced and charged. Since discharge capacity falls, it is not preferable.
[0015]
The carbonaceous material of the present invention is the carbonaceous material described above, wherein the Si fine particles have a particle size in the range of 10 nm to less than 2 μm, and the conductive carbon material has a specific resistance of 10-FourΩ · m or less and the bending strength of the hard carbon film is 500 kg / cm2In addition to the above, the film thickness is 10 nm or more and 1 μm or less.
[0016]
The reason why the particle size of the Si fine particles is 10 nm or more is to prevent the disorder of the crystal structure of the Si fine particles and improve the Li occlusion amount. The reason why the particle size is less than 2 μm is to reduce the particle size of the composite particles. This is to make it smaller than 2 μm, which is the minimum particle size of the graphite particles.
In addition, the specific resistance of the conductive carbon material is 10-FourThe reason why it is less than Ω · m is to provide sufficient conductivity to the Si fine particles.
Furthermore, the bending strength of the hard carbon film is 500 kg / cm.2The reason for the above is to reduce the volume change by mechanically suppressing the expansion and contraction of the Si fine particles accompanying the insertion and release of Li, and the thickness of the hard carbon film is set to 10 nm or more and 1 μm or less. This is because when the film thickness is less than 10 nm, the binding force between the conductive carbon material and the Si fine particles is reduced and the effect of suppressing the volume expansion of the composite particles is lost. This is because the ions do not reach the Si fine particles and the charge / discharge capacity decreases, which is not preferable.
[0017]
The carbonaceous material for a lithium secondary battery of the present invention is the carbonaceous material described above, wherein the content of the composite particles is 1 wt% or more and 25 wt% or less.
[0018]
If the content of the composite particles is less than 1% by weight, it is not preferable because a sufficient discharge capacity exceeding the case where only the carbon material is used as an active material cannot be obtained.
On the other hand, if the content exceeds 25% by weight, the contribution of the carbon material portion is reduced, and the voltage increases from the initial stage of discharge to near the reaction potential of Si, which is not preferable. This is not preferable because volume expansion / contraction is likely to occur due to Si fine particles, and cycle characteristics deteriorate.
[0019]
Next, a lithium secondary battery of the present invention is characterized by including any of the carbonaceous materials described above.
The lithium secondary battery includes, for example, a positive electrode, an electrolyte, and a negative electrode having the negative electrode material, and has various shapes such as a cylindrical shape, a square shape, a coin shape, and a sheet shape. In addition, the lithium secondary battery of the present invention is not limited to the form described here, and may be composed of other forms.
According to the lithium secondary battery, a lithium secondary battery having high energy density and excellent cycle characteristics can be configured.
[0020]
Next, in the method for producing a carbonaceous material according to the present invention, Si fine particles made of crystalline silicon are mixed with B2OThreeBy firing at 1300 ° C. or higher and 1400 ° C. or lower in a carbon crucible with powder, SiO in the crystalline Si phase is obtained.2Phase, SiC phase and SiBFourA step of precipitating a phase, attaching a conductive carbon material to the Si fine particles, forming a polymer material film covering the Si fine particles to form a composite particle precursor, and further firing the composite particle precursor A step of obtaining composite particles by using the polymer film as a hard carbon film; attaching the Si fine particles to graphite particles; and forming a polymer material film covering the graphite particles to form a carbonaceous material precursor; And a step of obtaining a carbonaceous material by firing the carbonaceous material precursor to convert the polymer film into an amorphous carbon film.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 4 show schematic sectional views of a carbonaceous material for a lithium secondary battery of the present invention. This carbonaceous material is formed by dispersing composite particles around graphite particles and covering the graphite particles and composite particles with an amorphous carbon film.
[0022]
Here, “around” represents the positional relationship of the composite particles with respect to the graphite particles, and means “on or near the surface” of the graphite particles. That is, it includes a state in which the composite particles are bonded to the surface of the graphite particles and the composite particles are spaced from the surface of the graphite particles and positioned around the graphite particles.
Further, “dispersed and arranged” means a state in which a plurality of composite particles are dispersed on each other and are bonded to the surface of the graphite particles or slightly spaced from the surface. The composite particles may be in contact with each other to the extent that they do not aggregate.
“Coating” means a state in which the particles to be coated are bonded together by completely covering the particles to be coated. In this case, the coating target particles do not necessarily have to be in direct contact.
Specifically, covering the graphite particles and the composite particles with the amorphous carbon film means that the graphite particles and the composite particles are completely covered with the amorphous carbon film so that the graphite particles and the composite particles are bonded, or amorphous. This means that the composite particles were embedded in the carbonaceous film and brought close to the surface of the graphite particles.
Accordingly, the carbonaceous material of the present invention includes various forms as shown below.
[0023]
For example, the carbonaceous material 1 shown in FIG. 1 is bonded to the surface of the graphite particle 2 in a state where a plurality of composite particles 3 are dispersed, and the amorphous carbon film 4 is larger than the particle size of the composite particles 3. The graphite particles 2 and the composite particles 3 are coated with a small and uniform film thickness.
[0024]
2 is bonded to the surface of a plurality of graphite particles 2 in a state where a plurality of composite particles 3 are dispersed with each other, and the amorphous carbon film 4 has a particle size of the composite particles 3. The graphite particles 2 and the composite particles 3 are formed to have a larger and more uniform film thickness, and a plurality of graphite particles 2 are combined by the amorphous carbon film 4. .
2 shows a state in which two or three graphite particles 2 are combined by an amorphous carbon film 4, the present invention is not limited to this, and four or more graphite particles 2. May be combined.
[0025]
Further, the carbonaceous material 1 shown in FIG. 3 is bonded to the surface of the graphite particle 2 in a state where a plurality of composite particles 3 are dispersed with each other, and the amorphous carbon film 4 connects the graphite particles 2 and the composite particles 3. It is configured by coating. The amorphous carbon film 4 shown in FIG. 3 has a non-uniform film thickness. For example, the portion covering only the graphite particles 2 is set larger than the particle size of the composite particles 3. It is set smaller than the particle size of the composite particles 3.
[0026]
Further, the carbonaceous material 1 shown in FIG. 4 is bonded to the surface of the graphite particle 2 in a state where a plurality of composite particles 3 are dispersed with each other, and the amorphous carbon film 4 connects the graphite particles 2 and the composite particles 3. It is configured by coating. The amorphous carbon film 4 shown in FIG. 4 has a non-uniform film thickness. For example, the portion covering only the graphite particles 2 is set larger than the particle diameter of the composite particles 3. It is set smaller than the particle diameter of the composite particles 3. Moreover, the surface of the amorphous carbon film 4 is formed on a smooth surface without irregularities without reflecting the shape of the composite particles 3.
[0027]
The carbonaceous material of the present invention is not limited to those shown in FIGS. 1 to 4 and may be any material as long as the meanings of the above terms are satisfied.
[0028]
As the graphite particles 1 contained in the carbonaceous material, those having a (002) plane spacing d002 of 0.335 nm or more and less than 0.337 nm by X-ray wide angle diffraction are preferably used, and 0.335 nm or more and 0.34 nm are used. The following are more preferable.
When the interplanar spacing d002 is 0.337 nm or more, the crystallinity of the graphite particles is lowered, the initial irreversible capacity is remarkably increased, and the electron conductivity is lowered, which is not preferable.
The particle size of the graphite particles 2 is preferably in the range of 2 μm to 70 μm.
When the particle size of the graphite particles 2 is less than 2 μm, the particle size of the graphite particles 2 is relatively smaller than the particle size of the composite particles 3... And the composite particles 3. This is not preferable because it becomes difficult, and if the particle size exceeds 70 μm, the adhesion to the current collector is lowered and the gap in the electrode is also increased.
[0029]
Next, as shown in FIGS. 1 to 4, the amorphous carbon film 4 covers the graphite particles 2 and the composite particles 3, and has the composite particles 3 attached on the surface of the graphite particles 2. The amorphous carbon film 4 also has an action of bonding the graphite particles 2... As shown in FIG. The amorphous carbon film 4 is formed by heat-treating at least one of a thermoplastic resin, a thermosetting resin, a vinyl resin, a cellulose resin, a phenol resin, a coal pitch material, a petroleum pitch material, and a tar material. In this way, the graphitization is not relatively advanced, it is amorphous, and it has an interplanar spacing d002 of 0.37 nm or more. Since the amorphous carbon film 4 is amorphous, there is no possibility of decomposition even when the organic electrolyte touches the amorphous carbon film 4, and the charge / discharge efficiency of the carbonaceous material 1 can be increased.
If the interplanar spacing d002 of the amorphous carbon film 4 is less than 0.37 nm, the crystallinity of the amorphous carbon film 4 is improved, the graphite structure is approached, and the organic electrolyte may be decomposed. Absent.
[0030]
Further, since the composite particles 3 are arranged on the surface of the graphite particles 2 by the amorphous carbon film 4, the relatively high specific resistance composite particles 3 are prevented from being released from the graphite particles 2, Generation | occurrence | production of the composite particle 3 ... which does not contribute to charging / discharging reaction can be prevented.
The amorphous carbon film 4 is obtained by putting the polymer material in a solvent in which the polymer material is dissolved, precipitating the polymer material on the surface of the graphite particles 2, and further firing it. The entire particle 2 can be completely covered, and the density is relatively low and lithium ions can easily pass therethrough, so that the reaction between the graphite particles 2 and the composite particles 3 and lithium ions is not hindered.
The film thickness of the amorphous carbon film 4 is preferably in the range of 50 nm to 5 μm. If the film thickness is less than 50 nm, the graphite particles 2 are not completely covered, and the composite particles 3... May fall off the graphite particles 2, which is not preferable. If the film thickness exceeds 5 μm, it is caused by amorphous carbon. This is not preferable because the irreversible capacity increases.
[0031]
Next, as shown in FIG. 5, the composite particles 3... Have conductive carbon materials 6 arranged around the Si fine particles 5, and the Si fine particles 5 and the conductive carbon materials 6. It is coated.
Further, the Si fine particles 3 are made of SiO in the crystalline Si phase.2Phase, SiC phase and SiBFourThe phase is precipitated.
Here, “around” represents the positional relationship of the conductive carbon material 6 to the Si fine particles 5 and means “on or near the surface” of the Si fine particles 5. That is, it includes a state in which the conductive carbon materials 6 are bonded to the surface of the Si fine particles 5 and the conductive carbon materials 6 are spaced from the surface of the Si fine particles 5 and positioned around the Si fine particles 5.
The Si fine particles 5 and the conductive carbon material 6 are covered with the hard carbon film 7. The Si fine particles 5 and the conductive carbon material 6 are completely covered with the hard carbon film 7 so that the Si fine particles 5 and the conductive carbon material 7 are covered. This includes bonding the raw materials 6... And embedding the conductive carbon materials 6 in the hard carbon film 7 so as to be close to the surface of the Si fine particles 5.
[0032]
Furthermore, “precipitation” is a term that describes the state of the crystal phase, and means a state in which a precipitation phase having a composition different from that of the parent phase is formed in the parent phase. That is, SiO in the Si phase2Phase, SiC phase and SiBFourThis means that the phase is inseparably contained, Si phase, SiO2Phase, SiC phase and SiBFourIt does not mean that the phases are physically separated from each other.
[0033]
The particle diameter of the composite particle 3 is preferably in the range of more than 50 nm and 2 μm or less, and more preferably in the range of more than 50 nm and 500 nm or less.
The particle size of the composite particles 3 is set to 2 μm or less in order to disperse the composite particles 3 on the surface of the graphite particles 2. The particle size of the composite particles 3 is set to 2 μm or less which is the minimum particle size of the graphite particles 2. This is because if the particle size is 500 nm or less, the volume change due to the expansion and contraction of the Si fine particles 5 accompanying the occlusion and release of lithium can be reduced. Further, the reason why the lower limit of the particle diameter exceeds 50 nm is that when it is 50 nm or less, the crystal structure of the Si fine particles 5 contained in the composite particles 3 is greatly disturbed, the Li occlusion amount is reduced, and the charge / discharge capacity is reduced. This is because there is a possibility that it may decrease.
[0034]
The Si fine particles 5 contain crystalline silicon (Si phase) as a main component, and SiO 22Phase, SiC phase and SiBFourThe phase is precipitated, and the particle size is in the range of 10 nm or more and less than 2 μm.
Silicon is an element that forms an alloy with lithium, and an alloy is formed when lithium ions act on the Si phase composed of silicon. In particular, lithium ions penetrate into the surface of the Si fine particles 5 or voids inside the Si fine particles 5 to form an alloy, whereby the Si fine particles 5 themselves expand.
[0035]
The Si fine particles 5 have SiO2Phase, SiC phase and SiBFourPhases are included, and these phases do not react with lithium and thus do not have a capacity per se, but have an effect of promoting the diffusion of lithium ions.
Therefore, SiO in the Si phase2Phase, SiC phase and SiBFourWhen the phase is included, the diffusion rate of lithium ions in the Si phase is improved. For example, even in an electrode filled with this carbonaceous material at a high density, it is possible to quickly occlude and release Li ions, and charge and discharge efficiency. Can be improved.
[0036]
In addition, the Si fine particles 5 have SiO 22Phase, SiC phase and SiBFourWhen the phase is contained, the content of the Si phase is relatively lowered, and the Si phase is distorted to lower the crystallinity. As a result, the amount of occlusion of lithium ions slightly decreases, but at the same time, the expansion and contraction of the Si fine particles accompanying the occlusion / release of lithium are moderately suppressed. Thereby, pulverization due to the volume expansion of the Si fine particles is suppressed, and the composite particles are prevented from falling off due to the volume expansion of the Si fine particles, thereby preventing deterioration of cycle characteristics.
[0037]
Specifically, the diffraction intensity of the (111) plane of the Si phase by X-ray wide angle diffraction is expressed as PSiAnd SiO2The diffraction intensity of the (111) plane of the phase is PSiO2And the diffraction intensity of the (111) plane of the SiC phase is PSiCAnd SiBFourThe diffraction intensity of the (104) plane of the phase is PSiBPSiO2/ PSiIs 0.005 or more and 0.1 or less, and PSiC/ PSiIs 0.005 or more and 0.1 or less, and PSiB/ PSiO2Is 0.1 or more and 5.0 or less, and PSiB/ PSiCIs preferably 0.1 or more and 5.0 or less.
PSiO2/ PSiIs less than 0.005, SiO2This is not preferable because the phase content is reduced, the expansion and contraction of the Si fine particles 5 cannot be suppressed, and the diffusion rate of lithium ions is reduced. PSiO2/ PSiIf it exceeds 0.1, the content of the Si phase in the Si fine particles 5 is lowered, and the charge / discharge capacity is lowered.
PSiC/ PSiIs less than 0.005, it is not preferable because the content of the SiC phase is reduced, the expansion and contraction of the Si fine particles 5 cannot be suppressed, and the diffusion rate of lithium ions is reduced.SiC/ PSiIf it exceeds 0.1, the content of the Si phase in the Si fine particles 5 is lowered, and the charge / discharge capacity is lowered.
[0038]
Furthermore, PSiB/ PSiO2If it is less than 0.1, the effect of suppressing the expansion and contraction of the Si fine particles 5 is almost lost. PSiB/ PSiO2When 5.0 exceeds 5.0, SiO2This is not preferable because the phase hinders the effect of promoting the diffusion of lithium ions, and the distortion of the crystal structure of the Si phase becomes too large, resulting in a decrease in discharge capacity.
Furthermore, PSiB/ PSiCIf it is less than 0.1, the effect of suppressing the expansion and contraction of the Si fine particles 5 is almost lost. PSiB/ PSiCIf it exceeds 5.0, the SiC phase hinders the effect of promoting the diffusion of lithium ions, and the distortion of the crystal structure of the Si phase becomes too large, resulting in a decrease in discharge capacity.
In addition, SiO2Phase, SiC phase is particularly effective in promoting the diffusion of lithium ions.FourThe phase has a particularly strong effect of suppressing the expansion and contraction of the Si fine particles 5, but each of these phases alone cannot sufficiently exhibit the above-described effects, and all phases coexist, resulting in high efficiency and high capacity. An electrode material exhibiting a maintenance rate can be obtained. Therefore, in the present invention, SiO2Phase, SiC phase and SiBFourIt is preferred to always include all of the phases.
[0039]
The reason why the particle size of the Si fine particles 5 is 10 nm or more is to prevent the disorder of the crystal structure of the Si fine particles 5 and improve the Li storage amount. The reason why the particle size is less than 2 μm This is because the particle size of 3 needs to be smaller than 2 μm, which is the minimum particle size of the graphite particles 2.
[0040]
Next, the conductive carbon materials 6 are arranged on or near the surface of the Si fine particles 5, and in FIG. 5, the particulate conductive carbon materials 6 are arranged around the Si fine particles 5. However, the shape of the conductive carbon material 6 is not limited to a particle shape, and may be various forms such as a film shape, a layer shape, and a fiber shape.
The conductive carbon material 6 is located on the surface of the Si fine particles 5 that are semiconductors and imparts apparent conductivity to the Si fine particles 5. The specific resistance of the conductive carbon material 6 is 10-FourA range of Ω · m or less is preferred. Specific resistance is 10-FourIf it exceeds Ω · m, the apparent conductivity of the Si fine particles 5 decreases, and the charge / discharge reaction of lithium ions to the Si fine particles 5 does not proceed smoothly, and the charge / discharge capacity of the carbonaceous material can be improved. Since it disappears, it is not preferable.
Examples of the conductive carbon material 6... Include carbon black, ketjen black, vapor grown carbon fiber (VGCF), and the like.
[0041]
The hard carbon film 7 covers the Si fine particles 5 and the conductive carbon materials 6... And the conductive carbon materials 6 are arranged on the surface of the Si fine particles 5. This hard carbon film 7 is obtained by firing polyvinyl alcohol, phenol resin, or the like, and has a bending strength of 500 kg / cm.2In addition to the above, the film thickness is 10 nm or more and 1 μm or less.
[0042]
The hard carbon film 7 is for preventing the release of the composite particles 3 from the graphite particles 2 caused by the expansion and contraction of the Si fine particles 5 accompanying the charge / discharge reaction of lithium ions. Mechanically suppress shrinkage. Therefore, the bending strength of the hard carbon film 7 is 500 kg / cm.2It is preferable to make it above. Bending strength is 500kg / cm2If it is less than the range, the expansion / contraction of the Si fine particles 5 cannot be mechanically suppressed, and the composite particles 3 may be released from the graphite particles 2, which is not preferable.
Moreover, when the film thickness of the hard carbon film 7 is less than 10 nm, the binding force between the conductive carbon material 6... And the Si fine particles 5 is lowered, and the effect of suppressing the volume expansion of the composite particles 3 is lowered. . Further, if the film thickness exceeds 1 μm, the negative reversible capacity is increased due to amorphous carbon, which is not preferable.
[0043]
And it is preferable that content of said composite particle 3 in the carbonaceous material of this invention is 1 to 25 weight%. If the content of the composite particles 3 is less than 1% by weight, it is not preferable because a sufficient discharge capacity that exceeds the case of using only a carbon material as an active material cannot be obtained. On the other hand, if the content exceeds 25% by weight, the contribution of the carbon material portion is reduced, reaching the reaction potential of Si from the beginning of discharge, and the average voltage of the battery is lowered. Narrowing and re-aggregation are likely to cause volume expansion / contraction due to the Si fine particles 5, and cycle characteristics are deteriorated.
[0044]
When the carbonaceous material 1 reacts with lithium ions, the lithium ions are mainly stored in the graphite particles 2 and combine with the Si fine particles 5 to form an alloy. The conductive carbon material 6 is adhered to the surface of the Si fine particles 5 and the conductivity is apparently high, and lithium ions are easily alloyed with the Si fine particles 5.
At this time, the volume of the graphite particles 2 and the Si fine particles 5 expands. However, since the Si fine particles 5 are covered with the hard carbon film 76, the volume expansion is mechanically suppressed, and the composite including the Si fine particles 5. The particles 3 are not dissociated from the graphite particles 2.
Further, the Si fine particles 5 ... have a Si phase and SiO.2Phase, SiC phase and SiBFourSince the phase is contained, the occlusion amount of lithium ions is suppressed, and the volume expansion of the Si fine particles 5 is moderately suppressed. Also, the composite particles 3 including the Si fine particles 5 are dissociated from the graphite particles 2. There is nothing.
Therefore, the Si fine particles 5 can always contribute to the charge / discharge reaction, and the charge / discharge capacity of the carbonaceous material 1 does not decrease even if the charge / discharge cycle proceeds.
[0045]
Further, by covering the graphite particles 2 and the composite particles 3 with the amorphous carbon film 4, the graphite particles 2 do not directly touch the organic electrolyte solution, and the decomposition of the organic electrolyte solution is suppressed. Further, the composite particles 3 are not detached from the graphite particles 2, and further, the fine particles of the Si fine particles 5 due to volume expansion due to charging are prevented.
[0046]
Therefore, according to said carbonaceous material 1, while charging / discharging capacity | capacitance is made high, pulverization of Si microparticles 5 ... resulting from the volume expansion of Si microparticles 5 ..., dropping-off of the composite particles 3 ..., and volume expansion accompanying charging. Can be suppressed and deterioration of cycle characteristics can be prevented.
[0047]
Said carbonaceous material can be manufactured as follows, for example.
The production of the carbonaceous material includes a step of producing composite particles and a step of mixing graphite particles with the obtained composite particles and coating them with an amorphous carbon film.
First, in the process of producing composite particles, Si fine particles consisting only of the Si phase and a boron compound such as boron or boron oxide as a boron source are prepared, and the Si fine particle boron or boron compound is put into a carbon crucible and is not used. Heat in an active atmosphere at about 1300-1400 ° C. for 120-300 minutes. By this heating, carbon constituting the crucible and the Si phase react to precipitate a SiC phase in the Si fine particles, and boron contained in the boron source reacts to the Si phase to cause SiB in the Si fine particles.FourThe phase precipitates, and the slightly mixed oxygen reacts with the Si phase to form SiO in the Si fine particles.2A phase precipitates.
However, when the heating temperature is less than 1300 ° C. and / or the heating time is less than 120 minutes, the SiC phase, SiO2Phase and SiBFourThe phase does not sufficiently precipitate, which is not preferable. When the heating temperature exceeds 1400 ° C., Si melts, which is not preferable. When the heating time exceeds 300 minutes, the SiC phase, SiO 22Phase and SiBFourThis is not preferable because the amount of phase precipitation becomes excessive.
[0048]
Further, the mixing ratio of the Si fine particles and the boron source such as boron or boron compound is preferably 10: 1.
If the amount of boron is small relative to Si fine particles, SiBFourThis is not preferable because the amount of precipitation of the phase decreases, and an excessive amount of boron is not preferable because the crystal structure of the Si phase is excessively distorted and the discharge capacity is reduced.
[0049]
Next, the Si fine particles after heating and the conductive carbon material are mixed by dry mixing or wet mixing. In the case of wet mixing, it is preferable to use a dispersion medium such as isopropyl alcohol, acetone, or water.
[0050]
Next, the polymer material is dissolved in an appropriate solvent, and a mixture of the Si fine particles and the conductive carbon material is mixed into this solution, and then the solvent is removed. By removing the solvent, a composite particle precursor in which a polymer film is coated on Si fine particles and a conductive carbon material is formed.
In addition, it is preferable to use at least 1 sort (s) among a thermoplastic resin, a thermosetting resin, a vinyl-type resin, a cellulose resin, and a phenol-type resin as said polymeric material, and it is preferable to use especially a phenol resin. Coal pitch materials, petroleum pitch materials, tar materials, etc. may be used.
[0051]
Next, the composite particle precursor is heat-treated to carbonize the polymer film to form a hard carbon film.
The heat treatment is preferably performed in a vacuum atmosphere or an inert gas atmosphere, the heat treatment temperature is preferably in the range of 800 ° C. to 1200 ° C., and the heat treatment time is preferably 120 minutes or longer.
When the heat treatment is performed in a vacuum atmosphere or an inert gas atmosphere, the polymer film is prevented from being oxidized and a good hard carbon film can be formed.
When the heat treatment temperature is less than 800 ° C., carbonization is not completely performed, the specific resistance of the hard carbon film is high, and it is difficult to insert and remove lithium ions, and when the heat treatment temperature exceeds 1200 ° C., This is not preferable because the Si fine particles are carbonized to generate excessive SiC, and the graphitization of the carbon film progresses to reduce the strength of the film. Similarly, a heat treatment time of less than 120 minutes is not preferable because a uniform hard carbon film cannot be formed.
In this way, composite particles are obtained.
[0052]
In the next step, graphite particles are mixed into the obtained composite particles by dry mixing or wet mixing. In the case of wet mixing, it is preferable to use a dispersion medium such as ethanol.
[0053]
Next, another polymer material is dissolved in an appropriate solvent, and a mixture of composite particles and graphite particles is mixed with this solution, and then the solvent is removed. By removing the solvent, a carbonaceous material precursor in which the polymer particles are coated with the composite particles and the graphite particles is formed.
In addition, it is preferable to use at least one polymer material such as a thermoplastic resin, a thermosetting resin, a vinyl resin, a cellulose resin, and a phenol resin as the polymer material, and in particular, a phenol resin is used. Is preferred. Coal pitch materials, petroleum pitch materials, tar materials and the like may be used.
[0054]
Next, the carbonaceous material precursor is heat-treated to carbonize the polymer film to form an amorphous carbon film.
The heat treatment is preferably performed in a vacuum atmosphere or an inert gas atmosphere, the heat treatment temperature is preferably in the range of 800 ° C. to 1200 ° C., and the heat treatment time is preferably 120 minutes or longer.
When the heat treatment is performed in a vacuum atmosphere or an inert gas atmosphere, the polymer film is prevented from being oxidized and a good amorphous carbon film can be formed.
Note that if the heat treatment temperature is less than 800 ° C., the carbonization is not performed completely because of the low temperature, the specific resistance of the amorphous carbon film is high, and it is difficult to insert and remove lithium ions. If the temperature exceeds 1200 ° C., the Si fine particles are carbonized to generate excessive SiC, and the graphitization of the polymer film proceeds to reduce the strength of the amorphous carbon film.
Similarly, a heat treatment time of less than 120 minutes is not preferable because a uniform hard carbon film cannot be formed.
In this way, the carbonaceous material according to the present invention is obtained.
[0055]
A lithium secondary battery can be composed of a negative electrode having the above carbonaceous material, a positive electrode capable of inserting and extracting lithium, and an organic electrolyte.
As the positive electrode, for example, LiMn2OFourLiCoO2, LiNiO2LiFeO2, V2OFiveExamples thereof include a positive electrode material capable of occluding and releasing lithium, such as TiS and MoS, and a positive electrode material such as an organic disulfide compound or an organic polysulfide compound.
As a specific example of the positive electrode or the negative electrode, the above-mentioned positive electrode material or carbonaceous material is mixed with a binder and, if necessary, a conductive additive, and applied to a current collector made of a metal foil or a metal net. What was shape | molded in the sheet form can be illustrated.
[0056]
As the organic electrolyte, for example, an organic electrolytic solution in which a lithium salt is dissolved in an aprotic solvent can be exemplified.
As aprotic solvents, propylene carbonate, ethylene carbonate, butylene carbonate, benzonitrile, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, dioxolane, 4-methyldioxolane, N, N-dimethylformamide, dimethylacetamide, dimethyl Sulfoxide, dioxane, 1,2-dimethoxyethane, sulfolane, dichloroethane, chlorobenzene, nitrobenzene, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl butyl carbonate, dipropyl carbonate, diisopropyl carbonate, dibutyl carbonate , Diethylene glycol, dimethyl An aprotic solvent such as ether, or a mixed solvent in which two or more of these solvents are mixed can be exemplified. In particular, any one of propylene carbonate, ethylene carbonate, and butylene carbonate must be included, and dimethyl carbonate, methyl ethyl It is preferable that any one of carbonate and diethyl carbonate is necessarily contained.
[0057]
Moreover, as a lithium salt, LiPF6, LiBFFour, LiSbF6, LiAsF6LiClOFour, LiCFThreeSOThree, Li (CFThreeSO2)2N, LiCFourF9SOThree, LiSbF6, LiAlOFour, LiAlClFour, LiN (CxF2x + 1SO2) (CyF2y Ten 1SO2) (Where x and y are natural numbers), LiCl, LiI, etc. can be exemplified by mixing one or two or more lithium salts, particularly LiPF.6, LiBFFourThose containing any one of these are preferred.
In addition to this, a conventionally known organic electrolyte for a lithium secondary battery may be used.
[0058]
As another example of the organic electrolyte, a polymer such as PEO or PVA mixed with any of the lithium salts described above, or a polymer having a high swellability impregnated with an organic electrolyte, a so-called polymer electrolyte May be used.
Furthermore, the lithium secondary battery of the present invention is not limited to the positive electrode, the negative electrode, and the electrolyte, and may include other members as necessary. For example, the lithium secondary battery may include a separator that separates the positive electrode and the negative electrode. .
[0059]
According to the above lithium secondary battery, since the carbonaceous material 1 is provided, a lithium secondary battery having high energy density and excellent cycle characteristics can be configured.
[0060]
【Example】
[Manufacture of Carbonaceous Material of Examples]
10 g of Si powder having an average particle diameter of 2 μm and 1.4 to 2.8 g of boron oxide or 1 g of boron were put in a carbon crucible having an internal volume of 200 ml and heated at 1400 ° C. for 240 minutes in an argon gas atmosphere. The Si fine particles are hardened after aggregation by this heat treatment, and become larger particles than before the heating. This was pulverized with a ball mill or the like to a particle size of 300 nm.
Next, 2 parts by weight of carbon black was mixed with 1 part by weight of the pulverized Si fine particles. Carbon black has a specific resistance of 10-FourΩ · m.
Next, a solution in which 10 parts by weight of a phenol resin was dissolved in isopropyl alcohol was prepared, and the mixture of the Si fine particles and carbon black was mixed with this solution and stirred sufficiently, and then the solvent was removed. In this way, a composite particle precursor formed by adhering carbon black and a phenol resin film to the surface of the Si fine particles was formed.
Next, this composite particle precursor was heat-treated at 1000 ° C. for 180 minutes in an argon atmosphere to carbonize the polyvinyl alcohol resin film to form a hard carbon film having a thickness of 0.05 μm.
When the polyvinyl alcohol resin is carbonized alone under the same conditions as described above, the bending strength of the resulting carbide is 800 kg / cm.2Therefore, it is estimated that the bending strength of the hard carbon film is the same.
In this way, composite particles were obtained.
[0061]
Next, 5 parts by weight of the composite particles were added to 95 parts by weight of natural graphite having an average particle diameter of 15 μm, and isopropyl alcohol was further added to perform wet mixing. In addition, the interplanar spacing d002 of the (002) plane by X-ray wide angle diffraction of natural graphite was 0.3355 nm. Next, an isopropyl alcohol solution containing 10 parts by weight of a phenol resin was added to and mixed with the mixture of the natural graphite and the composite particles, and then isopropyl alcohol was evaporated. In this way, a carbonaceous material precursor formed by adhering composite particles and a polyvinyl alcohol resin film to the surface of natural graphite was formed.
[0062]
Next, this carbonaceous material precursor was baked at 1000 ° C. (1273 K) in a vacuum atmosphere to carbonize the phenol resin to obtain an amorphous carbon film having a thickness of 0.05 μm.
When the phenol resin is carbonized alone under the same conditions as described above, the surface spacing d002 of the (002) plane of the resulting carbide is about 0.39 nm. Is estimated to be similar.
Thus, the carbonaceous materials of Examples 1 to 4 were obtained.
[0063]
[Production of Comparative Carbonaceous Material]
The above example except that 10 g of Si powder having an average particle size of 2.0 μm and 2.8 g of boron oxide or 1 g of boron were placed in a zirconium crucible with an internal volume of 100 ml and heated at 1400 ° C. for 180 minutes in an argon gas atmosphere. The carbonaceous materials of Comparative Examples 1 and 2 were obtained in the same manner as in 1-4.
The Si fine particles after heating prepared in Example 2 are pulverized by a ball mill or the like until the average particle size becomes 2 μm again, and then the carbonaceous material of Comparative Example 3 is obtained in the same manner as in Examples 1 to 4. It was.
Furthermore, a carbonaceous material composed only of natural graphite was designated as Comparative Example 4.
[0064]
[Create test cell for charge / discharge test]
Polyvinylidene fluoride was mixed with the carbonaceous materials of Examples 1 to 4 and Comparative Examples 1 to 4, and N-methylpyrrolidone was further added to form a slurry liquid. This slurry solution was applied to a copper foil having a thickness of 14 μm by a doctor blade method and dried in a vacuum atmosphere at 120 ° C. for 24 hours to volatilize N-methylpyrrolidone. In this way, a negative electrode mixture having a thickness of 100 μm was laminated on the copper foil. The content of polyvinylidene fluoride in the negative electrode mixture is 8% by weight, and the density of the negative electrode mixture is 1.5 g / cm.ThreeThat was all.
And the copper foil which laminated | stacked the negative electrode compound material was punched out to the circle | round | yen of diameter 13mm, and it was set as the negative electrode of Examples 1-4 and Comparative Examples 1-4.
[0065]
The negative electrodes of Examples 1 to 4 and Comparative Examples 1 to 4 were used as working electrodes, the metal lithium foil punched out in a circle was used as a counter electrode, a separator made of a porous polypropylene film was inserted between the working electrode and the counter electrode, and electrolysis was performed. Using a solution in which LiPF6 is dissolved in a mixed solvent of dimethyl carbonate (DMC), diethyl carbonate (DEC) and ethylene carbonate (EC) as a solute so as to have a concentration of 1 (mol / L), a coin type A test cell was created.
The charge / discharge current density is 0.2 C, and the charge end voltage is 0 V (L i / L i+), And the discharge end voltage is 1.5 V (Li / Li+) As a charge / discharge test.
Table 1 shows the discharge capacity and charge / discharge efficiency in the first cycle of Examples 1 to 4 and Comparative Examples 1 and 2.
Table 2 shows the capacity ratio (20th / 1st) of the discharge capacity at the 20th cycle and the discharge capacity at the 1st cycle in Example 2 and Comparative Examples 3 and 4. However, the capacity ratio was measured by 1C discharge.
[0066]
[Table 1]
Figure 0004308446
[0067]
"Table 2"
Sample Volumetric ratio of Si fine particles after heat grinding (20th / 1st)
Example 2 0.3 μm 88.0%
Comparative Example 3 2.0 μm 81.2%
Comparative Example 4-84.4%
[0068]
As shown in Table 1, it can be seen that the discharge capacity in the first cycle of Comparative Examples 1 and 2 is substantially the same as or higher than those of Examples 1 to 4.
In the case of Examples 1 to 4, when the Si fine particles were heated in the carbon crucible, the SiC phase precipitated in the Si phase of the Si fine particles, and the content of the Si phase forming an alloy with lithium was relatively This is thought to be due to the decrease.
On the other hand, since Comparative Examples 1 and 2 used a crucible made of zirconium, the SiC phase did not precipitate in the Si phase of the Si fine particles. It is thought that it became high.
[0069]
Furthermore, when Examples 1-3 and Example 4 are compared by discharge capacity, Example 4 has shown high discharge capacity.
In Examples 1-3, the Si fine particles and B2OThreeBy mixing and heating, B2OThreeOxygen atoms oxidize Si and SiBFourIn addition to the phase SiO2This is probably because the Si phase content was relatively reduced because a relatively large number of phases were precipitated.
On the other hand, in Example 4, since Si fine particles and B were mixed and heated, there was less oxygen than in Examples 1 to 3, and a slight amount of SiO due to minute residual oxygen or the like in the atmosphere.2Although the phase is precipitated, the amount thereof is smaller than those in Examples 1 to 3, which is considered to be because the Si phase content is relatively higher than those in Examples 1 to 3.
[0070]
Furthermore, for Examples 1 to 3, B2OThreeThe discharge capacity decreases as the amount of addition increases.
This is B2OThreeAs the added amount of SiB increases, SiBFourIt is considered that a large amount of phases were precipitated and the content of the Si phase was relatively reduced.
[0071]
Next, regarding charge / discharge efficiency, it can be seen from Table 1 that the charge / discharge efficiencies of Examples 1 to 4 are higher than those of Comparative Examples 1 and 2.
This is because the SiC phase, SiO2Phase and SiBFourSince the phase is precipitated and the content of the Si phase forming an alloy with lithium is relatively reduced, the expansion and contraction of the Si fine particles themselves are moderately suppressed, thereby reducing the release of the composite particles from the graphite. This is probably because the charge / discharge efficiency was improved.
SiC phase, SiO2Phase and SiBFourPrecipitation of the phase reduces the crystallinity of the Si phase, and this improves the diffusion rate of lithium in the Si phase.
[0072]
FIG. 6 shows an X-ray diffraction pattern of the Si fine particles of the carbonaceous material of Example 2. As is apparent from FIG. 6, in addition to the Si phase, the SiC phase, SiO2Phase and SiBFourA diffraction peak originating from the phase is observed.
The diffraction intensity of the (111) plane of the Si phase is PSiAnd SiO2The diffraction intensity of the (111) plane of the phase is PSiO2And the diffraction intensity of the (111) plane of the SiC phase is PSiCAnd SiBFourThe diffraction intensity of the (104) plane of the phase is PSiB, P from FIG.SiO2/ PSi= 0.034 and PSiC/ PSi= 0.044 and PSiB/ PSiO2= 1.50 and PSiB/ PSiC= 1.16.
[0073]
Next, as is apparent from Table 2, it can be seen that the capacity ratio of Example 2 is significantly improved as compared with Comparative Example 4.
This is because, similarly to the reason that the charge / discharge efficiency in the first cycle is improved, the SiC phase, SiO 22Phase and SiBFourSince the phase is precipitated and the content of the Si phase forming an alloy with lithium is relatively reduced, the expansion and contraction of the Si fine particles themselves are moderately suppressed, thereby reducing the release of the composite particles from the graphite. This is thought to be due to the improved cycle characteristics.
SiC phase, SiO2Phase and SiBFourPrecipitation of the phase reduces the crystallinity of the Si phase, which improves the diffusion rate of lithium in the Si phase.
Moreover, it can be seen from the results of Comparative Example 3 that when the Si fine particles after heating and baking are large, the curing that suppresses the expansion and contraction of the Si fine particles is thinned.
[0074]
【The invention's effect】
As described above in detail, according to the carbonaceous material of the present invention, since the graphite particles and the Si fine particles occlude Li, the charge / discharge capacity is improved as compared with the case of the graphite particles alone. Further, the conductivity of the Si fine particles is apparently improved by arranging a conductive carbon material around the Si fine particles having a high specific resistance to the graphite particles. Further, by coating the Si fine particles with the hard carbon film, volume expansion / contraction of the Si fine particles accompanying the insertion / release of Li can be mechanically suppressed. Furthermore, by covering the graphite particles and composite particles with an amorphous carbon film, the decomposition of the electrolytic solution is suppressed without the graphite particles touching the electrolytic solution directly, and the composite particles are not dropped from the graphite particles. Furthermore, the micronization of Si fine particles due to volume expansion due to charging is prevented. Furthermore, SiO in the crystalline Si phase2Phase, SiC phase and SiBFourPrecipitation of the phase relatively reduces the content of the Si phase, strains the Si phase, lowers the crystallinity, and suppresses excessive Li occlusion. Thereby, the expansion / contraction of the Si fine particles due to the insertion / release of Li is moderately suppressed. SiO2Phase, SiC phase and SiBFourSince the phase does not react with Li, the phase itself does not have a capacity, but promotes the diffusion of Li ions and suppresses pulverization due to volume expansion of Si fine particles. Furthermore, SiO2Phase, SiC phase and SiBFourSince all of the phases are included, the above functions can be obtained more effectively.
From the above, in the carbonaceous material of the present invention, the charge / discharge capacity is increased, the fine expansion of the Si fine particles due to the volume expansion of the Si fine particles and the drop of the composite particles, and the volume expansion due to charging is suppressed, and the cycle It is possible to prevent deterioration of characteristics.
[0075]
Moreover, according to the lithium secondary battery of this invention, since the carbonaceous material which concerns on this invention is provided as a negative electrode, an energy density and cycling characteristics can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of a carbonaceous material that is an embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view showing another example of a carbonaceous material that is an embodiment of the present invention.
FIG. 3 is a schematic cross-sectional view showing still another example of a carbonaceous material that is an embodiment of the present invention.
FIG. 4 is a schematic cross-sectional view showing another example of a carbonaceous material that is an embodiment of the present invention.
FIG. 5 is a schematic cross-sectional view showing an example of composite particles contained in a carbonaceous material according to an embodiment of the present invention.
FIG. 6 is a diagram showing an X-ray diffraction pattern of Si fine particles after heating.
[Explanation of symbols]
1 Carbonaceous material
2 Graphite particles
3 composite particles
4 Amorphous carbon film
5 Si fine particles
6 Conductive carbon material
7 Hard carbon film

Claims (7)

X線広角回折による(002)面の面間隔d002が0.337nm未満である黒鉛粒子の周りに、珪素及び炭素を少なくとも含有するとともに前記黒鉛粒子より粒径が小さな複合粒子が分散して配置され、かつ前記黒鉛粒子及び前記複合粒子が0.37nm以上の面間隔d002を有する非晶質炭素膜によって被覆されてなり、
前記複合粒子は、結晶質珪素からなるSi微粒子の周りに導電性炭素材が配置されるとともに前記Si微粒子及び前記導電性炭素材が硬質炭素膜により被覆されてなり、
前記Si微粒子は、結晶質Si相中にSiO相、SiC相及びSiB相が析出したものであり、
Si微粒子の粒径が10nm以上2μm未満の範囲であることを特徴とするリチウムイオン二次電池の負極活物質用の炭素質材料。
Composite particles containing at least silicon and carbon and having a particle size smaller than that of the graphite particles are dispersed around the graphite particles having a (002) plane spacing d002 of less than 0.337 nm by X-ray wide angle diffraction. And the graphite particles and the composite particles are covered with an amorphous carbon film having an interplanar spacing d002 of 0.37 nm or more,
In the composite particles, a conductive carbon material is disposed around Si fine particles made of crystalline silicon, and the Si fine particles and the conductive carbon material are covered with a hard carbon film,
The Si fine particles are obtained by depositing a SiO 2 phase, a SiC phase, and a SiB 4 phase in a crystalline Si phase,
A carbonaceous material for a negative electrode active material of a lithium ion secondary battery, wherein the Si fine particles have a particle size in a range of 10 nm or more and less than 2 μm.
X線広角回折による前記Si相の(111)面の回折強度をPSiとし、前記SiO相の(111)面の回折強度をPSiO2とし、前記SiC相の(111)面の回折強度をPSiCとし、前記SiB相の(104)面の回折強度をPSiBとしたとき、
SiO2/PSiが0.005以上0.1以下であり、PSiC/PSiが0.005以上0.1以下であり、PSiB/PSiO2が0.1以上5.0以下であり、PSiB/PSiCが0.1以上5.0以下であることを特徴とする請求項1に記載のリチウムイオン二次電池の負極活物質用の炭素質材料。
The diffraction intensity of the (111) plane of the Si phase by X-ray wide angle diffraction is P Si , the diffraction intensity of the (111) plane of the SiO 2 phase is P SiO2, and the diffraction intensity of the (111) plane of the SiC phase is When it is P SiC and the diffraction intensity of the (104) plane of the SiB 4 phase is P SiB ,
P SiO2 / P Si is from 0.005 to 0.1, P SiC / P Si is from 0.005 to 0.1, P SiB / P SiO2 is located at 0.1 to 5.0 The carbonaceous material for a negative electrode active material of a lithium ion secondary battery according to claim 1, wherein P SiB / P SiC is 0.1 or more and 5.0 or less.
前記黒鉛粒子の粒径が2μm以上70μm以下の範囲であり、前記複合粒子の粒径が50nmを越えて2μm以下の範囲であり、前記非晶質炭素膜の膜厚が50nm以上5μm以下の範囲であることを特徴とする請求項1または請求項2に記載のリチウムイオン二次電池の負極活物質用の炭素質材料。  The particle size of the graphite particles is in the range of 2 μm or more and 70 μm or less, the particle size of the composite particles is in the range of more than 50 nm and 2 μm or less, and the film thickness of the amorphous carbon film is in the range of 50 nm or more and 5 μm or less. The carbonaceous material for a negative electrode active material of a lithium ion secondary battery according to claim 1 or 2, wherein the carbonaceous material is a lithium ion secondary battery. 前記導電性炭素材の比抵抗が10−4Ω・m以下であり、かつ前記硬質炭素膜の曲げ強度が500kg/cm以上であるとともに膜厚が10nm以上1μm以下であることを特徴とする請求項1ないし請求項3のいずれかに記載のリチウムイオン二次電池の負極活物質用の炭素質材料。The specific resistance of the conductive carbon material is 10 −4 Ω · m or less, the bending strength of the hard carbon film is 500 kg / cm 2 or more, and the film thickness is 10 nm or more and 1 μm or less. The carbonaceous material for the negative electrode active material of the lithium ion secondary battery according to any one of claims 1 to 3. 前記複合粒子の含有量が1重量%以上25重量%以下であることを特徴とする請求項1ないし請求項4のいずれかに記載のリチウムイオン二次電池の負極活物質用の炭素質材料。  5. The carbonaceous material for a negative electrode active material of a lithium ion secondary battery according to claim 1, wherein the content of the composite particles is 1 wt% or more and 25 wt% or less. 請求項1ないし請求項5のいずれかに記載のリチウムイオン二次電池の負極活物質用の炭素質材料を備えたことを特徴とするリチウム二次電池。  A lithium secondary battery comprising the carbonaceous material for a negative electrode active material of the lithium ion secondary battery according to any one of claims 1 to 5. 結晶質珪素からなるSi微粒子をB粉末とともに炭素るつぼ中で1300℃以上1400℃以下で焼成することにより、結晶質Si相中にSiO相、SiC相及びSiB相を析出させる工程と、
前記Si微粒子に導電性炭素材を付着するとともに、該Si微粒子を覆う高分子材料皮膜を形成して複合粒子前駆体とし、更に該複合粒子前駆体を焼成することにより前記高分子皮膜を硬質炭素膜として複合粒子を得る工程と、
鉛粒子に前記複合粒子を付着するとともに、該黒鉛粒子を覆う高分子材料皮膜を形成して炭素質材料前駆体とし、更に該炭素質材料前駆体を焼成することにより前記高分子皮膜を0.37nm以上の面間隔d002を有する非晶質炭素膜として炭素質材料を得る工程とからなることを特徴とするリチウムイオン二次電池の負極活物質用の炭素質材料の製造方法。
A process of precipitating SiO 2 phase, SiC phase and SiB 4 phase in crystalline Si phase by firing Si fine particles made of crystalline silicon together with B 2 O 3 powder in a carbon crucible at 1300 ° C. or higher and 1400 ° C. or lower. When,
A conductive carbon material is attached to the Si fine particles, and a polymer material film is formed to cover the Si fine particles to form a composite particle precursor, and the composite particle precursor is further baked to thereby convert the polymer film into hard carbon. Obtaining composite particles as a membrane;
With attaching the composite particles to the black lead particles, the polymer film by the carbonaceous material precursor to form a polymeric material coating covering the graphite particles, further calcining the carbonaceous material precursor 0 A method for producing a carbonaceous material for a negative electrode active material of a lithium ion secondary battery, comprising: obtaining a carbonaceous material as an amorphous carbon film having an interplanar spacing d002 of 37 nm or more .
JP2001058399A 2001-03-02 2001-03-02 Carbonaceous material and lithium secondary battery Expired - Lifetime JP4308446B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001058399A JP4308446B2 (en) 2001-03-02 2001-03-02 Carbonaceous material and lithium secondary battery
KR10-2001-0068302A KR100424636B1 (en) 2001-03-02 2001-11-02 Carbonaceous material and lithium secondary battery comprising the same
US10/087,247 US6733922B2 (en) 2001-03-02 2002-03-01 Carbonaceous material and lithium secondary batteries comprising same
CNB021058458A CN1220291C (en) 2001-03-02 2002-03-02 Carbon-containing material and lithium secondary cell containg the same material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001058399A JP4308446B2 (en) 2001-03-02 2001-03-02 Carbonaceous material and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2002260658A JP2002260658A (en) 2002-09-13
JP4308446B2 true JP4308446B2 (en) 2009-08-05

Family

ID=18918126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001058399A Expired - Lifetime JP4308446B2 (en) 2001-03-02 2001-03-02 Carbonaceous material and lithium secondary battery

Country Status (2)

Country Link
JP (1) JP4308446B2 (en)
KR (1) KR100424636B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022508339A (en) * 2018-08-14 2022-01-19 エスジェー・アドバンスド・マテリアルズ・カンパニー・リミテッド A lithium secondary battery equipped with a negative electrode active material, a method for producing the same, and a negative electrode containing the negative electrode.

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5060010B2 (en) * 2002-10-18 2012-10-31 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
KR101107041B1 (en) 2002-05-08 2012-01-25 가부시키가이샤 지에스 유아사 Nonaqueous electrolyte secondary cell
TWI278429B (en) * 2002-05-17 2007-04-11 Shinetsu Chemical Co Conductive silicon composite, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
US7674555B2 (en) * 2002-11-26 2010-03-09 Showa Denko K.K. Electrode material, and production method and use thereof
KR100477970B1 (en) 2002-12-26 2005-03-23 삼성에스디아이 주식회사 Negative active material for lithium secondary battery and method of preparing same
JP3995050B2 (en) * 2003-09-26 2007-10-24 Jfeケミカル株式会社 Composite particles for negative electrode material of lithium ion secondary battery and method for producing the same, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery
TWI251359B (en) * 2003-10-10 2006-03-11 Lg Cable Ltd Lithium secondary battery having PTC powder and manufacturing method thereof
JP4855696B2 (en) * 2005-03-08 2012-01-18 Jfeケミカル株式会社 Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN100344016C (en) * 2005-09-12 2007-10-17 中国科学院上海硅酸盐研究所 Method for preparing silicon/carbon composite lithium ion battery cathode material under room temperature
JP4849307B2 (en) * 2005-09-29 2012-01-11 ソニー株式会社 Negative electrode and battery
KR100816586B1 (en) * 2006-01-27 2008-03-24 엘에스전선 주식회사 Anode material for secondary battery, secondary batteries using the same, manufacturing method anode material for secondary battery and secondary batteries using the same
JP5223281B2 (en) * 2007-09-28 2013-06-26 Tdk株式会社 Lithium ion secondary battery or composite particle for positive electrode of lithium secondary battery, and lithium ion secondary battery or lithium secondary battery
CN102479948B (en) * 2010-11-30 2015-12-02 比亚迪股份有限公司 Negative active core-shell material of a kind of lithium ion battery and preparation method thereof and a kind of lithium ion battery
WO2012105009A1 (en) * 2011-02-02 2012-08-09 トヨタ自動車株式会社 Composite active material, method for manufacturing composite active material, and electric cell
KR101242529B1 (en) * 2011-02-22 2013-03-12 주식회사 대유신소재 Method of Interface Hardening of Carbon Material Using Nano Silicon Carbarde Coating
JP5365668B2 (en) * 2011-07-27 2013-12-11 日本電気株式会社 Lithium secondary battery and method for producing negative electrode thereof
KR101718055B1 (en) * 2012-02-13 2017-03-20 삼성에스디아이 주식회사 Negative active material and lithium battery containing the material
JP5660112B2 (en) * 2012-04-27 2015-01-28 株式会社豊田自動織機 Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP5992198B2 (en) * 2012-05-07 2016-09-14 株式会社東芝 Method for producing negative electrode active material for nonaqueous electrolyte secondary battery and negative electrode active material for nonaqueous electrolyte battery obtained thereby
JP5828304B2 (en) * 2012-06-29 2015-12-02 トヨタ自動車株式会社 Composite active material, solid battery, and method for producing composite active material
US20150303460A1 (en) * 2012-11-20 2015-10-22 Showa Denko K.K. Method for producing negative electrode material for lithium ion batteries
KR101708363B1 (en) * 2013-02-15 2017-02-20 삼성에스디아이 주식회사 Negative active material, and negative electrode and lithium battery containing the material
US10333142B2 (en) 2013-10-07 2019-06-25 Lg Chem, Ltd. Secondary battery including silicon-based compound
WO2015140907A1 (en) * 2014-03-17 2015-09-24 株式会社東芝 Active material for nonaqueous electrolyte secondary batteries, electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, battery pack and method for producing active material for nonaqueous electrolyte secondary batteries
KR101673719B1 (en) * 2014-03-28 2016-11-07 주식회사 엘지화학 Negative active material for lithium secondary battery and method of preparing for the same
JPWO2017010476A1 (en) * 2015-07-16 2018-04-26 昭和電工株式会社 Method for producing graphite-containing carbon powder for secondary battery and carbon material for battery electrode
CN110998926A (en) * 2017-07-21 2020-04-10 英默里斯石墨及活性炭瑞士有限公司 Carbon-coated silicon oxide/graphite composite particles, and preparation method and application thereof
KR102312408B1 (en) 2017-12-01 2021-10-13 주식회사 엘지에너지솔루션 Anode for lithium secondary battery and Lithium secondary battery comprising the same
KR102519441B1 (en) 2017-12-22 2023-04-07 삼성에스디아이 주식회사 Composite negative electrode active material for lithium secondary battery, an anode comprising the same, and the lithium secondary battery comprising the anode
KR20210101601A (en) * 2020-02-10 2021-08-19 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery and rechargeable lithium battery including same
KR102395188B1 (en) 2020-12-10 2022-05-10 한국메탈실리콘 주식회사 A method for manufacturing a silicon composite using a by-product of silicon and the silicon composite
CN112687853B (en) * 2020-12-10 2022-08-16 安普瑞斯(南京)有限公司 Silica particle aggregate, preparation method thereof, negative electrode material and battery
WO2024048288A1 (en) * 2022-09-01 2024-03-07 Dic株式会社 Negative electrode active material precursor, negative electrode active material, secondary battery, and method for producing negative electrode active material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022508339A (en) * 2018-08-14 2022-01-19 エスジェー・アドバンスド・マテリアルズ・カンパニー・リミテッド A lithium secondary battery equipped with a negative electrode active material, a method for producing the same, and a negative electrode containing the negative electrode.

Also Published As

Publication number Publication date
KR100424636B1 (en) 2004-03-24
JP2002260658A (en) 2002-09-13
KR20020070762A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
JP4308446B2 (en) Carbonaceous material and lithium secondary battery
JP4104830B2 (en) Carbonaceous material, lithium secondary battery, and method for producing carbonaceous material
JP4104829B2 (en) Carbonaceous material and lithium secondary battery
JP4861120B2 (en) Negative electrode active material, production method thereof, and negative electrode and lithium battery employing the same
JP4137350B2 (en) Negative electrode material for lithium secondary battery, electrode for lithium secondary battery, lithium secondary battery, and method for producing negative electrode material for lithium secondary battery
JP5329858B2 (en) Method for producing negative electrode active material for nonaqueous electrolyte secondary battery and negative electrode active material for nonaqueous electrolyte battery obtained thereby
JP4740753B2 (en) Lithium battery for charging / discharging, and method for producing negative electrode active material contained in negative electrode of lithium battery for charging / discharging
JP5122272B2 (en) Anode active material, method for producing the same, and anode and lithium battery employing the same
JP4790402B2 (en) Cathode active material, method for producing the same, and cathode and lithium battery using the same
JP5642918B2 (en) Negative electrode active material containing metal nanocrystal composite, method for producing the same, and negative electrode and lithium battery employing the same
US6733922B2 (en) Carbonaceous material and lithium secondary batteries comprising same
KR101035361B1 (en) Anode active material, method of preparing the same, and anode and lithium battery containing the material
JP2020529709A (en) Negative electrode active material, negative electrode containing it and lithium secondary battery
JP5611453B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP3509050B2 (en) Lithium secondary battery and method of manufacturing the same
JPH103920A (en) Lithium secondary battery, and manufacture of the same
JP5505479B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP5505480B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP2002348109A (en) Anode material for lithium secondary battery, method for producing the same and secondary battery using the same
WO2016136226A1 (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP5992198B2 (en) Method for producing negative electrode active material for nonaqueous electrolyte secondary battery and negative electrode active material for nonaqueous electrolyte battery obtained thereby
JPH11191408A (en) Negative active material for lithium ion secondary battery, and negative electrode plate and lithium ion secondary battery using the same
KR20060026203A (en) Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same
JP3863514B2 (en) Lithium secondary battery
KR102025150B1 (en) Anode active material for lithium secondary battery and methods of fabricating the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040809

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090501

R150 Certificate of patent or registration of utility model

Ref document number: 4308446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term